
Lawrence Berkeley National Laboratory
LBL Publications

Title
An extension to Voro++ for multithreaded computation of Voronoi cells

Permalink
https://escholarship.org/uc/item/05s6b85h

Authors
Lu, Jiayin
Lazar, Emanuel A
Rycroft, Chris H

Publication Date
2023-10-01

DOI
10.1016/j.cpc.2023.108832

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/05s6b85h
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

An extension to Voro++ for multithreaded computation
of Voronoi cells

Jiayin Lua, Emanuel A. Lazarb, Chris H. Rycroftc,d,a

aJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
02138,

United States
bDepartment of Mathematics, Bar-Ilan University, Ramat Gan 5290002, Israel

cDepartment of Mathematics, University of Wisconsin–Madison, Madison, WI 53711,
United States dMathematics Group, Lawrence Berkeley Laboratory, Berkeley, CA

94720, United States

Abstract

Voro++ is a software library written in C++ for computing the Voronoi
tessellation, a technique in computational geometry that is widely used for
analyzing systems of particles. Voro++ was released in 2009 and is based on
computing the Voronoi cell for each particle individually. Here, we take
advantage of modern computer hardware, and extend the original serial
version to allow for multithreaded computation of Voronoi cells via the
OpenMP application programming interface. We test the performance of the
code, and demonstrate that it can achieve parallel efficiencies greater than
95% in many cases. The multithreaded extension follows standard OpenMP
programming paradigms, allowing it to be incorporated into other programs.
We provide an example of this using the VoroTop software library, performing
a multithreaded Voronoi cell topology analysis of up to 102.4 million
particles. Keywords: Voronoi tessellation, computational geometry, multi-
threaded programming

1. Program summary

Program title: Voro++

Developer’s repository link: https://github.com/chr1shr/voro

Licensing provisions: BSD 3-clause (with LBNL modification)

Programming language: C++

External routines/libraries: OpenMP

Nature of problem: Multithreaded computation of the Voronoi tessellation in
two and three dimensions

Solution method: The Voro++ library is built around several C++ classes that
can be incorporated into other programs. The two largest components are
the container... classes

that spatially sort input particles into a grid-based data structure, allowing for
efficient searches of nearby particles, and the voronoicell... classes that
represent a single Voronoi cell as an arbitrary convex polygon or polyhedron.
The Voronoi cell for each particle is built by considering a sequence of plane
cuts based on neighboring particles, after which many different statistics
(e.g. volume, centroid, number of vertices) can be computed. Since each
Voronoi cell is calculated individually, the Voronoi cells can be computed
using multithreading via OpenMP.

2. Introduction

The Voronoi tessellation was originally introduced in 1907 [1] and is now a
broadly used technique in computational geometry [2]. Consider a set of
points in a domain. Each point has a corresponding Voronoi cell that is
defined as the part of the domain that is closer to that point than to any
other. In two dimensions (2D) with the Euclidean metric, the Voronoi cells are
irregular polygons that perfectly partition the domain to create the Voronoi
tessellation (Fig. 1(a)). Each edge in the tessellation is the perpendicular
bisector between neighboring points. In three dimensions (3D) the Voronoi
cells are irregular polyhedra (Fig. 1(b)). Voronoi cells can also be generalized
to non-Euclidean geometries with different distance metrics [3, 4]. The
Voronoi tessellation has been used in a remarkable number of different
scientific fields.
It has been extensively used to analyze systems of particles or atoms, where
features of the Voronoi cells (e.g. volume, surface area, number of faces)
provide insight in particle structure; examples include the analysis of
granular materials [5, 6, 7], colloids [8], nanosphere systems [9], metallic
glasses [10, 11], liquids [12], as well as active [13] and supercritical fluids
[14, 15]. The Voronoi cells themselves, which form irregular
polygons/polyhedra, have been used to model different physical phenomena,
such as polycrystalline materials [16, 17, 18], solidification processes [19,
20], and biological cells [21]. The Voronoi tessellation has also been used to
construct computational meshes on which to solve partial differential
equations [22, 23], such as for climate modeling [24], groundwater flow [25,
26], and astrophysical flows [27]. Other applications include control of multi-
robot systems [28], calculating snow aggregrate scattering properties [29],
and modeling animal territorial control [30]. There are many more examples
than the ones given here, highlighting the ubiquity of this geometrical
construction [31].

A variety of software packages are available for calculating the Voronoi
tessellation. The Qhull library [32, 33] is widely used and incorporated into
MATLAB (via the voronoin command) and Python (via the
scipy.spatial.Voronoi command). The Computational
Geometry Algorithms Library (CGAL) [34] provides a variety of functions for
computing the
Voronoi tessellation, and Triangle [35, 36] can compute the Voronoi
tessellation in 2D. All of these libraries primarily focus on computing the
Voronoi tessellation as an entire mesh, shown in blue in Fig. 1.

2

In 2009 Rycroft released Voro++ [37, 38], a software library written in C+
+ that takes the alternative approach of calculating the Voronoi cells
individually, so that each cell, an example of which is shown in red in Fig. 1,
is computed as a separate object. The library grew out of research on
particulate granular flows, where the Voronoi cell volumes were useful for
understanding particle packing structure [39, 40, 41]. The cell-based
perspective has some

Figure 1: (a) An example two-dimensional Voronoi tessellation shown in blue generated by
the black crosses. A single Voronoi cell in the tessellation is shown in red as an irregular
polygon. (b) An example three-dimensional Voronoi tessellation shown in blue generated by
the white spheres. A single Voronoi cell is shown in red as an irregular polyhedron.

advantages and drawbacks compared to the entire mesh approach (Subsec.
2.2). However, it has proven effective in a wide range in applications,
particularly those involving rapid analysis of particle systems. Voro++ has a
command-line utility that can perform a variety of different analyses, and it
has a C++ application programming interface (API) that allows it to be called
from user-written programs. It has been incorporated into other software
such as LAMMPS [42, 43] and OVITO [44, 45].

2.1. Algorithms for computing the Voronoi tessellation
Since the 1970’s, a wide variety of methods for computing the Voronoi

tessellation have been proposed [2]. For computing the entire Voronoi mesh,
some popular methods include the Fortune sweeping algorithm [46, 47] and
the incremental approach whereby the mesh is continually updated as new
particles are added [48, 49]. Another method is to use the lift-up mapping,
projecting a point x ∈ Rn to a paraboloidal surface (x,∥x∥2) ∈ Rn+1. The
hyperplanes tangential to the surface form facets that exactly match the
Voronoi tessellation when projected back to Rn. This can be efficiently
computed in arbitrary dimensions using the quickhull algorithm [32], which
forms the basis of Qhull [33]. Another approach involves introducing a
computational grid, and sweeping out from each point with the fast marching
method [50, 51] to construct Voronoi cells [52], which is computationally

3

expensive but more flexible for calculations on spaces with non-Euclidean
distance metrics.

2.2. The cell-based approach: advantages and drawbacks
The cell-based approach that Voro++ uses has also been explored in the

literature [53,
54, 55, 56]. As discussed by Okabe et al. [2] it has a significant difficulty that
is illustrated

Figure 2: (a) Typical case where three Voronoi cells (blue polygons) for three points (black
crosses) meet at a vertex. The Voronoi cells would normally touch, but are spaced slightly
apart from each other for illustrative purposes. (b) Special case where four Voronoi cells meet
at a vertex that is equidistant from four points; floating-point errors could lead to additional
small edges (red) for some cells. (c) Schematic representation adapted from Lazar et al. [57]
where each dashed region represents a different Voronoi cell topology. Some common
crystalline lattices (e.g. BCC) are located within a single region, whereas others (e.g. FCC,
HCP) are located at junctions, and small perturbations from the ideal configuration sample
different topologies.

in Fig. 2(a,b). In most cases, for randomly-distributed points, each vertex of
the Voronoi tessellation will be common between three Voronoi cells as
shown in Fig. 2(a). However, in certain situations a vertex may be equidistant
from four particles as shown in Fig. 2(b). This could happen either because of
a special arrangement of the particles (e.g. a crystalline formation), or for
random arrangements when particles happen to be aligned within the limit of
floating point truncation error. In the cell-based approach where the cells are
computed independently, small floating point errors in one cell may lead to
the creation of additional facets (shown by the red line in Fig. 2(b)) meaning
that the topologies of the edges and faces of the Voronoi cells are not
consistent.

Despite this difficulty, there are many situations where the cell-based
approach is attractive. The entire Voronoi mesh is often not required, and the
individual Voronoi cells can be analyzed independently. In Voro++ a typical
workflow is to compute a Voronoi cell, calculate and store various statistics
about the cell, delete the cell, and move onto the next point. Because only a
single cell needs to be stored at any one time, this results in a large memory
saving and an improvement in cache efficiency, creating an inherent
performance boost over building the entire mesh. Furthermore, for many
commonly used measurements, it is not necessary for the edge topology to
agree perfectly. For example, Voronoi cell volumes and centroids (used in
Lloyd’s algorithm [58, 59]) are not sensitive to small changes in edge
topology.

For other measurements, such as the number of faces or edges, the
precise topology of the Voronoi cell can have an appreciable effect. However,
one can reasonably argue that measurements that rely too heavily on these
small topological changes are problematic to begin with—it should not be the
case that a diagnostic indicator of a physical characteristic be sensitive to
truncation error (i.e. often around a factor of 10−16 in double-precision
arithmetic) particularly when experimental errors or simulation discretization

4

errors are usually far larger. The recent work of Lazar, Srolovitz, and
coworkers provides a useful theoretical framework in which to address this
issue [57, 60, 61, 62, 63]. Voronoi cells can be pictured as residing in a phase
space that is divided into discrete regions representing the complete face
and edge topologies (Fig. 2(c)). Commonly studied crystalline lattices such as
FCC and HCP lie at intersections of these topologies, meaning that small
perturbations (e.g. thermal vibrations) around the idealized lattice will push
the Voronoi cells into a well-defined family of different topologies. Other
lattices such as BCC may lie in the interior of a single region. Lazar released
the VoroTop package [64, 65], which uses this framework to analyze
ensembles of Voronoi cell topologies, classify different particle packings, and
identify features such as grain boundaries. A key part of VoroTop is the
computation of the Weinberg vector [66] for each Voronoi cell, which
uniquely characterizes the cell’s vertex and edge topology.

2.3. Outline of this paper
Advances in supercomputing power have enabled simulations with very

large numbers of particles [67, 68]. In addition, there is currently interest in
developing data-driven approaches for screening large databases of
materials and structures, where the Voronoi tessellation can be a useful
analysis tool [69, 70, 71, 72]. Thus there is a need to compute the Voronoi
tessellation at a large scale and in parallel. Currently, there are some parallel
approaches in the literature for computing Voronoi cells in a distributed-
memory model [73, 74]. Here, we consider parallelizing Voro++ using a
shared-memory model with multithreading. Since modern consumer laptops
and desktops contain CPUs with 4–8 cores and servers contain CPUs with
upward of 16 cores, multithreading enables a large practical speedup without
the additional complexity of using distributed-memory architectures.

The cell-based approach used by Voro++ is inherently amenable to
parallelization, since each Voronoi cell can be computed independently. Here
we develop a general multithreaded extension of Voro++ that provides good
parallel performance across a range of different scenarios. An ideal basis for
doing this is OpenMP, an API for shared-memory multiprocessing [75, 76].
The core component of OpenMP is a set of compiler directives beginning with
#pragma omp that instruct the compiler to multithread certain lines and
loops within a C++ code. A key feature of OpenMP is that if a program is
compiled without OpenMP enabled, then the #pragma omp directives are
ignored and the compiler will create a standard executable that runs in serial.
For open-source scientific software, which is compiled and run on a wide
range of different systems, this serial interoperability is a major advantage.

