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Single-cell and spatial multi-omics highlight
effectsof anti-integrin therapyacross cellular
compartments in ulcerative colitis

Elvira Mennillo 1, Yang Joon Kim2, Gyehyun Lee1, Iulia Rusu1, Ravi K. Patel 1,3,
Leah C. Dorman2, Emily Flynn3, Stephanie Li1, Jared L. Bain1,
Christopher Andersen1,3, Arjun Rao1,3, Stanley Tamaki3, Jessica Tsui1,3,4,
Alan Shen1,3,4, Madison L. Lotstein1,3, Maha Rahim5, Mohammad Naser 6,
Faviola Bernard-Vazquez1, Walter Eckalbar3, Soo-jin Cho 4, Kendall Beck1,
Najwa El-Nachef1, Sara Lewin1, Daniel R. Selvig1, Jonathan P. Terdiman1,
Uma Mahadevan1, David Y. Oh1,7, Gabriela K. Fragiadakis 1,3, Angela Pisco 2,
Alexis J. Combes 1,3,4 & Michael G. Kattah 1

Ulcerative colitis (UC) is driven by immune and stromal subsets, culminating in
epithelial injury. Vedolizumab (VDZ) is an anti-integrin antibody that is effec-
tive for treating UC. VDZ is known to inhibit lymphocyte trafficking to the
intestine, but its broader effects on other cell subsets are less defined. To
identify the inflammatory cells that contribute to colitis and are affected by
VDZ, we perform single-cell transcriptomic and proteomic analyses of per-
ipheral blood and colonic biopsies in healthy controls and patients with UC on
VDZ or other therapies. Here we show that VDZ treatment is associated with
alterations in circulating and tissue mononuclear phagocyte (MNP) subsets,
along withmodest shifts in lymphocytes. Spatial multi-omics of formalin-fixed
biopsies demonstrates trends towards increased abundance and proximity of
MNP and fibroblast subsets in active colitis. Spatial transcriptomics of archived
specimens pre-treatment identifies epithelial-, MNP-, and fibroblast-enriched
genes related to VDZ responsiveness, highlighting important roles for these
subsets in UC.

Ulcerative colitis (UC) is a chronic inflammatory disorder of the
intestine characterized by abnormal immune, stromal, and epithelial
responses to microbial stimuli in genetically susceptible individuals,
culminating in mucosal inflammation and epithelial injury. Vedolizu-
mab (VDZ) is a monoclonal antibody against ɑ4β7 integrin that pre-
vents binding to gut endothelial mucosal addressin-cell adhesion
molecule 1 (MAdCAM-1), blocking the trafficking of leukocytes to the

intestine. The cellular and genetic factors that mediate VDZ response
and non-response are incompletely characterized1–3. There are con-
flicting data regarding which inflammatory intestinal cell subsets are
the most affected4. Many studies emphasize the effects of VDZ on B
and T lymphocytes and regulatory T cells (Tregs)3–9, while others
suggest an impact on innate immune myeloid populations10,11. Under-
standing the peripheral and tissue effects of VDZ is critical to stratify
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patients aspotential responders or non-responders prior to treatment,
and for identifying alternative treatment strategies for non-
responders.

Tissue multi-omics studies in inflammatory bowel disease (IBD)
have revealed important roles for stromal, epithelial, and immune
compartments in driving disease and mediating treatment response
and non-response12–17. To generate an unbiased, global assessment of
the effects of colitis within the context of VDZ treatment, we per-
formed a comprehensive single-cell multi-omics analysis that included
single-cell RNA sequencing (scRNA-seq), cellular indexing of tran-
scriptomes and epitopes by sequencing (CITE-seq, a modality that
includes single-cell RNA-seq in addition to a DNA-barcoded antibody-
based proteomic panel), and mass cytometry (CyTOF) of peripheral
leukocytes and colonic biopsies in healthy controls (HC) and patients
with UC on aminosalicylates (UC) or VDZ (UC-VDZ). To further inves-
tigate the spatial heterogeneity and proximity of intestinal tissue
subsets, we performed multiplex ion beam imaging (MIBI), co-
detection by indexing (CODEX), and highly multiplexed RNA in situ
hybridization (RNA-ISH, CosMx) on formalin-fixed, paraffin-embedded

(FFPE) colonic biopsies, using both unsupervised and supervised
analytic methods. In separate groups of patients, we validated our
findings with additional CyTOF analyses, and applied 1000-plex spatial
transcriptomics to archived clinical FFPE specimens before and after
VDZ treatment.

Results
scRNA-seq of cryopreserved intestinal biopsies has high fidelity
to fresh processing
To characterize the effects of VDZ in the peripheral blood and colon of
UC patients, we first employed a cross-sectional, case-control study
design consisting of healthy controls without IBD (HC, n = 4), patients
withUCon 5-aminosalicylates (5-ASA) (UC, n = 4), and patients withUC
on VDZ (UC-VDZ, n = 4) (Fig. 1a, Supplementary Table 1). To improve
internal validity and cross-validate multi-omics signatures in a small
number of patients, we analyzed the same patient samples using a
variety of single-cell and spatial transcriptomic and proteomic meth-
ods, including scRNA-seq, CITE-seq18, cytometry by time of flight
(CyTOF), multiplex RNA-ISH, MIBI19, and CODEX20 (Fig. 1a,

Fig. 1 | Schematic of study design and fidelity of cryopreserved compared to
freshbiopsyprocessing for scRNA-seq. a Schematic of studydesign. Createdwith
BioRender.com. b Schematic of Cryopreserved versus Fresh biopsy processing
comparison. Created with BioRender.com. Representative UMAP visualization of
10,648 cells for twodonors comparing (c) Cryopreserved versus Fresh biopsies and
(d) coarse cell subset annotations. e Cell frequency as a percent of total for coarse
cell subsets for two donors comparing Cryopreserved versus Fresh biopsies (mean;
n=number of patients; each dot represents one patient sample; multiple

Mann–Whitney tests with FDR correction; q < 0.1 threshold for discovery, only
significant differences are indicated). f Heatmap of expression z-scores for differ-
entially expressed (DE) genes with log2 fold-change (log2fc) > 0.4 or <−0.4 and
Bonferroni p value < 0.1 comparing Cryopreserved (Up/Down) relative to Fresh
biopsies for two study subjects ID1 and ID2 identified by MAST analysis. Only sig-
nificant differences are shown. MNP mononuclear phagocyte: Treg-regulatory T
cell, NK natural killer, ILC innate lymphoid cell.
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Supplementary Table 2). Recent methods for cryopreserving undi-
gested, intact intestinal mucosal biopsies have revolutionized tissue
multi-omics pipelines by facilitating batch processing16. Batch pro-
cessing of samples for scRNA-seq reduces cost and improves inter-
sample comparison by minimizing batch effects21. To compare the
performance of cryopreserved and non-frozen intestinal biopsies in
scRNA-seq, we compared scRNA-seq of biopsies from two donors that
were frozen briefly in cryopreservation media (Cryopreserved) to
samples that were stored briefly on ice (Fresh) (Fig. 1b). Fresh and
Cryopreserved colon biopsies yielded similar coarse cell clusters
(Fig. 1c, d), with no statistically significant differences in immune,
epithelial, and stromal cell subset frequencies (Fig. 1e). Cryopreserva-
tion reduces or eliminates granulocytes, andmast cellsweredecreased
with cryopreservation (Fig. 1e), though not statistically significant.
Differentially expressed (DE) gene analysis identified up-regulation of
heat-shock proteins (HSPA1A, HSPA1B, HSP90AA1, andHSPD1) in Fresh
biopsies as well as up-regulation of JUN and FOSB in Cryopreserved
biopsies (Fig. 1f). Reasonable concordance between freshly processed

and cryopreserved intestinal biopsies, combined with the logistic,
financial, and batch processing benefits of cryopreserved biopsies,
favors cryopreservation.

VDZ is associated with modest transcriptional changes in per-
ipheral leukocyte subsets
We hypothesized that patients on VDZ would exhibit increased circu-
lating inflammatory lymphocytes due to inhibition of intestinal traf-
ficking. To test this, we performed scRNA-seq on peripheral blood
leukocytes (PBLs) from HC, UC, and UC-VDZ patients (Fig. 2a). Cryo-
preserved PBLs were thawed, pooled, run in a single batch, and
deconvoluted with freemuxlet/demuxlet21, minimizing batch effects.
The anticipated coarse (Supplementary Fig. 1a) and fine leukocyte
subsets (Fig. 2b) were identified based on landmark genes expressed
for each cluster (Supplementary Fig. 1b–e), in agreement with pre-
viously described gene sets22,23. Granulocytes were not observed, likely
due to poor viability after freezing and thawing. Cells from each
patient were mostly distributed across coarse and fine clusters

Fig. 2 | scRNA-seq of peripheral blood leukocytes (PBLs) reveals correlation of
VDZ with DE genes, but not circulating leukocyte subset frequency.
a Schematic of PBL scRNA-seq. Createdwith BioRender.com.UMAP visualization of
pooled multiplex scRNA-seq for 20,130 PBLs from HC (n = 4), UC (n = 3), and UC-
VDZ (n = 4) patients highlighting (b) fine cell annotations, (c) patient identity, and
(d) disease and treatment status. e, Cell frequency as a percent of total cells per
study subject stratifiedbydisease and treatment status (mean ± SEM; n = numberof
patients; each dot represents one patient sample; multiple one-way ANOVA
Kruskal-Wallis test with FDR correction; q < 0.1 threshold for discovery, only sig-
nificant differences are indicated). fHeatmap of expression z-scores for scRNA-seq

DE genes for all PBLs with log2fc > 1 or <-1 and Bonferroni-corrected p value < 0.1
comparing UC (Up/Down) relative to HC, and UC-VDZ (Up/Down) relative to UC
identified by MAST analysis. gNumber of scRNA-seq DE genes in the indicated PBL
subsets with log2fc > 2 or <-2 in UC relative to HC and UC-VDZ relative to UC
identified by MAST analysis. h scRNA-seq DE genes in the indicated PBL subsets
with log2fc > 1.5 or <-1 in UC versus HC, and an inverse log2fc for UC-VDZ versus UC
log2fc <−0.5 or >0.5, respectively identified by MAST analysis. For (f, h), ribosomal
and mitochondrial genes are not displayed. NOS-not otherwise specified; mDC-
myeloid dendritic cell; ASDC-AXL+ SIGLEC6+ myeloid DC pDC-plasmacytoid DC,
MAIT mucosal-associated invariant T.
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(Fig. 2c), as well as disease and treatment status (Fig. 2d). HS12 had an
expanded circulating cytotoxic lymphocyte population, but this was
not observed in other UC-VDZpatients (Fig. 2b, c).Whenwe compared
the cell frequency for eachfine leukocyte cell subset across conditions,
we did not observe any statistically significant differences among
patients (Fig. 2d,e). scRNA-seqDE gene analysis revealed up-regulation
of IFITM3 in UC patients compared to HC, and down-regulation of
IFITM2 in UC-VDZ patients compared to UC patients (Fig. 2f). DE gene
analysis of individual leukocyte subsets identified a small number of
differences in lymphocyte and monocyte subsets (Fig. 2g, Supple-
mentary Fig. 2a, b). VDZ was associated with an increase in ITGB1 in
CD8 T cells (Supplementary Fig. 2b). VDZ was also associated with
increases in TMEM176A and TMEM176B in circulating CD14+monocytes
(Supplementary Fig. 2b). TMEM176B has been suggested to inhibit the
inflammasome and dendritic cell maturation24–26. To further identify
pathways that were potentially pathogenic in UC, and targeted or
reversed by VDZ, we then filtered for DE genes that were up-regulated

in UC vs HC, and reciprocally down-regulated in UC-VDZ vs UC, and
vice versa (Fig. 2h). This analysis highlighted up-regulation of CCL4L2
in CD8 T cells, as well as up-regulation of CD52 and HLA-DQB1 in CD14+

monocytes in UC as compared to HC, all with reciprocal down-
regulation in UC-VDZ patients. Although scRNA-seq identified some
global and cell subset specific transcriptomic associations with UC and
VDZ therapy, in general circulating leukocyte subset frequencies were
relatively stable with modest transcriptional differences.

