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Abstract

Voro++  is  a  software  library  written  in  C++  for  computing  the  Voronoi
tessellation, a technique in computational geometry that is widely used for
analyzing systems of particles. Voro++ was released in 2009 and is based on
computing  the  Voronoi  cell  for  each  particle  individually.  Here,  we  take
advantage  of  modern  computer  hardware,  and  extend  the  original  serial
version  to  allow  for  multithreaded  computation  of  Voronoi  cells  via  the
OpenMP application programming interface. We test the performance of the
code, and demonstrate that it can achieve parallel efficiencies greater than
95% in many cases. The multithreaded extension follows standard OpenMP
programming paradigms, allowing it to be incorporated into other programs.
We provide an example of this using the VoroTop software library, performing
a  multithreaded  Voronoi  cell  topology  analysis  of  up  to  102.4  million
particles.  Keywords:  Voronoi  tessellation,  computational  geometry,  multi-
threaded programming

1. Program summary

Program title: Voro++

Developer’s repository link: https://github.com/chr1shr/voro

Licensing provisions: BSD 3-clause (with LBNL modification)

Programming language: C++

External routines/libraries: OpenMP

Nature of problem:  Multithreaded computation of the Voronoi tessellation in
two and three dimensions

Solution method: The Voro++ library is built around several C++ classes that
can be incorporated into other programs. The two largest components are
the container... classes



 
that spatially sort input particles into a grid-based data structure, allowing for
efficient  searches  of  nearby  particles,  and  the  voronoicell...  classes  that
represent a single Voronoi cell as an arbitrary convex polygon or polyhedron.
The Voronoi cell for each particle is built by considering a sequence of plane
cuts  based  on  neighboring  particles,  after  which  many  different  statistics
(e.g.  volume,  centroid,  number  of  vertices)  can be computed.  Since each
Voronoi  cell  is  calculated individually,  the  Voronoi  cells  can be computed
using multithreading via OpenMP.

2. Introduction

The Voronoi tessellation was originally introduced in 1907 [1] and is now a
broadly  used technique in  computational  geometry  [2].  Consider  a  set  of
points  in  a  domain.  Each  point  has  a  corresponding  Voronoi  cell  that  is
defined as the part of the domain that is closer to that point than to any
other. In two dimensions (2D) with the Euclidean metric, the Voronoi cells are
irregular polygons that perfectly partition the domain to create the Voronoi
tessellation  (Fig.  1(a)).  Each  edge in  the  tessellation  is  the  perpendicular
bisector between neighboring points. In three dimensions (3D) the Voronoi
cells are irregular polyhedra (Fig. 1(b)). Voronoi cells can also be generalized
to  non-Euclidean  geometries  with  different  distance  metrics  [3,  4].  The
Voronoi  tessellation  has  been  used  in  a  remarkable  number  of  different
scientific fields.
It has been extensively used to analyze systems of particles or atoms, where
features of  the Voronoi  cells (e.g.  volume, surface area, number of  faces)
provide  insight  in  particle  structure;  examples  include  the  analysis  of
granular materials [5,  6,  7],  colloids [8],  nanosphere systems [9],  metallic
glasses [10,  11], liquids [12], as well as active [13] and supercritical fluids
[14,  15].  The  Voronoi  cells  themselves,  which  form  irregular
polygons/polyhedra, have been used to model different physical phenomena,
such as polycrystalline materials [16,  17,  18],  solidification processes [19,
20], and biological cells [21]. The Voronoi tessellation has also been used to
construct  computational  meshes  on  which  to  solve  partial  differential
equations [22, 23], such as for climate modeling [24], groundwater flow [25,
26], and astrophysical flows [27]. Other applications include control of multi-
robot systems [28], calculating snow aggregrate scattering properties [29],
and modeling animal territorial control [30]. There are many more examples
than  the  ones  given  here,  highlighting  the  ubiquity  of  this  geometrical
construction [31].

A variety of software packages are available for calculating the Voronoi
tessellation. The Qhull library [32,  33] is widely used and incorporated into
MATLAB  (via  the  voronoin  command)  and  Python  (via  the
scipy.spatial.Voronoi command). The Computational
Geometry Algorithms Library (CGAL) [34] provides a variety of functions for
computing the
Voronoi tessellation, and Triangle [35, 36] can compute the Voronoi 
tessellation in 2D. All of these libraries primarily focus on computing the 
Voronoi tessellation as an entire mesh, shown in blue in Fig. 1.
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In 2009 Rycroft released Voro++ [37, 38], a software library written in C+
+  that  takes  the  alternative  approach  of  calculating  the  Voronoi  cells
individually, so that each cell, an example of which is shown in red in Fig. 1,
is  computed  as  a  separate  object.  The  library  grew  out  of  research  on
particulate granular flows, where the Voronoi  cell  volumes were useful for
understanding  particle  packing  structure  [39,  40,  41].  The  cell-based
perspective has some

Figure 1: (a) An example two-dimensional Voronoi tessellation shown in blue generated by
the black crosses. A single Voronoi cell in the tessellation is shown in red as an irregular
polygon. (b) An example three-dimensional Voronoi tessellation shown in blue generated by
the white spheres. A single Voronoi cell is shown in red as an irregular polyhedron.

advantages and drawbacks compared to the entire mesh approach (Subsec.
2.2).  However,  it  has  proven  effective  in  a  wide  range  in  applications,
particularly those involving rapid analysis of particle systems. Voro++ has a
command-line utility that can perform a variety of different analyses, and it
has a C++ application programming interface (API) that allows it to be called
from user-written  programs.  It  has  been  incorporated  into  other  software
such as LAMMPS [42, 43] and OVITO [44, 45].

