
UC San Diego
UC San Diego Previously Published Works

Title
Proffler: Toward Collaborative and Scalable Edge-Assisted Crowdsourced Livecast

Permalink
https://escholarship.org/uc/item/05r3g3gg

Journal
IEEE Internet of Things Journal, 11(2)

ISSN
2372-2541

Authors
Zhang, Wenyi
Xu, Zihan
Wang, Fangxin
et al.

Publication Date
2024-01-15

DOI
10.1109/jiot.2023.3297843

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/05r3g3gg
https://escholarship.org/uc/item/05r3g3gg#author
https://escholarship.org
http://www.cdlib.org/

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 2, 15 JANUARY 2024 3539

Proffler: Toward Collaborative and Scalable
Edge-Assisted Crowdsourced Livecast

Wenyi Zhang , Zihan Xu, Fangxin Wang , Member, IEEE, and Jiangchuan Liu , Fellow, IEEE

Abstract—In recent years, crowdsourced livecast has seen
remarkable progress due to the interactivity and real-time nature,
playing an essential role in multimedia applications in the post-
epidemic era. Given the delay sensitivity, large viewing volumes,
and heterogeneous viewing patterns, the traditional video stream-
ing methods fail to provide the optimized Quality of Experience
(QoE) for viewers using the minimum system cost over an edge-
assisted service architecture. The emerging technology of mobile
edge computing (MEC) offers a new perspective of reducing
user latency and enhancing the quality of dispatched videos in a
promising way. In this article, we propose Proffler, an inte-
grated framework that addresses this problem through effective
stream caching at the network edge server. We first examine
the underlying correlations in viewing patterns across different
regions and propose a novel transformer-based algorithm, Chili-
TF, that achieves accurate viewer request prediction, even for
regions with insufficient data. We then design a scalable algo-
rithm, U2VR, that achieves near-optimal video stream allocation
as well as viewer scheduling. Extensive real-data-driven experi-
ments further confirm that Proffler can achieve improvements
of 20%–55% in average QoE compared to state-of-the-art
solutions.

Index Terms—Request scheduling, video stream allocation,
viewer request prediction.

Manuscript received 25 November 2022; revised 8 June 2023; accepted
16 July 2023. Date of publication 24 October 2023; date of current ver-
sion 8 January 2024. This work was supported in part by the Basic
Research Projects of Hetao Shenzhen-HK S&T Cooperation Zone under Grant
HZQB-KCZYZ-2021067; in part by NSFC under Grant 62293482 and Grant
62102342; in part by the Guangdong Basic and Applied Basic Research
Foundation under Grant 2023A1515012668; in part by the Shenzhen Science
and Technology Program under Grant RCBS20221008093120047; in part by
the National Key Research and Development Program of China under Grant
2018YFB1800800; in part by the Shenzhen Outstanding Talents Training
Fund under Grant 202002; in part by the Guangdong Research Projects under
Grant 2017ZT07X152 and Grant 2019CX01X104; in part by the Guangdong
Provincial Key Laboratory of Future Networks of Intelligence under Grant
2022B1212010001; in part by the Shenzhen Key Laboratory of Big Data and
Artificial Intelligence under Grant ZDSYS201707251409055; and in part by
the Key Area Research and Development Program of Guangdong Province
under Grant 2018B030338001. The work of Jiangchuan Liu was supported
in part by CFI JELF/BCKDF Grant. (Wenyi Zhang and Zihan Xu contributed
equally to this work.) (Corresponding author: Fangxin Wang.)

Wenyi Zhang and Zihan Xu were with the Future Network of Intelligence
Institute and the School of Science and Engineering, The Chinese
University of Hong Kong, Shenzhen 518172, China (e-mail: wenyizhang@
link.cuhk.edu.cn; zihanxu@link.cuhk.edu.cn).

Fangxin Wang is with the School of Science and Engineering and the Future
Network of Intelligence Institute, The Chinese University of Hong Kong,
Shenzhen 518172, China (e-mail: wangfangxin@cuhk.edu.cn).

Jiangchuan Liu is with the School of Computing Science, Simon Fraser
University, Burnaby, BC V5A1S6, Canada (e-mail: jcliu@sfu.ca).

Digital Object Identifier 10.1109/JIOT.2023.3297843

I. INTRODUCTION

CROWDSOURCED livecast, which involves real-
time video streaming and content viewing from

geo-distributed Internet users, gets benefits from the devel-
opment of broadband mobile access [1] and smart mobile
devices [2]. It has seen remarkable progress in recent years
as it enables everyone to share customized videos lively and
interactively. Such a wide variety of stream content attracts
millions of viewers every day and brings billions of revenues
for service providers [3]. The pandemic of Covid-19 further
brings new opportunities for livecast, e.g., more companies
choose to leverage livecast for product demonstration and sale
promotion, and online classroom has become quite popular
in more and more countries and regions. In the post-epidemic
era and the foreseeable future, livecast will continue to
play an essential role on the Internet and cultivate the rapid
development of emerging new multimedia applications, such
as virtual reality (VR) [4], Metaverse [5], etc.

Different from TV-based broadcast, the crowdsourced live-
cast is characterized by the sensitive streaming delay require-
ment, numerous geo-distributed viewers, heterogeneous viewer
watching patterns, and various stream contents, rendering
the conventional cloud-based streaming service ineffective to
accommodate viewers’ Quality of Experiences (QoEs). The
readily deployed 5G and mobile edge computing (MEC)
offers a new alternative, where computation-intensive stream
transcoding and delivery for heterogeneous viewers can be
offloaded to the distributed edge servers to provide services
with shorter streaming delay and sufficient bandwidth [6],
[7], [8]. Such architecture, however, faces two significant
challenges. The first one lies in the highly dynamic and
uncertain viewer requests in different regions, so it is chal-
lenging to accurately forecast the future viewing patterns of the
geo-distributed viewers and make corresponding service allo-
cations in advance. The second one comes from the mismatch
between the distributed yet limited edge resources and the het-
erogeneous viewer requests, making it highly challenging to
achieve optimal resource allocation and viewer scheduling in
a scalable way toward high QoE and low system overhead.