Tissue CITE-seq identifies shifts in multiple mucosal cell subsets
associated with VDZ
To examine the alterations in cell subset abundance and expression
programs associated with UC and VDZ therapy, we performed scRNA-
seq and CITE-seq on colonic mucosal biopsies from the same patients
(Fig. 3a, SupplementaryTable 2). Cryopreservedbiopsieswere thawed,
digested, pooled, run in a single batch, and deconvoluted with free-
muxlet/demuxlet21, minimizing batch effects. The anticipated coarse

Fig. 3 | scRNA-seq and CITE-seq of mucosal biopsies highlighted multiple
immune and non-immune subsets correlating with inflammatory severity,
disease status, and VDZ treatment. a, Schematic of scRNA-seq and CITE-seq of
mucosal biopsies. Created with BioRender.com. b-f, UMAP visualization of 93,900
cells from HC (n = 4), UC (n = 4), and UC-VDZ (n = 4) patients highlighting (b) fine
cell subset annotations (c) representative CITE-seq CD103 antibody-derived tag
(ADT), (d) patient identity, (e) endoscopic severity scores, and (f) disease and
treatment status. Cell frequency for the indicated fine cell subset, expressed as a
percent of total cells per study subject, stratified by (g) endoscopic severity and (h)

disease and treatment status (mean± SEM; n = number of patients; each dot
represents one biopsy location, up to two locations were biopsied per patient;
multiple one-wayANOVAKruskal-Wallis testswith FDRcorrection; q < 0.1 threshold
for discovery; select subsets are shown with exact p-value and q-value; individual
inter-column q-values are displayed only for cell subsets with overall q < 0.1, an
additional nested one-way ANOVA test was performed treating biopsies as repli-
cates, with unadjusted p <0.05 as an additional threshold for discovery). NOS not
otherwise specified.
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(Supplementary Fig. 3a) and fine colonic mucosal subsets (Fig. 3b)
were identified using landmark genes associated with each cluster
(Supplementary Fig. 3b and Supplementary Figs. 4, 5). The subsets
identified using cryopreserved biopsies were similar to those pre-
viously described for fresh biopsies12,13,15,27. The CITE-seq panel pro-
vided a human intestinal cell surface proteome in HC, UC, andUC-VDZ
patients, and for example, highlighted CD103 (αE integrin) expression
by CD8 tissue resident memory T cells (Trm) (Fig. 3c, Supplementary
Fig. 4h). CITE-seq identified sets of surface proteins associated with
each intestinal cell subset (Supplementary Figs. 3–5). Cells from each
patient were distributed across intestinal cell clusters (Fig. 3d). Biop-
sies were categorized as HC (gray), mild endoscopic disease activity
(UC 0–1, purple), or moderate-to-severe endoscopic disease activity
(UC 2–3, orange), or as coming from HC (gray), UC (blue), or UC-VDZ
(red) patients (Fig. 3e–h, Supplementary Fig. 6). After correcting for
multiple comparisons, there were significant increases in Tregs, S2
fibroblasts, pericytes, and endothelial cell subsets, with reductions in
innate lymphoid cells (ILCs) and activated andmemory CD4+ T cells in
more severely inflamed segments (Fig. 3g, Supplementary Fig. 6a, b).
The relative frequencies of activated and memory CD4+ and CD8+ T
lymphocyte subsets vary among studies depending on inflammatory
status and disease activity15,28, but increases in Tregs have been con-
sistently reported29–33. Alterations in ILC3s have also been previously
described in IBD scRNA-seq34. The relative increase in goblet cells we
observed was likely due to a relative reduction in absorptive colono-
cytes and intestinal stem cells (ISCs) (Supplementary Fig. 6a, b), and
variations in goblet cell abundances and maturation have been
reported in other IBD transcriptomic studies35,36. We observed a global
expansion of both venous and arterial endothelial cells in more
severely inflamed UC biopsies (Fig. 3g, Supplementary Fig. 6a, b).
Previous studies have characterized stromal cell subsets in IBD12, and
here CITE-seq highlighted a general shift from S1/3/4 stromal fibro-
blasts to increased S2 and activated fibroblasts in more severely
inflamed UC biopsies. The activated fibroblasts identified in our
dataset expressed high levels of TIMP1, MMP1, MMP3, AREG, TMEM158,
TNFRSF11B, and surface CD10, while the S2 fibroblasts expressed high
levels of F3, POSTN, CXCL14, ENHO, PDGRFA, SOX6, and surface CD10,
CD146, and CD49a (Supplementary Fig. 5c, d), sharing some features
with the IL13RA2+IL11+TNFRSF11B+ inflammatory fibroblasts associated
with anti-TNF resistance15. Interestingly, VDZ was not associated with
significant reductions in lymphocyte subsets compared to UC biop-
sies. However, VDZ was associated with a statistically significant
reduction in myeloid dendritic cells (mDCs), which were high in CD1C
gene expression, as well as surface CD1c, CD11c, and FcεR1α (Fig. 3h,
Supplementary Fig. 4j). VDZ correlated with trends toward fewer
activatedfibroblasts,monocytes,macrophages, andmast cells (Fig. 3h,
Supplementary Fig. 6c). In the epithelial compartment, VDZ was
associated with a statistically significant increase in epithelial cells
generally, with a trend toward fewer deep crypt secretory (DCS) cells
(Fig. 3h), which could be consistent with a mucosal healing effect.
Although VDZ did not appear to significantly alter lymphocyte popu-
lations in colonic biopsies by CITE-seq, subsets of inflammatory MNPs
and stromal cells trended lower in UC-VDZ patients, with a con-
comitant expansion of some epithelial subsets.

Analysis of gene expression in tissue CITE-seq revealed significant
transcriptomic changes associated with HC, UC, and UC-VDZ patients.
scRNA-seq DE gene analysis for all cells revealed an increase of TIMP1
and CD74 in UC as compared to UC-VDZ (Supplementary Fig. 7a). Both
TIMP1 andCD74were increased in ameta-analysis ofUC colonic biopsy
bulk gene-expression37, and these genes were expressed at high levels
in endothelial, stromal, andMNP subsets in our dataset.MoreDEgenes
were observed in biopsy cell subsets compared to peripheral blood.
Stromal fibroblasts and endothelial cells exhibited the highest number
of DE genes among the study subjects, as well asMNPs,mast cells, and
cycling cells (Supplementary Fig. 7b). Although VDZ is frequently

discussed in terms of its effect on lymphocyte trafficking, non-
lymphoid subsets generally exhibited more dynamic DE genes than
lymphocyte subsets (Supplementary Figs. 7, 8). MNPs from UC
patients expressed higher levels of TIMP1, SOD2, TYMP, C15orf48, and
CD63 compared to HC, all of which were reciprocally decreased in UC-
VDZ patients (Supplementary Fig. 7c, 8a, b). Mast cells expressed
multiple inflammatory genes at higher levels in UC-derived as com-
pared to HC-derived biopsies, but VDZ did not appear to antagonize
these signatures (Supplementary Fig. 7c and 8a, b). Stromal fibroblasts
in UC patients exhibited elevated levels of MMP3, TIMP1, TMEM158,
COL6A3, all of which were previously reported to be increased in bulk
UC biopsies37 (Supplementary Fig. 5c; Supplementary Fig. 7c). This
activated signature was reciprocally downregulated by VDZ (Supple-
mentary Fig. 8b). Endothelial cells expressed higher levels of TIMP1,
MGP, S100A6, TPM4, TM4SF1, CD59, PRKCDBP, and lower levels of
TXNIP and FABP5 in UC vs HC samples (Supplementary Fig. 7c and 8b).
These endothelial cell DE genes were consistent with trends observed
in bulk UC biopsies37, and all were reversed by VDZ (Supplementary
Figs. 8a, b). Epithelial cells fromUCpatients expressed increased levels
of LCN2 and lower FABP1, correlating with a relative reduction of
absorptive colonocytes in UC compared to HC and reversed by VDZ,
consistent with recovery of absorptive colonocytes (Supplementary
Fig. 5a and 7c, 8b). Taken together, DE gene analysis identified rela-
tively few transcriptional differences in lymphocyte subsets among
HC, UC, and UC-VDZ patients, with more dynamic transcriptional
changes in MNPs, stromal fibroblasts, and endothelial cells. The
scRNA-seq and CITE-seq data from colonic mucosal biopsies indicates
that VDZmay play a role in attenuatingMNP trafficking and activation,
diminishing activation of inflammatory fibroblasts and endothelial
cells, thus facilitating the recovery of intestinal epithelial cells.

Unsupervised and supervised CyTOF analysis confirms VDZ
association with changes in innate immune and epithelial
compartments
To further explore the effects of VDZ on various cell populations, and
to validate scRNA-seq and CITE-seq data with an orthogonal multi-
omics technique, we performed CyTOF on paired PBLs and colon
biopsies collected and processed in parallel fromHC, UC, and UC-VDZ
patients (Fig. 4a, Supplementary Table 2). This complementary multi-
omic assaywas carriedout on the same initial cell preparations asCITE-
seq, with the exception that CyTOF biopsy samples did not undergo
Annexin-V-based dead cell depletion, and right (R) and left (L) colon
biopsies were combined for each patient to increase cell yield. We
performed an initial unsupervised analysis using UMAP visualization
and clustering38. Based on marker intensity, we annotated 21 unsu-
pervised clusters in PBLs (Supplementary Fig. 9a–e) and colonbiopsies
(Fig. 4b, Supplementary Fig. 9f–i), and clusters with highly similar
phenotypes were combined. For unsupervised analysis of PBL CyTOF
data, all patients were represented in each cell cluster (Supplementary
Fig. 9c, d). CyTOF identified granulocytes in PBLs, representing less
than 2% of the total cells after freezing and thawing. After adjusting for
multiple comparisons, therewereno statistically significant alterations
in circulating PBL subsets among the groups (Supplementary Fig. 9e).
In the unsupervised analysis of colon biopsy CyTOF data, patient
samples were distributed across cell clusters (Supplementary Fig. 9g),
with some clusters enriched for HC, UC, or UC-VDZ derived cells
(Fig. 4c). The fraction of epithelial cells was higher in CyTOF thanCITE-
seq, likely because dead cell depletion was not needed prior to the
CyTOF analysis. Multiple epithelial subsets emerged from the unsu-
pervised clustering, including epithelial clusters 2/3_EpCAM+CD15hi,
5/6/8_EpCAM+ICOShi, and 9/12_EpCAM+HLA-DR+ (Supplementary
Fig. 9h, i), in addition to the expected non-epithelial clusters. Cross-
referencing the complementary CITE-seq data suggested that CD15hi

epithelial cells are enriched in secretory and transit amplifying epi-
thelial subsets (Supplementary Fig. 5b). CD15hi epithelial cells were
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significantly reduced in UC compared to HC and increased in UC-VDZ
biopsies in the unsupervised analysis (Supplementary Fig. 9i). Unsu-
pervised CyTOF analysis was informative in guiding the supervised
analysis and identifying distinct epithelial subsets.