2.1. Algorithms for computing the Voronoi tessellation
Since the 1970’s, a wide variety of methods for computing the Voronoi

tessellation have been proposed [2]. For computing the entire Voronoi mesh,
some popular methods include the Fortune sweeping algorithm [46, 47] and
the incremental approach whereby the mesh is continually updated as new
particles are added [48,  49]. Another method is to use the lift-up mapping,
projecting  a  point  x  ∈  Rn  to  a  paraboloidal  surface  (x,∥x∥2)  ∈  Rn+1.  The
hyperplanes tangential  to  the surface  form facets  that  exactly  match the
Voronoi  tessellation  when  projected  back  to  Rn.  This  can  be  efficiently
computed in arbitrary dimensions using the quickhull algorithm [32], which
forms  the  basis  of  Qhull  [33].  Another  approach  involves  introducing  a
computational grid, and sweeping out from each point with the fast marching
method [50,  51]  to  construct  Voronoi  cells  [52],  which  is  computationally
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expensive but more flexible for calculations on spaces with non-Euclidean
distance metrics.

2.2. The cell-based approach: advantages and drawbacks
The cell-based approach that Voro++ uses has also been explored in the

literature [53,
54, 55, 56]. As discussed by Okabe et al. [2] it has a significant difficulty that
is illustrated

Figure 2: (a) Typical case where three Voronoi cells (blue polygons) for three points (black 
crosses) meet at a vertex. The Voronoi cells would normally touch, but are spaced slightly 
apart from each other for illustrative purposes. (b) Special case where four Voronoi cells meet 
at a vertex that is equidistant from four points; floating-point errors could lead to additional 
small edges (red) for some cells. (c) Schematic representation adapted from Lazar et al. [57] 
where each dashed region represents a different Voronoi cell topology. Some common 
crystalline lattices (e.g. BCC) are located within a single region, whereas others (e.g. FCC, 
HCP) are located at junctions, and small perturbations from the ideal configuration sample 
different topologies.

in Fig.  2(a,b). In most cases, for randomly-distributed points, each vertex of
the  Voronoi  tessellation  will  be  common  between  three  Voronoi  cells  as
shown in Fig. 2(a). However, in certain situations a vertex may be equidistant
from four particles as shown in Fig. 2(b). This could happen either because of
a special arrangement of the particles (e.g.  a crystalline formation), or for
random arrangements when particles happen to be aligned within the limit of
floating point truncation error. In the cell-based approach where the cells are
computed independently, small floating point errors in one cell may lead to
the creation of additional facets (shown by the red line in Fig. 2(b)) meaning
that  the  topologies  of  the  edges  and  faces  of  the  Voronoi  cells  are  not
consistent.

Despite  this  difficulty,  there  are  many  situations  where  the  cell-based
approach is attractive. The entire Voronoi mesh is often not required, and the
individual Voronoi cells can be analyzed independently. In Voro++ a typical
workflow is to compute a Voronoi cell, calculate and store various statistics
about the cell, delete the cell, and move onto the next point. Because only a
single cell needs to be stored at any one time, this results in a large memory
saving  and  an  improvement  in  cache  efficiency,  creating  an  inherent
performance  boost  over  building  the  entire  mesh.  Furthermore,  for  many
commonly used measurements, it is not necessary for the edge topology to
agree perfectly.  For example, Voronoi  cell  volumes and centroids (used in
Lloyd’s  algorithm  [58,  59])  are  not  sensitive  to  small  changes  in  edge
topology.

For  other  measurements,  such  as  the  number  of  faces  or  edges,  the
precise topology of the Voronoi cell can have an appreciable effect. However,
one can reasonably argue that measurements that rely too heavily on these
small topological changes are problematic to begin with—it should not be the
case that a diagnostic indicator of a physical characteristic be sensitive to
truncation  error  (i.e.  often  around  a  factor  of  10−16  in  double-precision
arithmetic) particularly when experimental errors or simulation discretization
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errors  are  usually  far  larger.  The  recent  work  of  Lazar,  Srolovitz,  and
coworkers provides a useful theoretical framework in which to address this
issue [57, 60, 61, 62, 63]. Voronoi cells can be pictured as residing in a phase
space that is divided into discrete regions representing the complete face
and edge topologies (Fig. 2(c)). Commonly studied crystalline lattices such as
FCC and HCP lie  at  intersections  of  these topologies,  meaning  that  small
perturbations (e.g.  thermal vibrations) around the idealized lattice will push
the  Voronoi  cells  into  a  well-defined  family  of  different  topologies.  Other
lattices such as BCC may lie in the interior of a single region. Lazar released
the  VoroTop  package  [64,  65],  which  uses  this  framework  to  analyze
ensembles of Voronoi cell topologies, classify different particle packings, and
identify  features  such  as  grain  boundaries.  A  key  part  of  VoroTop  is  the
computation  of  the  Weinberg  vector  [66]  for  each  Voronoi  cell,  which
uniquely characterizes the cell’s vertex and edge topology.

2.3. Outline of this paper
Advances in supercomputing power have enabled simulations with very

large numbers of particles [67, 68]. In addition, there is currently interest in
developing  data-driven  approaches  for  screening  large  databases  of
materials  and  structures,  where  the  Voronoi  tessellation  can  be  a  useful
analysis tool [69,  70,  71,  72]. Thus there is a need to compute the Voronoi
tessellation at a large scale and in parallel. Currently, there are some parallel
approaches  in  the  literature  for  computing  Voronoi  cells  in  a  distributed-
memory  model  [73,  74].  Here,  we  consider  parallelizing  Voro++ using  a
shared-memory model with multithreading. Since modern consumer laptops
and desktops contain CPUs with 4–8 cores and servers contain CPUs with
upward of 16 cores, multithreading enables a large practical speedup without
the additional complexity of using distributed-memory architectures.