The extension to the Voro++ API is designed to make it as simple as
possible for the user to incorporate multithreading into their programs.
Multithreading a loop over all
Voronoi cells requires adding a small number of #pragma omp directives that
match typical OpenMP usage. This has required redesigning the mechanism
for looping over Voronoi cells from previous versions of Voro++, but this is
done so that most of the complexity is hidden from the user. Furthermore, we
demonstrate that our extension is interoperable with standard OpenMP
functionality for tuning and controlling the division of work between threads.

5

With our extension, we show that we can achieve excellent parallel efficiency
of above 95% across a range of cases.
VoroTop provides a particularly good example for our extension to Voro++. A

typical
VoroTop analysis requires computing all of the Voronoi cells, and then
calculating the Weinberg vector for each one. The Weinberg vector is a
relatively expensive calculation, requiring O(n2) work for a Voronoi cell with n
vertices. Thus, since the Voronoi cell and Weinberg vector computations can
be processed independently and divided evenly among threads, this

Figure 3: Illustration of a 2D container covering the rectangular region [ax,bx] × [ay,by]. The
container is further divided into a 4×4 grid of blocks (i,j) for i,j ∈{0,1,2,3}. Each block (i,j) is
indexed as k = i+4j, so that k ∈{0,1,...,15}. Points are spatially sorted into blocks. The yellow
point is the second point in block 1.

represents an ideal scenario for multithreading. In Section 5 we demonstrate
this on a 36 core server. We show that the time to process 102.4 million
particles can be reduced from almost an hour to under two minutes,
highlighting a dramatic practical performance benefit.

3. Methods

3.1. Overview of Voro++
We now provide an overview of design and the key methods of Voro++

[37]. The code is structured around several C++ classes for storing particles
and computing Voronoi cells. The code can perform both 2D and 3D
computations, and the classes responsible for these have “_2d” and “_3d”
suffixes, respectively. The algorithmic principles are identical in both 2D and
3D. Therefore, for the rest of this section, we focus on the 2D implementation
for simplicity.

3.1.1. The container_2d class
Voro++ has a variety of container types that represent rectangular

domains holding all of the positions. The container_2d class holds particles in
a 2D rectangle. The user can specify the coordinate ranges [ax,bx] and [ay,by],

6

and indicate whether the container is periodic in each direction. The
container is further divided into a rectangular grid of nx × ny blocks of equal
size, into which the particles are spatially sorted. In this way, every particle
can be identified by its block index, and its point index inside the block. For
example, in Fig. 3, the yellow point is the 2nd point in block 1.

The grid of blocks provides a large boost in performance, allowing the
code to quickly locate neighboring particles during the Voronoi cell
construction. See Sec. 3.1.4 for details on how the number of blocks is
chosen. There is also a variant container class called container_poly_2d that
stores polydisperse particle arrangements. Each particle has an associated
radius, which can be used to compute the radical Voronoi tessellation [2].

3.1.2. Using a voronoicell_2d class to compute a Voronoi cell
The voronoicell_2d class represents a single Voronoi cell as a convex

polygon, with a set of vertices connected by edges. The voronoicell_2d class
contains routines for constructing the Voronoi cell, as well as routines for
computing different statistics about it, such as its area or centroid.

The voronoicell_2d class uses a coordinate system where the origin is
centered on the particle. Consider a specific particle P located at position p =
(px,py) within the container. To compute its Voronoi cell, the voronoicell_2d
class is first initialized as a rectangle [cx,dx] × [cy,dy] filling the entire container,
without considering any other particles.
Specifically, in the x direction,

if the x direction is non-
periodic,

(1) if the x direction is
periodic. For the periodic case, the maximum extent of the initial
Voronoi cell is determined by the perpendicular bisectors of the periodic
images of P that are displaced by ±(bx − ax,0).

Similarly, in the y direction,

if the y direction is non-
periodic,

(2) if the y direction is
periodic.

To construct the Voronoi cell for P the code then considers the effect of
neighboring particles. If a neighbor is located at q relative to P, then that will
remove the half-space

q · q
r (3)

where r = (x,y). The boundary of the half-space, given by r q, is the
perpendicular bisector between P and its neighbor. The voronoicell_2d class
contains a routine called plane() that recomputes the vertices and edges of
the Voronoi cell based on cutting by a plane. To compute the Voronoi cell for
P, the code considers the neighboring particles and applies plane cuts based

7

on removing the half spaces of the form given in Eq. (3), as illustrated in Fig.
4.

Hypothetically, if all plane cuts for all other particles are applied, then the
voronoicell_2d class will precisely represent the Voronoi cell of P. In practice,
it is only necessary to consider plane cuts from a small set of neighbors
around P, as described in the following section.

Figure 4: Illustration of the action of the plane() routine. The Voronoi cell of a particle P
located at p is initialized as a large rectangular box filling the computational domain. The
plane() routine repeatedly cuts down the rectangular box by planes that are the perpendicular
bisectors between the particle and its neighbors, located at q1 and q2.

Figure 5: Illustration of different computational costs for different Voronoi cells. (a) A partially
computed Voronoi cell is shown in light purple, after considering half-space intersections
from four neighboring particles. The maximum distance to a vertex is R, and thus particles
that lie outside a circle of radius 2R can be omitted from the computation; only a single
additional particle needs to be tested. (b) If a particle does not have neighbors on all sides,
its Voronoi cell may extend a long distance in one direction, so that R is much larger. Hence
many more particles lie within the circle of radius 2R and cannot be ruled out from the
computation.

3.1.3. The voro_compute class
The container_2d class contains a member vc of class type

voro_compute_2d, which holds the data structures for computing the Voronoi
cells from the container’s spatially sorted particles. For a given particle P the
voro_compute_2d class computes the Voronoi cell following the procedure in
the previous section, but using as few plane cuts as possible. As an example,
consider the particle in the top left corner of Fig. 1(a): its Voronoi cell has two
faces that adjoin cells for neighboring particles. Thus, if those two particles
were considered first, then all remaining plane cuts would have no effect.

8

The voro_compute_2d class therefore computes Voronoi cells by considering
plane cuts from nearby points first, and then use bounds to terminate the

computation as soon as possible. The class first considers particles in the same
block as P, and then sweeps outwards to consider nearby blocks. When each

block is considered, two bounds can be used to determine whether the Voronoi
cell is complete or if more plane cuts are required:

• Radius bound – if R is the maximum distance of a Voronoi cell vertex to
P, then no particles more than a distance 2R away can possibly influence
the cell. This bound is fast to compute, but it has no directional
sensitivity: if a cell extends a long way in one direction then particles a
long distance in other directions will still need to be tested.

• Block bound – a given block in the grid can be tested to see if any
particle within it can possibly influence the Voronoi cell. This can be done
by performing a sequence of half-space intersection tests based on the
block’s corners. The code sweeps outward from P, testing blocks until it
reaches those that cannot influence the cell. This computation is slower
than the radius bound but it has directional sensitivity.

The voro_compute_2d class uses a combination of the two bounds. It begins
by using the radius bound, which works effectively for particles in densely-
packed regions with many close neighbors. This is illustrated in Fig. 5(a),
where the voronoicell_2d polygon is shown after considering four neighboring
particles. At this point, the bounding circle of radius 2R only contains a single
additional particle. Thus, once this particle is considered, then the Voronoi
cell will be complete and it will not be necessary to consider further particles.
In contrast, Fig. 5(b) shows a case where the voronoicell_2d polygon is
extended in one direction because it is at the edge of a particle arrangement.
We refer to such cases as extended Voronoi cells, where the maximum
Voronoi vertex distance is large compared to a typical inter-particle
separation length. In this case, the circle from the radius bound covers the
whole domain, and no particles can be ruled out from the computation.

If the radius bound is not successful in rapidly terminating the
computation, then the voro_compute_2d class switches over to the block
bound. This can help cut down the number of particles to consider, but the
search space that needs to be considered can still inherently be much larger.
Hence extended Voronoi cells can take substantially longer to compute. It is
important to consider this large difference in Voronoi cell computation time
when designing the multithreaded extension.

3.1.4. Choice of the block size
The size of the grid of blocks in the container affects the computation

time. Let N be the total number of particles and define Navg = N/(nxnynz) to be the
average number of particles per block. If Navg is too large, then each block
contains many particles, and since particles are not spatially sorted within a
block, the code must spend a long time looping through all of them. If Navg is
too small, then the code must search through many blocks to complete a
Voronoi cell computation. The best performance is achieved by choosing Navg

as a balanced value between these two extremes.

9

In addition, the optimal performance is usually achieved when the blocks
have roughly equal side lengths. Hence, for a given target average number of
blocks, Nopt, the code chooses the number of blocks as follows:

• In 2D, set λ = pN/(Nopt(bx − ax)(by − ay)) and define nx = ⌈λ(bx − ax) ⌉ and ny = ⌈λ(by −

ay)⌉.

• In 3D, set λ = p3 N/(Nopt(bx − ax)(by − ay)(bz − az)) and define nx = ⌈λ(bx − ax)⌉, ny = ⌈λ(by

− ay)⌉, and nz = ⌈λ(bz − az)⌉.

The use of the ceiling operator · ⌈ ⌉ ensures that the grid dimensions are always
greater than zero. For homonegenous random particle arrangements, the best
performance is achieved for Nopt = 3.4 in 2D and Nopt = 4.6 in 3D, although the
code is not that sensitive to this choice and good performance is achieved
across a wide range. These values are used by default in the code, although
they can be overridden by the user. In some of the examples in this paper,
which are chosen to highlight different scenarios, we determine different
values of Nopt that improve performance.

3.1.5. Procedure for Voronoi cell
computation A typical usage of the
library is as follows:

I. Initialize the container. Insert particles into the container, spatially
sorting them into the grid of blocks.

II. Loop over the blocks in the container, and for each block:

i. Loop over the particles in the block, and for each particle:

a. Calculate the Voronoi cell of the particle.
b. Compute and store required statistics about the Voronoi cell.

Each Voronoi cell computation is independent of the others, making Voro++
highly suitable for parallel computation. A straightforward parallelization
approach is to distribute particles to different threads, and compute their
Voronoi cells simultaneously.

3.2. Multi-threaded extensions
3.2.1. Changes to code architecture

We now describe the changes required to make Voro++ multithreaded
using OpenMP. The vc member within the container class, which is a
voro_compute_2d class, is responsible for calculating the Voronoi cell of a
particle. The vc member allocates workspace for searching through the
blocks for neighboring particles. Thus it is not thread-safe, since if two
threads used the same vc member, they would generate race conditions on
the workspace.

Therefore we create copies of voro_compute_2d class object in the
container, based on the number of threads being used. vc is no longer a
single voro_compute_2d class, but becomes an array of them. The class
constructor accepts an additional argument num_t that determines the
number of voro_compute_2d classes to allocate. Thread k then uses vc[k] to

10

compute its Voronoi cells. If needed, the function
change_number_thread(num_t) can be used to reallocate the number of
voro_compute_2d classes available.

Moreover, in a typical loop like the one in Sec. 3.1.5, the code creates a
variable c that is a voronoicell_2d class, for representing the Voronoi cell of
the particle. Similar to vc, different threads in computation cannot use the
same voronoicell_2d object. This issue is solved by creating thread-private
copies of c in the parallel computation.