Following unsupervised clustering and analysis, we then per-
formed a supervised gating strategy including the unique epithelial
subsets (Supplementary Figs. 10, 11). Supervised analysis did not reveal
any statistically significant changes in circulating PBLs by CyTOF
(Supplementary Fig. 11a). In contrast, supervised analysis of biopsy
CyTOFdata demonstrated a borderline significant increase in HLA-DR+

IECs in UC and UC-VDZ samples compared to HC, and a trend toward
reduced CD15hi IECs in UC, with expansion in VDZ-treated patients
(Fig. 4d–f). IECs expansion in UC-VDZ compared to UC approached
statistical significance, consistent with CITE-seq data (Fig. 3f). In
agreement with the unsupervised CyTOF analysis and CITE-seq data,
MNP subsets exhibited a trend toward reduction in UC-VDZ patients,
including mDCs (cDC1, cDC2, cDC2b), classical monocytes, and

macrophages (Fig. 4g–i, Supplementary Fig. 11b). SinceVDZ selectively
binds to the integrin ɑ4β7, blocking its interaction with MAdCAM-1, we
then looked at the ratio of ɑ4β7

+ cells in the biopsies relative to the
blood for each subset, and found that VDZ significantly decreased
ɑ4β7

+ cells in colon biopsies in the majority (21 of 23) cell subsets to
varying extents (Fig. 4j–l, Supplementary Fig. 11c). This pattern was
prominent in a hierarchically clustered heatmap, showing unsu-
pervised clustering of UC-VDZ patients HS9-12 based on a lower
abundance for all the defined ɑ4β7

+ cell populations in biopsies relative
to blood (Fig. 4j). Therefore, VDZ does broadly interfere to some
extent with intestinal trafficking for many cell types, even if fre-
quencies of MNP subsets weremore significantly affected than CD4+ T
lymphocyte subsets. To understand this process further, we evaluated
the percent of each ɑ4β7

+ subset in the peripheral blood and tissue
samples (Fig. 4k, l). mDCs, including cDC1, cDC2, and cDC2b, exhibited
the largest percent increase in circulating ɑ4β7

+ cells in VDZ-treated
patients (Fig. 4k). ɑ4β7

+ naïve and central memory CD8 +T cells and γδ

Fig. 4 | Unsupervised and supervised CyTOF analysis identifies significant
increase in circulating α4β7

+ DCs in UC-VDZ patients. a Schematic of CyTOF on
blood and biopsy samples. Createdwith BioRender.com. UMAP visualization of the
indicated samples (60,000 out of 684,249 live cell events displayed for biopsies)
highlighting (b) annotated clusters, and (c) disease and treatment status. d–i Cell
frequency of the indicated supervised subset analysis among conditions in biopsies
expressed as log2 (cell freq/median) (mean ± SEM; n=number of patients; each dot
represents one patient sample; multiple one-way ANOVA Kruskal-Wallis test with
FDR correction; q < 0.1 threshold for discovery; individual inter-column q-values
are displayedonly for cell subsetswithoverall FDRcorrectedq <0.1); the legend for

(d–i) is shown in (i). j Heatmap of biopsy/blood ratio of α4β7
+ cells for each cell

subset by patient (hierarchically clustered by Euclidian distance, average linkage).
k, l Percentage ofα4β7

+ cells in eachdefined cell subset per condition for blood and
biopsy samples, respectively (mean ± SEM; n=number of patients; each dot repre-
sents one patient sample; two-wayANOVA comparingHCvsUC-VDZ andUCvsUC-
VDZ with FDR correction; q < 0.1 threshold for discovery; *q <0.05; **q < 0.01;
***q < 0.001; and ****q < 0.0001 (exact q-value are reported in Source Data); only
significant differences are indicated). Class mono-classical monocyte; Nonclass
mono-nonclassical monocyte; mDC-cDC1,cDC2,cDC2b; N/A-Not Applicable.
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T cells were reduced in UC-VDZ biopsies as compared to HC and UC
patient biopsies (Fig. 4l), and reciprocally increased in the circulation
(Fig. 4k), but therewas no overall reduction in the frequency of theseT
cell subsets in UC-VDZ patient biopsies (Supplementary Fig. 11b).

To further validate these findings, we performed a replicate
CyTOF experiment on a second group of patients in endoscopic
remission, or near endoscopic remission, on stable maintenance
therapywith VDZ, anti-TNF, or 5-ASA therapy (Supplementary Table 1).
In VDZ-treated patients, mDCs again exhibited the most pronounced
increase in the circulating ɑ4β7

+ fraction (Supplementary Fig. 12a).
There were no differences in the overall PBL cell subset frequencies
(Supplementary Fig. 12b). These results confirmed that the higher
levels of circulating ɑ4β7

+ mDCs observed in VDZ-treated patients
persisted during stable maintenance therapy, and when compared
against anti-TNF agents. CyTOF of mucosal biopsies did not reveal a
significant reduction in mucosal mDCs of VDZ-treated patients com-
pared to HC or UC patients on other therapies, which could be
explained by the later timepoint and endoscopic remission of this
group (Supplementary Fig. 12c, d). Therewas an apparent reduction in
total naïveCD4+ andCD8+ T cells inVDZ-treatedUCpatients compared
to other therapies, although the results did not reach statistical sig-
nificance (Supplementary Fig. 12d). Lastly, when we looked at the ratio
of ɑ4β7

+ cells in the biopsies relative to the blood for each subset, we
confirmed that VDZ significantly reduced ɑ4β7

+ cells in colon biopsies
for 18 of 23 cell subsets (Supplementary Fig. 12e, f). Overall, CyTOF
experiments confirmed that VDZ is associatedwith a shift of ɑ4β7

+ cells
from tissue to peripheral blood across most subsets in either active or
inactive UC. Notably impacted were the circulating ɑ4β7

+ mDCs, fol-
lowed by CD8 +T, NK, γδ T, B, and plasma cells.

Spatial analysis of MNP and fibroblast subsets in FFPE samples
from VDZ-treated patients
We used a variety of spatial transcriptomic and proteomic methods
with single-cell resolution to evaluate the colonic tissue micro-
environment across disease and treatment status in FFPE samples.
12-plex RNA-ISH exhibited sufficient sensitivity and specificity for
some high-expressing cell lineage markers, but struggled to ade-
quately measure genes expressed at lower levels, including ITGA4,
ITGB7,MADCAM1, and FLT3 (Supplementary Fig 13a, b, Supplementary
Table 3). 39-plex MIBI on the same tissue microarray (TMA) identified
20 phenotypes with high signal-to-noise ratio (SNR), but the need to
balance resolution and field-of-view (FOV) dimensions with longer
acquisition times ultimately yielded fewer cells than RNA-ISH
(Fig. 5a–c, Supplementary Table 3,4). Despite limited cell counts with
MIBI, there was a trend indicating a reduction in fibroblasts in UC-VDZ
compared to UC biopsies (Fig. 5d; Supplementary Fig. 13c). We then
performed 28-plex CODEX and unsupervised clustering, visualization,
and annotation, mirroring the CyTOF analysis (Fig. 5e–j; Supplemen-
tary Fig. 13d; Supplementary Tables 3, 4). Unsupervised analysis gen-
erated 24 clusters, and highly similar clusters were subsequently
grouped to yield 11 clusters (Fig. 5f). The UMAP, similarity matrix
heatmap, along with visual inspection of each channel, identified
specific and nonspecific markers for the final supervised cell pheno-
type analysis of 18 subsets (Fig. 5g, h; Supplementary Fig. 13d, Sup-
plementary Table 4). Memory CD8+ T cells exhibited a statistically
significant increase in UC compared to HC, but this was not sig-
nificantly reduced in VDZ-treated patients (Supplementary Fig. 13d).
While the CODEX panel lacked the specificity to accurately quantify
mDCs, it could reliably detect and quantify both macrophages and
CD44+PDPN+ activated/inflammatoryfibroblasts.While not statistically
significant, both subsets showed a trend toward increase in UC and
reduction with VDZ (Fig. 5i, j), similar to the pattern observed with
CITE-seq. In both MIBI and CODEX datasets, MNP and fibroblast sub-
sets exhibited trends toward increased proximity by nearest neighbor
(NN) analysis in UC compared to HC, with inhibition VDZ (Fig. 6a, b).

To further evaluate the colonic tissue microenvironment in this set-
ting, we then performed 960-plex RNA-ISH (CosMx from Nanostring)
on our FFPE TMA at subcellular resolution, as recently described39,40

(Fig. 6c). After cell segmentation and mapping of transcript location
(Fig. 6d; Supplementary Fig 13e–g), UMAP and corresponding spatial
scatter plots (Fig. 6e, f) were used to manually annotate cell types.
Landmark genes for each subset correlatedwellwith biopsy scRNA-seq
(Supplementary Fig. 13g). Activated fibroblasts (TIMP1, IL1R1, CXCL14,
CD44) and activated inflammatory MNPs (S100A4, TIMP1, S100A9,
CD80, ITGAX, LYZ, IL1B) containing a mixture of inflammatory mono-
cytes, macrophages, and mDCs, trended toward increased spatial
proximity in UC biopsies as compared to HC, but not in UC-VDZ
patients (Fig. 6g, h).

Spatial transcriptomics of archived FFPE biopsies identifies pre-
treatment signatures associated with VDZ response and non-
response
To examine tissue level differences between VDZ responders (VDZ-R)
and non-responders (VDZ-NR), we retrieved longitudinal archived
FFPE biopsies before and after therapy and performed 1000-plex
CosMxspatial transcriptomics (Fig. 7a, Supplementary Tables 1, 3). The
data quality using retrospectively identified, clinical archived FFPE
samples underperformed prospectively collected FFPE samples, likely
reflecting sample age and storage. Approximately 20% of cells were
not annotated after filtering, and additional stromal and lymphocyte
subsets could not be confidently assigned due to lower levels of
landmark gene expression and ambiguous cell identity. Importantly,
the myeloid, stromal, and epithelial subsets of interest expressed
landmark genes at higher levels. Unsupervised hierarchical clustering
based on the abundance of these subsets distinguished HC from UC
patient samples (Supplementary Fig 14a). We observed an increase in
activated MNPs in UC compared to controls before VDZ treatment,
with a decrease in responders and an increase in non-responders post-
treatment (Fig. 7b). IECs expressing high levels ofMHCII were similarly
elevated in active colitis compared to controls before VDZ treatment,
with an apparent reduction in responders post-treatment (Fig. 7c).
Again, neighborhood enrichment analysis revealed trends toward
increased proximity of activated fibroblast and activated MNP subsets
in active colitis, and reduction after treatment, although this was not
statistically significant andnot clearly associatedwith responseor non-
response to VDZ (Fig. 7d). Pre-treatment differences are the most
relevant for developing precision medicine algorithms. Therefore, we
performed pseudobulk DE gene analysis of pre-treatment FFPE biop-
sies fromnon-responders versus responders, to identify distinguishing
baseline features (Supplementary Table 7, Supplementary Fig 14b).
Genes specific to the IEC crypt base including REG1A, OLFM4, AGR2,
SPINK1, and LYZwere associatedwith response to VDZ,while fibroblast
and MNP-enriched genes including MMP1, MMP2, and THBS1 were
relatively higher in VDZ non-responders (Fig. 7e). IgA plasma cell-
associated genes were also higher in responders (Fig. 7e). Spatial
scatter plots of cell subsets and transcripts suggested that a robust IEC
crypt base was associated with response to VDZ, while the abundance
and activation of fibroblasts and MNPs were more linked to non-
response prior to VDZ treatment (Fig. 7f–i).