The  cell-based  approach  used  by  Voro++  is  inherently  amenable  to
parallelization, since each Voronoi cell can be computed independently. Here
we develop a general multithreaded extension of Voro++ that provides good
parallel performance across a range of different scenarios. An ideal basis for
doing this is OpenMP, an API for shared-memory multiprocessing [75,  76].
The core component of OpenMP is a set of compiler directives beginning with
#pragma omp that  instruct  the  compiler  to  multithread  certain  lines  and
loops within a C++ code. A key feature of OpenMP is that if a program is
compiled without  OpenMP enabled,  then the #pragma omp directives are
ignored and the compiler will create a standard executable that runs in serial.
For  open-source  scientific  software,  which  is  compiled and run on a wide
range of different systems, this serial interoperability is a major advantage.

The extension to  the Voro++ API  is  designed to make it  as  simple as
possible  for  the  user  to  incorporate  multithreading  into  their  programs.
Multithreading a loop over all
Voronoi cells requires adding a small number of #pragma omp directives that
match typical OpenMP usage. This has required redesigning the mechanism
for looping over Voronoi cells from previous versions of Voro++, but this is
done so that most of the complexity is hidden from the user. Furthermore, we
demonstrate  that  our  extension  is  interoperable  with  standard  OpenMP
functionality for tuning and controlling the division of work between threads.
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With our extension, we show that we can achieve excellent parallel efficiency
of above 95% across a range of cases.
VoroTop provides a particularly good example for our extension to Voro++. A

typical
VoroTop  analysis  requires  computing  all  of  the  Voronoi  cells,  and  then
calculating  the  Weinberg  vector  for  each  one.  The  Weinberg  vector  is  a
relatively expensive calculation, requiring O(n2) work for a Voronoi cell with n
vertices. Thus, since the Voronoi cell and Weinberg vector computations can
be processed independently and divided evenly among threads, this

Figure 3: Illustration of a 2D container covering the rectangular region  [ax,bx]  × [ay,by].  The
container is further divided into a  4×4  grid of blocks  (i,j)  for  i,j  ∈{0,1,2,3}. Each block  (i,j)  is
indexed as  k  =  i+4j, so that  k  ∈{0,1,...,15}. Points are spatially sorted into blocks. The yellow
point is the second point in block 1.

represents an ideal scenario for multithreading. In Section 5 we demonstrate
this on a 36 core server. We show that the time to process 102.4 million
particles  can  be  reduced  from  almost  an  hour  to  under  two  minutes,
highlighting a dramatic practical performance benefit.

3. Methods

3.1. Overview of Voro++
We now provide an overview of design and the key methods of Voro++ 

[37]. The code is structured around several C++ classes for storing particles 
and computing Voronoi cells. The code can perform both 2D and 3D 
computations, and the classes responsible for these have “_2d” and “_3d” 
suffixes, respectively. The algorithmic principles are identical in both 2D and 
3D. Therefore, for the rest of this section, we focus on the 2D implementation 
for simplicity.

3.1.1. The container_2d class
Voro++  has  a  variety  of  container  types  that  represent  rectangular

domains holding all of the positions. The container_2d class holds particles in
a 2D rectangle. The user can specify the coordinate ranges [ax,bx]  and [ay,by],
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and  indicate  whether  the  container  is  periodic  in  each  direction.  The
container is further divided into a rectangular grid of  nx  ×  ny  blocks of equal
size, into which the particles are spatially sorted. In this way, every particle
can be identified by its block index, and its point index inside the block. For
example, in Fig. 3, the yellow point is the 2nd point in block 1.

The grid of  blocks  provides a large boost  in  performance, allowing the
code  to  quickly  locate  neighboring  particles  during  the  Voronoi  cell
construction.  See  Sec.  3.1.4  for  details  on  how  the  number  of  blocks  is
chosen. There is also a variant container class called container_poly_2d that
stores polydisperse particle arrangements. Each particle has an associated
radius, which can be used to compute the radical Voronoi tessellation [2].

3.1.2. Using a voronoicell_2d class to compute a Voronoi cell
The  voronoicell_2d  class  represents  a  single  Voronoi  cell  as  a  convex

polygon, with a set of vertices connected by edges. The voronoicell_2d class
contains routines  for constructing the Voronoi  cell,  as well  as routines for
computing different statistics about it, such as its area or centroid.

The  voronoicell_2d  class  uses  a  coordinate  system where  the  origin  is
centered on the particle. Consider a specific particle P located at position p =
(px,py)  within the container.  To compute its  Voronoi  cell,  the voronoicell_2d
class is first initialized as a rectangle [cx,dx] × [cy,dy] filling the entire container,
without considering any other particles.
Specifically, in the x direction,

if  the  x  direction  is  non-
periodic,

(1) if  the  x  direction  is
periodic.  For  the  periodic  case,  the  maximum  extent  of  the  initial
Voronoi cell is determined by the perpendicular bisectors of the periodic
images of P that are displaced by ±(bx − ax,0).

Similarly, in the y direction,

if  the  y  direction  is  non-
periodic,

(2) if  the  y  direction  is
periodic.

