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Abstract

Voro++ is a software library written in C++ for computing the Voronoi tessellation, a
technique in computational geometry that is widely used for analyzing systems of particles.
Voro++ was released in 2009 and is based on computing the Voronoi cell for each particle
individually. Here, we take advantage of modern computer hardware, and extend the original
serial version to allow for multithreaded computation of Voronoi cells via the OpenMP
application programming interface. We test the performance of the code, and demonstrate
that it can achieve parallel efficiencies greater than 95% in many cases. The multithreaded
extension follows standard OpenMP programming paradigms, allowing it to be incorporated
into other programs. We provide an example of this using the VoroTop software library,
performing a multithreaded Voronoi cell topology analysis of up to 102.4 million particles.

Keywords: Voronoi tessellation, computational geometry, multi-threaded programming

Program summary

Program title: Voro++

Developer’s repository link: https://github.com/chr1shr/voro

Licensing provisions: BSD 3-clause (with LBNL modification)

Programming language: C++

External routines/libraries: OpenMP

Nature of problem: Multithreaded computation of the Voronoi tessellation in two and three
dimensions

Solution method: The Voro++ library is built around several C++ classes that can be
incorporated into other programs. The two largest components are the container... classes
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that spatially sort input particles into a grid-based data structure, allowing for efficient
searches of nearby particles, and the voronoicell... classes that represent a single Voronoi
cell as an arbitrary convex polygon or polyhedron. The Voronoi cell for each particle is built
by considering a sequence of plane cuts based on neighboring particles, after which many
different statistics (e.g. volume, centroid, number of vertices) can be computed. Since each
Voronoi cell is calculated individually, the Voronoi cells can be computed using multithreading
via OpenMP.

1. Introduction

The Voronoi tessellation was originally introduced in 1907 [1] and is now a broadly used
technique in computational geometry [2]. Consider a set of points in a domain. Each point
has a corresponding Voronoi cell that is defined as the part of the domain that is closer to that
point than to any other. In two dimensions (2D) with the Euclidean metric, the Voronoi cells
are irregular polygons that perfectly partition the domain to create the Voronoi tessellation
(Fig. 1(a)). Each edge in the tessellation is the perpendicular bisector between neighboring
points. In three dimensions (3D) the Voronoi cells are irregular polyhedra (Fig. 1(b)). Voronoi
cells can also be generalized to non-Euclidean geometries with different distance metrics [3, 4].

The Voronoi tessellation has been used in a remarkable number of different scientific fields.
It has been extensively used to analyze systems of particles or atoms, where features of the
Voronoi cells (e.g. volume, surface area, number of faces) provide insight in particle structure;
examples include the analysis of granular materials [5, 6, 7], colloids [8], nanosphere systems [9],
metallic glasses [10, 11], liquids [12], as well as active [13] and supercritical fluids [14, 15]. The
Voronoi cells themselves, which form irregular polygons/polyhedra, have been used to model
different physical phenomena, such as polycrystalline materials [16, 17, 18], solidification
processes [19, 20], and biological cells [21]. The Voronoi tessellation has also been used to
construct computational meshes on which to solve partial differential equations [22, 23], such
as for climate modeling [24], groundwater flow [25, 26], and astrophysical flows [27]. Other
applications include control of multi-robot systems [28], calculating snow aggregate scattering
properties [29], and modeling animal territorial control [30]. There are many more examples
than the ones given here, highlighting the ubiquity of this geometrical construction [31].

A variety of software packages are available for calculating the Voronoi tessellation. The
Qhull library [32, 33] is widely used and incorporated into MATLAB (via the voronoin
command) and Python (via the scipy.spatial.Voronoi command). The Computational
Geometry Algorithms Library (CGAL) [34] provides a variety of functions for computing the
Voronoi tessellation, and Triangle [35, 36] can compute the Voronoi tessellation in 2D. All
of these libraries primarily focus on computing the Voronoi tessellation as an entire mesh,
shown in blue in Fig. 1.

In 2009 Rycroft released Voro++ [37, 38], a software library written in C++ that takes
the alternative approach of calculating the Voronoi cells individually, so that each cell, an
example of which is shown in red in Fig. 1, is computed as a separate object. The library
grew out of research on particulate granular flows, where the Voronoi cell volumes were useful
for understanding particle packing structure [39, 40, 41]. The cell-based perspective has some
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(a) (b)

Figure 1: (a) An example two-dimensional Voronoi tessellation shown in blue generated by the black crosses. A
single Voronoi cell in the tessellation is shown in red as an irregular polygon. (b) An example three-dimensional
Voronoi tessellation shown in blue generated by the white spheres. A single Voronoi cell is shown in red as an
irregular polyhedron.

advantages and drawbacks compared to the entire mesh approach (Subsec. 1.2). However,
it has proven effective in a wide range in applications, particularly those involving rapid
analysis of particle systems. Voro++ has a command-line utility that can perform a variety
of different analyses, and it has a C++ application programming interface (API) that allows
it to be called from user-written programs. It has been incorporated into other software such
as LAMMPS [42, 43] and OVITO [44, 45].

1.1. Algorithms for computing the Voronoi tessellation
Since the 1970’s, a wide variety of methods for computing the Voronoi tessellation have

been proposed [2]. For computing the entire Voronoi mesh, some popular methods include
the Fortune sweeping algorithm [46, 47] and the incremental approach whereby the mesh
is continually updated as new particles are added [48, 49]. Another method is to use the
lift-up mapping, projecting a point x ∈ Rn to a paraboloidal surface (x, ∥x∥2) ∈ Rn+1. The
hyperplanes tangential to the surface form facets that exactly match the Voronoi tessellation
when projected back to Rn. This can be efficiently computed in arbitrary dimensions using
the quickhull algorithm [32], which forms the basis of Qhull [33]. Another approach involves
introducing a computational grid, and sweeping out from each point with the fast marching
method [50, 51] to construct Voronoi cells [52], which is computationally expensive but more
flexible for calculations on spaces with non-Euclidean distance metrics.

1.2. The cell-based approach: advantages and drawbacks
The cell-based approach that Voro++ uses has also been explored in the literature [53,

54, 55, 56]. As discussed by Okabe et al. [2] it has a significant difficulty that is illustrated
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Figure 2: (a) Typical case where three Voronoi cells (blue polygons) for three points (black crosses) meet at a
vertex. The Voronoi cells would normally touch, but are spaced slightly apart from each other for illustrative
purposes. (b) Special case where four Voronoi cells meet at a vertex that is equidistant from four points;
floating-point errors could lead to additional small edges (red) for some cells. (c) Schematic representation
adapted from Lazar et al. [57] where each dashed region represents a different Voronoi cell topology. Some
common crystalline lattices (e.g. BCC) are located within a single region, whereas others (e.g. FCC, HCP)
are located at junctions, and small perturbations from the ideal configuration sample different topologies.

in Fig. 2(a,b). In most cases, for randomly-distributed points, each vertex of the Voronoi
tessellation will be common between three Voronoi cells as shown in Fig. 2(a). However,
in certain situations a vertex may be equidistant from four particles as shown in Fig. 2(b).
This could happen either because of a special arrangement of the particles (e.g. a crystalline
formation), or for random arrangements when particles happen to be aligned within the limit
of floating point truncation error. In the cell-based approach where the cells are computed
independently, small floating point errors in one cell may lead to the creation of additional
facets (shown by the red line in Fig. 2(b)) meaning that the topologies of the edges and faces
of the Voronoi cells are not consistent.

Despite this difficulty, there are many situations where the cell-based approach is attractive.
The entire Voronoi mesh is often not required, and the individual Voronoi cells can be analyzed
independently. In Voro++ a typical workflow is to compute a Voronoi cell, calculate and
store various statistics about the cell, delete the cell, and move onto the next point. Because
only a single cell needs to be stored at any one time, this results in a large memory saving
and an improvement in cache efficiency, creating an inherent performance boost over building
the entire mesh. Furthermore, for many commonly used measurements, it is not necessary
for the edge topology to agree perfectly. For example, Voronoi cell volumes and centroids
(used in Lloyd’s algorithm [58, 59]) are not sensitive to small changes in edge topology.