Existing works are incapable of solving these problems con-
currently. For the viewing pattern prediction, Li et al. [9]
mainly focused on predicting the popularity of different video
contents, ignoring the fast-changing popularity patterns and
thus being unable to satisfy the highly dynamic live requests.
Some other works [10], [11], [12] mainly focused on exploring
the potential of the self-attention mechanism for time series

2327-4662 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 29,2024 at 19:15:10 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1135-0706
https://orcid.org/0000-0003-2559-045X
https://orcid.org/0000-0001-6592-1984

3540 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 2, 15 JANUARY 2024

without a complete solution to solve this problem. For the
edge resource allocation, Wang et al. [13] proposed an end-
to-end learning-based solution for user scheduling, yet such a
solution is generally a centralized algorithm and is insufficient
to deal with the scalable condition in practical applications.
Many other works [14], [15], [16] omit the heterogeneity of
the edges and the users, which are not suitable for practical
live-streaming scenarios. Thus, how to design an integrated
framework to solve the problems remains challenging in
crowdsourced livecast.

In this article, we propose Proffler,1 an integrated
framework that achieves collaborative viewing request
prediction across different regions and scalable video stream
allocation as well as viewer scheduling in edge-assisted
crowdsourced livecast. Proffler consists of two major com-
ponents, i.e., the request prediction module and the service
scheduling module. The first module identifies the underly-
ing common viewing patterns across different regions and
extracts the similarity. We propose a novel transformer-based
algorithm, Chili-TF, with local and regional similarity fea-
tures that achieves accurate viewer request prediction, even
for regions with insufficient data. In the second module,
we design an optimization algorithm, i.e., U2VR, to solve
this scheduling problem. U2VR first allocates video streams
in a geographical popularity-based manner, and then it uti-
lizes a utility-based heuristic to schedule users’ requests.
We have conducted extensive real-trace-driven experiments.
The results demonstrate that our prediction algorithm outper-
forms the commonly used long short-term memory (LSTM)
and state-of-the-art Transformer algorithm, achieving 0.03043
MSE on average. Besides, with the prediction results, our
service scheduling algorithm is able to attain near-optimal
stream allocation and user redirection, with up to 55.7%
improvement.

II. RELATED WORK

A. Time Series Prediction

Time series prediction is a research field in which data
regularity is sorted based on historical data, and future
nonoccurrence time is made. There are many existing meth-
ods to capture the periodicity of sequential time sequence
through neural network-related algorithms [17], [18], [19],
[20]. Recently, Recurrent Neural Network has been a pop-
ular research area in time series forecasting. LSTM [21]
is proposed to solve the problem of gradient disappearance
and gradient explosion in long sequence training. Sagheer
and Kotb [22] do the prediction of petroleum production using
deep LSTM recurrent networks and achieve good performance.
Li et al. [23] designed an evolutionary attention-based LSTM
for time series prediction. Karevan and Suykens [24] investi-
gated two weighting schemes based on the cosine similarity
between the training samples and the test point.

Transformer is another popular model to solve the sequence-
to-sequence problem [12]. It is designed for natural language
processing (NLP) task, which has some structural limitations

1“Proffler” is the combination of “Prophet” and “Niffler.” Prophet can
predict the future, representing our prediction model. Niffler is a greedy
creature in the myth, representing our utility-based scheduling algorithm.

Fig. 1. Edge network system model.

for the long-time series prediction task. Recently, a few stud-
ies have tried to exploit the potential of Transformer for time
series forecasting [11], [25]. However, no study has introduced
Transformer into the live video requests forecast yet. The
user’s request is multidimensional related to geographical loca-
tion, holidays, and time points, with rapid real-time change and
an extensive variation range. This poses a significant challenge
to the Transformer model application.

B. Service Placement

Shareable resources between edge servers enable users to
have access to different edges, opening up the problem of
service placement. Researchers have proposed various algo-
rithms for jointly placing service on edge servers and assigning
users to edge servers with different objectives (e.g., minimiz-
ing delay [26], cost [27], or maximizing the number of users
assigned to edges [28]). For example, an approximation algo-
rithm with a greedy heuristic is used to guarantee the lower
bound of the cost [14]. Yu et al. [16] proposed a decentralized
algorithm to transform the placement problem into a matching
problem between edge servers and users. Another way is to use
the reinforcement learning-based method to solve the problem.
According to Talpur and Gurusamy [29], RL-based dynamic
service placement can effectively reduce service delay and
utilize resources.

The problem of service placement and request schedul-
ing can usually be formulated as an integer linear problem
(ILP) or mixed ILP (MILP). Due to the complexity of the
problem, the works [14], [15] that focus on optimally solv-
ing the problem omit the heterogeneity of the edge servers
and the users. In addition, most works [30], [31], [32] typi-
cally consider scenarios, such as content placing, computing
scheduling, and cache placement. However, few studies have
worked on the live-streaming case, leaving an important void
that needs to fill.

III. SYSTEM MODEL

A. Framework Architecture

We consider an edge network framework as in Fig. 1, which
consists of a central cloud server c with enough capacity to

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 29,2024 at 19:15:10 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PROFFLER: TOWARD COLLABORATIVE AND SCALABLE EDGE-ASSISTED CROWDSOURCED LIVECAST 3541

Fig. 2. System framework of Proffler. The system consists of two major modules. The request prediction module takes in the history user requests and
makes a prediction. The predicted future requests are fed into the service scheduling module to output optimized scheduling.

store all video streams S, a set E of edges with some streams
to provide better service delivery, and a set of users U dis-
tributed within the cover range of each edge. The streaming
delay perceived by a user is much smaller if served by an edge
than by the cloud server, and so is the bandwidth cost since the
resource price at an edge is usually cheaper than at the cloud.
Practically, each edge e has an inbound bandwidth constraint
Cin

e and an outbound bandwidth constraint Cout
e , which limits

the number of video streams an edge can take and the number
of users an edge can serve. The inbound bandwidth take-up
and outbound bandwidth take-up of an edge e are defined as
˜Cin

e and ˜Cout
e , respectively.

B. Problem Formulation

Our Proffler system is composed of two major com-
ponents, as illustrated in Fig. 2, including the request
prediction module and the service scheduling module. The
live-streaming scenario is highly dynamic, changing the
requests in every new time window. The rapidly chang-
ing request requires the system to actively adjust the video
stream allocation and request scheduling based on the request
information.

1) Request Prediction Module: We propose Chili-TF, a
module that constructs an improved transformer-based neu-
ral network to predict the next-time window users’ requests
for each edge based on the history of user requests with com-
mon viewing patterns across different regions. We formulate
the live-video request prediction for a specific video stream
in a particular edge e as a multidimensional and multistep
supervised machine learning task.

Among K adjacent edges of E, we choose H edges to use
their data to do the regional data collaboration and get a time
series containing N data points xt−N+1, . . . , xt−1, xt, for M step
ahead prediction, the input X of the supervised ML model is
xt−N+1, . . . , xt−M , and the output Y is xt−M+1, xt−M+2, . . . ,
xt. Each data point xt can be a scalar or a vector containing
the features of multiple user request series.