To further validate the association ofMNP, stromal, and IEC genes
with VDZ response and non-response, we performed gene set enrich-
ment analysis (GSEA)41,42 of a longitudinal, publicly available1, bulk
transcriptomic dataset of UC patients using landmark genes from our
multi-omics analysis (Supplementary Table 5). Neutrophils were not
present in our biopsy CITE-seq data, but a gene set signature was
generated from canonical landmark genes. Not surprisingly, VDZ
responders (n = 9) exhibited broad reductions in immune and acti-
vated stromal Normalized Enrichment Scores (NES), with epithelial
gene set enrichment post-treatment, consistent with reduced inflam-
mation andmucosal healing (Fig. 8a). In contrast, VDZ non-responders
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(n = 5) exhibited a high initial pre-treatment cytotoxic lymphocyte
signature, and persistent activated and S2 fibroblast gene signatures
post-treatment, without significant epithelial enrichment post-treat-
ment, consistent with amodel where high initial cytotoxic lymphocyte
injury and persistent stromal tissue inflammation prevents mucosal
healing (Fig. 8a). Interestingly, the reduction in immune subsets in VDZ
non-responders was smaller and not statistically significant compared
to VDZ responders. VDZ non-responders (n = 9) were differentiated
from responders (n = 11) by pre-treatment enrichment for endothelial,
activated fibroblast, neutrophil, macrophage, and monocyte sig-
natures (Fig. 8b). Gene signatures investigated were clearly dis-
tinguished by leading edge analysis (Fig. 8c). Additionally, GSEA using
VDZ response and non-response signatures identified from our long-
itudinal spatial transcriptomics analysis of FFPE biopsies were vali-
dated in this external bulk transcriptomic dataset (Fig. 8d, e;
Supplementary Table 5). Interestingly, the VDZ non-response sig-
nature was also significantly enriched in Infliximab non responders
prior to treatment (pre-IFX), categorizing these genes as markers of
non-response to both treatments (Fig. 8f, g). This is expected as all of
the VDZ-treated patients in that study had previously been exposed to

anti-TNF therapy1, similar to our VDZ non-responders (Supplementary
Table 1). In contrast, the pre-VDZ-response signature was specific to
VDZ, and not associated with response to IFX (Fig. 8f, g). These data
suggest that VDZ non-responders have higher pre-treatment tissue
innate immune and activated stromal subset inflammation, and that
these cell subsets likely drive inflammatory cell trafficking via ɑ4β7-
independent pathways. Conversely, a robust IEC crypt base signature
pre-treatment is linked to response to VDZ and mucosal healing.

Discussion
To identify and validate the transcriptomic, proteomic, and cellular
signatures associated with UC and VDZ treatment, we optimized a
multi-omics pipeline that included batch processing of cryopreserved
biopsies for simultaneous multiplexed CITE-seq and CyTOF, coupled
with spatial analysis of FFPE biopsies. VDZ was associated with small
shifts in peripheral leukocytes by scRNA-seq, while colonic tissue
profiling demonstrated a significant reduction in MNPs, expansion of
some epithelial subsets, and a trend toward fewer activated fibroblasts
by CITE-seq. Among immune subsets analyzed by CyTOF, mDCs
exhibited the largest increase in circulating ɑ4β7

+ cells in VDZ-treated

Fig. 5 |MIBI andCODEX spatial proteomics usingFFPE tissue identifies distinct
phenotypes in mucosal biopsies of UC-VDZ patients. a Schematic of MIBI
workflow and customized antibody panel. Created with BioRender.com. MIBI
images representative of 32 FOVs for (b) nuclear DNA, indicatedmajor cell lineage
markers, and 5 color overlay, and (c) 39-plex overlay, selected channels, and
related spatial scatter plots for coarse annotation of the indicated cell subsets.
d Cell frequency as a percent of total cells detected by MIBI for the indicated cell
subset. e Schematic of CODEX workflow and antibody panel. Created with BioR-
ender.com. fUMAP visualization of 68,804 captured cells (50,000 cells displayed)

highlighting annotated clusters. g Marker similarity matrix among 23 selected
markers (Pearson correlation). h CODEX images representative of 15 cores, phe-
notype identification highlighting indicated markers and major phenotype colo-
calization. i, j Cell frequency as a percent of total cells detected by CODEX for the
indicated cell subsets. For panels (d),(i),(j), mean ± SEM; n=number of patients;
each dot represents one FOV for MIBI or one core for CODEX; multiple one-way
ANOVA Kruskal-Wallis test with FDR correction; q < 0.1 threshold for discovery; ns
not significant.
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patients. Spatial proteomics and transcriptomics of FFPE colonic
biopsies using MIBI, CODEX, and highly multiplexed RNA-ISH
demonstrated trends toward increased density and proximity of
MNP and fibroblast subsets in UC as compared to HC. Spatial tran-
scriptomics of archived clinical FFPE samples before treatment iden-
tified MNP, fibroblast, and epithelial gene signatures linked to VDZ
response and non-response, and these signatures were confirmed
using an external, publicly available bulk transcriptomic dataset.

There are conflicting data regarding the primary cell subsets tar-
geted by VDZ. VDZ has been reported to bind to CD4 T, CD8 T, B, NK,
and granulocytes in the peripheral blood43,44. Here we confirm that
VDZ shifts ɑ4β7

+ cells from the colon to the circulation for most cell
types, but this results in a small net change in tissue cell frequency for
most cell subsets. Multiple studies have investigated the effect of VDZ
on T cell subsets, in general supporting models where pathogenic
effector T cell subsets are excluded more efficiently than regulatory T
cell subsets6–8,45. Our data do not exclude any of these observations,
but rather add that VDZ is correlatedwith alterations in the abundance
and expression of circulating and intestinal MNP subsets, which likely
contributes to a reduction in tissue inflammation. One recent study
demonstrated that VDZ did not consistently alter the phenotype,
activation, or repertoire of lamina propria T cells by flow cytometry
and TCR sequencing, but bulk transcriptomic data was consistent with
a shift in MNP gene signatures11, aligning with our analysis. None-
theless, the impact of VDZ on intestinal MNP populations likely affects

the recruitment and activation of both adaptive and innate immune
subsets.

This study has important therapeutic implications. Our CyTOF
analysis demonstrated that mDCs are highly dependent on ɑ4β7 for
intestinal trafficking, consistent with MAdCAM-1-deficient and β7
integrin-deficient mice10. Our data suggest that T cells may be better
able to exploit ɑ4β7-independent intestinal trafficking pathways than
mDCs. These pathways could include ɑ4β1:VCAM1, GPR15:C10ORF99,
CXCR4:CXCL12, or CCR6:CCL2046. Interestingly, GPR15 and CCR6 are
expressed by lymphocytes, but not mDCs or monocytes, which could
partially explain the impact of VDZ on tissue MNPs. Refractory IBD
patientsmaybenefit fromadditional combination therapies that target
lymphocytes or activated stromal cell subsets, as is done sometimes in
clinical practice47. Recently, inflammatory fibroblasts have been
reported to secrete neutrophil-tropic CXCR1 and CXCR2 ligands in
response to IL-1β48. Granulocytes are greatly diminished by cryopre-
servation, so our study was not optimized to analyze neutrophils, but
we do show that VDZ non-responders exhibit increased activated
fibroblast signatures at baseline and after therapy. The observation
that inflammatory MNPs and fibroblasts share similar cellular neigh-
borhoods further supports a rationale for neutralization of IL-1 family
members in refractory colitis.

A secondary objective of this study was to evaluate various multi-
omics platforms on cryopreserved biopsies and FFPE tissue. CyTOF
quantitated themost cells per patient, MIBI the fewest, while CITE-seq,

Fig. 6 | MNP and fibroblast subsets trend toward spatial proximity in UC
patients compared to HC. Spatial scatter plots of the indicated cell subsets and
nearest-neighbor (NN) analysis for (a) MIBI (representative of 29 FOVs) and (b)
CODEX (representative of 12 cores); n=number of patients; eachdot represents one
FOV forMIBI or one core for CODEX; one-wayANOVAKruskal-Wallis tests with FDR
correction; q < 0.1 threshold for discovery. c Schematic of 960-plex RNA-ISH of
FFPE TMA. Created with BioRender.com. d CosMx images representative of 17
FOVs, cell segmentation and probe signal for the indicated cells and genes. eUMAP
visualization of 960-plexCosMx for 48,783cells fromHC(n = 4), UC (n = 3), andUC-

VDZ (n = 3) patients highlighting the indicated cell subsets. f, g Representative
spatial scatter plots highlighting the indicated cell subsets (spatial scatter plots
were representative of 17 FOVs); the legend for (f) is shown in (e). h Z-score of
activated fibroblast and activated MNP neighborhood enrichment (n=number of
patients; each dot represents one FOV; one-way ANOVA Kruskal-Wallis tests with
FDR correction; q < 0.1 threshold for discovery; ns-not significant). For panels (a, b)
and (h) box andwhisker plots, the band indicates themedian, the box indicates the
first and third quartiles, and the whiskers indicateminimum and maximum, all
points are shown.

Article https://doi.org/10.1038/s41467-024-45665-6

Nature Communications |         (2024) 15:1493 9



CODEX, and CosMxmethods yielded comparable numbers of cells per
patient (Supplementary Fig 14c). Comparing across tissue compart-
ments, CITE-seq over-sampled the immune compartment and under-
sampled the epithelial compartment, when compared to other multi-
omics methods (Supplementary Fig 14d, Supplementary Table 6).
Given the ubiquity of FFPE tissue, preservation of spatial relationships,
and more accurate representation of in situ cell frequencies and gene

expression, FFPE-compatible spatial multi-omic technologies provide
a powerful complementary method for analyzing patient-derived
biospecimens.

There are several important limitations of this study. No func-
tional investigations were performed, therefore alterations in cell
abundance or gene expression couldbedirectly or indirectly related to
VDZ. Additional limitations include a small sample size and case-

Fig. 7 | CosMx spatial transcriptomics of archived FFPE specimens with single-
cell resolution identified tissue signatures of VDZ response and non-response
prior to therapy in activated MNP, fibroblast, and IEC crypt base subsets.
a Schematic of retrospective, longitudinal analysis of archived FFPE specimens using
1000-plex CosMx spatial transcriptomics of 126,368 cells from 73 FOVs; n of sche-
matic applies to left panels in (b–d). Created with BioRender.com. b, c Cell fre-
quencies of indicated subsets comparing (left) HC and pre-treatment samples (pre-
VDZ) (Mann–Whitney, two-tailed), as well as (middle, right) pre-VDZ and post-VDZ
treatment for the indicated subsets for both responders (R) andnon-responders (NR),
only patients with matching biopsies pre- and post-VDZ are shown (Mann–Whitney,

two-tailed ofΔpost VDZ - pre VDZ for R andNR).d Z-score of activated fibroblast and
activated MNP neighborhood enrichment comparing (left) HC and pre-VDZ
(Mann–Whitney, two-tailed) and (right) one-way ANOVA Kruskal-Wallis test with
Dunn’s multiple comparison test. eDot plot representation of a subset of genes from
pseudobulk DE gene analysis for the indicated subsets. Representative spatial cell
scatter plots highlighting the relevant cell subsets relatively increased in (f) VDZ R or
(h) VDZ NR. Representative spatial transcript scatter plots highlighting a subset of
genes relatively increased in (g) VDZ R and (i) VDZ NR. f–i Spatial scatter plots were
representative of 73 FOVs. For panels (b–d), mean ±SEM; n=number of patients; each
dot represents averaged FOV per patient. R-responder; NR non-responder.
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control approach for the primary analysis. We chose to perform in-
depth multi-omic analysis in the same patients to maximize paired
phenotypic data from each patient. In the future, prospective long-
itudinal single-cell and spatial multi-omic data from more patients on
diverse therapies could permit detection of more subtle changes in
differential gene and protein expression across various medication
classes. Of note, the VDZ-non-responders in our study and the publicly
available dataset were both previously exposed to anti-TNF, likely
explaining why our VDZ non-response signature was associated with
both VDZ and IFX non-response. While we found that archived clinical
FFPE samples are suitable for spatial transcriptomics, the data are
noisier, with smaller fold changes than sequencingmethods, and some
variability in probe performance and specimen integrity. Finally, this
study focused exclusively on host factors, but microbial determinants
and metabolomics have also been shown to contribute to therapeutic
response in IBD49,50. Incorporating additional multi-omic modalities in
future studies could enhance our understanding of treatment
response and non-response in UC.