For other measurements, such as the number of faces or edges, the precise topology of
the Voronoi cell can have an appreciable effect. However, one can reasonably argue that
measurements that rely too heavily on these small topological changes are problematic to
begin with—it should not be the case that a diagnostic indicator of a physical characteristic be
sensitive to truncation error (i.e. often around a factor of 10−16 in double-precision arithmetic)
particularly when experimental errors or simulation discretization errors are usually far larger.
The recent work of Lazar, Srolovitz, and coworkers provides a useful theoretical framework in
which to address this issue [57, 60, 61, 62, 63]. Voronoi cells can be pictured as residing in
a phase space that is divided into discrete regions representing the complete face and edge
topologies (Fig. 2(c)). Commonly studied crystalline lattices such as FCC and HCP lie at
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intersections of these topologies, meaning that small perturbations (e.g. thermal vibrations)
around the idealized lattice will push the Voronoi cells into a well-defined family of different
topologies. Other lattices such as BCC may lie in the interior of a single region. Lazar
released the VoroTop package [64, 65], which uses this framework to analyze ensembles of
Voronoi cell topologies, classify different particle packings, and identify features such as grain
boundaries. A key part of VoroTop is the computation of the Weinberg vector [66] for each
Voronoi cell, which uniquely characterizes the cell’s vertex and edge topology.

1.3. Outline of this paper
Advances in supercomputing power have enabled simulations with very large numbers of

particles [67, 68]. In addition, there is currently interest in developing data-driven approaches
for screening large databases of materials and structures, where the Voronoi tessellation
can be a useful analysis tool [69, 70, 71, 72]. Thus there is a need to compute the Voronoi
tessellation at a large scale and in parallel. Currently, there are some parallel approaches in
the literature for computing Voronoi cells in a distributed-memory model [73, 74]. Here, we
consider parallelizing Voro++ using a shared-memory model with multithreading. Since
modern consumer laptops and desktops contain CPUs with 4–8 cores and servers contain
CPUs with upward of 16 cores, multithreading enables a large practical speedup without the
additional complexity of using distributed-memory architectures.

The cell-based approach used by Voro++ is inherently amenable to parallelization, since
each Voronoi cell can be computed independently. Here we develop a general multithreaded
extension of Voro++ that provides good parallel performance across a range of different
scenarios. An ideal basis for doing this is OpenMP, an API for shared-memory multipro-
cessing [75, 76]. The core component of OpenMP is a set of compiler directives beginning
with #pragma omp that instruct the compiler to multithread certain lines and loops within
a C++ code. A key feature of OpenMP is that if a program is compiled without OpenMP
enabled, then the #pragma omp directives are ignored and the compiler will create a standard
executable that runs in serial. For open-source scientific software, which is compiled and run
on a wide range of different systems, this serial interoperability is a major advantage.

The extension to the Voro++ API is designed to make it as simple as possible for
the user to incorporate multithreading into their programs. Multithreading a loop over all
Voronoi cells requires adding a small number of #pragma omp directives that match typical
OpenMP usage. This has required redesigning the mechanism for looping over Voronoi cells
from previous versions of Voro++, but this is done so that most of the complexity is hidden
from the user. Furthermore, we demonstrate that our extension is interoperable with standard
OpenMP functionality for tuning and controlling the division of work between threads. With
our extension, we show that we can achieve excellent parallel efficiency of above 95% across a
range of cases.

VoroTop provides a particularly good example for our extension to Voro++. A typical
VoroTop analysis requires computing all of the Voronoi cells, and then calculating the Weinberg
vector for each one. The Weinberg vector is a relatively expensive calculation, requiring
O(n2) work for a Voronoi cell with n vertices. Thus, since the Voronoi cell and Weinberg
vector computations can be processed independently and divided evenly among threads, this
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Figure 3: Illustration of a 2D container covering the rectangular region [ax, bx]× [ay, by]. The container is
further divided into a 4× 4 grid of blocks (i, j) for i, j ∈ {0, 1, 2, 3}. Each block (i, j) is indexed as k = i+ 4j,
so that k ∈ {0, 1, . . . , 15}. Points are spatially sorted into blocks. The yellow point is the second point in
block 1.

represents an ideal scenario for multithreading. In Section 4 we demonstrate this on a 36
core server. We show that the time to process 102.4 million particles can be reduced from
almost an hour to under two minutes, highlighting a dramatic practical performance benefit.

2. Methods

2.1. Overview of Voro++
We now provide an overview of design and the key methods of Voro++ [37]. The code

is structured around several C++ classes for storing particles and computing Voronoi cells.
The code can perform both 2D and 3D computations, and the classes responsible for these
have “_2d” and “_3d” suffixes, respectively. The algorithmic principles are identical in both
2D and 3D. Therefore, for the rest of this section, we focus on the 2D implementation for
simplicity.

2.1.1. The container_2d class
Voro++ has a variety of container types that represent rectangular domains holding

all of the positions. The container_2d class holds particles in a 2D rectangle. The user
can specify the coordinate ranges [ax, bx] and [ay, by], and indicate whether the container is
periodic in each direction. The container is further divided into a rectangular grid of nx × ny

blocks of equal size, into which the particles are spatially sorted. In this way, every particle
can be identified by its block index, and its point index inside the block. For example, in
Fig. 3, the yellow point is the 2nd point in block 1.
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The grid of blocks provides a large boost in performance, allowing the code to quickly
locate neighboring particles during the Voronoi cell construction. See Sec. 2.1.4 for details
on how the number of blocks is chosen. There is also a variant container class called
container_poly_2d that stores polydisperse particle arrangements. Each particle has an
associated radius, which can be used to compute the radical Voronoi tessellation [2].

2.1.2. Using a voronoicell_2d class to compute a Voronoi cell
The voronoicell_2d class represents a single Voronoi cell as a convex polygon, with a set

of vertices connected by edges. The voronoicell_2d class contains routines for constructing
the Voronoi cell, as well as routines for computing different statistics about it, such as its
area or centroid.

The voronoicell_2d class uses a coordinate system where the origin is centered on
the particle. Consider a specific particle P located at position p = (px, py) within the
container. To compute its Voronoi cell, the voronoicell_2d class is first initialized as a
rectangle [cx, dx]× [cy, dy] filling the entire container, without considering any other particles.
Specifically, in the x direction,

[cx, dx] =

{
[ax − px, bx − px] if the x direction is non-periodic,
[− bx−ax

2
, bx−ax

2
] if the x direction is periodic.

(1)

For the periodic case, the maximum extent of the initial Voronoi cell is determined by the
perpendicular bisectors of the periodic images of P that are displaced by ±(bx − ax, 0).
Similarly, in the y direction,

[cy, dy] =

{
[ay − py, by − py] if the y direction is non-periodic,
[− by−ay

2
, by−ay

2
] if the y direction is periodic.

(2)

To construct the Voronoi cell for P the code then considers the effect of neighboring particles.
If a neighbor is located at q relative to P , then that will remove the half-space

r · q >
q · q
2

(3)

where r = (x, y). The boundary of the half-space, given by r · q = 1
2
q · q, is the perpendicular

bisector between P and its neighbor. The voronoicell_2d class contains a routine called
plane() that recomputes the vertices and edges of the Voronoi cell based on cutting by
a plane. To compute the Voronoi cell for P , the code considers the neighboring particles
and applies plane cuts based on removing the half spaces of the form given in Eq. (3), as
illustrated in Fig. 4.

Hypothetically, if all plane cuts for all other particles are applied, then the voronoicell_2d
class will precisely represent the Voronoi cell of P . In practice, it is only necessary to consider
plane cuts from a small set of neighbors around P , as described in the following section.
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Figure 4: Illustration of the action of the plane() routine. The Voronoi cell of a particle P located at p
is initialized as a large rectangular box filling the computational domain. The plane() routine repeatedly
cuts down the rectangular box by planes that are the perpendicular bisectors between the particle and its
neighbors, located at q1 and q2.

Figure 5: Illustration of different computational costs for different Voronoi cells. (a) A partially computed
Voronoi cell is shown in light purple, after considering half-space intersections from four neighboring particles.
The maximum distance to a vertex is R, and thus particles that lie outside a circle of radius 2R can be
omitted from the computation; only a single additional particle needs to be tested. (b) If a particle does
not have neighbors on all sides, its Voronoi cell may extend a long distance in one direction, so that R is
much larger. Hence many more particles lie within the circle of radius 2R and cannot be ruled out from the
computation.

2.1.3. The voro_compute class
The container_2d class contains a member vc of class type voro_compute_2d, which

holds the data structures for computing the Voronoi cells from the container’s spatially
sorted particles. For a given particle P the voro_compute_2d class computes the Voronoi cell
following the procedure in the previous section, but using as few plane cuts as possible. As
an example, consider the particle in the top left corner of Fig. 1(a): its Voronoi cell has two
faces that adjoin cells for neighboring particles. Thus, if those two particles were considered
first, then all remaining plane cuts would have no effect.