2) Service Scheduling Module: Once the predicted poten-
tial viewing requests are obtained, the system can proceed
to the second module, i.e., the service scheduling module.
We propose a utility-based two-step joint video stream alloca-
tion and request scheduling (U2VR) algorithm in the second

module to determine which video streams to allocate and
whether to redirect local users to another edge in order to
achieve a low overall streaming latency bandwidth cost. U2VR
first allocates video streams on edges based on the predicted
requests. When the new time window arrives, the system can
instantly apply the changes to the request scheduling.

We aim to optimally schedule each edge, maximizing the
QoEs (i.e., minimizing the streaming delay and bandwidth
cost) of users within the resource constraints. In order to
solve the problem, we should not only determine which video
streams to allocate on each edge, i.e., video stream allocation,
but also should determine how to assign each user to edges
containing the streams requested, i.e., request scheduling.

We define xe
s ∈ {0, 1} (s ∈ S, e ∈ E ∪ {c}) to indicate the

allocation of service s at edge e (central cloud server is treated
as a special edge where xc

s = 1,∀s ∈ S), and ye
u ∈ {0, 1}

(u ∈ U, e ∈ E ∪ {c}) to indicate whether user u is assigned
to edge e. Hence, the video stream allocation can be denoted
by set X = {xe

s |s ∈ S, e ∈ E ∪ {c}}, and the request scheduling
can be denoted by set Y = {ye

u|u ∈ U, e ∈ E ∪ {c}}.
We assume a user can request a video stream from either the

local edge or the nonlocal edges with a relatively small stream-
ing delay in proportion to the geographical distance from the
request edge to the local edge. We adopt a linear function to
represent the streaming delay. If no edge can satisfy a user’s
request, the user will be assigned to the central could server,
suffering a huge streaming delay. The streaming delay Lloc(u),e

can be represented as follows:

Lloc(u),e =
{

α · ||loc(u), e||, e �= c
β, e = c

(1)

where loc(u) indicates the local edge of the user u. ||loc(u), e||
denotes the geographical distance between the user’s local
edge and the requested edge. α and β are weighted parameters
to tune the delay.

Consider that the bandwidth cost of the central cloud server
is higher than the edges, the bandwidth cost Wu,e is

Wu,e = Bru · Ie (2)

where Bru is the bandwidth size a video stream ru takes up
and Ie is the unit bandwidth cost of server e (e ∈ E ∪ {c}).

Combining the variables mentioned above, we have the
following optimization objective that minimizes the overall

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 29,2024 at 19:15:10 UTC from IEEE Xplore. Restrictions apply.

3542 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 2, 15 JANUARY 2024

Fig. 3. Overall structure of the Chili-TF module. The output vectors from different Single-Edge Encoders are aggregated through the Regional Collaboration
Controller based on the DTW algorithm and then input into the corresponding Multiedge Decoder for the future user requests prediction.

streaming delay and bandwidth cost:

min
∑

u∈U

∑

e∈E∪{c}
Lloc(u),e · ye

u +Wu,e · ye
u (3)

s.t.
∑

s∈S

xe
s · Bs ≤ Cin

e ∀e ∈ E (4)

∑

u∈U

ye
u · Bru ≤ Cout

e ∀e ∈ E (5)

xc
s = 1 ∀s ∈ S (6)
∑

e∈E∪{c}
ye

u = 1 ∀u ∈ U (7)

ye
u ≤ xe

ru
∀e ∈ E ∪ {c}, u ∈ U (8)

xe
s, ye

u ∈ {0, 1} ∀s ∈ S, e ∈ E ∪ {c}, u ∈ U. (9)

Equation (4) guarantees that the video streams allocated on
one edge will not exceed its inbound bandwidth constraint.
Equation (5) guarantees that the number of users served by
one edge will not exceed its outbound bandwidth constraint.
Equation (6) indicates that the central cloud server has unlim-
ited resources, which can accept any request. Equation (7)
indicates that a user can only be assigned to one edge.
Equation (8) ensures that a user can only be assigned to the
edge that contains the requested video stream. Equation (9)
shows that all the decision variables are indicators.

IV. USER REQUEST PREDICTION

Regions with different geographical locations are composed
of different users, which means that potential users’ viewing
preferences and patterns are also different in the sequence
requested by users in the region. In order to maximize the
selection of data to participate in the training to obtain
higher accuracy prediction, we design Chili-TF, a user request
prediction model using a multiedge collaborative learning
algorithm. Based on the analysis of user requests’ time series
among different regions, Chili-TF selects particular regions
with similar user composition and user request patterns to par-
ticipate in the training model under the heterogeneous user
data quantity.

A. Overall Module Architecture

The Chili-TF model is a multiregional cooperative
transformer-based model. According to Fig. 3, it consists
of three components: 1) Single-Edge Encoder; 2) Regional
Collaboration Controller; and 3) Multiedge Decoder. The
overall function of each component is listed below.

1) Single-Edge Encoder: Each edge has a Single-Edge
Encoder, which uses the self-attention mechanism to
extract time series’ periodicity and self-dependence. The
input for each edge is the history user requests data in
its region, and the output of the Single-Edge Encoder
is a vector that contains the extracted temporal features
and the regional user video requests pattern.

2) Regional Collaboration Controller: The Regional
Collaboration Controller compares the self-attention
vectors from different edges’ Single-Edge Encoder and
selects a specific number of edges whose regional
user characteristics are most similar based on the
dynamic time warping algorithm. Based on the dynamic
time warping distance of different regions, Regional
Collaboration Controller chooses particular regions with
smaller dynamic time warping distances between their
self-attention vectors to participate in the model training
process. The Regional Collaboration Controller assigns
different weights to these vectors according to their sim-
ilarity and merges them into one vector. The fused vector
is transferred to the Multiedge Decoder.

3) Multiedge Decoder: The Multiedge Decoder is trained
according to the data information from multiple simi-
lar edges. It decodes the fused vector output from the
Regional Collaboration Controller using the multihead
mechanism constructed in the Single-Edge Encoder to
do the multidimensional search. Finally, the future user
request predicted value for a particular edge is output
from the Multiedge Decoder.