In summary, we performed comprehensive single-cell and spatial
transcriptomic and proteomic phenotyping to establish MNPs as an
important cell type impacted by anti-integrin therapy in UC, with
associated changes in stromal and epithelial populations. This study
highlights important cellular networks involving MNPs and fibroblasts

in colitis. The combination of CITE-seq and CyTOF on identical sets of
biopsies establish a surface protein cell atlas for the colon in health,
disease, and during treatment. We also describe a spatial atlas for
colitis with single-cell resolution using MIBI, CODEX, and CosMx on
FFPE samples, allowing comprehensive analysis of cell subset fre-
quency, differential gene expression, and cellular proximity. Ulti-
mately, precision medicine implies approaching each patient as an n-
of-1, and here we show that multiple orthogonal multi-omics analyses
enhance internal validity for immunophenotyping, even with small
sample sizes. Implementing single-cell and spatial multi-omics meth-
ods simultaneously in individual patients will provide deep immuno-
phenotyping and lead to more precise treatment algorithms.

Methods
Study approval
The study was conducted according to Declaration of Helsinki prin-
ciples and was approved by the Institutional Review Board of the
University of California, San Francisco (19-27302). Written informed
consent was received from participants prior to inclusion in the study.

Study participants and biospecimen collection
For prospective sample collection, patients undergoing colonoscopy
or sigmoidoscopy for standard of care indications were screened for

Fig. 8 | Gene set enrichment analysis (GSEA) of an external, publicly-available,
bulk transcriptomic dataset (GSE73661) using cell subset and spatial tran-
scriptomic signatures associated with response and non-response to VDZ.
Normalized Enrichment Scores (NES) in bulk tissue transcriptomic data comparing
(a) pre- and post-treatment samples for VDZ responders (R) and non-responders

(NR), (b) pre-VDZ R vs NR (red bars FDR<0.1, gray bars FDR>0.1). c Leading edge
analysis of significantly enriched gene sets. d–g, GSEA of VDZ response and non-
response spatial signatures in external cohort of patients (d) pre-VDZ and (f) pre-
IFX. Subset of genes comprising the leading edge of theNES and FDRq-values in (e)
pre-VDZ and (g) pre-IFX patients, respectively. IFX infliximab.
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study eligibility. Eligible patients were recruited consecutively to
minimize self-selection bias. Patients were compensated $50 for each
sample collection event. All participating patients gave written
informed consent and approval. Peripheral blood and cold forceps
biopsy samples were obtained from patients with UC, and individuals
without IBD, referred to as healthy controls (HC). For retrospective
archived FFPE sample retrieval, study subjects were identified by
querying the electronicmedical records of patients previously seen by
UCSF Gastroenterology, followed by written informed consent and
approval. Baseline demographic and clinical data for the study parti-
cipants are provided in Supplementary Table 1. We have consent to
publish de-identified patient demographics including age at the time
of sample collection, sex, diagnosis, andmedical center. Demographic
options were defined by the investigators and participants chose their
classifications. HC patients were patients without known or suspected
IBD undergoing elective colonoscopy or sigmoidoscopy for various
indications (e.g., colorectal cancer screening). Biopsy samples were
categorized as coming from an area that was endoscopically non-
inflamed (score=0), mildly inflamed (score=1), moderately inflamed
(score=2), or severely inflamed (score=3). Samples were assigned
unique identifiers before biobanking.

Sample collection and storage
Colon biopsies were obtained with standard cold endoscopic biopsy
forceps from two different regions of the colon (R=right/proximal and
L=left/distal) with separate vials for different downstream applica-
tions. Two biopsies were collected in 10% formalin in 5mL tubes for
24 h, thenwashedwith PBS twice and stored in70%ethanol for paraffin
embedding; two biopsies were collected in 4mL RNAlater in 5mL
tubes stored overnight at 4 °C for, then the solutionwas aspirated, and
biopsies were stored at –70 °C until further analysis. Six biopsies were
collected in a conical tubewith BasalMedia (AdvancedDMEM/F12with
NEAA and Sodium Pyruvate, Thermo cat. No. 12634-010; 2mM Gluta-
max, Thermo cat. No. 35050061; 10mM HEPES (Corning); Penicillin-
Streptomycin-Neomycin (PSN) Antibiotic Mixture, Thermo cat. No.
15640055; Normocin 100 µg/mL, Invivogen cat. No. ant-nr-2; 1 mM N-
acetylcysteine, Sigma-Aldrich, A9165) with 10 µM Y-27632 (MedChem
Express) at 4 °C. Samples were immediately placed on ice and trans-
ported to the laboratory for processing as previously described51.
Biopsies were transferred into cryovials containing freezing media
(90% (v/v) FCS, 10% (v/v) DMSO and 10 µM Y-27632) and immediately
placed into a freezing container (Mr. Frosty or Coolcell) and stored at
–70 °C for up to 4 weeks before transferring to liquid nitrogen cryos-
torage until further processing. A PAXgene RNA tube (Qiagen) for
peripheral blood was collected, stored, and processed according to
the manufacturer’s instruction. For peripheral blood leukocyte (PBL)
isolation, peripheral blood was collected into EDTA tubes (BD,
366643). 2mL aliquots of peripheral blood were treated with 30mL of
RBC lysis buffer (Roche) for 5–8min at room temperature with gentle
mixing. Cells were re-suspended in CryoStor CS10 (at 4 °C) freezing
medium, aliquoted in cryovials, transferred to a freezing container
(Mr. Frosty or Coolcell), and stored at –70 °C for up to 4 weeks before
transferring to liquid nitrogen cryostorage until further processing.

Preparation of colon and peripheral blood single-cell
suspensions
Colon biopsies were thawed for 2min with gentle agitation in a 37oC
water bath, transferred to a gentleMACS C Tube (Miltenyi Biotec),
washed twice with basal media containing 10 µM Y-27632, and then
incubated in 5mL digestion buffer (basal media), 10 µM Y-27632,
600U/mLCollagenase IV (Worthington cat. No. LS004189), 0.1mg/mL
DNAse I (Sigma-Aldrich, D4513) and digested for 20min at 37 °C in a
shaking incubator set at 225 rpm. Subsequently, samples were placed
in the gentleMACS Dissociator, processed with the gentleMACS pro-
gram m_intestine_01, followed by 15min incubation at 37 °C in a

shaking incubator set at 225 rpm. The suspension was then strained
through a 100 µmstrainer (Miltenyi) and centrifuged at 450g for 5min
at RT. Two additional washes were performed in Hanks’ Balanced Salt
Solution (HBSS) (Corning), containing 0.1mg/mL DNAse I (Sigma-
Aldrich, D4513). 1 × 106 total cells were set aside for CyTOF. For the
remaining cells, dead cells were removed with the Dead Cell Removal
Kit (Miltenyi) according to the manufacturer’s instructions. Cell sus-
pensions were counted using a TC20 Automated Cell Counter (Bio-
Rad) with 0.4% Trypan Blue Solution (Thermo Fisher Scientific). Live-
cell enriched colon single-cell suspensions were used for tissue scRNA-
seq and CITE-seq, with a final pooled viability >75%. PBLs were thawed
for 2min with gentle agitation in a 37 oC water bath and then washed
twice with complete DMEM (Thermo Fisher) supplemented with
nonessential amino acids (Thermo Fisher Scientific), sodium pyruvate
(Thermo Fisher Scientific), HEPES (10mM; Corning), Glutamax (2mM;
Thermo Fisher Scientific), Normocin (100μg/mL; Invivogen, ant-nr-2),
penicillin-streptomycin (Thermo Fisher Scientific) and 10% Fetal
Bovine Serum (VWR). Cells were incubated with ACK lysis buffer
(Quality Biological) for 5min at room-temperature, washed twice with
complete DMEM, treated with HBSS (Corning) containing 0.1mg/mL
DNAse I (Sigma-Aldrich, D4513) for 5min, and then strained through a
20umpre-separation filter (Miltenyi). Cells were counted using a TC20
Automated Cell Counter (Bio-Rad) with 0.4% Trypan Blue Solution
(Thermo Fisher Scientific). Peripheral blood leukocytes (PBLs) from
each donor were used for scRNA-seq and CyTOF, with a final pooled
viability of >85%.

Bulk RNA-seq sample and computational processing
RNA was extracted from blood or biopsies following manufacturer’s
protocol using the PAXgene kit and Qiagen Rneasy Mini kit (Qiagen),
respectively. RNA quality and integrity weremeasuredwith the Agilent
RNA 6000 Nano Kit on the Agilent 2100 Bioanalyzer, according to
manufacturer’s instructions. Ribosomal and hemoglobin depleted
total RNA-sequencing libraries were created using FastSelect (Qiagen
cat#: 335377) and Tecan Universal Plus mRNA-Seq (0520-A01) with
adaptations for automation of a Beckmen BioMek FXp system.
Libraries were subsequently normalized and pooled for Illumina
sequencing using a Labcyte Echo 525 system available at the Center for
Advanced Technology at UCSF. The pooled libraries were sequenced
on an Illumina NovaSeq S4 flow cell lane with paired end 150 bp reads.
Computation processing for genotyping was performed as previously
described23,52. Briefly, sequencing reads were aligned to the human
reference genome and Ensembl annotation (GRCh38 genome build,
Ensembl annotation version 95) using STAR v2.7.5c (PMID: 23104886)
with the following parameter— --outFilterType BySJout
–outFilterMismatchNoverLmax 0.04 – outFilterMismatchNmax 999
–alignSJDBoverhangMin 1–outFilterMultimapNmax 1 – alignIntronMin
20 –alignIntronMax 1000000 –alignMatesGapMax 1000000. Dupli-
cate reads were removed and read groups were assigned by individual
for variant calling using Picard Tools v2.23.3 (https://broadinstitute.
github.io/picard/). Nucleotide variants were identified from the
resulting bam files using the Genome Analysis Tool Kit (GATK,
v4.0.11.0) following the best practices for RNA-seq variant calling53.
This includes splitting spliced reads, calling variants with Haplotype-
Caller (added parameters: --don’t-use-soft-clipped-bases -standcall-
conf 20.0), and filtering variants with VariantFiltration (added para-
meters: -window 35 – cluster 3 –filter-name FS -filter FS > 30.0 –filter-
nameQD -filter QD < 2.0). Variants were further filtered to include a list
of high quality SNPs for identification of the subject of origin of indi-
vidual cells by removing all novel variants, maintaining only biallelic
variants withMAF greater than 5%, amixmissing of one individual with
a missing variant call at a specific site and requiring a minimum depth
of two (parameters: --max-missing 1.0 –min-alleles 2 –max-alleles 2
–removeindels –snps snp.list.txt –min-meanDP 2 –maf 0.05 –recode
–recode-INFO-all –out).
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scRNA-seq and CITE-seq sample loading and sequencing
PBL or colon single-cell suspensions from each patient were pooled
with equivalent number of live cells and resuspended at 1–2.5 × 103

cells/µl in 0.04%BSA/PBS, with the addition of 10 µM Y-27632 (Med-
Chem Express) for colon samples. Samples from unique individuals
were pooled, and samples from the proximal (Right,R) or distal (Left,L)
colon of the same individual were placed in separate pools, so each
sample could later be uniquely identified using demuxlet21. For the
primary biopsy UC and VDZ analysis, the two pools were loaded into
four wells each of a Chromium Single Cell 3′ v2 Reagent Kit (10X
Genomics), with a total of 8 wells (Supplementary Table 2). 1 × 106 cells
of both single-cell colon suspension pools were stained with a custom
TotalSeq-A panel, (BioLegend) (Supplementary Table 3) according to
the manufacturer’s instructions and loaded into two wells. For all
experiments, 60,000 cells were loaded per well and processed for
single-cell encapsulation and cDNA library generation using the
Chromium Single Cell 3′ v2 Reagent Kits (10X Genomics). TotalSeq-A
library generation was performed according to manufacturer’s
instructions (BioLegend). Libraries were sequenced on an Illumina
NovaSeq6000 to obtain 25,000 reads per cell for the gene expression
libraries and 10,000 reads per cell for the TotalSeq libraries.