The voro_compute_2d class therefore computes Voronoi cells by considering plane cuts
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from nearby points first, and then use bounds to terminate the computation as soon as
possible. The class first considers particles in the same block as P , and then sweeps outwards
to consider nearby blocks. When each block is considered, two bounds can be used to
determine whether the Voronoi cell is complete or if more plane cuts are required:

• Radius bound – if R is the maximum distance of a Voronoi cell vertex to P , then no
particles more than a distance 2R away can possibly influence the cell. This bound is
fast to compute, but it has no directional sensitivity: if a cell extends a long way in one
direction then particles a long distance in other directions will still need to be tested.

• Block bound – a given block in the grid can be tested to see if any particle within it
can possibly influence the Voronoi cell. This can be done by performing a sequence of
half-space intersection tests based on the block’s corners. The code sweeps outward from
P , testing blocks until it reaches those that cannot influence the cell. This computation
is slower than the radius bound but it has directional sensitivity.

The voro_compute_2d class uses a combination of the two bounds. It begins by using the
radius bound, which works effectively for particles in densely-packed regions with many close
neighbors. This is illustrated in Fig. 5(a), where the voronoicell_2d polygon is shown
after considering four neighboring particles. At this point, the bounding circle of radius
2R only contains a single additional particle. Thus, once this particle is considered, then
the Voronoi cell will be complete and it will not be necessary to consider further particles.
In contrast, Fig. 5(b) shows a case where the voronoicell_2d polygon is extended in one
direction because it is at the edge of a particle arrangement. We refer to such cases as
extended Voronoi cells, where the maximum Voronoi vertex distance is large compared to a
typical inter-particle separation length. In this case, the circle from the radius bound covers
the whole domain, and no particles can be ruled out from the computation.

If the radius bound is not successful in rapidly terminating the computation, then the
voro_compute_2d class switches over to the block bound. This can help cut down the number
of particles to consider, but the search space that needs to be considered can still inherently
be much larger. Hence extended Voronoi cells can take substantially longer to compute. It is
important to consider this large difference in Voronoi cell computation time when designing
the multithreaded extension.

2.1.4. Choice of the block size
The size of the grid of blocks in the container affects the computation time. Let N be

the total number of particles and define Navg = N/(nxnynz) to be the average number of
particles per block. If Navg is too large, then each block contains many particles, and since
particles are not spatially sorted within a block, the code must spend a long time looping
through all of them. If Navg is too small, then the code must search through many blocks to
complete a Voronoi cell computation. The best performance is achieved by choosing Navg as
a balanced value between these two extremes.

In addition, the optimal performance is usually achieved when the blocks have roughly
equal side lengths. Hence, for a given target average number of blocks, Nopt, the code chooses
the number of blocks as follows:
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• In 2D, set λ =
√

N/(Nopt(bx − ax)(by − ay)) and define nx = ⌈λ(bx − ax)⌉ and ny =
⌈λ(by − ay)⌉.

• In 3D, set λ = 3
√

N/(Nopt(bx − ax)(by − ay)(bz − az)) and define nx = ⌈λ(bx − ax)⌉,
ny = ⌈λ(by − ay)⌉, and nz = ⌈λ(bz − az)⌉.

The use of the ceiling operator ⌈·⌉ ensures that the grid dimensions are always greater than
zero. For homogeneous random particle arrangements, the best performance is achieved for
Nopt = 3.4 in 2D and Nopt = 4.6 in 3D, although the code is not that sensitive to this choice
and good performance is achieved across a wide range. These values are used by default in
the code, although they can be overridden by the user. In some of the examples in this paper,
which are chosen to highlight different scenarios, we determine different values of Nopt that
improve performance.

2.1.5. Procedure for Voronoi cell computation
A typical usage of the library is as follows:

I. Initialize the container. Insert particles into the container, spatially sorting them into
the grid of blocks.

II. Loop over the blocks in the container, and for each block:

i. Loop over the particles in the block, and for each particle:
a. Calculate the Voronoi cell of the particle.
b. Compute and store required statistics about the Voronoi cell.

Each Voronoi cell computation is independent of the others, making Voro++ highly suitable
for parallel computation. A straightforward parallelization approach is to distribute particles
to different threads, and compute their Voronoi cells simultaneously.

2.2. Multi-threaded extensions
2.2.1. Changes to code architecture

We now describe the changes required to make Voro++ multithreaded using OpenMP.
The vc member within the container class, which is a voro_compute_2d class, is responsible
for calculating the Voronoi cell of a particle. The vc member allocates workspace for searching
through the blocks for neighboring particles. Thus it is not thread-safe, since if two threads
used the same vc member, they would generate race conditions on the workspace.

Therefore we create copies of voro_compute_2d class object in the container, based on
the number of threads being used. vc is no longer a single voro_compute_2d class, but
becomes an array of them. The class constructor accepts an additional argument num_t that
determines the number of voro_compute_2d classes to allocate. Thread k then uses vc[k]
to compute its Voronoi cells. If needed, the function change_number_thread(num_t) can be
used to reallocate the number of voro_compute_2d classes available.

Moreover, in a typical loop like the one in Sec. 2.1.5, the code creates a variable c that
is a voronoicell_2d class, for representing the Voronoi cell of the particle. Similar to vc,

10



different threads in computation cannot use the same voronoicell_2d object. This issue is
solved by creating thread-private copies of c in the parallel computation.

2.2.2. Random access iterator and OpenMP parallelization
The OpenMP directive #pragma omp parallel creates a team of threads to execute a

section of code. Within a parallel section, the directive #pragma omp for can be placed
before a for loop, to distribute the iterations of the loop to the different threads. Listing
1 demonstrates how to use these two directives to parallelize the filling of an array c with
square roots of the integers.

1 double c[256];
2 #pragma omp parallel
3 {
4 #pragma omp for
5 for(int i=0;i<256;i++) {
6 c[i]=sqrt(double(i));
7 }
8 }

Listing 1: Short example demonstrating basic OpenMP directives

Each thread will be assigned a subset of values of i to set in the array. Since each array
entry can be set independently, this code can be multithreaded without resulting in a race
condition. In basic usage like the example above, the #pragma omp for directive is placed
before loops over integers. However, since version 3.0 of the OpenMP standard, it is possible
to parallelize a for loop using any C++ random access iterator.

In C++, each class can have associated iterator classes that are designed to iterate over
the elements of that class. There are several types of iterator, differentiated by how much
functionality they offer. The simplest is the forward iterator, which supports basic operations
for stepping forward sequentially. The iterator a represents an index of the associated class,
and the forward iterator must support the operation a++ to step forward to the next index.
Thus, in the context of a Voro++ container, an iterator would store the block index and
point index of a particle, and the iterator would support the operation a++ to step forward
to the next particle, as illustrated in Fig. 6(a). Full requirements for the functionality of a
forward iterator are available in the C++ documentation [77].

In the multithreaded extension of Voro++, we created random access iterators on all
of the container classes to iterate over all of the particles. These iterators support all of
the functionality of a forward iterator, but also contain additional functions for making
arbitrary jumps in the particle indexing. A key ability required by the random access iterator
is to evaluate a+n for an integer n, allowing the iterator to jump forward by n steps in the
index. This additional functionality is required since the threads need to start at different
points within a parallelized for loop (Fig. 6(b)). Figure 6(c) illustrates how this works for a
Voro++ container.

The Voro++ iterators contain all the functions listed in the random access iterator
standard [78]. This includes the dereference operators *a and a[n], which resolve to the
member of the class the iterator points to. However, in the current context, dereferencing
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Figure 6: (a) Illustration of using a forward iterator to represent particles in the container_2d class of
Voro++. The forward iterator only allows the particle index to be stepped forward one at a time. If the
iterator a is pointing at the yellow particle, then a++ will step forward to the red particle. (b) Requirement
of iterator a to represent particles in the container of Voro++. The iterator needs to be able to access
particles at any arbitrary offset position relative to the current particle that the iterator is pointing at. For
ten particles in the container and two parallel threads, thread 1 starts at a and thread 2 starts at a+5. (c)
Illustration of using a random access iterator to represent particles in the container of Voro++. The random
access iterator can access particles of any arbitrary offset positions relative to the current particle that it is
pointing at. Here, a+8 steps forward eight particles to the red particle.

is conceptually unclear, since the Voronoi cell associated with the iterator does not exist in
memory and must be subsequently computed. Because of this, the dereference functions
within the C++ iterators simply emit errors if they are called. For Voro++, the iterators are
used to index into the container’s particles and loop through them, and thus the dereference
operators are not required in normal usage.