To  construct  the  Voronoi  cell  for  P  the  code  then considers  the  effect  of
neighboring particles. If a neighbor is located at q relative to P, then that will
remove the half-space

q · q
r (3)

where  r  = (x,y).  The boundary of the half-space, given by  r q,  is  the
perpendicular bisector between P and its neighbor.  The voronoicell_2d class
contains a routine called plane() that recomputes the vertices and edges of
the Voronoi cell based on cutting by a plane. To compute the Voronoi cell for
P, the code considers the neighboring particles and applies plane cuts based
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on removing the half spaces of the form given in Eq. (3), as illustrated in Fig.
4.

Hypothetically, if all plane cuts for all other particles are applied, then the
voronoicell_2d class will precisely represent the Voronoi cell of P. In practice,
it  is  only  necessary to consider plane cuts from a small  set of  neighbors
around P, as described in the following section.

Figure 4: Illustration of the action of the plane() routine. The Voronoi cell of a particle P 
located at p is initialized as a large rectangular box filling the computational domain. The 
plane() routine repeatedly cuts down the rectangular box by planes that are the perpendicular
bisectors between the particle and its neighbors, located at q1 and q2.

Figure 5: Illustration of different computational costs for different Voronoi cells. (a) A partially
computed Voronoi cell  is shown in light purple,  after considering half-space intersections
from four neighboring particles. The maximum distance to a vertex is R, and thus particles
that lie outside a circle of radius  2R  can be omitted from the computation; only a single
additional particle needs to be tested. (b) If a particle does not have neighbors on all sides,
its Voronoi cell may extend a long distance in one direction, so that R is much larger. Hence
many more particles lie within the circle  of  radius  2R  and cannot  be ruled out  from the
computation.

3.1.3. The voro_compute class
The  container_2d  class  contains  a  member  vc  of  class  type

voro_compute_2d, which holds the data structures for computing the Voronoi
cells from the container’s spatially sorted particles. For a given particle P the
voro_compute_2d class computes the Voronoi cell following the procedure in
the previous section, but using as few plane cuts as possible. As an example,
consider the particle in the top left corner of Fig. 1(a): its Voronoi cell has two
faces that adjoin cells for neighboring particles. Thus, if those two particles
were considered first, then all remaining plane cuts would have no effect.
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The voro_compute_2d class therefore computes Voronoi cells by considering
plane cuts from nearby points first, and then use bounds to terminate the

computation as soon as possible. The class first considers particles in the same
block as P, and then sweeps outwards to consider nearby blocks. When each

block is considered, two bounds can be used to determine whether the Voronoi
cell is complete or if more plane cuts are required:

• Radius bound – if R is the maximum distance of a Voronoi cell vertex to 
P, then no particles more than a distance 2R away can possibly influence 
the cell. This bound is fast to compute, but it has no directional 
sensitivity: if a cell extends a long way in one direction then particles a 
long distance in other directions will still need to be tested.

• Block bound – a given block in the grid can be tested to see if any 
particle within it can possibly influence the Voronoi cell. This can be done
by performing a sequence of half-space intersection tests based on the 
block’s corners. The code sweeps outward from P, testing blocks until it 
reaches those that cannot influence the cell. This computation is slower 
than the radius bound but it has directional sensitivity.

The voro_compute_2d class uses a combination of the two bounds. It begins
by using the radius bound, which works effectively for particles in densely-
packed regions with many close neighbors.  This  is  illustrated in  Fig.  5(a),
where the voronoicell_2d polygon is shown after considering four neighboring
particles. At this point, the bounding circle of radius 2R only contains a single
additional particle. Thus, once this particle is considered, then the Voronoi
cell will be complete and it will not be necessary to consider further particles.
In  contrast,  Fig.  5(b)  shows  a  case  where  the  voronoicell_2d  polygon  is
extended in one direction because it is at the edge of a particle arrangement.
We  refer  to  such  cases  as  extended  Voronoi  cells,  where  the  maximum
Voronoi  vertex  distance  is  large  compared  to  a  typical  inter-particle
separation length. In this case, the circle from the radius bound covers the
whole domain, and no particles can be ruled out from the computation.

If  the  radius  bound  is  not  successful  in  rapidly  terminating  the
computation,  then  the  voro_compute_2d  class  switches  over  to  the  block
bound. This can help cut down the number of particles to consider, but the
search space that needs to be considered can still inherently be much larger.
Hence extended Voronoi cells can take substantially longer to compute. It is
important to consider this large difference in Voronoi cell computation time
when designing the multithreaded extension.

3.1.4. Choice of the block size
The size of  the grid of  blocks in the container affects the computation

time. Let N be the total number of particles and define Navg = N/(nxnynz) to be the
average number of particles per block. If  Navg  is too large, then each block
contains many particles, and since particles are not spatially sorted within a
block, the code must spend a long time looping through all of them. If Navg is
too small,  then the code must search through many blocks to complete a
Voronoi cell computation. The best performance is achieved by choosing Navg

as a balanced value between these two extremes.
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In addition, the optimal performance is usually achieved when the blocks
have roughly equal side lengths. Hence, for a given target average number of
blocks, Nopt, the code chooses the number of blocks as follows:

• In 2D, set λ = pN/(Nopt(bx  − ax)(by  − ay)) and define nx  = ⌈λ(bx  − ax)  ⌉ and ny  = ⌈λ(by  −

ay)⌉.

• In 3D, set λ = p3 N/(Nopt(bx − ax)(by − ay)(bz − az)) and define nx = ⌈λ(bx − ax)⌉, ny = ⌈λ(by

− ay)⌉, and nz = ⌈λ(bz − az)⌉.