B. Single-Edge Encoder

As is shown in Fig. 4, the encoder is composed of a convo-
lution layer, a positional encoding layer, a timestamp encoding

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 29,2024 at 19:15:10 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PROFFLER: TOWARD COLLABORATIVE AND SCALABLE EDGE-ASSISTED CROWDSOURCED LIVECAST 3543

Fig. 4. Structure of the Single-Edge Encoder and the Multiedge Decoder.

layer, and a stack of three encoder layers. The convolution
layer transforms the time series data to a vector of dimen-
sion d-model through a fully connected network and a 1d
convolution network. The 1d convolution network makes the
input time series vector V focus on the neighborhood time step
information. The single term ṽt for resulting vector is

ṽt = Conv1D(vt). (10)

The resulting vector ṽt is fed into positional encoding layer.
This step is essential for the model to employ a multihead
attention mechanism. The positional encoding algorithm used
to encode the sequential information of time series data is

PE(pos, 2i) = sin
(pos

100002i/dmodel

)

(11)

PE(pos, 2i+ 1) = cos
(pos

100002i/dmodel

)

. (12)

However, positional encoding cannot sufficiently capture the
periodicity features from highly dynamic user requests in the
live streaming scenario. Therefore, we propose a timestamp
encoding method that can help the network better capture the
periodic features hidden behind the dynamically changing data
by adding the value of the periodic sine function concern-
ing the position. The representation for a timestamp encoding
vector TE is

TE(t) = sin

(

2 ∗ π ∗ t

time_cycle

)

/1000. (13)

By combining the positional encoding and the timestamp
encoding, the embedded vector X is element-wise addition of
the input vector V with a positional encoding vector PE and a
timestamp encoding vector TE. The representation for xt for
a time step t is

xt = ṽt + PE(t)+ TE(t). (14)

The resulting vector xt fed into encoder layers consists of
a self-attention sublayer and a fully connected feed-forward
sublayer. A normalization layer follows each sublayer. The
encoder outputs a d model-dimensional vector, which Regional
Collaboration Controller uses.

C. Regional Collaboration Controller

Due to the highly dynamic live streaming and the diverse
context-dependent request patterns in different edges, it is diffi-
cult to capture the hidden features of user requests. However,
the user request patterns for live streaming among neighbor
edges may have the same features because of the geographical
similarity and user mobility among adjacent edges. Therefore,
training the prediction model with multiedge data can bet-
ter capture the user’s request characteristics than only using a
local request history.

Assume we have E edges in the whole area. We separate a
certain edge e from E, and define its feature vector as X. We
define the feature vector of the remaining E − 1 edges ei as
Xi(i = 1, 2, 3, . . . , E−1). These processed vectors contain the
features of self-attention and user request pattern information
gained from the raw time series data in different regions. For
a certain edge e, the Regional Collaboration Controller selects
top N edges whose Xn(n = 1, 2, 3, . . . , N) is the closest to
the X based on the dynamic time warping distance D(X, Xn)

to fuse their vectors. The algorithm of counting dynamic time
warping distance D(X, Xn) is introduced in the following part.

Suppose Q and C have length n and m, respectively

Q = q1, q2, . . . , qi, . . . , qn (15)

C = c1, c2, . . . , cj, . . . , cm. (16)

We constructs an n-by-m matrix, where the (ith, jth) element
of the matrix contains the distance d(qi, cj) between the two
points qi and cj. The absolute distance between the values
of two sequences is calculated using the Euclidean distance
computation

d
(

qi, cj
) = (

qi − cj
)2

. (17)

Each matrix element (i, j) corresponds to the alignment
between the points qi and cj. Then, the accumulated distance
is measured by

D(i, j) = min
[

D(i− 1, j− 1), D(i− 1, j), D(i, j− 1)
]

+ d(i, j). (18)

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 29,2024 at 19:15:10 UTC from IEEE Xplore. Restrictions apply.

3544 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 2, 15 JANUARY 2024

Based on the value of D(X, Xn), We define the similarity ρn

of two edges e and en as follows:

ρn = 1

(1+ D(X, Xn))
. (19)

The fusion vector Ṽ for edge e which contains the multiedge
data feature is

Ṽ = ρ1X1 + ρ2X2 + · · · + ρnXn. (20)

The fusion vector Ṽ is transferred to the Multiedge Decoder
for further model training.

D. Multiedge Decoder

The future user request predicted value for a particular edge
is output from the Multiedge Decoder by using the fusion
vector Ṽ containing the multiedge features related to rules of
regional user request pattern.

As shown in Fig. 4, the Multiedge Decoder comprises the
input, decoder, and output layers. The fusion vector Ṽ and
the input vector, processed by look-ahead masking, are input
into the decoder layers. The decoder layer consists of a ten-
head self-attention sublayer, a fully connected feed-forward
sublayer, and a normalization layer. Finally, an output layer
maps the decoder layer output to the target time sequence
with a fully connected network.

V. JOINT VIDEO STREAM ALLOCATION AND REQUEST

SCHEDULING OPTIMIZATION

A. Problem Hardness

We analyze the complexity of the video stream allocation
and request scheduling problems in the heterogeneous case.

Theorem 1: The video stream allocation problem is
NP-hard.

Proof: The original problem of video stream allocation is
complex since video stream allocation is dependent on request
scheduling. We consider a simplified case with a given request
scheduling. Consider each video stream as an item and each
edge as a knapsack. The simplified problem can be considered
as putting items (video streams) of different sizes into multiple
knapsacks (edges) with different capacities (bandwidth con-
straints), maximizing the total profit. We reduce the problem
into a multiple knapsack problem (MKP), which is an NP-
hard problem. Hence, the video stream allocation problem is
NP-hard.

Theorem 2: The request scheduling problem is NP-hard.
Proof: Under heterogeneous resource constraints, the

request scheduling problem is to assign users to different edges
in order to maximize the user’s QoE. Consider a special case
of the problem that each edge contains all video streams,
i.e., the user can be assigned to every edge within the band-
width constraint. The simplified problem can be considered as
putting different items (users) into knapsacks (edges) with dif-
ferent capacities (bandwidth constraints), maximizing the total
profit. The simplified problem can be considered as an MKP,
which indicates that the original request scheduling problem
is NP-hard.

Algorithm 1: U2VR
Input: Input parameters of (3) ∼ (9)

Output: Video stream allocation X and user request
scheduling Y

1 X← ∅, Y ← ∅;
2 Sort E from the edge having the most local requests to

the edge having the least local requests;
3 for each e ∈ E do
4 Sort S from the most requested stream to the least

requested stream;
5 for each s ∈ S do
6 if ˜Cin

e + Bs ≤ Cin
e then

7 X← X ∪ xe
s ;

8 ˜Cin
e ← ˜Cin

e + 1;

9 while K /∈ ∅ do
10 y∗ ← ∅, K∗ ← ∅;
11 for each Ku,e ∈ K do
12 if Ku,e ≥ K∗ and ˜Cout

e + Bru ≤ Cout
e then

13 K∗ ← Ku,e;
14 y∗ ← ye

u;

15 if ye
u
∗ �= ∅ then

16 Y ← Y ∪ y∗;
17 Update K;

18 else
19 Break;

B. Algorithm Design

The proposed U2VR algorithm (Algorithm 1) consists of
two steps, decomposing the problem into two subproblems.