In addition to the standard iterator that loops through the particles, two variations are
provided: iterator_subset that can loop over a subset of particles, and iterator_order
that can loop over an ordered list of particles.

2.2.3. Example implementation
An example of the multi-threaded version of Voro++ is provided in Listing 2. The

example demonstrates how to compute the Voronoi cells of a random 2D particle arrangement,
and then calculate their average perimeter:

1 #include <cstdio>
2 #include <cstdlib>
3

4 #include "voro++.hh"
5 using namespace voro;
6

7 // Returns floating point number uniformly distributed over [0,1)
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8 inline double rnd() {return (1./RAND_MAX)*static_cast<double>(rand());}
9

10 int main() {
11

12 // Number of parallel threads
13 int num_t=4;
14

15 // Number of particles to use
16 int N=100000;
17

18 // Construct a 2D container as a periodic unit square divided into a
19 // 160x160 grid of blocks. Each block initially holds up to 8 particles. The
20 // final argument sets the number of voro_compute objects for use by the
21 // threads.
22 container_2d con(0.0,1.0,0.0,1.0,160,160,true,true,8,num_t);
23

24 // Add particles to the container
25 for(int i=0;i<N;i++) con.put(i,rnd(),rnd());
26

27 // Declare iterator
28 container_2d::iterator cli;
29

30 // Parallel Voronoi computation to compute the average Voronoi cell
31 // perimeter
32 double tperim=0.;
33 #pragma omp parallel num_threads(num_t)
34 {
35 // Thread-private Voronoi cell object and perimeter counter
36 voronoicell_2d c(con);
37 double perim=0.;
38

39 // Iterate through the particles
40 #pragma omp for
41 for(cli=con.begin();cli<con.end();cli++)
42 if(con.compute_cell(c,cli))
43 perim+=c.perimeter();
44

45 // Add local perimeter counter to global perimeter counter using atomic
46 // operation to prevent race condition
47 #pragma omp atomic
48 tperim+=perim;
49 }
50

51 // Print average Voronoi cell perimeter
52 printf("Average␣Voronoi␣cell␣perimeter␣is␣%.12g\n",tperim/N);
53 }

Listing 2: Example code of multi-threaded Voro++

After creating the container on line 22, we then add N = 105 particles at random on line
25. We then use OpenMP on the random access iterator, and distribute particles to different
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Assign workloads to threads
evenly

Assign workloads to threads un-
evenly

(a) Even workloads

(b) Uneven workloads

Table 1: Schematic illustration of load balancing among threads. (a) If iterations have identical workloads,
they should be assigned to threads evenly for higher efficiency. (b) If iterations have uneven workloads, they
should be assigned to threads unevenly, following some strategies, so that the workloads among threads are
balanced.

threads for parallel computation. Lines 27–49 demonstrate using the iterator for parallel
computation. On line 28 we declare an iterator of the container. We then use the for loop
on the iterator to loop through all the particles in the container, as shown in lines 40 & 41.
For each particle, we compute its Voronoi cell (line 42) and then add its perimeter to a local
counter, perim. Note that in certain situations (e.g. when occluded by a wall) a Voronoi
cell may not exist. In this case the compute_cell function returns false, and subsequent
computation should be skipped.

For parallelization, we follow the standard OpenMP syntax. We mark the start of the
parallel block with #pragma omp parallel, and add the #pragma omp for directive before
the for loop. This simple implementation following standard OpenMP and C++ practices is
beneficial to the user. At the end of the parallel block, on line 48, each thread adds its local
perimeter counter to a global counter, tperim. Since the threads are all writing to the global
counter, this operation is performed atomically to avoid a race condition. Once the parallel
block has terminated, the average perimeter is reported as ≈ 0.01265. If the program is run
with different particle numbers N , one finds that the perimeter asymptotically behaves like
4/
√
N . Surprisingly, even though this is for a random particle arrangement, this asymptotic

value matches the perimeter of a
√
N ×

√
N grid of squares covering the domain.

2.2.4. Load balancing
Load balancing is important for achieving good parallel performance. If the iterations

have even workloads, as shown in Table 1(a), they should be assigned to threads evenly. In
this way, all threads are busy working during the full duration of the computation, and all
threads finish at approximately same time. In comparison, if the iterations are assigned
unevenly to threads, some threads will finish early and remain idle waiting for others to finish,
resulting in inefficient performance. On the contrary, if iterations have uneven workloads, as
shown in Table 1(b), then assigning an equal number of iterations to each thread may result
in substantial idle time. Better performance can be achieved by distributing the iterations so
that the total workloads are balanced.
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Parallel strategy Traits Schematic illustration

schedule(static)

1. Iterations are pre-assigned evenly to
threads.
2. Good for identical workloads.
3. Low overhead costs.

schedule(dynamic)
1. Thread takes work as available.
2. Good for imbalanced workloads.
3. Higher overhead costs.

schedule(guided)

1. “Mixed” strategy: Iterations are di-
vided into chunks with decreasing chunk
sizes, for threads to grab.
2. Some imbalanced workloads.
3. Higher overhead costs.

Table 2: Three basic built-in OpenMP parallel strategies, their traits and schematic illustrations of the work
assignment process.

OpenMP provides a number of strategies for load balancing. Here we explain in detail the
three most basic strategies, schedule(static), schedule(dynamic), schedule(guided),
with Table 2 showing an overview of their properties. For the schedule(static), iterations
(which for Voro++ correspond to particles) are pre-assigned to the threads by dividing the
entire set of work units into equal sections. This strategy is good for identical workloads,
and it has low overhead costs, since once the work is assigned, each thread can operate
independently. For the schedule(dynamic), each thread takes a unit of work as available and
is never idle. If a thread finishes its work, it immediately takes the next iteration available.
This strategy comes with higher overhead costs since the threads must coordinate with each
other when taking more work. schedule(guided) is a mixed strategy. Threads take work as
available and are never idle, but rather than taking one unit of work per time, each thread
takes a chunk. Moreover, the chunk sizes decrease as the assignment progresses. This is
good for when there is some imbalance in workloads, but does not offer as much flexibility as
schedule(dynamic). It also has high overhead costs.

Any of these strategies can be used with the multi-threaded Voro++ extension, by
adding the corresponding keyword after the #pragma omp for directive. For example, in
Listing 2, changing line 40 to #pragma omp for schedule(dynamic) will enable the dynamic
assignment. In addition, there are two modified strategies that accept an additional integer
chunk option. In schedule(static,chunk) the threads each take chunk work units at once
to process, rather than dividing up the total work into even sections. This still does not require
any thread coordination, but affects the work distribution.1 In schedule(dynamic,chunk)

1For example, consider two threads operating on the integers (0, 1, . . . , 15). With schedule(static)
the work is given to the two threads as (0, 1, . . . , 7) and (8, 9, . . . , 15). With schedule(static,3) the
first thread receives the chunks (0, 1, 2), (6, 7, 8), (12, 13, 14) and the second thread receives the chunks
(3, 4, 5), (9, 10, 11), (15) with the final chunk being truncated.

15



the threads take chunk units of available work at once. This cuts down on the overhead
costs, since there are fewer points where the threads must coordinate. Depending on the
arrangement of particles, one strategy may be preferred over another. In particular, Sec. 2.1.3
showed that for inhomogeneous particle distributions, the Voronoi cell computation can vary
by a large factor. In this case, we expect that the dynamic or guided scheduling strategy will
be advantageous.

2.2.5. Parallel insertion of particles
In Listing 2 the time spent on computing the Voronoi cells is much larger than the time

spent on inserting the particles into the container. Nevertheless, once the particle system
grows larger, the time for particle insertion becomes substantial. Because of this, we also
developed an approach for inserting particles into the container in parallel.

As shown on line 25 of Listing 2, the put(...) function is used to insert a particle into the
container in serial. Internally, this function first computes the block index k that the particle
lies within. The container class has two array entries associated with the block: co[k] is the
total number of particles currently in the block, and mem[k] is the total number of memory
slots allocated for the block, typically initialized to 8 at the start of the computation. The
put(...) function therefore does the following:

I. If co[k]==mem[k] then all memory slots are full. In this case, dynamically reallocate
the memory for this block, and double the available slots.

II. Add the particle information in the co[k] slot, and then increment co[k].

This routine is not thread-safe for two reasons: (a) if two threads try to reallocate the
memory simultaneously it will be corrupted, and (b) if two threads try and increment co[k]
simultaneously this will create a race condition.