3.2.2. Random access iterator and OpenMP parallelization
The OpenMP directive #pragma omp parallel creates a team of threads to

execute a section of code. Within a parallel section, the directive #pragma
omp for can be placed before a for loop, to distribute the iterations of the
loop to the different threads. Listing 1 demonstrates how to use these two
directives to parallelize the filling of an array c with square roots of the
integers.

double c[256];
#pragma omp parallel
{
#pragma omp for for(int

i=0;i<256;i++)
{ c[i]=sqrt(double(i));
}

}
1

2

3

4

5

6

7

8

Listing 1: Short example demonstrating basic OpenMP directives

Each thread will be assigned a subset of values of i to set in the array. Since
each array entry can be set independently, this code can be multithreaded
without resulting in a race condition. In basic usage like the example above,
the #pragma omp for directive is placed before loops over integers.
However, since version 3.0 of the OpenMP standard, it is possible to
parallelize a for loop using any C++ random access iterator.

In C++, each class can have associated iterator classes that are designed
to iterate over the elements of that class. There are several types of iterator,
differentiated by how much functionality they offer. The simplest is the
forward iterator, which supports basic operations for stepping forward
sequentially. The iterator a represents an index of the associated class, and
the forward iterator must support the operation a++ to step forward to the
next index. Thus, in the context of a Voro++ container, an iterator would store
the block index and point index of a particle, and the iterator would support
the operation a++ to step forward to the next particle, as illustrated in Fig.
6(a). Full requirements for the functionality of a forward iterator are available
in the C++ documentation [77].

11

In the multithreaded extension of Voro++, we created random access
iterators on all of the container classes to iterate over all of the particles.
These iterators support all of the functionality of a forward iterator, but also
contain additional functions for making arbitrary jumps in the particle
indexing. A key ability required by the random access iterator is to evaluate
a+n for an integer n, allowing the iterator to jump forward by n steps in the
index. This additional functionality is required since the threads need to start
at different points within a parallelized for loop (Fig. 6(b)). Figure 6(c)
illustrates how this works for a Voro++ container.

The Voro++ iterators contain all the functions listed in the random access
iterator standard [78]. This includes the dereference operators *a and a[n],
which resolve to the member of the class the iterator points to. However, in
the current context, dereferencing

Figure 6: (a) Illustration of using a forward iterator to represent particles in the container_2d
class of
Voro++. The forward iterator only allows the particle index to be stepped forward one at a
time. If the iterator a is pointing at the yellow particle, then a++ will step forward to the red
particle. (b) Requirement of iterator a to represent particles in the container of Voro++. The
iterator needs to be able to access particles at any arbitrary offset position relative to the
current particle that the iterator is pointing at. For ten particles in the container and two
parallel threads, thread 1 starts at a and thread 2 starts at a+5. (c) Illustration of using a
random access iterator to represent particles in the container of Voro++. The random access
iterator can access particles of any arbitrary offset positions relative to the current particle
that it is pointing at. Here, a+8 steps forward eight particles to the red particle.

is conceptually unclear, since the Voronoi cell associated with the iterator
does not exist in memory and must be subsequently computed. Because of
this, the dereference functions within the C++ iterators simply emit errors if
they are called. For Voro++, the iterators are used to index into the
container’s particles and loop through them, and thus the dereference
operators is not required in normal usage.

In addition to the standard iterator that loops through the particles, two
variations are provided: iterator_subset that can loop over a subset of
particles, and iterator_order that can loop over an ordered list of particles.

12

3.2.3. Example implementation
An example of the multi-threaded version of Voro++ is provided in Listing

2. The example demonstrates how to compute the Voronoi cells of a random
2D particle arrangement, and then calculate their average perimeter:

#include <cstdio>
#include <cstdlib>

#include "voro++.hh"
using namespace voro;

// Returns floating point number uniformly distributed over [0,1)
1

2

3

4

5

6

7

13

inline double rnd() {return (1./RAND_MAX)*static_cast<double>(rand());} int

main() {

// Number of parallel threads int
num_t=4;

// Number of particles to use int
N=100000;

// Construct a 2D container as a periodic unit square divided into a
// 160x160 grid of blocks. Each block initially holds up to 8 particles. The //
final argument sets the number of voro_compute objects for use by the //
threads. container_2d con(0.0,1.0,0.0,1.0,160,160,true,true,8,num_t);

// Add particles to the container for(int
i=0;i<N;i++) con.put(i,rnd(),rnd());

// Declare iterator container_2d::iterator
cli;

// Parallel Voronoi computation to compute the average Voronoi cell
// perimeter
double tperim=0.;

#pragma omp parallel
num_threads(num_t) {

// Thread-private Voronoi cell object and perimeter counter
voronoicell_2d c(con); double perim=0.;

// Iterate through the particles
#pragma omp for for(cli=con.begin();cli<con.end();cli+

+) if(con.compute_cell(c,cli))
perim+=c.perimeter();

// Add local perimeter counter to global perimeter counter using atomic
// operation to prevent race condition

#pragma omp atomic
tperim+=perim;

}

// Print average Voronoi cell perimeter
printf("Average␣Voronoi␣cell␣perimeter␣is␣%.12g\n",tperim/N);

}
8

9

10

11

12

13

14

15

16

17

18

19

20

21

14

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

Listing 2: Example code of multi-threaded Voro++

After creating the container on line 22, we then add N = 105 particles at random
on line

25. We then use OpenMP on the random access iterator, and distribute particles
to different

Assign workloads to
threads evenly

Assign workloads to
threads unevenly

(a) Even workloads

(b) Uneven
workloads

Table 1: Schematic illustration of load balancing among threads. (a) If iterations have identical
workloads, they should be assigned to threads evenly for higher efficiency. (b) If iterations
have uneven workloads, they should be assigned to threads unevenly, following some
strategies, so that the workloads among threads are balanced.

threads for parallel computation. Lines 27–49 demonstrate using the iterator
for parallel computation. On line 28 we declare an iterator of the container.
We then use the for loop on the iterator to loop through all the particles in

15

the container, as shown in lines 40 & 41. For each particle, we compute its
Voronoi cell (line 42) and then add its perimeter to a local counter, perim.
Note that in certain situations (e.g. when occluded by a wall) a Voronoi cell
may not exist. In this case the compute_cell function returns false, and
subsequent computation should be skipped.

For parallelization, we follow the standard OpenMP syntax. We mark the
start of the parallel block with #pragma omp parallel, and add the #pragma
omp for directive before the for loop. This simple implementation following
standard OpenMP and C++ practices is beneficial to the user. At the end of
the parallel block, on line 48, each thread adds its local perimeter counter to a
global counter, tperim. Since the threads are all writing to the global counter,
this operation is performed atomically to avoid a race condition. Once the
parallel block has terminated, the average perimeter is reported as ≈ 0.01265.

If the program is run with√ different particle numbers N, one finds that the

perimeter asymptotically behaves like 4/ N. Surprisingly, even though th√

is is fo√r a random particle arrangement, this asymptotic value matches the
perimeter of a N × N grid of squares covering the domain.

3.2.4. Load balancing
Load balancing is important for achieving good parallel performance. If the

iterations have even workloads, as shown in Table 1(a), they should be
assigned to threads evenly. In this way, all threads are busy working during
the full duration of the computation, and all threads finish at approximately
same time. In comparison, if the iterations are assigned unevenly to threads,
some threads will finish early and remain idle waiting for others to finish,
resulting in inefficient performance. On the contrary, if iterations have
uneven workloads, as shown in Table 1(b), then assigning an equal number
of each thread may result in substantial idle time. Better performance can be
achieved by distributing the iterations so that the total workloads are
balanced.

Parallel strategy Traits Schematic illustration

schedule(static)

1. Iterations are pre-assigned
evenly tothreads.
2. Good for identical
workloads.
3. Low overhead costs.

schedule(dynamic
)

1. Thread takes work as
available.

2. Good for imbalanced
workloads.

3. Higher overhead costs.

schedule(guided)

1. “Mixed”’ strategy:
Iterations are divided into chunks
with decreasing chunk sizes, for
threads to grab.
2. Some imbalanced
workloads.
3. Higher overhead costs.

16

Table 2: Three basic built-in OpenMP parallel strategies, their traits and schematic
illustrations of the work assignment process.

OpenMP provides a number of strategies for load balancing. Here we
explain in detail the three most basic strategies, schedule(static),
schedule(dynamic), schedule(guided), with Table 2 showing an overview of
their properties. For the schedule(static), iterations (which for Voro++
correspond to particles) are pre-assigned the threads by dividing the entire
set of work units into equal sections. This strategy is good for identical
workloads, and it has low overhead costs, since once the work is assigned,
each thread can operate independently. For the schedule(dynamic), each
thread takes a unit of work as available and is never idle. If a thread finishes
its work, it immediately takes the next iteration available. This strategy
comes with higher overhead costs since the threads must coordinate with
each other when taking more work. schedule(guided) is a mixed strategy.
Threads take work as available and are never idle, but rather than taking one
unit of work per time, each thread takes a chunk. Moreover, the chunk sizes
decrease as the assignment progresses. This is good for when there is some
imbalance in workloads, but does not offer as much flexibility as
schedule(dynamic). It also has high overhead costs.

Any of these strategies can be used with the multi-threaded Voro++
extension, by adding the corresponding keyword after the #pragma omp for
directive. For example, in Listing 2, changing line 40 to #pragma omp for
schedule(dynamic) will enable the dynamic assignment. In addition, there are
two modified strategies that accept an additional integer chunk option. In
schedule(static,chunk) the threads each take chunk work units at once to
process, rather than dividing up the total work into even sections. This still
does not require any thread coordination, but affects the work distribution.1 In
schedule(dynamic,chunk) the threads take chunk units of available work at
once. This cuts down on the overhead costs, since there are fewer points
where the threads must coordinate. Depending on the arrangement of
particles, one strategy may be preferred over another. In particular, Sec.
3.1.3 showed that for inhomogenous particle distributions, the Voronoi cell
computation can vary by a large factor. In this case, we expect that the
dynamic or guided scheduling strategy will be advantageous.

3.2.5. Parallel insertion of particles
In Listing 2 the time spent on computing the Voronoi cells is much larger

than the time spent on inserting the particles into the container.
Nevertheless, once the particle system grows larger, the time for particle
insertion becomes substantial. Because of this, we also developed an
approach for inserting particles into the container in parallel.

As shown on line 25 of Listing 2, the put(...) function is used to insert a
particle into the container in serial. Internally, this function first computes the
block index k that the particle lies within. The container class has two array

1 For example, consider two threads operating on the integers (0,1,...,15). With
schedule(static) the work is given to the two threads as (0,1,...,7) and (8,9,...,15). With
schedule(static,3) the first thread receives the chunks (0,1,2),(6,7,8),(12,13,14) and the second
thread receives the chunks (3,4,5),(9,10,11),(15) with the final chunk being truncated.

17

entries associated with the block: co[k] is the total number of particles
currently in the block, and mem[k] is the total number of memory slots
allocated for the block, typically initialized to 8 at the start of the
computation. The put(...) function therefore does the following:

I. If co[k]==mem[k] then all memory slots are full. In this case,
dynamically reallocate the memory for this block, and double the
available slots.

II. Add the particle information in the co[k] slot, and then increment co[k].

This routine is not thread-safe for two reasons: (a) if two threads try to
reallocate the memory simultaneously it will be corrupted, and (b) if two
threads try and increment co[k] simultaneously this will create a race
condition.