scRNA-seq and CITE-seq data pre-processing, inter-sample
doublet detection, and demuxlet
10x Genomics Chromium scRNA-seq data were processed as pre-
viously described23,52. Briefly, sequencer-obtained bcl files were
demultiplexed into individual library fastq trios using the mkfastq
program from the Cellranger 3.0.2 suite of tools (https://support.
10xgenomics.com). Feature-barcode matrices were obtained for each
sample by aligning the raw fastqs to GRCh38 reference genome
(annotatedwith Ensembl v85) using the Cellranger count. Raw feature-
barcode matrices were loaded into Seurat 3.1.554 and low-quality cells
(with fewer than 100 features), and features in 3 or fewer cells were
dropped from the dataset. The remaining events were assessed for
inter-sample doublet detection (generated due to libraries containing
samples pooled prior to loading) using Freemuxlet (https://github.
com/statgen/popscle), the genotype-free version of Demuxlet21. Clus-
ters of cells belonging to the same patient were identified via SNP
concordance to a truth set generated by bulk RNASeq. Briefly, the
aligned reads fromCellranger werefiltered to retain reads overlapping
a high-quality list of SNPs obtained from the 1000 Genomes Con-
sortium (1KG)55. Freemuxlet was run on this filtered bamusing the 1KG
vcf file as a reference, the input number of samples/pool as a guideline
for clustering groupsof cells bySNP concordance, and all other default
parameters. Cells are classified as singlets (arising from a single
library), doublets (arising from two ormore libraries), or as ambiguous
(cells that cannot be accurately assigned to any existing cluster due to
a lack of sufficient genetic information). Clusters of cells belonging to a
unique sample were mapped to patients using their individual
Freemuxlet-generated genotype, and ground truth genotypes per
patient identified via bulk RNA-seq. The pairwise discordance between
inferred and ground-truth genotypes was assessed using the bcftools
gtcheck command56. The feature-barcode Matrices were further fil-
tered to remove cells with greater than 50% percent mitochondrial
content or ribosomal content, and cells assigned as doublets or
ambiguous by Freemuxlet. Visual outliers in the feature-vs-UMIs plots
were filtered uniformly across all libraries. The cell cycle state of each
cell was assessedusing apublished set of genes associatedwith various
stages of human mitosis57.

scRNA-seq and CITE-seq quality control, normalization, and
intra-sample heterotypic doublet detection
The filtered count matrices were normalized, and variance stabilized
using negative binomial regression via the scTransform method
offered by Seurat58. The effects of mitochondrial content, ribosomal

content, and cell cycle state were regressed out of the normalized data
to prevent any confounding signal. The normalized matrices were
reduced to a lower dimension using Principal Component Analyses
(PCA) and the first 30 principal coordinates per samplewere subjected
to a non-linear dimensionality reduction using Uniform Manifold
Approximation andProjection (UMAP). Clustersof cells sharing similar
transcriptomic signals were initially identified using the Louvain
algorithm, and clustering resolutions variedbetween0. 6 and 1.2 based
on the number and variety of cells obtained in the datasets. All libraries
were further processed to identify intra-sample heterotypic doublets
arising from the 10X sample loading. Processed and annotated Seurat
objects were processed using the DoubletFinder package59. The prior
doublet rate per library was approximated using the information
provided in the 10x knowledgebase (https://kb.10xgenomics.com/hc/
en-us/articles/360001378811) and this was corrected to account for
inter-sample doublets identified by freemuxlet, and for homotypic
doublets using the per-cluster numbers in each dataset. Heterotypic
doublets were removed. The raw and log-normalized counts per
library were then pruned to retain only genes shared by all libraries.
Pruned counts matrices were merged into a single Seurat object and
the batch (or library) of originwas stored in themetadata of the object.
The log-normalized counts were reduced to a lower dimension using
PCA and the individual libraries were aligned in the shared PCA space
in a batch-aware manner (Each individual library was considered a
batch) using the Harmony algorithm60. ADT counts were centered log-
ratio (CLR) normalized. The resultingHarmony componentswereused
to generate batch corrected UMAP visualizations and cell clustering.

scRNA-seq and CITE-seq cell annotation and differential
expression
For both blood and biopsy scRNA-seq and CITE-seq, we generated
h5ad files with the UMAP, Louvain clusters, and metadata. We then
refined the “coarse” and “fine” cell-type annotations in a semi-
supervised manner using exploratory CZ CELLxGENE (ExCellxGene)
(https://pypi.org/project/excellxgene/), a restructured version of CZ
CELLxGENE61,62. Expression of cell-type specific markers were used to
assign identities to “coarse” and “fine” clusters, guided by previously
described gene sets12,13,15,27,63. Cells that were unable to be further
categorized by fine annotations were labeled as the coarse parental
population-not otherwise specified (NOS). The “Mito Hi immune”
cluster, consisting of cells with high mitochondrial gene expression,
were not considered in downstream analysis. scRNA-seq and CITE-seq
data analysis and visualization were then performed in Jupyter note-
books using Scanpy =1.9.164. To compute differentially express (DE)
genes between two conditions, we first subsetted our datasets with a
pair of conditions (HC vs UC, UC vs VDZ, and HC vs VDZ). Then, we
used theMASTRpackage v1.20which implements a negative-binomial
model using the zlm method and corrects for differences in sequen-
cing depth across samples65. Briefly, for a subsetted dataset of two
conditions,we analyzed all cells in aggregate, and then subsetted again
for each cell-type (coarse annotation for biopsies, and fine annotation
for blood) to identify DE genes for each cell-type between the two
conditions. We also corrected for the number of detected genes as a
potential confounding variable65. When comparing paired cryopre-
served versus fresh samples, patients were treated as a random effect.
P-values were corrected using the Bonferroni correction. Platelets and
erythrocytes were excluded from blood DE gene analysis.

Fresh versus cryopreserved biopsy scRNA-seq comparison
For the fresh versus cryopreserved comparison, twelve colon biopsies
were divided into two vials, each containing six biopsies, for two
donors. The fresh biopsies were stored in Basal Media on ice for
80min, while the cryopreserved biopsies were transferred into cryo-
vials containing freezing media (90% (v/v) FCS, 10% (v/v) DMSO and
10 µM Y-27632) and immediately placed into a freezing container (Mr
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Frosty or Coolcell) and stored at −70 °C for 80min. The cryopreserved
biopsies were then thawed, and both the fresh and cryopreserved
biopsies were digested as above. Half of the fresh biopsies from
each donor were labeled with TotalSeq-A0251 barcode sequence
GTCAACTCTTTAGCG (Biolegend 394601), and the other half of
the fresh biopsy sample was labeled with MULTI-seq lipid-tag barcode
sequence CCTTGGCACCCGAGAATTCCAGGAGAAGA66. Half of the
cryopreserved biopsies from each donor were labeled with TotalSeq-
A0252 barcode sequence TGATGGCCTATTGGG (Biolegend 394603),
and the other half of the cryopreserved biopsy sample was labeledwith
MULTI-seq lipid-tag barcode sequence CCTTGGCACCCGAGAATTCCA
CCACAATG66. TheMULTI-seq labeled samples were combined into one
pool, and the TotalSeq Hasthag samples were combined in a second
pool. The two pools were loaded separately into one well each of a
Chromium Single Cell 3′ v2 Reagent Kit (10X Genomics). 60,000 cells
were loaded per well and processed for single-cell encapsulation and
cDNA library generation as described above. Representative UMAPs
comparing cryopreserved and fresh biopsies and coarse cell subset
annotations, as well as the scRNA-seq DE genes, were generated from
theMULTI-seq labeled samples as described above. Quantitation of cell
subset frequency was performed on both MULTI-seq and TotalSeq
barcoded samples.

Mass Cytometry (CyTOF) sample staining and acquisition
A 37-parameter CyTOF panel was designed (Supplementary Table 3).
All mass cytometry antibodies were conjugated in-house to their cor-
responding metal isotope. Metals were conjugated according to the
manufacturer’s instructions (Fluidigm, South San Francisco, CA, USA).
In brief, this process consisted of loading themetal to a polymer for 1 h
at RT. The unconjugated antibody is transferred into a 50 kDA Amicon
Ultra 500 V-bottom filter (Fisher Scientific, Hampton, NH, USA) and
reduced for 30min at 37 °C with 1:125 dilution of Tris (2-carboxyethyl)
phosphine hydrochloride (TCEP) (ThermoFisher, Waltham, MA, USA).
Subsequently, the column was washed twice with C-buffer (Fluidigm)
and the metal-loaded polymer was suspended in 200 µL of C-buffer in
the 3 kDA Amicon Ultra 500 mLV-bottom filter. The suspension was
transferred to the 50 kDA filter containing the antibody and incubated
for 1.5 h at 37 °C. After incubation, antibodies were washed three times
with W-buffer (Fluidigm) and quantified for protein content using
Nanodrop. Once the concentration was determined, the antibodies
were resuspended at a concentration of 0.2mg/mL with Antibody
Stabilizer (Boca Scientific, Dedham, Ma, USA) and stored at 4 °C.
Optimal concentrations for all antibodies were determined by differ-
ent rounds of titrations. The staining protocol was optimized to use
each antibody in aliquots of 6 million cells as previously described67.

CyTOF panel design, staining, and acquisition
CyTOF was performed on paired peripheral blood and colon biopsies
obtained from the primary case control study (n = 12) and from the
secondary remission case control study (n = 17). Single-cell suspen-
sions of colon biopsies from the right and left colon were pooled to
ensure sufficient cell counts per donor for the primary case control
study (n = 12), or run in separate pools for the secondary remission
case control study (n = 17). Dead cells were labeled with Cisplatin
(Fluidigm) according to the manufacturer’s instructions, washed in
wash buffer (PBS, 0.5% BSA, 5mM EDTA), fixed in 1.6% PFA for 10min,
washed inwash buffer and then resuspended in freezingmedium (PBS,
0.5%BSA, 10%DMSO) and stored at−80oC until staining. Samples were
then thawed and washed with wash buffer. Prior to staining with the
antibody panel (Supplementary Table 3), cells from each patient were
barcoded using a unique set of metals, enabling sample identification
as previously described68,69. The barcode staining was performed fol-
lowing themanufacturer’s instructions (Fluidigm,South SanFrancisco,
CA, USA). Briefly, each sample was incubated for 15min at RT on a
shaker (200 rpm) with a barcoding solution containing 10 µL of

barcode in 1x Perm Buffer solution (Fluidigm, Cat#201057) diluted in
cell staining media (CSM, Fluidgim, Cat#201068). Samples were then
washed, centrifuged, resuspended in CSM, and pooled. Subsequently,
extracellular staining was performed for 30min at 4 °C. After incuba-
tion, the samples were washed with CSM and centrifuged before
resuspending in 1x Permeabilization Buffer (eBioscience™ Permeabi-
lization Buffer Cat# 00-8333-56) for 10min at 4 °C. The samples were
then washed and incubated with lr-intercalator (Biolegend CNS, San
Diego, CA, USA) diluted 1:500 in 4% fresh PFA for 20min at RT. After
incubation, samples were washed and kept at 4 °C overnight in EQTM

bead solution (Fluidigm Cat#201078) diluted in MaxPar Water (Flui-
digm Cat# 201069) at 1.2×106 cells/mL. Samples were analyzed on the
CyTOF®2 instrument (Fluidigm). Commercial Fluidigm CYTOF soft-
ware was used for CyTOF data acquisition.