In the multithreaded extension, we created a function put_parallel(...) that can
insert particles into the container in a thread-safe manner. This function also requires an
overflow buffer for storing some particles. The put_parallel(...) does the following:

I. Use the #pragma omp atomic capture directive on the operation l=co[k]++. This
function will atomically increment co[k] while storing its previous value in the variable
l.

II. If l>=mem[k] there is no available memory slot. Store the particle in the overflow buffer.

III. If l<mem[k], store the particle into slot l.

In step I., the atomic capture directive ensures that each thread will obtain a unique slot
number to write into. For example, if co[k] = 2 and two threads insert a particle into this
block, then one is guaranteed to obtain l = 2 and the other is guaranteed to obtain l = 3.
Afterward co[k] = 4.

Within put_parallel(...), it is not possible to dynamically reallocate the memory,
since this could interfere with other threads. Hence, if a block has no available slots, it must

16



be stored into the overflow buffer. Assuming that the block memory was roughly allocated
correctly beforehand, the number of particles going to the overflow buffer should be a small
fraction of the total. The overflow buffer operations are done within an OpenMP critical
section of code, so that only one thread operates on the buffer at one time. If the overflow
buffer runs out of space, this thread can dynamically extend the buffer without causing a
race condition. Once all of the particles have been added with put_parallel(...), it is
necessary to call a function put_reconcile_overflow(). This function operates serially on
the overflow buffer, and dynamically extends the block memory as needed to ensure there are
enough available slots to insert any remaining particles.

Using parallel insertion can cause the code to produce slightly different results when it
is repeated. Depending on the exact timing of the threads, which differs from run to run,
the particles may be inserted into the blocks in a different order. This reordering can have a
minor effect on the floating point errors that are incurred during the Voronoi cell construction.
The code also contains a function add_parallel(pt_list,num,nt_) that takes in a pointer
pt_list to array of num particle positions stored as (x, y, z) triplets, with an additional
radius argument for the polydisperse containers. It performs a multi-threaded insertion of
the particles into the container using nt_ threads.

3. Parallel Performance

3.1. Voronoi cell computation
We first examine the performance of the multithreaded code for three representative

non-periodic particle arrangements, using both a 2D domain [0, 1]2 and 3D domain [0, 1]3.
They are:

I. Homogeneous – 108 particles randomly and homogeneously distributed throughout the
domain.

II. Localized – We define a square of area 0.1 in 2D, or a cube of volume 0.1 in 3D,
positioned in the center of the domain. We take the 108 particles from the previous
case, and keep only those within this region, resulting in approximately 107 particles in
total.

III. Extreme clustering – We use an uneven distribution clustered around the regions x = 1
2
,

y = 1
2
, and z = 1

2
(for 3D only). This is achieved by generating each particle coordinate

as a non-uniformly distributed random variable. In the x direction, the number X is
chosen to be uniformly distributed over [0, 1], and then the particle coordinate is set to
x = 1

2
+ 4(X − 1

2
)3, resulting in clustering near x = 1

2
. The same procedure is used in

the other directions.

Figure 7 shows examples of the three particle arrangements in both 2D and 3D, but with a
reduced number of particles for ease of visualization. The grid of blocks is set according to
the method described in Sec. 2.1.4, but with specific choices of Nopt are shown in Table 3. For
the homogeneous case we use the default choices of Nopt. For the other two cases, we scan
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Container initialization
2D 3D

Nopt nx, ny Nopt nx, ny, nz

(a) Homogeneous 3.4 5,423 4.6 279
(b) Localized 30 1,825 49 126
(c) Extreme clustering 0.5 14,142 0.5 584

Table 3: Choices of Nopt and the size of the grid of blocks for the three different example particle configurations,
in 2D and 3D.

over a range of values of Nopt and choose the one that results in the fastest execution. Since
the structure of these two cases differs considerably from the homogeneous arrangement, we
find that the best values of Nopt are quite different. For example, for the extreme clustering
case we use the much smaller value of Nopt = 0.5, since this provides better spatial sorting of
the clustered particles.

Here, and throughout Sec. 3 all tests were performed on a Ubuntu Linux computer with
dual Intel Xeon E5-2650L v4 processors with 14 low-power cores and a 1.7GHz base clock
speed. We measure the time to compute all of the Voronoi cells, without performing any
analyses on them. For each case, we compare the five OpenMP load balancing strategies
introduced in Sec. 2.2.4. For the two chunk-based strategies, we first scan over a range of
chunk sizes from 1 to 100 with the 28-thread parallel code, and choose the one with the
lowest computation time. We report this chunk size in our results.

The relevant measures of parallel performance are:

I. The wall-clock time tp required to compute all Voronoi cells using p threads.

II. The parallel efficiency calculated as

Te(p) =
t1

p · tp
, (4)

which measures the effective slowdown from the hypothetically perfect parallel scaling.

The computation time and parallel efficiency are affected by Intel’s Turbo Boost technology,
which boosts the clock speed based on the number of active cores. For the E5-2650L v4
chip, the clock speed is boosted by 0.8GHz when a single core is in use, but this is reduced
to 0.3GHz when six or more cores are used. This creates a clear signature in the parallel
efficiency data, since the wall-clock times for many threads are increased because the CPU
slows down. We explore this issue in detail in Appendix A. Since we aim to examine the
performance of the code independent of hardware intricacies, we work with the adjusted
parallel efficiency, which factors out the Turbo Boost effect. This is computed as

T adj
e (p) = Te(p)A(p), (5)

where
A(p) =

average clock speed for 1 thread
average clock speed for p threads

. (6)
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Figure 7: Illustration of three particle distribution cases in both 2D and 3D, but scaling down the particle
number by 1/105 for ease of visualization. (a) Homogeneous and random particle distribution with 1000
particles. (b) Localized and random particle distribution with 95 particles. (c) Extreme clustering particle
distribution with 1000 particles.

The details of how the average clock speeds are computed are provided in Appendix A.
We account for Turbo Boost in the parallel efficiency, but we report the original wall-clock
computation times, since they give a reasonable estimate for the Voronoi cell computation in
a real world setting where Turbo Boost is enabled by default.

3.1.1. Comparison of the three example cases
Figure 8 shows the adjusted parallel efficiency of the five strategies as a function of the

number of threads, for the three different particle arrangements in both 2D and 3D. Since the
computer has 28 physical cores, we find that the parallel efficiency drops substantially beyond
28 threads in all cases, and thus we limit our discussion to the results for the first 28 threads.
Table 4 shows the computation time using the serial code, and the optimal 28-thread parallel
code for the three cases in both 2D and 3D. For each 28-thread time, we report the parallel
strategy that achieves this optimal result.

3.1.1.1. Comparison of different particle arrangements. Figure 8 shows that for the homo-
geneous particle distribution the parallel efficiencies are similar among the strategies, and
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Figure 8: Adjusted parallel efficiency against number of threads of the five load balancing strategies, for the
three example cases in both 2D and 3D. (a) Homogeneous and random particle distribution. (b) Localized
and random particle distribution. (c) Extreme clustering particle distribution.

Wall-clock time (s) 2D 3D
1 thread 28 threads Opt. strategy 1 thread 28 threads Opt. strategy

(a) Homogeneous 150.53 7.03 (guided) 2099.72 93.34 (guided)
(b) Localized 39.88 2.03 (dynamic,38) 589.62 26.85 (dynamic)
(c) Extreme clustering 1030.12 45.45 (dynamic,60) 10368.70 464.96 (dynamic,18)

Table 4: Voronoi computation time with the serial code and the 28-thread parallel code for the three example
cases in both 2D and 3D, using each case’s optimal strategy.
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all are in the high range above 80% in 2D and 95% in 3D. In comparison, for the localized
particle distribution, the parallel efficiencies are very different, with schedule(guided) and
schedule(static) performing significantly worse than the others. This large difference is
also true for the extreme clustering case. For a container with random and homogeneous
particle arrangement, we expect that the computation time for each Voronoi cell to be similar,
as the Voronoi cells are of similar size. Therefore, particles have similar workloads. No matter
what strategies we use to distribute particles to threads, the threads have similar workloads
as well, thus resulting in the similar performance among the five strategies.