In the multithreaded extension, we created a function put_parallel(...) that
can insert particles into the container in a thread-safe manner. This function
also requires an overflow buffer for storing some particles. The
put_parallel(...) does the following:

I. Use the #pragma omp atomic capture directive on the operation l=co[k]
++. This function will atomically increment co[k] while storing its
previous value in the variable l.

II. If l>=mem[k] there is no available memory slot. Store the particle in the
overflow buffer.

III. If l<mem[k], store the particle into slot l.

In step I., the atomic capture directive ensures that each thread will obtain a
unique slot number to write into. For example, if co[k] = 2 and two threads
insert a particle into this block, then one is guaranteed to obtain l = 2 and the
other is guaranteed to obtain l = 3.
Afterward co[k] = 4.

Within put_parallel(...), it is not possible to dynamically reallocate the
memory, since this could interfere with other threads. Hence, if a block has
no available slots, it must be stored into the overflow buffer. Assuming that
the block memory was roughly allocated correctly beforehand, the number of
particles going to the overflow buffer should be a small fraction of the total.
The overflow buffer operations are done within an OpenMP critical section of
code, so that only one thread operates on the buffer at one time. If the
overflow buffer runs out of space, this thread can dynamically extend the
buffer without causing a race condition. Once all of the particles have been
added with put_parallel(...), it is necessary to call a function
put_reconcile_overflow(). This function operates serially on the overflow
buffer, and dynamically extends the block memory as needed to ensure there
are enough available slots to insert any remaining particles.

Using parallel insertion can cause the code to produce slightly different
results when it is repeated. Depending on the exact timing of the threads,
which differs from run to run, the particles may be inserted into the blocks in
a different order. This reordering can have a minor effect on the floating point

18

errors that are incurred during the Voronoi cell construction. The code also
contains a function add_parallel(pt_list,num,nt_) that takes in a pointer pt_list
to array of num particle positions stored as (x,y,z) triplets, with an additional
radius argument for the polydisperse containers. It performs a multi-threaded
insertion of the particles into the container using nt_ threads.

4. Parallel Performance

4.1. Voronoi cell computation
We first examine the performance of the multithreaded code for three

representative non-periodic particle arrangements, using both a 2D domain
[0,1]2 and 3D domain [0,1]3. They are:

I. Homogeneous – 108 particles randomly and homogeneously distributed
throughout the domain.

II. Localized – We define a square of area 0.1 in 2D, or a cube of volume
0.1 in 3D, positioned in the center of the domain. We take the 108

particles from the previous case, and keep only those within this region,
resulting in approximately 107 particles in total.

III. Extreme clustering – We use an uneven distribution clustered around

the regions ,

, and (for 3D only). This is achieved by generating each particle
coordinate as a non-uniformly distributed random variable. In the x
direction, the number X is chosen to be uniformly distributed over [0,1],
and then the particle coordinate is set to

, resulting in clustering near . The same procedure is used
in

the other directions.

Figure 7 shows examples of the three particle arrangements in both 2D and
3D, but with a reduced number of particles for ease of visualization. The grid
of blocks is set according to the method described in Sec. 3.1.4, but with
specific choices of Nopt are shown in Table 3. For the homogenous case we use
the default choices of Nopt. For the other two cases, we scan

Container
initialization

2D 3D

Nopt nx,ny Nopt nx,ny,nz

(a) Homogeneous 3.4 5,42
3

4.6 279

(b) Localized 30 1,82
5

49 126

(c) Extreme
clustering

0.5 14,1
42

0.5 584

Table 3: Choices of Nopt and the size of the grid of blocks for the three different example
particle configurations, in 2D and 3D.

19

over a range of values of Nopt and choose the one that results in the fastest
execution. Since the structure of these two cases differs considerably from the
homogenous arrangement, we find that the best values of Nopt are quite
different. For example, for the extreme clustering case we use the much
smaller value of Nopt = 0.5, since this provides better spatial sorting of the
clustered particles.

Here, and throughout Sec. 4 all tests were performed on a Ubuntu Linux
computer with dual Intel Xeon E5-2650L v4 processors with 14 low-power
cores and a 1.7GHz base clock speed. We measure the time to compute all of
the Voronoi cells, without performing any analyses on them. For each case,
we compare the five OpenMP load balancing strategies introduced in Sec.
3.2.4. For the two chunk-based strategies, we first scan over a range of
chunk sizes from 1 to 100 with the 28-thread parallel code, and choose the
one with the lowest computation time. We report this chunk size in our
results. The relevant measures of parallel performance are:

I. The wall-clock time tp required to compute all Voronoi cells using p
threads.

II. The parallel efficiency calculated as

, (4)

which measures the effective slowdown from the hypothetically perfect parallel
scaling.

The computation time and parallel efficiency are affected by Intel’s Turbo
Boost technology, which boosts the clock speed based on the number of
active cores. For the E5-2650L v4 chip, the clock speed is boosted by 0.8GHz
when a single core is in use, but this is reduced to 0.3GHz when six or more
cores are used. This creates a clear signature in the parallel efficiency data,
since the wall-clock times for many threads are increased because the CPU
slows down. We explore this issue in detail in Appendix A. Since we aim to
examine the performance of the code independent of hardware intricacies,
we work with the adjusted parallel efficiency, which factors out the Turbo
Boost effect. This is computed as

, (5)

where
average clock speed for 1 thread

A(p) = . (6)
average clock speed for p threads

20

Figure 7: Illustration of three particle distribution cases in both 2D and 3D, but scaling down
the particle number by 1/105 for ease of visualization. (a) Homogeneous and random particle
distribution with 1000 particles. (b) Localized and random particle distribution with 95
particles. (c) Extreme clustering particle distribution with 1000 particles.

The details of how the average clock speeds are computed are provided in
Appendix A. We account for Turbo Boost in the parallel efficiency, but we
report the original wall-clock computation times, since they give a reasonable
estimate for the Voronoi cell computation in a real world setting where Turbo
Boost is enabled by default.

4.1.1. Comparison of the three example cases
Figure 8 shows the adjusted parallel efficiency of the five strategies as a

function of the number of threads, for the three different particle
arrangements in both 2D and 3D. Since the computer has 28 physical cores,
we find that the parallel efficiency drops substantially beyond 28 threads in
all cases, and thus we limit our discussion to the results for the first 28
threads. Table 4 shows the computation time using the serial code, and the
optimal 28-thread parallel code for the three cases in both 2D and 3D. For
each 28-thread time, we report the parallel strategy that achieves this
optimal result.

4.1.1.1. Comparison of different particle arrangements. Figure 8 shows that
for the homogeneous particle distribution the parallel efficiencies are similar
among the strategies, and

21

Figure 8: Adjusted parallel efficiency against number of threads of the five load balancing
strategies, for the three example cases in both 2D and 3D. (a) Homogeneous and random
particle distribution. (b) Localized and random particle distribution. (c) Extreme clustering
particle distribution.

Wall-clock time (s)

2D 3D

1
thread

28
threads

Opt.
strategy

1
thread

28
threads

Opt.
strategy

(a) Homogeneous 150.53 7.03 (guided) 2099.7
2

93.34 (guided)

(b) Localized 39.88 2.03 (dynamic,3
8)

589.62 26.85 (dynamic)

(c) Extreme
clustering

1030.1
2

45.45 (dynamic,6
0)

10368.
70

464.96 (dynamic,1
8)

Table 4: Voronoi computation time with the serial code and the 28-thread parallel code for
the three example cases in both 2D and 3D, using each case’s optimal strategy.

all are in the high range above 80% in 2D and 95% in 3D. In comparison, for
the localized particle distribution, the parallel efficiencies are very different,
with schedule(guided) and schedule(static) performing significantly worse
than the others. This large difference is also true for the extreme clustering
case. For a container with random and homogeneous particle arrangement,

22

we expect that the computation time for each Voronoi cell to be similar, as
the Voronoi cells are of similar size. Therefore, particles have similar
workloads. No matter what strategies we use to distribute particles to
threads, the threads have similar workloads as well, thus resulting in the
similar performance among the five strategies.

However, for the random and localized distribution of particles, where the sizes
of

Voronoi cells are only restricted by the container, many particles in the outer
layer have extended Voronoi cells that take much longer to compute as
described in Sec. 3.1.3. The imbalance in the workload causes
schedule(static) and schedule(guided) to perform substantially worse, with
parallel efficiencies dropping below 50%. schedule(dynamic) performs much
better, achieving efficiencies above 90% in 2D and 95% in 3D. In addition,
both schedule(dynamic,chunk) and schedule(static,chunk) can have similar
parallel performance to schedule(dynamic), if optimal chunk sizes are
chosen. Table 4 shows that the total computation times for the localized case
are less than the homogenous case, although the localized case only has a
tenth of the particles of the homogenous case. The localized case takes
considerably longer per particle.

For the extreme clustering case, there are many more particles
concentrating in the grid blocks in the domain center. The Voronoi
computation for these particles are substantially more expensive than the
Voronoi computation for particles in less dense regions. When Voro++
computes Voronoi cell of a particle, it will loop through all neighboring
particles in the nearby grid blocks (Sec. 3.1.3), and thus more particles will
be considered. In addition, the uneven distribution creates imbalanced
workload since the particles in the center will take longer to compute than
those in the periphery. Therefore, similar to the localized case, we see that
schedule(dynamic) has huge benefits and performs much better than
schedule(static) and schedule(guided). Also, schedule(static,chunk) and
schedule(dynamic,chunk) are able to perform as well as schedule(dynamic),
if optimal chunk sizes are chosen. Table 4 shows that the total time for the
extreme clustering case is considerably longer than for the homogenous
case.

4.1.1.2. Comparison of 2D and 3D Voronoi computation. 3D Voronoi cells are
much more complicated than 2D Voronoi cells. A 2D Voronoi cell is a simple
polygon, where every vertex is connected to two others. By constrast,
representing a 3D Voronoi cell requires an edge table with varying
connectivity between the vertices. This difference is clear in the timing data
for the homogenous case in Table 4: the serial code computes 664000 cells
per second in 2D, but only 47600 cells per second in 3D.

Since each 3D Voronoi cell computation involves a larger amount of work,
the code can achieve higher threading efficiency in 3D, because
comparatively less time is lost to overhead in parallelizing the loop. In Fig. 8
for the homegeneous case with schedule(dynamic), the 2D computations
only achieve efficiencies of ≈ 75% for large thread counts, whereas the 3D
computations achieve efficiences over 95%. The data in Fig. 8 shows that the

23

Figure 9: Adjusted parallel efficiency as function of the number of particles. The data
obtained is from the homogeneous particle distribution case in both 2D and 3D, both using
schedule(guided).

schedule(dynamic,chunk) strategy substantially improves the efficiency of
the 2D computations, since proportion of time spent on thread assignment
will be reduced. With this strategy, the 2D computations can achieve thread
efficiencies approaching 95%, as in the 3D case.

4.1.2. Code performance for different system sizes
We now examine the performance of the code for a random homegenous

particle system when the total number of particles N is varied. For each case,
the grid of blocks is again set according to the method described in Sec.
3.1.4, and the values of Nopt remain 3.4 for 2D and 4.6 for 3D. We use the
schedule(guided) strategy, which was previously shown to achieve very good
parallel efficiency when N = 108, in both 2D and 3D (Fig. 8). We compute
parallel efficiencies by comparing the performance of a single thread to the
performance of 28 threads. As shown in Fig. 9, the parallel efficiencies remain
roughly constant over the range from
N = 105 to N = 108. The Voronoi cell computations are well suited to parallel
computation, and even for N = 105 there is sufficient work for the particles to
be parallelized effectively. As expected, the parallel efficiencies seen in 2D
are lower than those in 3D. Some small fluctuations in parallel efficiency are
observed in Fig. 9, particularly for lower particle counts in 2D. Because the
wall clock times for these computations are shorter, they are more
susceptible to small variations in computation time.