The use of the ceiling operator ·  ⌈ ⌉ ensures that the grid dimensions are always 
greater than zero. For homonegenous random particle arrangements, the best
performance is achieved for Nopt = 3.4 in 2D and Nopt = 4.6 in 3D, although the 
code is not that sensitive to this choice and good performance is achieved 
across a wide range. These values are used by default in the code, although 
they can be overridden by the user. In some of the examples in this paper, 
which are chosen to highlight different scenarios, we determine different 
values of Nopt that improve performance.

3.1.5.  Procedure  for  Voronoi  cell
computation  A typical  usage of  the
library is as follows:

I. Initialize  the  container.  Insert  particles  into  the  container,  spatially
sorting them into the grid of blocks.

II. Loop over the blocks in the container, and for each block:

i. Loop over the particles in the block, and for each particle:

a. Calculate the Voronoi cell of the particle.
b. Compute and store required statistics about the Voronoi cell.

Each Voronoi cell computation is independent of the others, making Voro++
highly  suitable  for  parallel  computation.  A  straightforward  parallelization
approach is  to distribute  particles  to different  threads,  and compute their
Voronoi cells simultaneously.

3.2. Multi-threaded extensions
3.2.1. Changes to code architecture

We now describe the changes required to make Voro++ multithreaded
using  OpenMP.  The  vc  member  within  the  container  class,  which  is  a
voro_compute_2d class, is  responsible for calculating the Voronoi  cell  of a
particle.  The  vc  member  allocates  workspace  for  searching  through  the
blocks  for  neighboring  particles.  Thus  it  is  not  thread-safe,  since  if  two
threads used the same vc member, they would generate race conditions on
the workspace.

Therefore  we  create  copies  of  voro_compute_2d  class  object  in  the
container,  based on the number of  threads being used. vc is no longer a
single  voro_compute_2d  class,  but  becomes  an  array  of  them.  The  class
constructor  accepts  an  additional  argument  num_t  that  determines  the
number of voro_compute_2d classes to allocate. Thread k then uses vc[k] to
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compute  its  Voronoi  cells.  If  needed,  the  function
change_number_thread(num_t)  can  be  used  to  reallocate  the  number  of
voro_compute_2d classes available.

Moreover, in a typical loop like the one in Sec. 3.1.5, the code creates a 
variable c that is a voronoicell_2d class, for representing the Voronoi cell of 
the particle. Similar to vc, different threads in computation cannot use the 
same voronoicell_2d object. This issue is solved by creating thread-private 
copies of c in the parallel computation.

3.2.2. Random access iterator and OpenMP parallelization
The OpenMP directive #pragma omp parallel creates a team of threads to

execute a section of code. Within a parallel section, the directive #pragma
omp for can be placed before a for loop, to distribute the iterations of the
loop to the different threads. Listing  1  demonstrates how to use these two
directives  to  parallelize  the  filling  of  an  array  c  with  square  roots  of  the
integers.

double c[256];
#pragma omp parallel
{
#pragma omp for for(int 

i=0;i<256;i++) 
{ c[i]=sqrt(double(i));
}

}
1

2

3

4

5

6

7

8

Listing 1: Short example demonstrating basic OpenMP directives

Each thread will be assigned a subset of values of i to set in the array. Since
each array entry can be set independently, this code can be multithreaded
without resulting in a race condition. In basic usage like the example above,
the  #pragma  omp  for  directive  is  placed  before  loops  over  integers.
However,  since  version  3.0  of  the  OpenMP  standard,  it  is  possible  to
parallelize a for loop using any C++ random access iterator.

In C++, each class can have associated iterator classes that are designed 
to iterate over the elements of that class. There are several types of iterator, 
differentiated by how much functionality they offer. The simplest is the 
forward iterator, which supports basic operations for stepping forward 
sequentially. The iterator a represents an index of the associated class, and 
the forward iterator must support the operation a++ to step forward to the 
next index. Thus, in the context of a Voro++ container, an iterator would store
the block index and point index of a particle, and the iterator would support 
the operation a++ to step forward to the next particle, as illustrated in Fig. 
6(a). Full requirements for the functionality of a forward iterator are available 
in the C++ documentation [77].
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In  the  multithreaded extension  of  Voro++,  we created random access
iterators on all of the container classes to iterate over all of the particles.
These iterators support all of the functionality of a forward iterator, but also
contain  additional  functions  for  making  arbitrary  jumps  in  the  particle
indexing. A key ability required by the random access iterator is to evaluate
a+n for an integer n, allowing the iterator to jump forward by n steps in the
index. This additional functionality is required since the threads need to start
at  different  points  within  a  parallelized  for  loop  (Fig.  6(b)).  Figure  6(c)
illustrates how this works for a Voro++ container.

The Voro++ iterators contain all the functions listed in the random access
iterator standard [78]. This includes the dereference operators *a and a[n],
which resolve to the member of the class the iterator points to. However, in
the current context, dereferencing

Figure 6: (a) Illustration of using a forward iterator to represent particles in the container_2d
class of
Voro++. The forward iterator only allows the particle index to be stepped forward one at a 
time. If the iterator a is pointing at the yellow particle, then a++ will step forward to the red 
particle. (b) Requirement of iterator a to represent particles in the container of Voro++. The 
iterator needs to be able to access particles at any arbitrary offset position relative to the 
current particle that the iterator is pointing at. For ten particles in the container and two 
parallel threads, thread 1 starts at a and thread 2 starts at a+5. (c) Illustration of using a 
random access iterator to represent particles in the container of Voro++. The random access 
iterator can access particles of any arbitrary offset positions relative to the current particle 
that it is pointing at. Here, a+8 steps forward eight particles to the red particle.

is  conceptually unclear, since the Voronoi  cell  associated with the iterator
does not exist in memory and must be subsequently computed. Because of
this, the dereference functions within the C++ iterators simply emit errors if
they  are  called.  For  Voro++,  the  iterators  are  used  to  index  into  the
container’s  particles  and  loop  through  them,  and  thus  the  dereference
operators is not required in normal usage.