However, for the random and localized distribution of particles, where the sizes of
Voronoi cells are only restricted by the container, many particles in the outer layer have
extended Voronoi cells that take much longer to compute as described in Sec. 2.1.3. The
imbalance in the workload causes schedule(static) and schedule(guided) to perform
substantially worse, with parallel efficiencies dropping below 50%. schedule(dynamic)
performs much better, achieving efficiencies above 90% in 2D and 95% in 3D. In addition,
both schedule(dynamic,chunk) and schedule(static,chunk) can have similar parallel
performance to schedule(dynamic), if optimal chunk sizes are chosen. Table 4 shows that the
total computation times for the localized case are less than the homogeneous case, although
the localized case only has a tenth of the particles of the homogeneous case. The localized
case takes considerably longer per particle.

For the extreme clustering case, there are many more particles concentrating in the grid
blocks in the domain center. The Voronoi computation for these particles is substantially more
expensive than the Voronoi computation for particles in less dense regions. When Voro++
computes Voronoi cell of a particle, it will loop through all neighboring particles in the nearby
grid blocks (Sec. 2.1.3), and thus more particles will be considered. In addition, the uneven
distribution creates imbalanced workload since the particles in the center will take longer to
compute than those in the periphery. Therefore, similar to the localized case, we see that
schedule(dynamic) has huge benefits and performs much better than schedule(static)
and schedule(guided). Also, schedule(static,chunk) and schedule(dynamic,chunk)
are able to perform as well as schedule(dynamic), if optimal chunk sizes are chosen. Table
4 shows that the total time for the extreme clustering case is considerably longer than for the
homogeneous case.

3.1.1.2. Comparison of 2D and 3D Voronoi computation. 3D Voronoi cells are much more
complicated than 2D Voronoi cells. A 2D Voronoi cell is a simple polygon, where every vertex
is connected to two others. By contrast, representing a 3D Voronoi cell requires an edge table
with varying connectivity between the vertices. This difference is clear in the timing data for
the homogeneous case in Table 4: the serial code computes 664000 cells per second in 2D,
but only 47600 cells per second in 3D.

Since each 3D Voronoi cell computation involves a larger amount of work, the code can
achieve higher threading efficiency in 3D, because comparatively less time is lost to overhead
in parallelizing the loop. In Fig. 8 for the homogeneous case with schedule(dynamic),
the 2D computations only achieve efficiencies of ≈ 75% for large thread counts, whereas
the 3D computations achieve efficiencies over 95%. The data in Fig. 8 shows that the
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Figure 9: Adjusted parallel efficiency as function of the number of particles. The data obtained is from the
homogeneous particle distribution case in both 2D and 3D, both using schedule(guided). While parallel
efficiency must theoretically be less than or equal to one, small random fluctations in timing cause several
data points in this graph to exceed this value.

schedule(dynamic,chunk) strategy substantially improves the efficiency of the 2D compu-
tations, since proportion of time spent on thread assignment will be reduced. With this
strategy, the 2D computations can achieve thread efficiencies approaching 95%, as in the 3D
case.

3.1.2. Code performance for different system sizes
We now examine the performance of the code for a random homogeneous particle system

when the total number of particles N is varied. For each case, the grid of blocks is again set
according to the method described in Sec. 2.1.4, and the values of Nopt remain 3.4 for 2D and
4.6 for 3D. We use the schedule(guided) strategy, which was previously shown to achieve
very good parallel efficiency when N = 108, in both 2D and 3D (Fig. 8). We compute parallel
efficiencies by comparing the performance of a single thread to the performance of 28 threads.

As shown in Fig. 9, the parallel efficiencies remain roughly constant over the range from
N = 105 to N = 108. The Voronoi cell computations are well suited to parallel computation,
and even for N = 105 there is sufficient work for the particles to be parallelized effectively.
As expected, the parallel efficiencies seen in 2D are lower than those in 3D. Some small
fluctuations in parallel efficiency are observed in Fig. 9, particularly for lower particle counts in
2D. Because the wall clock times for these computations are shorter, they are more susceptible
to small variations in computation time.

3.1.3. Effects of clipping extended Voronoi cells
To illustrate further the effect of extended Voronoi cells on the computation cost, we

examine another case where the Voronoi cells are clipped by a bounding volume. This is
demonstrated in Fig. 10 where the Voronoi cells for the 3D localized arrangement of Fig. 7
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Figure 10: Illustration of the 3D localized particle distribution test from Fig. 7, but where the Voronoi
cells are each clipped by a bounding cube of side length h as described in the text. Here, the total number
of particles has been scaled down by a factor of 105 from the computational test for ease of visualization.
Correspondingly, the clipping length h has been scaled up by a factor of 105/3.

are clipped by a bounding cube centered on each particle. Clipped Voronoi cells are useful in
some practical situations [21, 29], such as when particles have a finite interaction range, and
extended Voronoi cells provide no practical information.

Voro++ can clip Voronoi cells by any convex polyhedron centered on each particle.
This is achieved by starting each Voronoi cell computation using a fixed shape, instead of
making it fill the computational domain as described in Sec. 2.1.2. Here, we consider the 3D
test using the localized particle arrangement shown in Fig. 7, with the domain [0, 1]3. This
configuration was made by generating N ′ = 108 candidate particle positions at random, and
then retaining the N ≈ 107 in a central cube covering 10% of the domain volume. We clip
each Voronoi cell using a cube with side length h = 1.5

√
3d0, where d0 = (N ′)−1/3 represents

a typical inter-particle separation length in the container. Figure 10 shows an illustration of
the clipped Voronoi cells.

As shown in Fig. 11, for the same localized particles in the container, using schedule(dynamic),
the computation time is significantly lower for clipped Voronoi cells. For the original localized
case of extended Voronoi cells, the computation time is 589.62 s for one thread and 26.85 s
when using 28 threads. In comparison, when the Voronoi cells are clipped, the computation
time decreases to 218.63 s with one thread and 10.01 s with 28 threads. Therefore, compared to
the extended Voronoi cells, the computational costs for clipped Voronoi cells are significantly
lower, and in both serial and parallel cases, there is a three-fold speedup in computation time.
These timing results will depend on the size of the clipping region, with larger h requiring
more time, and smaller h requiring less time. With the clipped cells, the size of the search
space in the Voronoi cell construction (Sec. 2.1.3) is substantially reduced, improving the
performance. Furthermore, using clipped cells removes the large disparities in computation
time between different Voronoi cells, so the schedule(static) parallelization strategy will
give good performance.
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Figure 11: Computation time using different numbers of threads for the 3D localized particle distribution test
using (a) the original Voronoi tessellation with many extended Voronoi cells, and (b) clipping each Voronoi
cell by a bounding cube of side length h as described in the text. In both cases, the optimal strategy of
schedule(dynamic) was used.

3.2. Performance of the parallel insertion routine
We now test the performance of the parallel insertion routine that was described in

Sec. 2.2.5. We test in 2D and 3D using the domains [0, 1]2 and [0, 1]3, respectively, with
108 homogeneous random particle positions. We use the default values of Nopt = 3.4 and
Nopt = 4.6 for the 2D and 3D calculations, respectively. In each case we use an initial
assignment of mem[k] equal to 8. The total number of particles in each block is well-
approximated by a Poisson distribution, Pois(Nopt). This results in 0.83% and 4.51% of
blocks exceeding the initial memory allocation in 2D and 3D, respectively. We expect
0.36% and 1.66% of the total particles will be placed into the overflow buffer in 2D and 3D,
respectively.

We note that the performance of parallel insertion will depend substantially on many
factors. Due to the small difference in Nopt between 2D and 3D, this results in a 4.6-fold
difference in the number of particles going into the overflow buffer. Since the overflow buffer
is processed serially at the end of the insertion, this will affect parallel efficiency. This will
also depend upon the particle configuration; for example, molecular dynamics simulations
often employ a repulsive potential at a short, well-defined length scale (e.g. the Lennard-
Jones potential [79]). This causes particles to be spatially distributed more evenly than
uniform random samples, so that the overflow buffer may not be needed. In contrast, particle
configurations like the extreme clustering case of Fig. 7 may have a large fraction of particles
going to the overflow buffer.

In many practical uses of Voro++, the Voronoi tessellation may be computed at multiple
time points in a simulation, where the particle positions only vary slightly between successive
snapshots. To handle this scenario, Voro++ has the ability to re-use the container data
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Wall-clock time (s), add_parallel(...) 2D 3D
1 thread 28 threads 1 thread 28 threads

With overflow buffer 72.76 3.43 72.65 5.34
No overflow buffer 72.37 3.03 73.65 3.06

Table 5: Average computation time for the parallel particle insertion test. For each case, the insertion is
performed once, when the overflow buffer will be used. The container is cleared and the insertion is repeated.
Since block memory was extended during the first test, the overflow buffer will not be used on the second
insertion. Each test was performed ten times, and the average wall-clock times are shown for the serial code
and 28-thread parallel code in both 2D and 3D.

structure, by clearing the particles for inserting a new configuration. This is achieved by
zeroing out the block-based particle counters co[k], but leaving any extended memory
allocation mem[k] in place. Thus, assuming only small movements in particles, the previously
extended block memory should be well-matched to the new particle configuration and only a
small number of particles will need to be placed in the overflow buffer.