4.1.3. Effects of clipping extended Voronoi cells
To illustrate further the effect of extended Voronoi cells on the

computation cost, we examine another case where the Voronoi cells are
clipped by a bounding volume. This is demonstrated in Fig. 10 where the
Voronoi cells for the 3D localized arrangement of Fig. 7 are clipped by a
bounding cube centered on each particle. Clipped Voronoi cells are useful in

24

Figure 10: Illustration of the 3D localized particle distribution test from Fig. 7, but where the
Voronoi cells are each clipped by a bounding cube of side length h as described in the text.
Here, the total number of particles has been scaled down by a factor of 105 from the
computational test for ease of visualization. Correspondingly, the clipping length h has been
scaled up by a factor of 105/3.

some practical situations [21, 29], such as when particles have a finite
interaction range, and extended Voronoi cells provide no practical
information.

Voro++ can clip Voronoi cells by any convex polyhedron centered on each
particle. This is achieved by starting each Voronoi cell computation using a
fixed shape, instead of making it fill the computational domain as described
in Sec. 3.1.2. Here, we consider the 3D test using the localized particle
arrangement shown in Fig. 7, with the domain [0,1]3. This configuration was
made by generating N′ = 108 candidate particle positions at random, and then

retaining the N ≈ 107 in a central cube covering√10% of the domain volume.
We clip each Voronoi cell using a cube with side length h = 1.5 3d0, where d0 = (N
′)−1/3 represents a typical inter-particle separation length in the container.
Figure 10 shows an illustration of the clipped Voronoi cells.

As shown in Fig. 11, for the same localized particles in the container, using
schedule(dynamic), the computation time is significantly lower for clipped
Voronoi cells. For the original localized case of extended Voronoi cells, the
computation time is 589.62s for one thread and 26.85s when using 28 threads.
In comparison, when the Voronoi cells are clipped, the computation time
decreases to 218.63s with one thread and 10.01s with 28 threads. Therefore,
compared to the extended Voronoi cells, the computational costs for clipped
Voronoi cells are significantly lower, and in both serial and parallel cases, there is
a three-fold speedup in computation time. These timing results will depend on
the size of the clipping region, with larger h0 requiring more time, and smaller h0

requiring less time. With the clipped cells, the size of the search space in the
Voronoi cell construction (Sec. 3.1.3) is substantially reduced, improving the
performance. Furthermore, using clipped cells removes the large disparities in
computation time between different Voronoi cells, so the schedule(static)
parallelization strategy will give good performance.

25

Figure 11: Computation time using different numbers of threads for the 3D localized particle
distribution test using (a) the original Voronoi tessellation with many extended Voronoi cells,
and (b) clipping each Voronoi cell by a bounding cube of side length h as described in the
text. In both cases, the optimal strategy of schedule(dynamic) was used.

4.2. Performance of the parallel insertion routine
We now test the performance of the parallel insertion routine that was

described in Sec. 3.2.5. We test in 2D and 3D using the domains [0,1]2 and
[0,1]3, respectively, with 108 homogenous random particle positions. We use
the default values of Nopt = 3.4 and Nopt = 4.6 for the 2D and 3D calculations,
respectively. In each case we use an initial assignment of mem[k] equal to 8.
The total number of particles in each block is well-approximated by a Poisson
distribution, Pois(Nopt). This results in 0.83% and 4.51% of blocks exceeding
the initial memory allocation in 2D and 3D, respectively. We expect 0.36%
and 1.66% of the total particles will be placed into the overflow buffer in 2D
and 3D, respectively.

We note that the performance of parallel insertion will depend
substantially on many factors. Due to the small difference in Nopt between 2D
and 3D, this results a 4.6-fold difference in the number of particles going into
the overflow buffer. Since the overflow buffer is processed serially at the end
of the insertion, this will affect parallel efficiency. This will also depend upon
the particle configuration; for example, in molecular dynamics simulations
often employ a repulsive potential at a short well-defined length scale (e.g.
the Lennard-Jones potential [79]). This causes particles to be spatially
distributed more evenly than uniform random samples, so that the overflow
buffer may not be needed. In constrast, particle configurations like the
extreme clustering case of Fig. 7 may have a large fraction of particles going
to the overflow buffer.

In many practical uses of Voro++, the Voronoi tessellation may be
computed at multiple time points in a simulation, where the particle positions
only vary slightly between successive snapshots. To handle this scenario,
Voro++ has the ability to re-use the container data structure, by clearing the
particles for inserting a new configuration. This is achieved by

Wall-clock time (s), 2D 3D

26

add_parallel(...)
1
thread

28
threads

1
thread

28
threads

With overflow buffer 72.76 3.43 72.65 5.34
No overflow buffer 72.37 3.03 73.65 3.06

Table 5: Average computation time for the parallel particle insertion test. For each case, the
insertion is performed once, when the overflow buffer will be used. The container is cleared
and the insertion is repeated. Since block memory was extended during the first test, the
overflow buffer will not be used on the second insertion. Each test was performed ten times,
and the average wall-clock times are shown for the serial code and 28-thread parallel code in
both 2D and 3D.

zeroing out the block-based particle counters co[k], but leaving any extended
memory allocation mem[k] in place. Thus, assuming only small movements in
particles, the previously extended block memory should be well-matched to
the new particle configuration and only a small number of particles will need
to be placed in the overflow buffer.

To illustrate this and isolate the effect of the overflow buffer, we perform a
sequence of two parallel insertion tests, in both 2D and 3D. We generate a
list of N uniformly distributed particle positions, and call the add_parallel(...)
function to add these particles into the container. On the first time, some
particles will be placed into the overflow buffer, and will then be reconciled
and store serially via the put_reconcile_overflow() function. This will result in
mem[k] being adjusted to accommodate the additional particles. We then
clear the container and make another add_parallel(...) call to reinsert the
particles. Since the block memory was already extended to accommodate
this particle configuration, zero particles will be placed into the overflow
buffer on this second test. Each test was performed ten times with between 1
and 28 threads, and the average wall-clock time was recorded to calculate the
average parallel efficiency. Since the parallel insertion routine involves both
parallel and serial components, the changing clock frequency complicates the
performance analysis. We therefore turn off Turbo Boost, so that all cores run
at the same clock frequency regardless of the number of active threads. The
average wall-clock time for the serial code and the 28-thread parallel code in
both 2D and 3D are reported in Table. 5.

4.2.1. Efficiency against number of threads
Figure 12 show the results of parallel insertion in 2D and 3D using N = 108

particles with a varying number of threads. On the first time, when the
overflow buffer is used, the parallel efficiency in 2D is approximately 76%
using 28 threads. In 3D, parallel efficiency is lower, and gradually descreases
to 29% when 28 threads are used.

On the second time, without using the overflow buffer, the 28-thread
parallel efficiency is approximately 85% in both 2D and 3D. These results
indicate how the overflow buffer substantially affects the efficiency. The
worse parallel performance in 3D is due to more particles being placed into
the overflow buffer. The number of particles being placed into the overflow
buffer averaged over ten tests are 356,044 and 1,675,330 for 2D and 3D,
respectively, which are consistent with the aforementioned calculations using
the Poisson distribution.

27

Figure 12: Average parallel efficiency for the parallel particle insertion test of 108 particles
using a varying number of threads. For each case, the insertion is performed once, when the
overflow buffer will be used. The container is cleared and the insertion is repeated. Since
block memory was extended during the first test, the overflow buffer will not be used on the
second insertion. Each test was performed ten times, and the average
wall-clock times were recorded to calculate the average parallel efficiency.

Figure 13: Average parallel efficiency for the parallel particle insertion test of a varying
number of particles, using 28 threads. For each case, the insertion is performed once, when
the overflow buffer will be used. The container is cleared and the insertion is repeated. Since
block memory was extended during the first test, the overflow buffer will not be used on the
second insertion. Each test was performed ten times, and the average
wall-clock times were recorded to calculate the average parallel efficiency.

4.2.2. Efficiency against number of particles
Figure 13 shows the parallel efficiency using 28 threads as number of

particles N is varied. For both 2D and 3D, we observe a clear trend of
increasing parallel efficiency for larger N, demonstrating that parallel
insertion becomes more effective for larger particle configurations. We also
see that with overflow buffer, the 3D case has worse parallel efficiency.
Without overflow buffer, the parallel efficiencies are comparable in 2D and
3D, consistent with the results of Sec. 4.2.1.

28

Figure 14: A central red atom and its Voronoi cell, surrounded by gold-colored neighboring atoms.

5. Application: Topological analysis using VoroTop

Voronoi tessellations are commonly used, among other applications, in the
classification of local, structural features of atomistic data sets [57, 80, 81,
82]. Computational material scientists and physicists, for example, are often
interested in identifying localized defects in materials [57], or else in
characterizing the structure of nominally disordered systems such as liquids
[83, 84], granular packings [39, 85], and soft glassy materials [86, 87].
Voronoi cells provide a proxy for describing local arrangements through
consideration of their geometric and combinatorial properties [31, 88, 89].

Voronoi topology provides a robust method of classifying local structure
[57, 60]. In particular, the types of faces of a Voronoi cell and the manner in
which they are arranged describe the manner in which neighbors are
arranged relative to a central particle and to one another. Figure 14
illustrates a central red atom and its Voronoi cell, surrounded by gold-colored
neighboring atoms. Each face of the Voronoi cell corresponds to a unique
neighboring particle, and so the total number of faces can be considered as a
count of neighbors. Furthermore, the number of edges of a face counts the
number of common neighbors between the central particle and the
associated neighbor. A five-sided face, for example, indicates that the central
particle shares five neighbors in common with the associated particle. In
finite-temperature systems, particles are located in “general position” and
small perturbations of the coordinates do not change features such as
numbers of faces and edges, making them particularly useful for analyzing
noisy data. Voronoi topology is thus particularly well-suited for studying high-
temperature crystalline systems, where conventional methods such as
centrosymmetry and common-neighbor analysis are typically ineffective [90].

Fully characterizing the topological structure of a Voronoi cell can be done
efficiently using an algorithm of Weinberg [66] designed to determine
whether two planar graphs are isomorphic. Although the general graph-
isomorphism problem is not known to be solvable in polynomial time, the
edge graphs associated with Voronoi cells, as convex polyhedra, are always
3-connected and planar [91]. This enables the use of Weinberg’s graph-
tracing algorithm to provide a systematic description of Voronoi cell
topologies. In particular, Weinberg’s algorithm traces the edge network of a
graph to produce a unique “code”; two
Voronoi cells are topologically equivalent if and only if their codes are
identical. This algorithm takes as input a representation of a planar graph
and outputs a code whose length is twice the number of edges of the graph.

29

Constructing each code is done in O(n2) time, where n is the number of faces
of the Voronoi cell. Voronoi cells in uniformly distributed particle systems
typically have a narrow range of faces (between 10 and 20), but this number
can grow for non-uniformly distributed ones.