1) Step One (Video Stream Allocation): We first resolve the
video stream allocation problem in a geographical popularity-
based greedy method. Since users served by the local edge
would gain the smallest delay, the algorithm will first allo-
cate video streams on the most popular (i.e., with the largest
number of requests) edge. The program iteratively allocates
video streams on edge from the most popular edge to the
least popular one. In each iteration, we allocate the most pop-
ular (i.e., the most requested) video streams until the edge
reaches its inbound bandwidth constraint. After allocating the
video stream, the original problem is now converted to a single
variable optimization.

2) Step Two (Request Scheduling): After step one, the
problem can be considered as assigning users to different
edges within a limited resource constraint. We propose util-
ity gain Ku,e as a measure of the profit the system gains by
assigning user u to edge e

Ku,e = λ�Du + ν�Wu (21)

where Du is the streaming delay of user u, and Wu is the
bandwidth cost of user u. By default, Du and Wu are the value
gained by the user assigned to the central cloud server. �Du

and �Wu represent the improvement of assigning users to a

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 29,2024 at 19:15:10 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PROFFLER: TOWARD COLLABORATIVE AND SCALABLE EDGE-ASSISTED CROWDSOURCED LIVECAST 3545

Fig. 5. Auxiliary graph G for a given video allocation X.

specific edge. The coefficients λ and ν are weighted parameters
to tune the utility gain.

Given the utility function, we construct an auxiliary graph
G as in Fig. 5. The nodes in G consist of a set of nodes U
representing each user and a set of nodes E representing each
edge. In the beginning, each user is connected to edge nodes
containing the video stream that the user requested by dot-
ted lines. The dotted lines are considered as candidate lines,
indicating that the connected edge is qualified for serving the
connected user. Each candidate line has an attribute Ku,e, i.e.,
the utility gain if assign user u to edge e. We define K as
the set containing all the candidate lines. Then, the program
starts to iteratively select the dotted line with the highest util-
ity gain. In one iteration, once a line is chosen, it becomes
a solid line, while other candidate lines originated from that
user node are deleted. Then, the program updates the graph
status and starts a new iteration. Note that if multiple candi-
date lines have the same highest utility gain, the program will
choose the first one. If the edge connected to the selected
candidate line reaches its resource constraint, the program
will select the candidate line with the second-highest utility
gain, so on and so forth. When all the edges reach their
resource constraints, the rest of the unassigned users will
be redirected to the central cloud server, having zero utility
gain.

3) Complexity Analysis: Recall that we define S as the
video streams, and E as the edge servers. For the first step,
the inner for loop is repeated O(|E| × |S|) times. For the sec-
ond step, K reaches its maximum when all the users can be
assigned to all the edges, i.e., U × E. In the worst case, the
edges have infinite capacity, which means no edge will be
eliminated during each iteration. Therefore, the inner for loop
is repeated O([(|U|2 + |U|)/2]×|E|) times, and thus the com-
plexity is O(|U|2 × |E|). Therefore, the overall complexity of
the algorithm is O(|E| × (|S| + |U|2)).

VI. EVALUATION

This section compares our algorithm with the state-of-the-
art algorithms in terms of Request Prediction and Service
Scheduling. Our experiment is mainly divided into two com-
ponents, one is the evaluation of the request prediction
module, and one is the evaluation of the integrated frame-
work performance based on the prediction result. We test our
algorithm on real data sets.

A. Data Set

We collaborate with iQIYI and collect the user requests for
different video streams every 6 min for two weeks in Beijing.
We take Haidian District as an example and divide it into
100 edge regions, with each edge covering a 1 km × 1 km
square area. At the same time, each region contains more than
100 video channels, and each channel contains 3360 attributes.
To gain more training data, we also use the sliding window
method to extend the training data sets. The whole data set
is divided into three parts for training, validating, and testing
with the scale of 6:2:3.

B. Baseline and Setup

We compared our Chili-TF with the Vanilla Transformer
(Vanilla-TF) and LSTM to evaluate the user request prediction
performance for a particular edge based on the data sets men-
tioned in Section V-A, the structure and setup of the baselines
and the Chili-TF are listed.

1) LSTM: The depth of the LSTM network is 30 Layers.
Its activation function is Relu. MSE is used as the loss
function. The batch size is 32 and trained for 60 epochs.
The sliding window’s length is 100, and the stride is 1.

2) Vanilla-TF: The Vanilla Transformer (Vanilla-TF) fol-
lows the original structure discussed in this article [12].
It comprises a ten-head encoder and decoder with-
out using the timestamp encoding. Its optimizer is
the AdamW optimizer with β1 = 0.9, β2 = 0.999,
and lrate = 0.00001. A dropout rate of 0.1 is
used for each sublayer. MSE is used as the loss
function. The batch size is 32 and trained for 60
epochs. The sliding window’s length is 100, and the
stride is 1.

3) Chili-TF: The Chili-TF uses the structure introduced in
Section IV. It comprises a ten-head encoder and decoder
with a 1d convolution layer and a timestamp encod-
ing layer. its optimizer is the AdamW optimizer with
β1 = 0.9, β2 = 0.999, and lrate = 0.00001. A dropout
rate of 0.1 is used for each sublayer. MSE is used as
the loss function. The batch size is 32 and the model
is trained for 60 epochs. The sliding windows length is
100, and the stride is 1.

In addition to evaluating the predictive accuracy
performance of Chili-TF within a certain edge, we also
conduct further ablation experiments on regional collabora-
tion strategies. For the edges of a particular region, we adopt
four different training strategies.

1) The Single-Edge Strategy (Single): It uses only one edge
data to train the user request prediction module.

2) The Random Selection Strategy (RSS): It randomly
selects some user requests data from edges in the region
to participate in the model training process.

3) The Neighborhood Selection Strategy (NSS): To partic-
ipate in the model training process, it selects the time
series data from edges with adjacent edges with similar
geographical locations.

4) The dynamic time warping distance-based selective
training strategy (DSS) is introduced in Section IV-C.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 29,2024 at 19:15:10 UTC from IEEE Xplore. Restrictions apply.

3546 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 2, 15 JANUARY 2024

Fig. 6. MSE of time series predictions in a single edge.