In addition to the standard iterator that loops through the particles, two 
variations are provided: iterator_subset that can loop over a subset of 
particles, and iterator_order that can loop over an ordered list of particles.

12



3.2.3. Example implementation
An example of the multi-threaded version of Voro++ is provided in Listing

2. The example demonstrates how to compute the Voronoi cells of a random
2D particle arrangement, and then calculate their average perimeter:

#include <cstdio>
#include <cstdlib>

#include "voro++.hh" 
using namespace voro;

// Returns floating point number uniformly distributed over [0,1)
1

2

3

4

5

6

7

13



inline double rnd() {return (1./RAND_MAX)*static_cast<double>(rand());} int

main() {

// Number of parallel threads int 
num_t=4;

// Number of particles to use int 
N=100000;

// Construct a 2D container as a periodic unit square divided into a
// 160x160 grid of blocks. Each block initially holds up to 8 particles. The // 
final argument sets the number of voro_compute objects for use by the // 
threads. container_2d con(0.0,1.0,0.0,1.0,160,160,true,true,8,num_t);

// Add particles to the container for(int 
i=0;i<N;i++) con.put(i,rnd(),rnd());

// Declare iterator container_2d::iterator 
cli;

// Parallel Voronoi computation to compute the average Voronoi cell
// perimeter 
double tperim=0.;

#pragma omp parallel 
num_threads(num_t) {

// Thread-private Voronoi cell object and perimeter counter 
voronoicell_2d c(con); double perim=0.;

// Iterate through the particles
#pragma omp for for(cli=con.begin();cli<con.end();cli+

+) if(con.compute_cell(c,cli)) 
perim+=c.perimeter();

// Add local perimeter counter to global perimeter counter using atomic
// operation to prevent race condition

#pragma omp atomic 
tperim+=perim;

}

// Print average Voronoi cell perimeter
printf("Average␣Voronoi␣cell␣perimeter␣is␣%.12g\n",tperim/N);

}
8
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Listing 2: Example code of multi-threaded Voro++

After creating the container on line 22, we then add N = 105 particles at random
on line

25. We then use OpenMP on the random access iterator, and distribute particles
to different

Assign workloads to 
threads evenly

Assign workloads to 
threads unevenly

(a) Even workloads

(b) Uneven 
workloads

Table 1: Schematic illustration of load balancing among threads. (a) If iterations have identical
workloads, they should be assigned to threads evenly for higher efficiency. (b) If iterations 
have uneven workloads, they should be assigned to threads unevenly, following some 
strategies, so that the workloads among threads are balanced.

threads for parallel computation. Lines 27–49 demonstrate using the iterator
for parallel computation. On line 28 we declare an iterator of the container.
We then use the for loop on the iterator to loop through all the particles in
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the container, as shown in lines  40 & 41. For each particle, we compute its
Voronoi cell (line  42) and then add its perimeter to a local counter, perim.
Note that in certain situations (e.g.  when occluded by a wall) a Voronoi cell
may  not  exist.  In  this  case  the  compute_cell  function  returns  false,  and
subsequent computation should be skipped.

For parallelization, we follow the standard OpenMP syntax. We mark the 
start of the parallel block with #pragma omp parallel, and add the #pragma 
omp for directive before the for loop. This simple implementation following 
standard OpenMP and C++ practices is beneficial to the user. At the end of 
the parallel block, on line 48, each thread adds its local perimeter counter to a
global counter, tperim. Since the threads are all writing to the global counter, 
this operation is performed atomically to avoid a race condition. Once the 
parallel block has terminated, the average perimeter is reported as ≈ 0.01265. 

If the program is run with√ different particle numbers N, one finds that the 

perimeter asymptotically behaves like 4/ N. Surprisingly, even though th√ 

is is fo√r a random particle arrangement, this asymptotic value matches the 
perimeter of a N × N grid of squares covering the domain.

3.2.4. Load balancing
Load balancing is important for achieving good parallel performance. If the

iterations  have  even  workloads,  as  shown  in  Table  1(a),  they  should  be
assigned to threads evenly. In this way, all threads are busy working during
the full duration of the computation, and all threads finish at approximately
same time. In comparison, if the iterations are assigned unevenly to threads,
some threads will  finish early and remain idle waiting for others to finish,
resulting  in  inefficient  performance.  On  the  contrary,  if  iterations  have
uneven workloads, as shown in Table 1(b), then assigning an equal number
of each thread may result in substantial idle time. Better performance can be
achieved  by  distributing  the  iterations  so  that  the  total  workloads  are
balanced.

Parallel strategy Traits Schematic illustration

schedule(static)

1. Iterations are pre-assigned
evenly tothreads.
2. Good for identical 
workloads.
3. Low overhead costs.

schedule(dynamic
)

1. Thread takes work as 
available.

2. Good for imbalanced 
workloads.

3. Higher overhead costs.

schedule(guided)

1. “Mixed”’ strategy: 
Iterations are divided into chunks
with decreasing chunk sizes, for 
threads to grab.
2. Some imbalanced 
workloads.
3. Higher overhead costs.
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Table  2:  Three  basic  built-in  OpenMP  parallel  strategies,  their  traits  and  schematic
illustrations of the work assignment process.