To illustrate this and isolate the effect of the overflow buffer, we perform a sequence of
two parallel insertion tests, in both 2D and 3D. We generate a list of N uniformly distributed
particle positions, and call the add_parallel(...) function to add these particles into the
container. On the first time, some particles will be placed into the overflow buffer, and will
then be reconciled and store serially via the put_reconcile_overflow() function. This will
result in mem[k] being adjusted to accommodate the additional particles. We then clear
the container and make another add_parallel(...) call to reinsert the particles. Since
the block memory was already extended to accommodate this particle configuration, zero
particles will be placed into the overflow buffer on this second test. Each test was performed
ten times with between 1 and 28 threads, and the average wall-clock time was recorded to
calculate the average parallel efficiency. Since the parallel insertion routine involves both
parallel and serial components, the changing clock frequency complicates the performance
analysis. We therefore turn off Turbo Boost, so that all cores run at the same clock frequency
regardless of the number of active threads. The average wall-clock time for the serial code
and the 28-thread parallel code in both 2D and 3D are reported in Table. 5.

3.2.1. Efficiency against number of threads
Figure 12 show the results of parallel insertion in 2D and 3D using N = 108 particles with

a varying number of threads. On the first time, when the overflow buffer is used, the parallel
efficiency in 2D is approximately 76% using 28 threads. In 3D, parallel efficiency is lower,
and gradually decreases to 29% when 28 threads are used.

On the second time, without using the overflow buffer, the 28-thread parallel efficiency
is approximately 85% in both 2D and 3D. These results indicate how the overflow buffer
substantially affects the efficiency. The worse parallel performance in 3D is due to more
particles being placed into the overflow buffer. The number of particles being placed into the
overflow buffer averaged over ten tests are 356, 044 and 1, 675, 330 for 2D and 3D, respectively,
which are consistent with the aforementioned calculations using the Poisson distribution.
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Figure 12: Average parallel efficiency for the parallel particle insertion test of 108 particles using a varying
number of threads. For each case, the insertion is performed once, when the overflow buffer will be used. The
container is cleared and the insertion is repeated. Since block memory was extended during the first test,
the overflow buffer will not be used on the second insertion. Each test was performed ten times, and the
average wall-clock times were recorded to calculate the average parallel efficiency. While parallel efficiency
must theoretically be less than or equal to one, small random fluctations in timing cause several data points
in the 2D graph (left) to exceed this value.

Figure 13: Average parallel efficiency for the parallel particle insertion test of a varying number of particles,
using 28 threads. For each case, the insertion is performed once, when the overflow buffer will be used. The
container is cleared and the insertion is repeated. Since block memory was extended during the first test, the
overflow buffer will not be used on the second insertion. Each test was performed ten times, and the average
wall-clock times were recorded to calculate the average parallel efficiency.

3.2.2. Efficiency against number of particles
Figure 13 shows the parallel efficiency using 28 threads as number of particles N is varied.

For both 2D and 3D, we observe a clear trend of increasing parallel efficiency for larger N ,
demonstrating that parallel insertion becomes more effective for larger particle configurations.
We also see that with overflow buffer, the 3D case has worse parallel efficiency. Without
overflow buffer, the parallel efficiencies are comparable in 2D and 3D, consistent with the
results of Sec. 3.2.1.
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Figure 14: A central red atom and its Voronoi cell, surrounded by gold-colored neighboring atoms.

4. Application: Topological analysis using VoroTop

Voronoi tessellations are commonly used, among other applications, in the classification
of local, structural features of atomistic data sets [57, 80, 81, 82]. Computational material
scientists and physicists, for example, are often interested in identifying localized defects in
materials [57], or else in characterizing the structure of nominally disordered systems such as
liquids [83, 84], granular packings [39, 85], and soft glassy materials [86, 87]. Voronoi cells
provide a proxy for describing local arrangements through consideration of their geometric
and combinatorial properties [31, 88, 89].

Voronoi topology provides a robust method of classifying local structure [57, 60]. In
particular, the types of faces of a Voronoi cell and the manner in which they are arranged
describe the manner in which neighbors are arranged relative to a central particle and
to one another. Figure 14 illustrates a central red atom and its Voronoi cell, surrounded
by gold-colored neighboring atoms. Each face of the Voronoi cell corresponds to a unique
neighboring particle, and so the total number of faces can be considered as a count of neighbors.
Furthermore, the number of edges of a face counts the number of common neighbors between
the central particle and the associated neighbor. A five-sided face, for example, indicates
that the central particle shares five neighbors in common with the associated particle. In
finite-temperature systems, particles are located in “general position” and small perturbations
of the coordinates do not change features such as numbers of faces and edges, making them
particularly useful for analyzing noisy data. Voronoi topology is thus particularly well-suited
for studying high-temperature crystalline systems, where conventional methods such as
centrosymmetry and common-neighbor analysis are typically ineffective [90].

Fully characterizing the topological structure of a Voronoi cell can be done efficiently
using an algorithm of Weinberg [66] designed to determine whether two planar graphs are
isomorphic. Although the general graph-isomorphism problem is not known to be solvable
in polynomial time, the edge graphs associated with Voronoi cells, as convex polyhedra,
are always 3-connected and planar [91]. This enables the use of Weinberg’s graph-tracing
algorithm to provide a systematic description of Voronoi cell topologies. In particular,
Weinberg’s algorithm traces the edge network of a graph to produce a unique “code”; two
Voronoi cells are topologically equivalent if and only if their codes are identical. This algorithm
takes as input a representation of a planar graph and outputs a code whose length is twice
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the number of edges of the graph. Constructing each code is done in O(n2) time, where n
is the number of faces of the Voronoi cell. Voronoi cells in uniformly distributed particle
systems typically have a narrow range of faces (between 10 and 20), but this number can
grow for non-uniformly distributed ones.

Calculating the Voronoi cell topology for large particle systems is a good test case for a
multi-threaded version of Voro++ because the Weinberg code for each cell is computed
individually after the Voronoi cell itself has been constructed. A program called VoroTop,
developed by Lazar, uses Voro++ to calculate the Voronoi cells and then implements Wein-
berg’s algorithm to produce a code for each particle, enabling further structural analysis [64].
When limited to running with a single-thread, the ability to analyze large systems is limited.
While smaller systems can be analyzed separately in parallel using batch runs, this approach
is ill-suited for large systems where memory constraints may limit the number of systems that
can be computed simultaneously. We have thus incorporated the multithreaded version of
Voro++ into an updated version of VoroTop to take advantage of its parallel architecture.

To test the efficiency of the multithreaded Voro++ in VoroTop, we considered systems
with between 100,000 particles and 102.4 million particles. These systems were analyzed on a
single computer with two Intel Xeon Gold 6240 CPUs running at 2.60 GHz. Each of the two
processors has 18 cores, allowing us to run up to 36 threads while limiting each core to a
single thread. Running VoroTop and Voro++ with more threads than physical cores can
still reduce total runtime, even while decreasing overall parallel efficiency. Running VoroTop
and Voro++ with more than 72 threads, however, led to decreased total performance, as
the overhead cost associated with running more than two threads per core outweighed gains
from multithreading. To better understand the impact of the parallel version of Voro++
on this topological analysis, no further computations, such as structure classification, were
performed.

As in Sec. 3.2, we turned off Turbo Boost for this test. This reduces total performance but
enables a simpler comparison of efficiency of the parallel versions of Voro++ and VoroTop.
Furthermore, we only considered the schedule(dynamic) strategy. We constructed systems
with each given number of particles, distributed randomly and uniformly in the unit cube
with periodic boundary conditions. Each system was analyzed ten times with between 1 and
50 threads, and the average wall-clock runtime was recorded for computation of the Voronoi
cells and the computation of their Weinberg codes.