CyTOF data analysis
After acquisition, the.fcs files were concatenated, normalized to the
EQTM calibration beads, and de-barcoded using CyTOF software (Flui-
digm). FlowJo v10 software was used for confirming the elimination of
the EQTM calibration beads, concatenating, and manually gating the
files. Singlets were gated by Event Length and DNA. Live cells were
identified as cisplatin-negative. The unsupervised analysis was per-
formed on the case control study (n = 12) using an R-based Cytometry
Clustering Optimization aNd Evaluation (Cyclone) pipeline developed
by the UCSF Data Science CoLab (https://github.com/UCSF-DSCOLAB/
cyclone)38. Specifically, the data were preprocessed, arcsinh trans-
formed (cofactor 5) and then clustered using FlowSOM2.6.070.Weused
default values for FlowSOM parameters except for the grid size. A grid
size of 3 × 7 was chosen based on a local minimum of Davies-Bouldin
Index (DBI). The clustering was visualized using UMAP, which was
calculated using uwot package in R. The pre-cluster median expression
levels of each of the 37 antibodies panel for each cluster were used to
annotate clusters. This was plotted as a heatmap. In parallel, supervised
analysis was performed on the same dataset and on the remission case
control study (n = 17) defining cell subsets based on canonical markers
and followed the scheme illustrated in Supplementary Fig. 10 and
Supplementary Table 4. Additionally, the supervised analysis was used
to further define cell subsets expressing ɑ4β7. Finally, specific popula-
tions andmarkers of the focused panel weremanually gated to validate
and extend the results from the unsupervised analysis.

Histology FFPE tissue microarray (TMA) construction
Colon biopsies from patients were fixed in 10% neutral-buffered for-
malin (Millipore Sigma) for 16–24 h, washed in PBS three times, then
placed in 70% ethanol and stored at RT until paraffin-embedding by the
Biospecimen Resource Program (BIOS) at UCSF. Sectioning, hematox-
ylin and eosin (H&E), and high-resolution (40X) scanning were per-
formed according to standard protocols. H&E histologic severity
quantification was performed using the Geboes scoring system71. Tis-
sue microarrays were constructed from prospectively collected FFPE
blocks byUCSF BIOS or retrospectively retrieved, clinical archived FFPE
blocks by Pantomics, with 1.1–2mm cores. The recipient TMA block
was sectioned with a clearance angle of 10° and a thickness of 4μm or
5μm along the width of the block and used for H&E staining and
multiplexed RNA-ISH. The TMA block was stored at –20 °C in order to
reduce sample degradation and preserve RNA detection in the tran-
scriptomic assays72. Freshly cut TMA sections were prepared before
each experiment, according to the type of spatial assay performed.

CODEX multiplexed tissue staining, imaging, and data analysis
Colon biopsies from the FFPE TMA block were mounted on coverslips
provided by Akoya Biosciences and prepared according to the
CODEX® User Manual. Briefly, FFPE TMAs were sectioned onto poly-L-
lysine-coated coverslips with a thickness of 5 µm. TMA coverslips were
stored individually at 4 °C to avoid tissue damage until the experiment
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run. Conjugation of DNA oligonucleotides to purified antibodies,
antibody validation and titration, and CODEX multicycle reactions
were optimized and performed by Akoya Biosciences according to the
protocol previously described73. CODEX samples were stained and
imaged by Akoya. Briefly, TMA coverslips were pretreated on a hot
plate at 55 °C with tissue facing up for 20–25min, then positioned on a
rack at RT for 5min to allow the tissues to cool down. Subsequently,
deparaffinization and hydration steps were performed. Next, the TMA
coverslips were submerged in a beaker containing antigen retrieval
solution (1x Tris/EDTA buffer, pH 9) and placed in a pressure cooker
for 20min. After incubation, samples were cooled at RT for 10min,
washed indistilledwater for 2min (2x), incubated in a hydration buffer
for 2min (2x), and then equilibrated in a staining buffer for 20-30min
before antibody staining. A customized CODEX panel of 28 antibodies
was used and each CODEX®-tagged antibody had a barcode that was
complementary to a specific reporter; all related details are summar-
ized in Supplementary Table 3. A single staining stepwith the antibody
cocktail solution containing blocking buffer and the panel of anti-
bodies was performed on the tissues for 3 h at RT in a humidity
chamber. After incubation, the TMA coverslips were washed with the
staining buffer for 2min (2x) then the coverslips were incubated with
post staining fixing solution (2% PFA) for 10min at RT. Subsequently,
TMA coverslips were washed in 1x PBS (3x), placed in ice-cold
methanol for 5min and transferred rapidly in 1x PBS for three con-
secutive washes. After the washing steps, TMA coverslips were placed
on a tray and tissues were incubated with a final fixative solution for
20min in a humidity chamber. After incubation, TMA coverslips were
rinsed with 1x PBS (3x) and were ready for the CODEX® multicycle
experiment. Images were collected using a Keyence BZ-X800 Fluor-
escent microscope configured with fluorescent channels (ATTO550,
Cy5, AF647, and AF750) and equipped with a cooled CCD camera. The
resolution was 0.25 µm per pixel. Images for the 28 DNA-conjugated
antibodies were acquired over 13 cycles of staining. In each cycle, the
reporters revealed up to three markers of interest (and DAPI) simul-
taneously. After each cycle of imaging, the reporters were removed
from the tissueby a gentle isothermalwash. Eachcorewas imagedwith
a 20x objective. Images were processed, stitched with background
subtraction and deconvolution, and aligned into a 28-color overlay
figure for the selectedmarkers for analysis at UCSF. Cell segmentation
was performed using HALO 3.4 image analysis software (Indica Labs),
DAPI was used as the reference nuclear dye. Nuclear contrast thresh-
old, minimum nuclear intensity, and nuclear size were determined
using the pre-trained Nuclear Segmentation algorithm (AI default) and
kept constant for the entire analysis. Membrane segmentation was
done considering a cytoplasm radius of 6 µm based on average cell
sizes determined using referenceH&E images. After cell segmentation,
comma-separated value (.csv) files containing signal intensity at single-
cell level were generated from each core and used for unsupervised
analysis. Data were imported into R and the unsupervised analysis was
performed using the Cyclone pipeline as described above38. The
number of clusters was defined using the FlowSOM clustering (grid
size 4 × 6) and then visualized using UMAPs. The median level of
expression of each of the 28 antibodies panel for each cluster was used
to annotate the clusters. This was plotted as a Heatmap. Subsequently,
based on the unsupervised clusters, a supervised analysis in HALOwas
performed defining 18 phenotypes based on positive and/or negative
channel selection criteria using the HiPlex FL v 4.1.3 module. Cell fre-
quency for each phenotype was exported as a percentage of positive
cells over the total number of cells defined. To define cell interactions,
spatial plots were generated for each core using the Spatial Analysis
module in HALO. Nearest Neighbor Analysis was conducted on the
object data from each suitable core to determine the average distance
between two cells or object populations. For this experiment, a total of
20 coreswere imaged and 15 of themwere selected for further analysis
based on the quality of the core. Low-quality cores were excluded if

they were grossly damaged or detached during processing, or if they
had poor nuclei staining that precluded cell segmentation. For Nearest
Neighbor Analysis 12 cores were considered, all the cores containing
less than 5 unique cells per phenotypes of interest were excluded from
the analysis.

MIBI staining, data acquisition, and analysis
Slide preparation, staining, antibody optimization, and imaging were
performed by the MIBI Core at UCSF. Antibodies were conjugated to
metal-loaded MIBItags (Ionpath) according to the manufacturer’s
instructions. Initial imaging QC was performed on the conjugated
antibodies and compared to already established positive controls of
FFPE spleen and tonsil tissue. Thefinal 39-plex antibodypanel forMIBI-
TOF is reported in Supplementary Table 3. TMA slides containing 20
cores of colon tissues were sectioned (5 μm section thickness) from
paraffin tissue blocks on gold and tantalum-sputtered microscope
slides. Slides were baked at 70 °C overnight, followed by depar-
affinization and rehydration with washes in xylene (3x), 100% ethanol
(2x), 95% ethanol (2x), 80% ethanol (1x), 70% ethanol (1x) and distilled
water (1x). Next, tissues underwent antigen retrieval by submerging
the slides in 1X Target Retrieval Solution (pH 9, DAKO Agilent) and
incubating at 97 °C for 40min in a Lab Vision PT Module (Thermo
Fisher Scientific). After cooling to RT for 30min, slides were washed in
1X TBS-T pH7.6 (IONpath). Subsequently, all tissues underwent two
rounds of blocking, the first to block endogenous biotin and avidin
with an Avidin/Biotin Blocking Kit (BioLegend). Tissues were then
washedwithwash buffer and blocked for 11 h at RTwith 1XTBSwith 5%
(v/v) normal donkey serum (Sigma-Aldrich). The first antibody cocktail
was prepared in 1X TBS-T 5% (v/v) normal donkey serum (Sigma-
Aldrich) and filtered through a 0.1μmcentrifugal filter (Millipore) prior
to incubation with tissue overnight at 4 °C in a humidity chamber.
Following the overnight incubation, slideswerewashed twice for 5min
in 1X TBS-T pH7.6. The second day, an antibody cocktail was prepared
as described and incubatedwith the tissues for 1 h at 4 °C in a humidity
chamber. Following staining, slides were washed twice for 5min in
wash buffer and fixed in a solution of 2% glutaraldehyde (Electron
MicroscopySciences) solution in low-bariumPBS for 5min. Slideswere
washed in PBS (1x), 0.1MTris at pH 8.5 (3x) and distilled water (2x) and
then dehydrated by washing in 70% ethanol (1x), 80% ethanol (1x), 95%
ethanol (2x) and 100% ethanol (2x). Slides were dried under vacuum
prior to imaging. Imaging was performed using a MIBIscope (IonPath)
with aHyperion ion source. Xe+ primary ionswere used to sequentially
sputter pixels for a given field of view (FOV). The following imaging
parameters were used: acquisition setting, 80 kHz; field size, 400 μmx
400 μm at 1,024 ×1,024 pixels; dwell time, 24ms; median gun current
on tissue, 1.45 nA Xe + ; ion dose, and 3.75 nAmp h per mm2 (450 μm2
FOVs). Mass correction was done using MIBI/O (IONpath) with their
standard JSONfile. FOV imageswere analyzedusing theHALOsoftware
and the HiPlex FL v 4.1.3 module was used. Cellular segmentation was
performed using the Histone H3 nuclear DNA marker as the reference
nuclear dye. Nuclear contrast threshold, minimum nuclear intensity,
and nuclear size were determined using the traditional segmentation
method and kept constant throughout the entire image analysis.
Membrane segmentationwas done using EpCAM as the reference dye,
and a cytoplasm radius of 6 µm was set based on average cell sizes
determined using reference H&E images. 20 phenotypes each corre-
sponding to a major cell type were created based on positive and/or
negative channel selection criteria. To define cell interactions, spatial
plots were generated for each suitable FOV using the Spatial Analysis
module. Nearest Neighbor Analysis was conducted on the object data
to determine the average distance between two cells or object popu-
lations. A total of 37 FOV images were acquired and 32 of them were
used for phenotype identification and quantification. FOVs that con-
tained exclusively lymphoid aggregates, with no mucosal or sub-
mucosal cellular compartments, were excluded. Among the 32 FOVs
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analyzed, 29 were selected for Nearest Neighbor Analysis based on the
number of cells per phenotype. FOVs containing less than 5 unique
cells per phenotype of interest were excluded from the analysis.