Calculating the Voronoi cell topology for large particle systems is a good
test case for a multi-threaded version of Voro++ because the Weinberg code
for each cell is computed individually after the Voronoi cell itself has been
constructed. A program called VoroTop, developed by Lazar, uses Voro++ to
calculate the Voronoi cells and then implements Weinberg’s algorithm to
produce a code for each particle, enabling further structural analysis [64].
When limited to running with a single-thread, the ability to analyze large
systems is limited. While smaller systems can be analyzed separately in
parallel using batch runs, this approach is ill-suited for large systems where
memory constraints may limit the number of systems that can be computed
simultaneously. We have thus incorporated the multithreaded version of
Voro++ into an updated version of VoroTop to take advantage of its parallel
architecture.

To test the efficiency of the multithreaded Voro++ in VoroTop, we
considered systems with between 100,000 particles and 102.4 million
particles. These systems were analyzed on a single computer with two Intel
Xeon Gold 6240 CPUs running at 2.60GHz. Each of the two processors has 18
cores, allowing us to run up to 36 threads while limiting each core to a single
thread. Running VoroTop and Voro++ with more threads than physical cores
can still reduce total runtime, even while decreasing overall parallel
efficiency. Running VoroTop and Voro++ with more than 72 threads,
however, led to decreased total performance, as the overhead cost
associated with running more than two threads per core outweighed gains
from multithreading. To better understand the impact of the parallel version
of Voro++ on this topological analysis, no further computations, such as
structure classification, were performed.

As in Sec. 4.2, we turned off Turbo Boost for this test. This reduces total
performance but enables a simpler comparison of efficiency of the parallel
versions of Voro++ and VoroTop. Furthermore, we only considered the
schedule(dynamic) strategy. We constructed systems with each given
number of particles, distributed randomly and uniformly in the unit cube with
periodic boundary conditions. Each system was analyzed ten times with
between 1 and 50 threads, and the average wall-clock runtime was recorded
for computation of the Voronoi cells and the computation of their Weinberg
codes.

Figure 15 shows the average wall-clock time for each system as a function
of number of threads. It can immediately be seen that the total average wall-
clock time decreases with additional cores, as expected. Figure 16 shows the
unadjusted parallel efficiency Te computed via Eq. (4) for different systems
sizes and numbers of threads. Parallel efficiency is over 95% when the
number of threads is at most equal to the number of physical cores, in this
case 36. Figure 17 illustrates the parallel efficiency as a function of system
size, for different numbers of threads. This efficiency is close to 95% in
systems with at least half a million particles. Voronoi topology analysis
through VoroTop thus provides an example in which implementation of a

30

multithreaded version of Voro++ facilitates a significant speedup in practical
applications.

Figure 15: Computation time against number of threads for the different systems. The two
guidelines are graphs of functions proportional to 1/threads.

Figure 16: Parallel efficiency as a function of threads for systems with different numbers or
particles. For systems with at least half a million particles, VoroTop runs at over 95% parallel
efficiency when the number of threads is at most the number of physical cores.

31

Figure 17: Parallel efficiency as a function of number of particles for different numbers of
threads. For systems with at least half a million particles, VoroTop runs at over 95% parallel
efficiency when the number of threads is at most the number of physical cores.

6. Conclusion

In this paper we have introduced a multithreaded extension to the Voro++
library using the OpenMP standard. Since Voro++ constructs each Voronoi
cell individually, it is ideally suited for multithreaded computations, and we
demonstrate parallel efficiencies above 95% across a range of different
examples in 2D and 3D. Our extension to Voro++ is designed to follow
standard OpenMP programming methods, making it straightforward for users
to incorporate into their own programs. In Sec. 5, we presented an example
of this using the
VoroTop software package, where both Voronoi cell calculations and topology
analysis were performed within an OpenMP loop, again resulting in
efficiencies above 95%.

There are a number of extensions to consider. First, as described in Sec.
3.1.1, Voro++ is based upon dividing the computational domain into a
regular grid of blocks. This simple data structure is efficient to compute on. It
is also well-suited to roughly even particle distributions, since each block is
responsible for a similar number of particles. One of the primary usages of
Voro++ has been in analysis of molecular dynamics (MD) or discrete-element
method (DEM) simulation, where particles often have a fixed interaction
length, and therefore tend to have roughly even distributions, leading to
good performance. However, there are other scenarios, such as computing
the Voronoi tessellation for gravitationally interacting particles, where
particles may be heavily clustered in small parts of the domain. In this case,
the particles are unevenly distributed, resulting in worse performance. This
was demonstrated in the extreme clustering example, which ran substantially
slower than the homogeneous example despite having the same number of
particles (Table 4). One possibility to improve this would be to sort the
particles into a structure like a k-d tree [92] or quad/octree [93], which would

32

allow clustered regions of particles to be adaptively refined. This would entail
a more complicated search through the blocks when computing a Voronoi
cell, since the blocks would no longer be of uniform size. Applying a
restriction in the tree construction (e.g. using a graded grid [94, 95]) may
help simplify the implementation and reduce the number of cases that need
to be considered. Since the tree data structure would even out the particles
among the blocks, it would likely improve the parallel efficiency of the
OpenMP implementation.

Another possible extension is to explore distributed memory calculations,
which would allow the library to handle even larger particle systems, such as
those generated by supercomputing facilities. Furthermore, many codes that
are designed for supercomputers already use distributed parallel
programming, such as via the Message Passing Interface (MPI). Thus if Voro+
+ could work in a distributed parallel setting, it could directly interface with
the parallel simulation, rather than having to save the data and reload it for
analysis. The issue of saving and reloading data is an important performance
bottleneck in distributed parallel computing, and has previously been
addressed in related work in the context of GPU parallelization [82].

Computing Voronoi cells in a distributed parallel environment is
considerably more challenging than the multithreaded case and requires
different algorithms. It is necessary to communicate to neighboring
processors to obtain some of their particle positions. For dense particle
arrangements, it should usually be sufficient for each processor to obtain
particles in a region of fixed width beyond its domain, and then use those to
apply plane cuts during the Voronoi cell construction. This is the approach
taken by the voronoi command in LAMMPS [43]. However, in some situations,
such as when a Voronoi cell extends out by a long way in one direction (Fig.
5(b)), the fixed-width region will be insufficient to completely determine the
Voronoi cells. Because of this the parallel implementation would also have to
allow for the possibility of non-local communication, where a processor could
potentially talk to any other to obtain its particle information. These are
interesting parallel computation challenges that can be explored in future
work.

Acknowledgements

This research was supported by a grant from the United States–Israel
Binational Science Foundation (BSF), Jerusalem, Israel through grant number
2018/170. C. H. Rycroft was partially supported by the Applied Mathematics
Program of the U.S. DOE Office of Advanced Scientific Computing Research
under contract number DE-AC02-05CH11231. Additional support from the
Data Science Institute in Bar-Ilan University is also gratefully acknowledged.

Appendix A Turbo Boost and parallel efficiency

Modern Intel CPUs make use of the Turbo Boost technology, which boosts
the CPU clock speed from its base value, depending on many factors (e.g.
CPU temperature and available power). Most significantly, Turbo Boost
depends on the number of cores in use. Our test system has dual Intel Xeon
E5-2650L v4 processors with a base clock speed of 1.7GHz.

33

Cores in
use

Normal frequency each core
(GHz)

Turbo Boost frequency each core
(GHz)

1–2

1.7

2.5
3 2.3
4 2.2
5 2.1

6–14 2.0
Table 6: Normal clock frequency and Turbo Boost frequency for Intel Xeon E5-2650L: v4
microprocessor used in the performance tests.

Figure A.1: Comparison of parallel efficiencies against number of threads, with Turbo Boost
on, and with
Turbo Boost off. The data obtained is from the homogeneous particle distribution case in 3D,
using its optimal strategy schedule(guided). The data with Turbo Boost off is obtained from
four runs of the same test. We take the minimum computation time of the four runs against
number of threads, and calculate the parallel efficiency using the minimum time. This avoids
small timing fluctuations and gives a more representative picture in parallel performance.

Table 6 shows the boosted clock speeds in terms of the number of cores in
use, ranging from 2.5GHz for a single core to 2.0GHz six or more cores.

Turbo Boost has a noticeable effect on the measurement of parallel
efficiency. Figure A.1 shows the parallel efficiency for the random
homogeneous test case with 108 particles with the schedule(guided) strategy,
evaluated using Eq. (4). Once the number of threads reaches 12, the parallel
efficiency plateaus at ≈ 80%. This is precisely in agreement with the ratio of
clock speeds from 2.5GHz to 2.0GHz. This suggests that the reduction in
efficiency is almost entirely explained by Turbo Boost, rather than effects of
the Voro++ parallelization. To verify this, we switched off Turbo Boost so that
that the clock speed remains at 1.7GHz regardless of the number of cores in
use. Figure A.1 shows the parallel efficiency for this case. Even though the
simulation is slower overall, the parallel efficiencies remain close to 100%,
confirming that Turbo Boost is responsible for the loss in parallel efficiency.
Across many of the timing results, Turbo Boost has a clear signature in the
unadjusted parallel efficiency, with plateaus at 80% visible (Fig. A.2).

34

For the timing tests, we aim to use a measure of parallel efficiency that is
not closely tied to the computer hardware. One approach is to switch off
Turbo Boost completely, but this results in an overall loss of performance,
and is not reflective of typical computer usage. We therefore decided to
adjust the efficiency calculation to factor out the Turbo Boost as given in Eq.
(5), scaling the usual measure by a factor of A(p) for p threads. Our first
approach to construct the adjustment was by using the frequencies of Table
6, so that boost frequency for a single thread

A(p) = . (7)
boost frequency for p threads

However, this approach is not suitable for the less efficient strategies. For
example, the schedule(guided) strategy of the 2D localized case has low
efficiencies. During this computation, some threads become idle while
waiting for other threads to finish their computation, and therefore the Turbo
Boost frequency changes depend on the number of active cores. Since the
adjustment in Eq. (7) assumes that all threads remain active, it can
overestimate the parallel efficiency.

We therefore used a more general and accurate way to calculate the
adjusted parallel efficiency by replacing the boost frequencies in Eq. (7) with
average clock speeds of the computation. Average clock speed represents
the true computational speed, and it is computed by dividing the total
unhalted core cycles by the total task-clock time. Unhalted core cycles is a
hardware performance counter, and can be measured for each thread using
perf, a Linux performance analyzing tool [96]. The number of unhalted core
cycles for a thread captures the CPU cycles run on the thread when the
thread is active, which is an estimate of the work that the thread contributes
to the parallel computation of the program. Specifically, we use
perf_event_open with the PERF_COUNT_HW_CPU_CYCLES configuration option
for measurement [97]. Task-clock time is a software performance counter,
and it can be measured for each thread using the
PERF_COUNT_SW_TASK_CLOCK configuration option with perf_event_open
[97]. The task-clock time of a thread reports a clock count specific to the task
that is running on that thread.

We then measure unhalted core cycles Cserial and the task-clock time
Tserial

task that the computation uses for the serial code. For the parallel code,
we measure the unhalted cycles
Ci the task-clock time Ti

task for each thread i = 1,...,p. Then we compute

average clock speed for 1 thread , (8)

average clock speed for p threads , (9)

which are used in Eq. (6) to compute the adjustment factor.

35

)(b)(aF
C
C

B
C
C

H
C
P

(c)

Figure A.2: Unadjusted version of the parallel efficiency shown in Fig. 8, for the three particle
arrangement cases in both 2D and 3D. (a) Homogeneous and random particle distribution.
(b) Localized and random particle distribution. (c) Extreme clustering particle distribution.

References

[1] G. Voronoi, Nouvelles applications des paramètres continus à la theorie
des formes quadratiques, Journal für die Reine und Angewandte
Mathematik 133 (1907) 97–178.