OpenMP  provides  a  number  of  strategies  for  load  balancing.  Here  we
explain  in  detail  the  three  most  basic  strategies,  schedule(static),
schedule(dynamic), schedule(guided), with Table  2  showing an overview of
their  properties.  For  the  schedule(static),  iterations  (which  for  Voro++
correspond to particles) are pre-assigned the threads by dividing the entire
set  of  work  units  into  equal  sections.  This  strategy  is  good  for  identical
workloads, and it has low overhead costs, since once the work is assigned,
each  thread  can  operate  independently.  For  the  schedule(dynamic),  each
thread takes a unit of work as available and is never idle. If a thread finishes
its  work,  it  immediately  takes  the  next  iteration  available.  This  strategy
comes with higher overhead costs since the threads must coordinate with
each other when taking more work.  schedule(guided) is a mixed strategy.
Threads take work as available and are never idle, but rather than taking one
unit of work per time, each thread takes a chunk. Moreover, the chunk sizes
decrease as the assignment progresses. This is good for when there is some
imbalance  in  workloads,  but  does  not  offer  as  much  flexibility  as
schedule(dynamic). It also has high overhead costs.

Any  of  these  strategies  can  be  used  with  the  multi-threaded  Voro++
extension, by adding the corresponding keyword after the #pragma omp for
directive. For example, in Listing  2, changing line  40  to #pragma omp for
schedule(dynamic) will enable the dynamic assignment. In addition, there are
two modified strategies that accept an additional  integer chunk option.  In
schedule(static,chunk) the threads each take chunk work units at once to
process, rather than dividing up the total work into even sections. This still
does not require any thread coordination, but affects the work distribution.1 In
schedule(dynamic,chunk) the threads take chunk units of available work at
once. This cuts down on the overhead costs, since there are fewer points
where  the  threads  must  coordinate.  Depending  on  the  arrangement  of
particles,  one strategy may be preferred over  another.  In  particular,  Sec.
3.1.3  showed that for inhomogenous particle distributions, the Voronoi cell
computation  can vary  by a  large factor.  In  this  case,  we expect  that  the
dynamic or guided scheduling strategy will be advantageous.

3.2.5. Parallel insertion of particles
In Listing 2 the time spent on computing the Voronoi cells is much larger

than  the  time  spent  on  inserting  the  particles  into  the  container.
Nevertheless,  once the particle  system grows larger,  the time for  particle
insertion  becomes  substantial.  Because  of  this,  we  also  developed  an
approach for inserting particles into the container in parallel.

As shown on line  25  of Listing  2, the put(...) function is used to insert a
particle into the container in serial. Internally, this function first computes the
block index k that the particle lies within. The container class has two array

1 For  example,  consider  two  threads  operating  on  the  integers  (0,1,...,15).  With
schedule(static)  the  work  is  given  to  the  two  threads  as  (0,1,...,7)  and  (8,9,...,15).  With
schedule(static,3) the first thread receives the chunks  (0,1,2),(6,7,8),(12,13,14)  and the second
thread receives the chunks (3,4,5),(9,10,11),(15) with the final chunk being truncated.
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entries  associated  with  the  block:  co[k]  is  the  total  number  of  particles
currently  in  the  block,  and  mem[k]  is  the  total  number  of  memory  slots
allocated  for  the  block,  typically  initialized  to  8  at  the  start  of  the
computation. The put(...) function therefore does the following:

I. If  co[k]==mem[k]  then  all  memory  slots  are  full.  In  this  case,
dynamically  reallocate  the  memory  for  this  block,  and  double  the
available slots.

II. Add the particle information in the co[k] slot, and then increment co[k].

This  routine  is  not  thread-safe  for  two  reasons:  (a)  if  two  threads  try  to
reallocate the memory simultaneously  it  will  be corrupted,  and (b)  if  two
threads  try  and  increment  co[k]  simultaneously  this  will  create  a  race
condition.

In the multithreaded extension, we created a function put_parallel(...) that
can insert particles into the container in a thread-safe manner. This function
also  requires  an  overflow  buffer  for  storing  some  particles.  The
put_parallel(...) does the following:

I. Use the #pragma omp atomic capture directive on the operation l=co[k]
++.  This  function  will  atomically  increment  co[k]  while  storing  its
previous value in the variable l.

II. If l>=mem[k] there is no available memory slot. Store the particle in the
overflow buffer.

III. If l<mem[k], store the particle into slot l.

In step I., the atomic capture directive ensures that each thread will obtain a
unique slot number to write into. For example, if co[k]  = 2  and two threads
insert a particle into this block, then one is guaranteed to obtain l = 2 and the
other is guaranteed to obtain l = 3.
Afterward co[k] = 4.

Within  put_parallel(...),  it  is  not  possible  to  dynamically  reallocate  the
memory, since this could interfere with other threads. Hence, if a block has
no available slots, it must be stored into the overflow buffer. Assuming that
the block memory was roughly allocated correctly beforehand, the number of
particles going to the overflow buffer should be a small fraction of the total.
The overflow buffer operations are done within an OpenMP critical section of
code,  so that  only  one thread operates  on the buffer at  one time.  If  the
overflow buffer runs out of space, this thread can dynamically extend the
buffer without causing a race condition. Once all of the particles have been
added  with  put_parallel(...),  it  is  necessary  to  call  a  function
put_reconcile_overflow().  This  function  operates  serially  on  the  overflow
buffer, and dynamically extends the block memory as needed to ensure there
are enough available slots to insert any remaining particles.