Figure 15 shows the average wall-clock time for each system as a function of number of
threads. It can immediately be seen that the total average wall-clock time decreases with
additional cores, as expected. Figure 16 shows the unadjusted parallel efficiency Te computed
via Eq. (4) for different systems sizes and numbers of threads. Parallel efficiency is over
95% when the number of threads is at most equal to the number of physical cores, in this
case 36. Figure 17 illustrates the parallel efficiency as a function of system size, for different
numbers of threads. This efficiency is close to 95% in systems with at least half a million
particles. Voronoi topology analysis through VoroTop thus provides an example in which
implementation of a multithreaded version of Voro++ facilitates a significant speedup in
practical applications.
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Figure 15: Computation time against number of threads for the different systems. The two guidelines are
graphs of functions proportional to 1/threads.
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5. Conclusion

In this paper we have introduced a multithreaded extension to the Voro++ library using
the OpenMP standard. Since Voro++ constructs each Voronoi cell individually, it is ideally
suited for multithreaded computations, and we demonstrate parallel efficiencies above 95%
across a range of different examples in 2D and 3D. Our extension to Voro++ is designed
to follow standard OpenMP programming methods, making it straightforward for users to
incorporate into their own programs. In Sec. 4, we presented an example of this using the
VoroTop software package, where both Voronoi cell calculations and topology analysis were
performed within an OpenMP loop, again resulting in efficiencies above 95%.

There are a number of extensions to consider. First, as described in Sec. 2.1.1, Voro++ is
based upon dividing the computational domain into a regular grid of blocks. This simple data
structure is efficient to compute on. It is also well-suited to roughly even particle distributions,
since each block is responsible for a similar number of particles. One of the primary usages
of Voro++ has been in analysis of molecular dynamics (MD) or discrete-element method
(DEM) simulation, where particles often have a fixed interaction length, and therefore tend
to have roughly even distributions, leading to good performance. However, there are other
scenarios, such as computing the Voronoi tessellation for gravitationally interacting particles,
where particles may be heavily clustered in small parts of the domain. In this case, the
particles are unevenly distributed, resulting in worse performance. This was demonstrated
in the extreme clustering example, which ran substantially slower than the homogeneous
example despite having the same number of particles (Table 4). One possibility to improve
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this would be to sort the particles into a structure like a k-d tree [92] or quad/octree [93],
which would allow clustered regions of particles to be adaptively refined. This would entail a
more complicated search through the blocks when computing a Voronoi cell, since the blocks
would no longer be of uniform size. Applying a restriction in the tree construction (e.g. using
a graded grid [94, 95]) may help simplify the implementation and reduce the number of cases
that need to be considered. Since the tree data structure would even out the particles among
the blocks, it would likely improve the parallel efficiency of the OpenMP implementation.

Another possible extension is to explore distributed memory calculations, which would
allow the library to handle even larger particle systems, such as those generated by super-
computing facilities. Furthermore, many codes that are designed for supercomputers already
use distributed parallel programming, such as via the Message Passing Interface (MPI). Thus
if Voro++ could work in a distributed parallel setting, it could directly interface with
the parallel simulation, rather than having to save the data and reload it for analysis. The
issue of saving and reloading data is an important performance bottleneck in distributed
parallel computing, and has previously been addressed in related work in the context of GPU
parallelization [82].

Computing Voronoi cells in a distributed parallel environment is considerably more
challenging than the multithreaded case and requires different algorithms. It is necessary
to communicate to neighboring processors to obtain some of their particle positions. For
dense particle arrangements, it should usually be sufficient for each processor to obtain
particles in a region of fixed width beyond its domain, and then use those to apply plane cuts
during the Voronoi cell construction. This is the approach taken by the voronoi command
in LAMMPS [43]. However, in some situations, such as when a Voronoi cell extends out by a
long way in one direction (Fig. 5(b)), the fixed-width region will be insufficient to completely
determine the Voronoi cells. Because of this the parallel implementation would also have to
allow for the possibility of non-local communication, where a processor could potentially talk
to any other to obtain its particle information. These are interesting parallel computation
challenges that can be explored in future work.
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Appendix A Turbo Boost and parallel efficiency

Modern Intel CPUs make use of the Turbo Boost technology, which boosts the CPU
clock speed from its base value, depending on many factors (e.g. CPU temperature and
available power). Most significantly, Turbo Boost depends on the number of cores in use. Our
test system has dual Intel Xeon E5-2650L v4 processors with a base clock speed of 1.7GHz.
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Cores in use Normal frequency each core (GHz) Turbo Boost frequency each core (GHz)
1–2

1.7

2.5
3 2.3
4 2.2
5 2.1

6–14 2.0

Table 6: Normal clock frequency and Turbo Boost frequency for Intel Xeon E5-2650L: v4 microprocessor
used in the performance tests.

Figure A.1: Comparison of parallel efficiencies against number of threads, with Turbo Boost on, and with
Turbo Boost off. The data obtained is from the homogeneous particle distribution case in 3D, using its
optimal strategy schedule(guided). The data with Turbo Boost off is obtained from four runs of the same
test. We take the minimum computation time of the four runs against number of threads, and calculate
the parallel efficiency using the minimum time. This avoids small timing fluctuations and gives a more
representative picture in parallel performance.

Table 6 shows the boosted clock speeds in terms of the number of cores in use, ranging from
2.5GHz for a single core to 2.0GHz for six or more cores.

Turbo Boost has a noticeable effect on the measurement of parallel efficiency. Figure A.1
shows the parallel efficiency for the random homogeneous test case with 108 particles with the
schedule(guided) strategy, evaluated using Eq. (4). Once the number of threads reaches
12, the parallel efficiency plateaus at ≈ 80%. This is precisely in agreement with the ratio
of clock speeds from 2.5GHz to 2.0GHz. This suggests that the reduction in efficiency is
almost entirely explained by Turbo Boost, rather than effects of the Voro++ parallelization.
To verify this, we switched off Turbo Boost so that the clock speed remains at 1.7GHz
regardless of the number of cores in use. Figure A.1 shows the parallel efficiency for this case.
Even though the simulation is slower overall, the parallel efficiencies remain close to 100%,
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confirming that Turbo Boost is responsible for the loss in parallel efficiency. Across many of
the timing results, Turbo Boost has a clear signature in the unadjusted parallel efficiency,
with plateaus at 80% visible (Fig. A.2).

For the timing tests, we aim to use a measure of parallel efficiency that is not closely tied
to the computer hardware. One approach is to switch off Turbo Boost completely, but this
results in an overall loss of performance, and is not reflective of typical computer usage. We
therefore decided to adjust the efficiency calculation to factor out the Turbo Boost as given
in Eq. (5), scaling the usual measure by a factor of A(p) for p threads. Our first approach to
construct the adjustment was by using the frequencies of Table 6, so that

A(p) =
boost frequency for a single thread

boost frequency for p threads
. (7)

However, this approach is not suitable for the less efficient strategies. For example, the
schedule(guided) strategy of the 2D localized case has low efficiencies. During this compu-
tation, some threads become idle while waiting for other threads to finish their computation,
and therefore the Turbo Boost frequency changes depend on the number of active cores.
Since the adjustment in Eq. (7) assumes that all threads remain active, it can overestimate
the parallel efficiency.

We therefore used a more general and accurate way to calculate the adjusted parallel
efficiency by replacing the boost frequencies in Eq. (7) with average clock speeds of the
computation. Average clock speed represents the true computational speed, and it is computed
by dividing the total unhalted core cycles by the total task-clock time. Unhalted core
cycles is a hardware performance counter, and can be measured for each thread using
perf, a Linux performance analyzing tool [96]. The number of unhalted core cycles for a
thread captures the CPU cycles run on the thread when the thread is active, which is an
estimate of the work that the thread contributes to the parallel computation of the program.
Specifically, we use perf_event_open with the PERF_COUNT_HW_CPU_CYCLES configuration
option for measurement [97]. Task-clock time is a software performance counter, and it can
be measured for each thread using the PERF_COUNT_SW_TASK_CLOCK configuration option
with perf_event_open [97]. The task-clock time of a thread reports a clock count specific to
the task that is running on that thread.

We then measure unhalted core cycles Cserial and the task-clock time T task
serial that the

computation uses for the serial code. For the parallel code, we measure the unhalted cycles
Ci and the task-clock time T task

i for each thread i = 1, . . . , p. Then we compute

average clock speed for 1 thread =
Cserial

T task
serial

, (8)

average clock speed for p threads =
∑p

i=1Ci∑p
i=1 T

task
i

, (9)

which are used in Eq. (6) to compute the adjustment factor.
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Figure A.2: Unadjusted version of the parallel efficiency shown in Fig. 8, for the three particle arrangement
cases in both 2D and 3D. (a) Homogeneous and random particle distribution. (b) Localized and random
particle distribution. (c) Extreme clustering particle distribution.
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