[2] A. Okabe, B. Boots, K. Sugihara, S. N. Chiu, Spatial Tessellations:
Concepts and Applications of Voronoi Diagrams, Wiley, 2009.

[3] L. P. Chew, R. L. S. Dyrsdale, Voronoi diagrams based on convex distance
functions, in: Proceedings of the First Annual Symposium on
Computational Geometry, SCG
’85, Association for Computing Machinery, New York, NY, USA, 1985, pp.

235–244. doi:10.1145/323233.323264.

[4] R. Klein, D. Wood, Voronoi diagrams based on general metrics in the
plane, in: R. Cori,
M. Wirsing (Eds.), STACS 88, Springer Berlin Heidelberg, Berlin,
Heidelberg, 1988, pp. 281–291. doi:10.1007/BFb0035852.

36

[5] J. G. Puckett, F. Lechenault, K. E. Daniels, Local origins of volume fraction
fluctuations in dense granular materials, Phys. Rev. E 83 (2011) 041301.
doi:10.1103/PhysRevE.

83.041301.

[6] N. Guo, J. Zhao, Local fluctuations and spatial correlations in granular
flows under constant-volume quasistatic shear, Phys. Rev. E 89 (2014)
042208. doi:10.1103/ PhysRevE.89.042208.

[7] C. H. Rycroft, A. Dehbi, T. Lind, S. Güntay, Granular flow in pebble-bed
nuclear reactors: Scaling, dust generation, and stress, Nuclear
Engineering and Design 265 (2012) 69–84.
doi:10.1016/j.nucengdes.2013.07.010.

[8] B. Rajaram, A. Mohraz, Steady shear microstructure in dilute colloid-
polymer mixtures, Soft Matter 8 (2012) 7699–7707.
doi:10.1039/C2SM25936B.

[9] C. L. Phillips, C. R. Iacovella, S. C. Glotzer, Stability of the double gyroid
phase to nanoparticle polydispersity in polymer-tethered nanosphere
systems, Soft Matter 6 (2010) 1693–1703. doi:10.1039/B911140A.

[10] R. Kramb, L. Ward, K. Jensen, R. Vaia, D. Miracle, Structural property
comparison of Ca–Mg–Zn glasses to a colloidal proxy system, Acta
Materialia 61 (18) (2013) 6911–6917. doi:10.1016/j.actamat.2013.08.003.

[11] X. Z. Gao, M. H. Müser, L. T. Kong, J. F. Li, Atomic structure and
energetics of amorphous–crystalline CuZr interfaces: a molecular
dynamics study, Modelling and Simulation in Materials Science and
Engineering 22 (6) (2014) 065007. doi:10.1088/ 0965-0393/22/6/065007.

[12] C. Ruscher, J. Baschnagel, J. Farago, The Voronoi liquid, Europhysics
Letters 112 (6) (2015) 66003. doi:10.1209/0295-5075/112/66003.

[13] A. Wysocki, R. G. Winkler, G. Gompper, Cooperative motion of active
Brownian spheres in three-dimensional dense suspensions, Europhysics
Letters 105 (4) (2014) 48004. doi:10.1209/0295-5075/105/48004.

[14] T. J. Yoon, M. Y. Ha, E. A. Lazar, W. B. Lee, Y.-W. Lee, Topological
characterization of rigid–nonrigid transition across the Frenkel line, The
Journal of Physical Chemistry Letters 9 (22) (2018) 6524–6528.
doi:10.1021/acs.jpclett.8b02715.

[15] T. J. Yoon, M. Y. Ha, W. B. Lee, Y.-W. Lee, E. A. Lazar, Topological
generalization of the rigid–nonrigid transition in soft-sphere and hard-
sphere fluids, Physical Review E 99 (5) (2019) 052603.
doi:10.1103/PhysRevE.99.052603.

[16] I. Benedetti, M. H. Aliabadi, A three-dimensional grain boundary
formulation for microstructural modeling of polycrystalline materials,
Computational Materials Science 67 (2013) 249–260.
doi:10.1016/j.commatsci.2012.08.006.

37

[17] J. Orend, F. Hagemann, F. Klose, B. Maas, H. Palkowski, A new
unified approach for modeling recrystallization during hot rolling of steel,
Materials Science and Engineering: A 647 (2015) 191–200.
doi:10.1016/j.msea.2015.08.085.

[18] V. Gulizzi, C. Rycroft, I. Benedetti, Modelling intergranular and
transgranular microcracking in polycrystalline materials, Computer
Methods in Applied Mechanics and Engineering 329 (Supplement C)
(2018) 168–194. doi:10.1016/j.cma.2017.10.005.

[19] P. Budkewitsch, P.-Y. Robin, Modelling the evolution of columnar
joints, Journal of Volcanology and Geothermal Research 59 (3) (1994)
219–239. doi:10.1016/0377-0273(94) 90092-2.

[20] Y. Feng, M. Založnik, B. Thomas, A. Phillion, A 3D discrete-element
model for simulating liquid feeding during dendritic solidification of steel,
IOP Conference Series: Materials Science and Engineering 529 (2019)
012031. doi:10.1088/1757-899x/529/1/012031.

[21] W. Murphy, C. Carroll, M. Keidar, Simulation of the effect of plasma
species on tumor growth and apoptosis, Journal of Physics D: Applied
Physics 47 (47) (2014) 472001. doi:0.1088/0022-3727/47/47/472001.

[22] A. Guittet, M. Lepilliez, S. Tanguy, F. Gibou, Solving elliptic problems
with discontinuities on irregular domains – the Voronoi interface method,
Journal of Computational Physics 298 (2015) 747–765.
doi:10.1016/j.jcp.2015.06.026.

[23] R. Loubère, P.-H. Maire, M. Shashkov, J. Breil, S. Galera, ReALE: A
reconnectionbased arbitrary-Lagrangian–Eulerian method, Journal of
Computational Physics 229 (12) (2010) 4724–4761.
doi:10.1016/j.jcp.2010.03.011.

[24] T. Ringler, L. Ju, M. Gunzburger, A multiresolution method for
climate system modeling:
application of spherical centroidal Voronoi tessellations, Ocean Dynamics
58 (5–6) (2008) 475–498. doi:10.1007/s10236-008-0157-2.

[25] C. M. Freeman, K. L. Boyle, M. Reagan, J. Johnson, C. Rycroft, G. J.
Moridis, MeshVoro: a three-dimensional Voronoi mesh building tool for
the TOUGH family of codes, Computers & Geosciences 70 (0) (2014) 26–
34. doi:10.1016/j.cageo.2014.05.002.

[26] L. Blanco-Martín, R. Wolters, J. Rutqvist, K.-H. Lux, J. T. Birkholzer,
Thermal– hydraulic–mechanical modeling of a large-scale heater test to
investigate rock salt and crushed salt behavior under repository
conditions for heat-generating nuclear waste, Computers and
Geotechnics 77 (2016) 120–133. doi:10.1016/j.compgeo.2016.04.008.

[27] P. Camps, M. Baes, W. Saftly, Using 3D Voronoi grids in radiative
transfer simulations, Astronomy & Astrophysics 560 (2013) A35.
doi:10.1051/0004-6361/201322281.

38

[28] E. Teruel, R. Aragues, G. López-Nicolás, A practical method to cover
evenly a dynamic region with a swarm, IEEE Robotics and Automation
Letters 6 (2) (2021) 1359–1366. doi:10.1109/LRA.2021.3057568.

[29] R. Honeyager, G. Liu, H. Nowell, Voronoi diagram-based spheroid
model for microwave scattering of complex snow aggregates, Journal of
Quantitative Spectroscopy and Radiative Transfer 170 (2016) 28–44.
doi:10.1016/j.jqsrt.2015.10.025.

[30] R. Votel, D. Barton, T. Gotou, T. Hatanaka, M. Fujita, J. Moehlis,
Equilibrium configurations for a territorial model, SIAM Journal on Applied
Dynamical Systems 8 (3) (2009) 1234–1260. doi:10.1137/070710123.

[31] E. A. Lazar, J. Lu, C. H. Rycroft, Voronoi cell analysis: The shapes of
particle systems, American Journal of Physics 90 (6) (2022) 469–480.
doi:10.1119/5.0087591.

[32] C. B. Barber, D. P. Dobkin, H. Huhdanpaa, The quickhull algorithm
for convex hulls, ACM Trans. Math. Softw. 22 (4) (1996) 469–483.
doi:10.1145/235815.235821.

[33] http://www.qhull.org/.

[34] https://www.cgal.org.

[35] J. R. Shewchuk, Triangle: Engineering a 2D quality mesh generator
and Delaunay triangulator, Applied Computational Geometry: Towards
Geometric Engineering, First ACM Workshop on Applied Computational
Geometry, Lecture Notes in Computer Science 1148 (1996) 203–222.
doi:10.1007/BFb0014497.

[36] https://www.cs.cmu.edu/~quake/triangle.html.

[37] C. H. Rycroft, Voro++: A three-dimensional Voronoi cell library in C+
+, Chaos:
An Interdisciplinary Journal of Nonlinear Science 19 (2009) 041111.

doi:10.1063/1. 3215722.

[38] http://math.lbl.gov/voro++/.

[39] C. H. Rycroft, G. S. Grest, J. W. Landry, M. Z. Bazant, Analysis of
granular flow in a pebble-bed nuclear reactor, Phys. Rev. E 74 (2006)
021306. doi:10.1103/PhysRevE.

74.021306.

[40] C. H. Rycroft, Multiscale modeling in granular flow, Ph.D. thesis,
Massachusetts Institute of Technology (2007).

[41] C. H. Rycroft, Y. L. Wong, M. Z. Bazant, Fast spot-based multiscale
simulations of granular drainage, Powder Technology 200 (1-2) (2010) 1–
11. doi:10.1016/j.powtec. 2010.01.009.

39

[42] S. Plimpton, Fast parallel algorithms for short-range molecular
dynamics, Journal of Computational Physics 117 (1) (1995) 1–19.
doi:10.1006/jcph.1995.1039.

[43] https://www.lammps.org.

[44] A. Stukowski, Visualization and analysis of atomistic simulation data
with OVITO – the Open Visualization Tool, Modelling Simul. Mater. Sci.
Eng. (18) (2010) 015012.

doi:10.1088/0965-0393/18/1/015012.

[45] https://www.ovito.org/.

[46] S. Fortune, A sweepline algorithm for Voronoi diagrams, in:
Proceedings of the Second Annual Symposium on Computational
Geometry, SCG ’86, ACM, New York, NY, USA, 1986, pp. 313–322.
doi:10.1145/10515.10549.

[47] S. Fortune, A sweepline algorithm for Voronoi diagrams,
Algorithmica 2 (1-4) (1987) 153–174. doi:10.1007/BF01840357.

[48] P. J. Green, R. Sibson, Computing Dirichlet tessellations in the plane,
The Computer Journal 21 (2) (1978) 168–173.
doi:10.1093/comjnl/21.2.168.

[49] D. Lee, B. Schachter, Two algorithms for constructing a Delaunay
triangulation, International Journal of Computer & Information Sciences 9
(3) (1980) 219–242. doi:10.1007/BF00977785.

[50] R. Kimmel, J. A. Sethian, Computing geodesic paths on manifolds,
Proceedings of the National Academy of Sciences 95 (15) (1998) 8431–
8435. doi:10.1073/pnas.95.15. 8431.

[51] R. Kimmel, J. A. Sethian, Optimal algorithm for shape from shading
and path planning, Journal of Mathematical Imaging and Vision 14 (3)
(2001) 237–244. doi:10.1023/A: 1011234012449.