At the same time, we also discuss the influence of the
amount of participating edge with our Chili-TF’s DSS. We
define three types of regions: 1) small-region (16 edges);
2) mid-region (49 edges); and 3) large-region (100 edges).
25% edges closest to the certain edge is chosen, i.e., choosing
16× 25% = 4 edges trained together for a small-region.

Since most existing works resolve the courdsource livecast
problem without considering request prediction and service
scheduling as a whole, we need to conduct an ablation study by
replacing the service scheduling module of the framework. We
evaluate Proffler against two state-of-the-art algorithms
and one other benchmark on top of our Chili-TF prediction
module.

1) Greedy Video Stream Allocation With Greedy Request
Scheduling (GSP-GRS): The GSP-GRS is a state-of-
the-art algorithm proposed by He et al. [28]. Within
each iteration, the algorithm allocates an additional
video stream that serves the maximum number of the
previously unserved users using the residual resource.
The users that are previously served by the edge remain
unchanged.

2) Greedy Video Stream Allocation With Shadow Request
Scheduling (GSP-SS): GSP-SS is a state-of-the-art algo-
rithm proposed by Farhadi et al. [14]. In each iteration,
the algorithm first resolves the shadow scheduling
problem of maximizing served users using the linear
program method. Then, the algorithm greedily allocates
video streams until the edges are full.

3) Random scheduling (RS), which randomly allocates
video streams and assigns users to edges.

C. Evaluation on Request Prediction Module

We use two statistical parameters MSE and R2score to
measure the performance of our model.

1) MSE, which is a measure of the degree of difference
between an estimator and an estimator. The closer MSE
is to zero, the accuracy is better

MSE = 1

n

n
∑

i=1

wi(yi − ỹi)
2 (22)

where yi is the true value and ỹi is the predicted value.
wi > 0, n is the number of samples.

Fig. 7. R2score of time series predictions in a single edge.

Fig. 8. MSE value of Chili-TF with different training strategy.

2) R2score, also named the coefficient of determination, is
the proportion of the variation in the dependent variables
that is predictable from the independent variables. The
closer R2score is to one, the accuracy is better

R2score = 1−
∑n

i=1(yi − ỹi)
2

∑n
i=1(yi − yi)

2
(23)

where yi is the true value, ỹi is the predicted value. yi

is the mean value of yi, n is the number of samples.
1) Result of Prediction Accuracy: For the accuracy of time

series predictions in a single edge, as shown in Fig. 6, with
the gradual convergence of model loss, our Chili-TF could
eventually reach a lower MSE value than Vanilla Transformer
and LSTM network on the test data set, which is as low as
0.03043 on average. The MSE is 26.81% lower than LSTM
and 15.16% lower than Vanilla Transformer. Fig. 7 shows that
the R2score of Chili-TF is better than the Vanilla-TF and the
LSTM network. Even on the high dynamic data, the corre-
lation coefficient can still reach 0.6409, achieving a 24.67%
increase over LSTM, and a 9.5% increase over Vanilla-TF.

Our Chili-TF is more accurate than the state-of-the-art time-
series forecasting algorithm from the experimental data. It can
significantly improve prediction accuracy in the mean square
error and correlation coefficient of the predicted time series
value. Therefore, it can better solve the problem of user request
prediction in a particular region.

2) Ablation Study: As for the ablation study of regional
collaborative strategy, the result is shown in Fig. 8. By calcu-
lating and ranking the dynamic time warping distance using

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 29,2024 at 19:15:10 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PROFFLER: TOWARD COLLABORATIVE AND SCALABLE EDGE-ASSISTED CROWDSOURCED LIVECAST 3547

Fig. 9. Normalized overall penalty under different prediction model.

the time sequence obtained by different edges, our regional
collaboration framework can obtain the lowest MSE in both
three scale conditions, which means it performs with the
highest accuracy.

Our DSS can achieve an average MSE of 0.03027, 0.02817,
and 0.02736 under small-region (16 edges), mid-region (49
edges), and large-region (100 edges), which has an average
MSE error decline of 13.59%, 19.58%, and 21.90%, respec-
tively, compared with Single, an average MSE error decline
of 19.54%, 26.68%, and 29.59%, respectively, compared with
RSS, and an average MSE error decline of 5.91%, 6.75%, and
20.06%, respectively, compared with NSS.

3) Impact on Overall Performance: To demonstrate the
performance of Chili-TF on the integrated framework,
we assess the QoE provided by Proffler with differ-
ent prediction models (i.e., P-Chili-TF, P-Vanilla-TF, and
P-LSTM). We select a region containing 16 edges and 2000
users and evaluate the overall penalty under different utility
ratios (detailed explanation of utility ratio in Section VI-D).
To better compare the results, we set the LSTM prediction
model as the baseline and normalize the results of other algo-
rithms accordingly. Fig. 9 shows that Proffler integrated
with Chili-TF achieves the best penalty reduction among other
prediction models, resulting in an average penalty reduction of
23.67% compared to the baseline.

The result proves that our user request prediction module,
which trains Chili-TF by using DSS, does an excellent job in
the prediction of time series between an extensive range of
edges, achieving higher accuracy than other existing state-of-
the-art algorithms. Chili-TF achieves a reduction of 29.59%
MSE and an increase of 24.67% R2score. Our model also
has a better performance improvement with the rise of the
regional scale. In addition, our overall framework integrated
with Chili-TF achieves better QoE than existing prediction
models. Therefore, Chili-TF, the user request prediction mod-
ule of Profller, is proved to be robust and successful
in time series prediction tasks for user requests in multidata
regions.

D. Evaluation on Integrated Framework

We carry out evaluations to analyze the performance of
Proffler under different settings.

Fig. 10. Normalized overall penalty under different utility ratios.

TABLE I
CAPACITY OF DIFFERENT EDGES

1) Impact of Utility Ratio: Different ratios between the tun-
ing parameters of streaming delay gain and bandwidth cost
gain (i.e., λ/ν) will influence the performance of Proffler.
A higher λ/ν ratio will result in higher priority for reducing
streaming delay and vice versa. We select a region contain-
ing 16 edges and 2000 users as the default region. In this
experiment, we define each edge as small-edge. To better com-
pare the results, we set the RS algorithm as the baseline and
normalize the results of other algorithms accordingly.

Fig. 10 shows the average overall penalty normalized by the
random selection algorithm. We can obtain that Proffler
outperforms the other three algorithms over all different set-
tings, reducing the overall penalty by 21.7%, 28.4%, and
26.3% when λ/ν is 0.5, 1, and 1.5, respectively. The ratio
corresponding to the highest performance indicates that the
incentive of choosing different types of penalties should be
balanced in order to achieve the best performance.