Multiplexed (12-plex) RNA in situ hybridization (RNA-ISH)
FFPE TMA slides containing colon biopsies fromour study cohort were
used for multiplexed RNA-ISH. The assay was performed following the
manufacturer’s instructions (HiPlex RNAscope, ACDBio). Briefly, FFPE
TMA slides were deparaffinized sequentially with xylene (2x, 5min)
and 100%ethanol (2x, 2min). After deparaffinization, a retrieval stepof
15min at 99 °C was performed. Slides were permeabilized with Pro-
tease III for 30min at 40 °C. The 12 probes were hybridized for 2 h at
40 °C and amplified (3 amplification steps, 30min each at 40 °C) using
the HybEZ hybridization system. Probes were chosen from high-
abundance landmark genes from the scRNA-seq data and additional
genes of interest. Probes are listed in Supplementary Table 3. After
probe hybridization and amplification steps, slides were hybridized
with the first round of fluorophores for 15min at 40 °C then washed,
counterstained with DAPI, and mounted with ProLong Gold Antifade
Mountant. The first round of imagingwas performed by scanning each
full core using the automated Zeiss Axioscanner Z1 with a 20X objec-
tive on Orca Flash 4.0 v2 (Hamamatsu) camera in fluorescence chan-
nels (DAPI, FITC/GFP, Cy3/Atto550, and Cy5). The image scanner was
controlled using ZEN 3.1 software. After each round of imaging, the
coverslip was removed by soaking in 4x SSC buffer for 30min and
fluorophoreswere cleaved usingmanufacturer cleaving solution. Then
the slides were washed and prepared for the second round of fluor-
ophore hybridization and imaging, these last steps were repeated for a
total of four rounds. All images were acquired at the UCSF HDFCCC
Histology and Biomarker Core. A total of 21 core images wereobtained
and 19 of them were used for further analysis. Low-quality cores were
excluded if theywere grossly damaged or detached during processing.
Images obtained from the four rounds of staining were then regis-
tered, fused, and analyzed using HALO 3.1 image analysis software
(Indica Labs). For this analysis, we used the following modules: TMA
and FISHv3.1.3. Cell detectionwas basedonNuclei staining (DAPI)with
traditional nuclei segmentation type, nuclear contrast threshold was
set at 0.5 with an intensity of 0.015 and aggressiveness of 0.6. The
nuclear size was ranging from 5 to 150 (μm2), the minimum roundness
of segmentation was set at 0.05 and the cytoplasm radius was set at
1.5μm. For the analysis, the FISH score was set at 2+ minimum copies/
cell, and phenotypes were defined by exclusive channels and accord-
ing to the round of imaging. Data were expressed as the percentage of
positive cells among the total number of cells detected.

Highly multiplexed CosMx spatial transcriptomics tissue pro-
cessing, staining, imaging, and analysis
FFPE TMA processing, staining, imaging, and cell segmentation were
performed as previously described by Nanostring and data were ana-
lyzed at UCSF39. Briefly, 4–5 µm sections of an FFPE TMA block were
sectioned on the back of a VWR Superfrost Plus Micro Slide (Cat#
48311-703) using a microtome, placed in a heated water bath, and
adhered. Slideswere then dried at 37 °C overnight, vacuumsealed, and
stored at 4 °C until analysis. Manual FFPE tissue preparation, ISH
hybridization, coverslip application, and cyclic RNA readout on the
SMI were performed as previously described39. After all cycles were
completed, additional visualization markers for morphology and cell
segmentation were added including DAPI, pan-cytokeratin (PanCK),
CD45, CD3, CD68, and/or CD298/B2M as indicated in AnnData objects
(anndata =0.8.0). A 3Dmultichannel image stack was obtained at each
FOV location. Registration, feature detection, localization, determi-
nation of the presence individual transcripts, and cell segmentation
were performed as previously described39. The final segmentation
mapped each transcript location in the registered image to the cor-
responding cell, as well as to the cell compartment (nuclei, cytoplasm,

membrane), where the transcript is located. Other features/properties
generated included shape (area, aspect ratio) and fluorescence inten-
sity statistics (minimum, maximum, average) per cell. Single-cell spa-
tial RNA-ISH results were analyzed using scanpy64 and squidpy =1.2.374.
Low-quality cores were excluded if they were extensively damaged or
detached during processing, or if they had poor nuclei staining that
precluded cell segmentation. For the primary CosMx experiment, 22
FOV were selected, five were ultimately eliminated due to poor tissue
adherence or low gene count per cell. For the secondary longitudinal
experiment of archived FFPE specimens, 73 out of 81 FOV passed
quality control. Cells with <10 unique genes per cell or <50 counts per
cell were filtered out, and genes expressed in fewer than 1 cell (1st
batch) or 10 cells (2nd batch) were excluded. The data were further
normalized, log-transformed, and scaled as previously described75. For
cell type identification and annotation of CosMx results alone, princi-
pal components were computed using scanpy’s tl.pca() function with
default settings. UMAP plots and leiden clustering were calculated
using tl.umap() and tl.leiden(). To annotate the computed clusters, we
examined the top differentially expressed genes in each cluster using
the tl.rank_genes_groups() function and compared with knownmarker
genes for the various cell types.We then refined the “coarse” and “fine”
cell-type annotations in a semi-supervised manner using exploratory
CZ CELLxGENE (ExCellxGene =2.9.2)61,62. Neighborhood enrichment
analysis was performed using squidpy’s sq.gr.nhood_enrichment()
function. CosMx pseudobulk DE genes were analyzed using DESeq2 to
compare non-responders to responders pre-treatment76.

Antibodies and reagents
Antibodies and reagents for all experiments are listed in Supplemen-
tary Table 3.

Gene Set Enrichment Analysis (GSEA) on a validation cohort
The bulk transcriptomic study (GSE73661)1 performed on colonic
biopsies obtained from UC patients before and after VDZ treatment
was downloaded from GEO database and used for GSEA analysis41.
Samples were divided into pre- and post-VDZ treatment and respon-
ders (R, responding at week 52, n =9) or non-responders (NR, not
responding at week 52). Three comparisons were made: 1-pre- vs post-
VDZ treatment for responders, 2-pre- vs post-VDZ treatment for non-
responders, and 3-responders (at either week 6,12 or 52) vs non-
responders (at either week 12 or 52) pre-VDZ treatment (n = 11 for R and
n = 9 for NR). Data were normalized and expressed as Z-scores before
reading into the GSEA program (version 4.3.2). Based on our gene
expression data we defined 14 cell type gene signatures with a mini-
mum of 10 genes (Supplementary Table 5). GSEA analysis was per-
formed for each gene signature. The number of permutations was set
at 1000, no collapse dataset, chip Affymetrix HumanGene 1.0 ST Array,
t-test. For each analysis and gene set, a Normalized Enrichment Score
(NES) was calculated and only NES with a p-value < 0.05 and adjusted
q-value (FDR) <0.1 were considered significant. A leading edge analysis
was performed to display overlaps between all cell subsets and to
elucidate key genes that contributed themost to the enrichment signal
of specified gene sets. Based on our spatial transcriptomic data from
the longitudinal experiment we defined pre-VDZ responder and non-
responder signatures (Supplementary Table 5) and queried these genes
in responders vs non-responders from pre-VDZ (R= 11 and NR=9)
and pre-IFX (R = 8 and NR= 15) dataset1. Additional leading edge ana-
lyses were performed on these GSEAs in order to define the genes that
significantly contributed to the core enrichment for pre-VDZ and
pre-IFX.

Statistics
Non-parametric comparisons were performed using one-way ANOVA
Kruskal-Wallis test for multiple groups or Mann-Whitney test for two
groups, followed by a two-stage linear step-up procedure of
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Benjamini, Krieger and Yekutieli to correct for multiple comparisons
by controlling the false discovery rate (FDR). Parametric compar-
isons for multiple groups were performed using two-way ANOVA if
comparing multiple variables per group or one-way ANOVA if com-
paring one variable per group, followed by FDR correction. The
q-value is the FDR-adjusted p value, and q < 0.1 was used as the
threshold for discovery, unless otherwise indicated. For biopsy CITE-
seq cell subset frequency analysis, an additional nested one-way
ANOVA test was performed on log transformed values treating
biopsies as replicates, with unadjusted p < 0.05 as an additional
threshold for discovery. Categorical variables were analyzed by Chi-
square test as indicated. For MAST DE gene analysis, p values were
corrected using Bonferroni correction, and corrected p value of
<0.05 was used as the threshold for statistical significance. For
CosMx Deseq analysis, in addition to q < 0.1 after FDR-correction for
all transcripts per FOV, DEseq comparisons were made treating FOVs
or biopsies as replicates with unadjusted p < 0.05 as an additional
threshold for discovery (Supplementary Table 7). For all other ana-
lyses, biopsy values were averaged per patient. Additional analyses
were performed using GraphPad PRISM 9. Hierarchically clustered
heatmaps for cell subset abundance (Euclidean distance, average
linkage) and marker similarity matrices (Pearson correlation) were
generated with the Morpheus software (https://software.
broadinstitute.org/morpheus/). The ComplexHeatmap R package
was used to generate expression z-score heatmaps for DE genes.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Processed data are deposited as a GEO Super Series under accession
code GSE250498 and are publicly available. The raw sequencing data
generated in this study have been deposited on the dbGaP database
under accession code phs003502.v1.p1. The raw sequencing data are
available under controlled access for privacy concerns; access can be
requested through dbGaP. All additional data generated in this study
are provided in the Supplementary Information/Source Data file and
on Figshare. Processed and annotated objects are saved in AnnData
(h5ad) format77. These AnnData objects are accessible in Figshare
(fresh versus cryopreserved scRNA-seq 10.6084/m9.figshare.
21936240; blood scRNA-seq 10.6084/m9.figshare.21900948; biopsy
scRNA-seq https://figshare.com/s/3ceec45e4a640a7bceb4; biopsy
CITE-seq 10.6084/m9.figshare.21919356; PBL CyTOF 10.6084/m9.
figshare.21977834; biopsy CyTOF 10.6084/m9.figshare.21977798; sec-
ondary CyTOF PBL and biopsy analysis 10.6084/m9.figshare.
23902065; CosMx 960-plex RNA-ISH 1st run 10.6084/m9.figshare.
21919338; CosMx 1000-plex RNA-ISH 2nd longitudinal analysis 10.
6084/m9.figshare.23896959). Publicly available microarray data
(GSE73661) were downloaded from the NCBI gene expression omni-
bus. GRCh38 was used as the reference genome. Source data are
provided with this paper.

Code availability
All code used in this study including Rmarkdowns,Jupyter notebooks,
and conda environment.yaml files are available on the Ulcerative
Colitis project GitHub repository (https://github.com/mkattah/UC_
VDZ). R-based Cytometry Clustering Optimization aNd Evaluation
(Cyclone) pipeline was developed by the UCSF Data Science CoLab
(https://github.com/UCSF-DSCOLAB/cyclone).
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