[52] R. Kimmel, J. A. Sethian, Fast Voronoi diagrams and offsets on
triangulated surfaces, in: P. Laurent, P. Sablonniere, L. Schumaker (Eds.),
International Conference on Curves and Surfaces, Vanderbilt Press, Saint-
Malo, France, 2001, pp. 193–202.

[53] D. Rhynsburger, Analytic delineation of Thiessen polygons,
Geographical Analysis 5 (2) (1973) 133–144. doi:10.1111/j.1538-
4632.1973.tb01003.x.

[54] J. L. Bentley, B. W. Weide, A. C. Yao, Optimal expected-time
algorithms for closest point problems, ACM Trans. Math. Softw. 6 (4)
(1980) 563–580. doi:10.1145/355921. 355927.

[55] B. Boots, D. Murdoch, The spatial arrangement of random Voronoi
polygons, Computers & Geosciences 9 (3) (1983) 351–365.
doi:10.1016/0098-3004(83)90006-7.

40

[56] M. P. Quine, D. F. Watson, Radial generation of n-dimensional
Poisson procesess, Journal of Applied Probability 21 (3) (1984) 548–557.
doi:10.2307/3213616.

[57] E. A. Lazar, J. Han, D. J. Srolovitz, Topological framework for local
structure analysis in condensed matter, Proceedings of the National
Academy of Sciences 112 (43) (2015) E5769–E5776.
doi:10.1073/pnas.1505788112.

[58] S. Lloyd, Least squares quantization in pcm, Information Theory,
IEEE Transactions on 28 (2) (1982) 129–137.
doi:10.1109/TIT.1982.1056489.

[59] Q. Du, V. Faber, M. Gunzburger, Centroidal Voronoi tessellations:
Applications and algorithms, SIAM Review 41 (4) (1999) 637–676.
doi:10.1137/S0036144599352836.

[60] E. A. Lazar, J. K. Mason, R. D. MacPherson, D. J. Srolovitz, Complete
topology of cells, grains, and bubbles in three-dimensional
microstructures, Phys. Rev. Lett. 109 (2012) 095505.
doi:10.1103/PhysRevLett.109.095505.

[61] E. A. Lazar, J. K. Mason, R. D. MacPherson, D. J. Srolovitz, Statistical
topology of three-dimensional Poisson-Voronoi cells and cell boundary
networks, Phys. Rev. E 88 (2013) 063309.
doi:10.1103/PhysRevE.88.063309.

[62] H. Leipold, E. A. Lazar, K. A. Brakke, D. J. Srolovitz, Statistical
topology of perturbed two-dimensional lattices, Journal of Statistical
Mechanics: Theory and Experiment 2016 (4) (2016) 043103.
doi:10.1088/1742-5468/2016/04/043103.

[63] E. A. Lazar, A. Shoan, Voronoi chains, blocks, and clusters in
perturbed square lattices, Journal of Statistical Mechanics: Theory and
Experiment 2020 (10) (2020) 103204. doi:10.1088/1742-5468/abb6e3.

[64] E. A. Lazar, VoroTop: Voronoi cell topology visualization and analysis
toolkit, Modelling and Simulation in Materials Science and Engineering 26
(1) (2017) 015011. doi:10.

1088/1361-651x/aa9a01.

[65] https://www.vorotop.org.

[66] L. Weinberg, On the maximum order of the automorphism group of
a planar triply connected graph, SIAM Journal on Applied Mathematics 14
(4) (1966) 729–738. doi:

10.1137/0114062.

[67] J. C. Phillips, D. J. Hardy, J. D. C. Maia, J. E. Stone, J. V. Ribeiro, R. C.
Bernardi,
R. Buch, G. Fiorin, J. Hénin, W. Jiang, R. McGreevy, M. C. R. Melo, B. K.
Radak, R. D. Skeel, A. Singharoy, Y. Wang, B. Roux, A. Aksimentiev, Z.
Luthey-Schulten, L. V.

41

Kalé, K. Schulten, C. Chipot, E. Tajkhorshid, Scalable molecular dynamics
on CPU and GPU architectures with NAMD, The Journal of Chemical Physics
153 (4) (2020) 044130. doi:10.1063/5.0014475.

[68] N. Kondratyuk, V. Nikolskiy, D. Pavlov, V. Stegailov, Gpu-accelerated
molecular dynamics: State-of-art software performance and porting from
Nvidia CUDA to AMD
HIP, The International Journal of High Performance Computing
Applications (April 2021). doi:10.1177/10943420211008288.

[69] T. F. Willems, C. H. Rycroft, M. Kazi, J. C. Meza, M. Haranczyk,
Algorithms and tools for high-throughput geometry-based analysis of
crystalline porous materials, Microporous and Mesoporous Materials 149
(1) (2012) 134–141. doi:10.1016/j.micromeso.2011.

08.020.

[70] M. Pinheiro, R. L. Martin, C. H. Rycroft, A. Jones, E. Iglesia, M.
Haranczyk, Characterization and comparison of pore landscapes in
crystalline porous materials, Journal of Molecular Graphics and Modelling
44 (2013) 208–219. doi:10.1016/j.jmgm.2013.05.007.

[71] M. Pinheiro, R. L. Martin, C. H. Rycroft, M. Haranczyk, High accuracy
geometric analysis of crystalline porous materials, CrystEngComm 15
(2013) 7531–7538. doi:

10.1039/C3CE41057A.

[72] R. Jalem, M. Nakayama, Y. Noda, T. Le, I. Takeuchi, Y. Tateyama, H.
Yamazaki, A general representation scheme for crystalline solids based
on Voronoi-tessellation real feature values and atomic property data,
Science and Technology of Advanced Materials 19 (1) (2018) 231–242,
pMID: 29707064. doi:10.1080/14686996.2018.1439253.

[73] D. Starinshak, J. Owen, J. Johnson, A new parallel algorithm for
constructing Voronoi tessellations from distributed input data, Computer
Physics Communications 185 (12) (2014) 3204–3214.
doi:10.1016/j.cpc.2014.08.020.

[74] R. González, PARAVT: Parallel Voronoi tessellation code, Astronomy
and Computing 17 (2016) 80–85. doi:10.1016/j.ascom.2016.06.003.

[75] L. Dagum, R. Menon, OpenMP: an industry standard API for shared-
memory programming, IEEE Computational Science and Engineering 5 (1)
(1998) 46–55. doi:

10.1109/99.660313.

[76] https://www.openmp.org.

[77] http://www.cplusplus.com/reference/iterator/RandomAccessIterator.

[78] https://cplusplus.com/reference/iterator/ForwardIterator/.

[79] J. E. Lennard-Jones, Cohesion, Proceedings of the Physical Society 43

(5) (1931) 461–482. doi:10.1088/0959-5309/43/5/301.

42

[80] W. Brostow, M. Chybicki, R. Laskowski, J. Rybicki, Voronoi polyhedra
and Delaunay simplexes in the structural analysis of molecular-dynamics-
simulated materials, Physical Review B 57 (21) (1998) 13448.

[81] A. Poupon, Voronoi and Voronoi-related tessellations in studies of
protein structure and interaction, Current Opinion in Structural Biology 14
(2) (2004) 233–241.

[82] M. Bernaschi, M. Lulli, M. Sbragaglia, Gpu based detection of
topological changes in voronoi diagrams, Computer Physics
Communications 213 (07 2016). doi:10.1016/j. cpc.2016.11.005.

[83] J.-P. Shih, S.-Y. Sheu, C.-Y. Mou, A Voronoi polyhedra analysis of
structures of liquid water, The Journal of Chemical Physics 100 (3) (1994)
2202–2212.

[84] F. W. Starr, S. Sastry, J. F. Douglas, S. C. Glotzer, What do we learn
from the local geometry of glass-forming liquids?, Physical Review Letters
89 (12) (2002) 125501.

[85] M. Shahinpoor, Statistical mechanical considerations on the random
packing of granular materials, Powder Technology 25 (2) (1980) 163–176.

[86] L. Derzsi, D. Filippi, G. Mistura, M. Pierno, M. Lulli, M. Sbragaglia, M.
Bernaschi, P. Garstecki, Fluidization and wall slip of soft glassy materials
by controlled surface roughness, Physical Review E 95 (5) (2017) 052602.

[87] M. Lulli, R. Benzi, M. Sbragaglia, Metastability at the yield-stress
transition in soft glasses, Physical Review X 8 (2) (2018) 021031.

[88] M. A. Klatt, S. Torquato, Characterization of maximally random
jammed sphere packings: Voronoi correlation functions, Physical Review
E 90 (5) (2014) 052120.

[89] S. Torquato, F. H. Stillinger, Jammed hard-particle packings: From
Kepler to Bernal and beyond, Reviews of Modern Physics 82 (3) (2010)
2633.

[90] A. Stukowski, Structure identification methods for atomistic
simulations of crystalline materials, Modelling and Simulation in Materials
Science and Engineering 20 (4) (2012) 045021. doi:10.1088/0965-
0393/20/4/045021.

[91] E. Steinitz, Polyeder und raumeinteilungen, Encyk. der Math. Wiss.
12 (1922) 38–43.

[92] J. L. Bentley, Multidimensional binary search trees used for
associative searching, Commun. ACM 18 (9) (1975) 509––517.
doi:10.1145/361002.361007.

[93] R. A. Finkel, J. L. Bentley, Quad trees a data structure for retrieval on
composite keys, Acta Informatica 4 (1) (1974) 1–9.
doi:10.1007/BF00288933.

43

[94] H. Chen, C. Min, F. Gibou, A supra-convergent finite difference
scheme for the poisson and heat equations on irregular domains and
non-graded adaptive Cartesian grids, Journal of Scientific Computing 31
(1) (2007) 19–60. doi:10.1007/s10915-006-9122-8.

[95] M. Theillard, C. Rycroft, F. Gibou, A multigrid method on non-graded
adaptive octree and quadtree Cartesian grids, Journal of Scientific
Computing (2012) 1–15doi:

10.1007/s10915-012-9619-2.

[96] Perf wiki, perf: Linux profiling with performance counters,
https://perf.wiki.kernel. org/index.php/Main_Page (2015).

[97] The Linux man-pages project, perf_event_open(2) — Linux manual
page, https:
//man7.org/linux/man-pages/man2/perf_event_open.2.html (2021).

44

	Abstract
	Program title: Voro++
	External routines/libraries: OpenMP
	2. Introduction
	2.1. Algorithms for computing the Voronoi tessellation
	2.2. The cell-based approach: advantages and drawbacks
	2.3. Outline of this paper

	3. Methods
	3.1. Overview of Voro++
	3.1.1. The container_2d class
	3.1.2. Using a voronoicell_2d class to compute a Voronoi cell
	3.1.3. The voro_compute class
	3.1.4. Choice of the block size

	3.2. Multi-threaded extensions
	3.2.1. Changes to code architecture
	3.2.2. Random access iterator and OpenMP parallelization
	3.2.3. Example implementation
	3.2.4. Load balancing
	3.2.5. Parallel insertion of particles

	4. Parallel Performance
	4.1. Voronoi cell computation
	4.1.1. Comparison of the three example cases
	4.1.2. Code performance for different system sizes
	4.1.3. Effects of clipping extended Voronoi cells

	4.2. Performance of the parallel insertion routine
	4.2.1. Efficiency against number of threads
	4.2.2. Efficiency against number of particles

	5. Application: Topological analysis using VoroTop
	6. Conclusion

	Acknowledgements
	Appendix A Turbo Boost and parallel efficiency
	References