2) Impact of Edge Capacity: Apart from the utility ratio,
the edge capacity can also impact the performance of the
system. We consider three different settings of edge capac-
ities, small-edge, mid-edge, and large-edge (the capacity of
each edge is shown in Table I). We focus on the default region
and set λ/ν = 1.

According to Fig. 11, Proffler shows notably better
performance than other algorithms under all edge settings.
From small-edge to large-edge, U2VR reduces overall penalty
by 21.7%, 30.8%, and 35.6% compared with the baseline,
respectively. The result shows that an edge with a larger capac-
ity enables U2VR to assign more users with higher utility,
further lowering the overall penalty.

3) Impact of Scale: We compare regions with different
scales to evaluate the scalability of Proffler. We select
three regions covering different scales of area, i.e., small-
region, mid-region, and large-region (the scale of each region
is shown in Table II). We consider all edges as small-edge and
set λ/ν = 1.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 29,2024 at 19:15:10 UTC from IEEE Xplore. Restrictions apply.

3548 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 2, 15 JANUARY 2024

Fig. 11. Normalized overall penalty under different edge capacities.

Fig. 12. Normalized overall penalty under different scales.

TABLE II
SCALE OF DIFFERENT REGIONS

Fig. 12 shows that Proffler achieves superior
performance among other algorithms, reducing the over-
all penalty by 21.7%, 55.7%, and 45.8% under different
scales. From the figure, we can observe that as the scale
of the region increases, GSP-GRS and GSP-SS can hardly
reduce the overall penalty, while Proffler performs even
better on large-scale regions, proving the scalable nature of
Proffler. Since the scale of the live streaming environment
is highly diverse under different circumstances, Proffler
is proven to be an effective method of solving the service
scheduling problem.

VII. CONCLUSION

Crowdsourced livecast is a promising way of improving the
fast-developing immersive multimedia community. However, it
invokes the problems of optimal video stream allocation and
request scheduling. In this article, we proposed Proffler,
an efficient framework combining a novel prediction model
and a utility-based algorithm that achieves collaborative view-
ing request prediction across different regions and scalable
video stream allocation as well as viewer scheduling in
edge-assisted crowdsourced livecast. We first proposed the
Chili-TF prediction module to predict future user requests

based on the history requests in different edges. Then, we
formulated a QoE-driven optimization problem that mini-
mizes the overall streaming delay and bandwidth cost. We
then proposed the U2VR algorithm to resolve the service
scheduling problem based on the accurate request prediction.
Extensive experiments showed that the algorithm can achieve
superior performance.

REFERENCES

[1] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust,
“Mobile-edge computing architecture: The role of MEC in the Internet
of Things,” IEEE Consum. Electron. Mag., vol. 5, no. 4, pp. 84–91,
Oct. 2016.

[2] A. Kamilaris and A. Pitsillides, “Mobile phone computing and the
Internet of Things: A survey,” IEEE Internet Things J., vol. 3, no. 6,
pp. 885–898, Dec. 2016.

[3] G. Appel, L. Grewal, R. Hadi, and A. T. Stephen, “The future of social
media in marketing,” J. Acad. Market. Sci., vol. 48, no. 1, pp. 79–95,
2020.

[4] Z. Lv, D. Chen, R. Lou, and H. Song, “Industrial security solution for
virtual reality,” IEEE Internet Things J., vol. 8, no. 8, pp. 6273–6281,
Apr. 2020.

[5] Y. Han et al., “A dynamic hierarchical framework for IoT-assisted digital
twin synchronization in the metaverse,” IEEE Internet Things J., vol. 10,
no. 1, pp. 268–284, Jan. 2023.

[6] J. Nightingale, P. Salva-Garcia, J. M. A. Calero, and Q. Wang,
“5G-QoE: QoE modelling for ultra-HD video streaming in 5G
networks,” IEEE Trans. Broadcast., vol. 64, no. 2, pp. 621–634,
Jun. 2018.

[7] J. Jin, J. Gubbi, S. Marusic, and M. Palaniswami, “An information frame-
work for creating a smart city through Internet of Things,” IEEE Internet
Things J., vol. 1, no. 2, pp. 112–121, Apr. 2014.

[8] G. Premsankar, M. D. Francesco, and T. Taleb, “Edge computing for
the Internet of Things: A case study,” IEEE Internet Things J., vol. 5,
no. 2, pp. 1275–1284, Apr. 2018.

[9] C. Li, J. Liu, and S. Ouyang, “Characterizing and predicting the
popularity of online videos,” IEEE Access, vol. 4, pp. 1630–1641,
2016.

[10] S. Li et al., “Enhancing the locality and breaking the memory bottleneck
of transformer on time series forecasting,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 32, 2019, pp. 5243–5253.

[11] N. Wu, B. Green, X. Ben, and S. O’Banion, “Deep transformer mod-
els for time series forecasting: The influenza prevalence case,” 2020,
arXiv:2001.08317.

[12] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 5998–6008.

[13] F. Wang et al., “DeepCast: Towards personalized QoE for edge-assisted
crowdcast with deep reinforcement learning,” IEEE/ACM Trans. Netw.,
vol. 28, no. 3, pp. 1255–1268, Jun. 2020.

[14] V. Farhadi et al., “Service placement and request scheduling for data-
intensive applications in edge clouds,” IEEE/ACM Trans. Netw., vol. 29,
no. 2, pp. 779–792, Apr. 2021.

[15] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offload-
ing for mobile edge computing in dense networks,” in Proc. IEEE
INFOCOM, 2018, pp. 207–215.

[16] N. Yu, Q. Xie, Q. Wang, H. Du, H. Huang, and X. Jia, “Collaborative
service placement for mobile edge computing applications,” in Proc.
IEEE GLOBECOM, 2018, pp. 1–6.

[17] Y. Hua, Z. Zhao, R. Li, X. Chen, Z. Liu, and H. Zhang, “Deep learning
with long short-term memory for time series prediction,” IEEE Commun.
Mag., vol. 57, no. 6, pp. 114–119, Jun. 2019.

[18] Y. Liang, S. Ke, J. Zhang, X. Yi, and Y. Zheng, “GeoMAN: Multi-
level attention networks for geo-sensory time series prediction,” in Proc.
IJCAI, 2018, pp. 3428–3434.

[19] R. Geng, X. Wang, N. Ye, and J. Liu, “A fault prediction algo-
rithm based on rough sets and back propagation neural network
for vehicular networks,” IEEE Access, vol. 6, pp. 74984–74992,
2018.

[20] U. Kose and A. Arslan, “Forecasting chaotic time series via ANFIS
supported by vortex optimization algorithm: Applications on elec-
troencephalogram time series,” Arab. J. Sci. Eng., vol. 42, no. 8,
pp. 3103–3114, 2017.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 29,2024 at 19:15:10 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PROFFLER: TOWARD COLLABORATIVE AND SCALABLE EDGE-ASSISTED CROWDSOURCED LIVECAST 3549

[21] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink,
and J. Schmidhuber, “LSTM: A search space odyssey,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 28, no. 10, pp. 2222–2232,
Oct. 2017.

[22] A. Sagheer and M. Kotb, “Time series forecasting of petroleum produc-
tion using deep LSTM recurrent networks,” Neurocomputing, vol. 323,
pp. 203–213, Jan. 2019.

[23] Y. Li, Z. Zhu, D. Kong, H. Han, and Y. Zhao, “EA-LSTM: Evolutionary
attention-based LSTM for time series prediction,” Knowl.-Based Syst.,
vol. 181, Oct. 2019, Art. no. 104785.

[24] Z. Karevan and J. A. K. Suykens, “Transductive LSTM for time-
series prediction: An application to weather forecasting,” Neural Netw.,
vol. 125, pp. 1–9, May 2020.

[25] H. Zhou et al., “Informer: Beyond efficient transformer for
long sequence time-series forecasting,” in Proc. AAAI, 2021,
pp. 11106–11115.

[26] T. Ouyang, R. Li, X. Chen, Z. Zhou, and X. Tang, “Adaptive
user-managed service placement for mobile edge computing: An
online learning approach,” in Proc. IEEE INFOCOM, 2019,
pp. 1468–1476.

[27] S. Pasteris, S. Wang, M. Herbster, and T. He, “Service placement with
provable guarantees in heterogeneous edge computing systems,” in Proc.
IEEE INFOCOM, 2019, pp. 514–522.

[28] T. He, H. Khamfroush, S. Wang, T. La Porta, and S. Stein, “It’s hard
to share: Joint service placement and request scheduling in edge clouds
with sharable and non-sharable resources,” in Proc. IEEE 38th ICDCS,
2018, pp. 365–375.

[29] A. Talpur and M. Gurusamy, “Reinforcement learning-based dynamic
service placement in vehicular networks,” in Proc. IEEE 93rd (VTC-
Spring), 2021, pp. 1–7.

[30] B. Gao, Z. Zhou, F. Liu, and F. Xu, “Winning at the starting line: Joint
network selection and service placement for mobile edge computing,” in
Proc. IEEE INFOCOM, 2019, pp. 1459–1467.

[31] T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge:
Mobility-aware dynamic service placement for mobile edge comput-
ing,” IEEE J. Sel. Areas Commun., vol. 36, no. 10, pp. 2333–2345,
Oct. 2018.

[32] S. Yang, F. Li, S. Trajanovski, X. Chen, Y. Wang, and X. Fu,
“Delay-aware virtual network function placement and routing in edge
clouds,” IEEE Trans. Mobile Comput., vol. 20, no. 2, pp. 445–459,
Feb. 2021.

Wenyi Zhang received the B.Eng. degree in com-
puter engineering from The Chinese University of
Hong Kong, Shenzhen, China, in 2023. He is cur-
rently pursuing the M.S. degree in ECE with the
University of California San Diego, San Diego, CA,
USA.

His research interests include multimedia stream-
ing, volumetric video, satellite networks, and edge
computing.

Zihan Xu received the B.Eng. degree in computer
engineering from The Chinese University of Hong
Kong, Shenzhen, China, in 2023. He is currently pur-
suing the M.S. degree in ECE from Carnegie Mellon
University, Pittsburgh, PA, USA.

His research interests include multimedia stream-
ing, edge computing, satellite networks, and volu-
metric video.

Fangxin Wang (Member, IEEE) received the
B.Eng. degree in computer science and tech-
nology from Beijing University of Posts and
Telecommunications, Beijing, China, in 2013, the
M.Eng. degree in computer science and technol-
ogy from Tsinghua University, Beijing, in 2016, and
the Ph.D. degree in computer science and technol-
ogy from Simon Fraser University, Burnaby, BC,
Canada, in 2020.

He is an Assistant Professor with The Chinese
University of Hong Kong, Shenzhen (CUHKSZ),

China. Before joining CUHKSZ, he was a Postdoctoral Fellow with
the University of British Columbia, Vancouver, BC, Canada. He lead
the Intelligent Networking and Multimedia Lab, CUHKSZ. He has pub-
lished more than 30 papers at top journals and conference papers,
including INFOCOM, Virtual Reality, Multimedia Journal, IEEE/ACM
TRANSACTIONS ON NETWORKING, IEEE TRANSACTIONS ON MOBILE

COMPUTING, and IEEE INTERNET OF THINGS JOURNAL. His research
interests include multimedia systems and applications, cloud and edge com-
puting, deep learning and big data analytics, and distributed networking and
system.

Dr. Wang served as the Publication Chair of IEEE/ACM IWQoS, a TPC
Member of IEEE ICC, and a Reviewer of many top conference and journals,
including INFOCOM, Multimedia Journal, IEEE/ACM TRANSACTIONS ON

NETWORKING, IEEE TRANSACTIONS ON MOBILE COMPUTING, and IEEE
INTERNET OF THINGS JOURNAL.

Jiangchuan Liu (Fellow, IEEE) received the B.Eng.
degree (cum laude) from Tsinghua University,
Beijing, China, in 1999, and the Ph.D. degree from
Hong Kong University of Science and Technology,
Hong Kong, in 2003.

He is currently a Full Professor with the School
of Computing Science, Simon Fraser University,
Burnaby, BC, Canada.

Prof. Liu is a co-recipient of the Test of Time
Paper Award of IEEE INFOCOM in 2015, the ACM
TOMCCAP Nicolas D. Georganas Best Paper Award

in 2013, and the ACM Multimedia Best Paper Award in 2012. He is a Steering
Committee Member of IEEE TRANSACTIONS ON MOBILE COMPUTING,
and an Associate Editor of IEEE/ACM TRANSACTIONS ON NETWORKING,
IEEE TRANSACTIONS ON BIG DATA, and IEEE TRANSACTIONS ON

MULTIMEDIA. He is a Fellow of the NSERC E. W. R. Steacie Memorial
and the Canadian Academy of Engineering.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 29,2024 at 19:15:10 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