Using parallel insertion can cause the code to produce slightly different
results when it is repeated. Depending on the exact timing of the threads,
which differs from run to run, the particles may be inserted into the blocks in
a different order. This reordering can have a minor effect on the floating point
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errors that are incurred during the Voronoi cell construction. The code also
contains a function add_parallel(pt_list,num,nt_) that takes in a pointer pt_list
to array of num particle positions stored as (x,y,z)  triplets, with an additional
radius argument for the polydisperse containers. It performs a multi-threaded
insertion of the particles into the container using nt_ threads.

4. Parallel Performance

4.1. Voronoi cell computation
We first examine the performance of  the multithreaded code for  three

representative non-periodic particle arrangements, using both a 2D domain
[0,1]2 and 3D domain [0,1]3. They are:

I. Homogeneous  –  108  particles randomly and homogeneously distributed
throughout the domain.

II. Localized – We define a square of area 0.1 in 2D, or a cube of volume
0.1  in  3D,  positioned  in  the  center  of  the  domain.  We take the  108

particles from the previous case, and keep only those within this region,
resulting in approximately 107 particles in total.

III. Extreme clustering  – We use an uneven distribution clustered around

the regions ,

, and  (for 3D only). This is achieved by generating each particle 
coordinate as a non-uniformly distributed random variable. In the x 
direction, the number X is chosen to be uniformly distributed over [0,1], 
and then the particle coordinate is set to

, resulting in clustering near . The same procedure is used
in

the other directions.

Figure 7 shows examples of the three particle arrangements in both 2D and 
3D, but with a reduced number of particles for ease of visualization. The grid 
of blocks is set according to the method described in Sec. 3.1.4, but with 
specific choices of Nopt are shown in Table 3. For the homogenous case we use 
the default choices of Nopt. For the other two cases, we scan

Container 
initialization

2D 3D

Nopt nx,ny Nopt nx,ny,nz

(a) Homogeneous 3.4 5,42
3

4.6 279

(b) Localized 30 1,82
5

49 126

(c) Extreme 
clustering

0.5 14,1
42

0.5 584

Table 3: Choices of  Nopt  and the size of the grid of blocks for the three different example
particle configurations, in 2D and 3D.
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over a range of values of Nopt and choose the one that results in the fastest 
execution. Since the structure of these two cases differs considerably from the
homogenous arrangement, we find that the best values of Nopt are quite 
different. For example, for the extreme clustering case we use the much 
smaller value of Nopt = 0.5, since this provides better spatial sorting of the 
clustered particles.

Here, and throughout Sec.  4 all tests were performed on a Ubuntu Linux
computer with dual  Intel  Xeon E5-2650L v4 processors with 14 low-power
cores and a 1.7GHz base clock speed. We measure the time to compute all of
the Voronoi cells, without performing any analyses on them. For each case,
we compare the five OpenMP load balancing strategies introduced in Sec.
3.2.4.  For  the  two chunk-based strategies,  we  first  scan  over  a  range of
chunk sizes from  1  to  100  with the 28-thread parallel code, and choose the
one  with  the  lowest  computation  time.  We  report  this  chunk  size  in  our
results. The relevant measures of parallel performance are:

I. The  wall-clock  time  tp  required  to  compute  all  Voronoi  cells  using  p
threads.

II. The parallel efficiency calculated as

, (4)

which measures the effective slowdown from the hypothetically perfect parallel
scaling.

The computation time and parallel  efficiency are affected by Intel’s  Turbo
Boost  technology,  which  boosts  the clock speed based on the number  of
active cores. For the E5-2650L v4 chip, the clock speed is boosted by 0.8GHz
when a single core is in use, but this is reduced to 0.3GHz when six or more
cores are used. This creates a clear signature in the parallel efficiency data,
since the wall-clock times for many threads are increased because the CPU
slows down. We explore this issue in detail in Appendix  A. Since we aim to
examine the performance of the code independent of hardware intricacies,
we work with the  adjusted parallel  efficiency,  which factors out the Turbo
Boost effect. This is computed as

, (5)

where
average clock speed for 1 thread

A(p) = . (6)
average clock speed for p threads
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Figure 7: Illustration of three particle distribution cases in both 2D and 3D, but scaling down
the particle number by 1/105  for ease of visualization. (a) Homogeneous and random particle
distribution  with  1000  particles.  (b)  Localized  and  random  particle  distribution  with  95
particles. (c) Extreme clustering particle distribution with 1000 particles.

The details of how the average clock speeds are computed are provided in
Appendix  A. We account for Turbo Boost in the parallel  efficiency, but we
report the original wall-clock computation times, since they give a reasonable
estimate for the Voronoi cell computation in a real world setting where Turbo
Boost is enabled by default.

4.1.1. Comparison of the three example cases
Figure 8 shows the adjusted parallel efficiency of the five strategies as a

function  of  the  number  of  threads,  for  the  three  different  particle
arrangements in both 2D and 3D. Since the computer has 28 physical cores,
we find that the parallel efficiency drops substantially beyond 28 threads in
all  cases,  and thus we limit  our  discussion to  the  results  for  the first  28
threads. Table 4 shows the computation time using the serial code, and the
optimal 28-thread parallel code for the three cases in both 2D and 3D. For
each  28-thread  time,  we  report  the  parallel  strategy  that  achieves  this
optimal result.

4.1.1.1. Comparison of different particle arrangements. Figure  8  shows that
for the homogeneous particle distribution the parallel efficiencies are similar
among the strategies, and
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Figure 8: Adjusted parallel efficiency against number of threads of the five load balancing 
strategies, for the three example cases in both 2D and 3D. (a) Homogeneous and random 
particle distribution. (b) Localized and random particle distribution. (c) Extreme clustering 
particle distribution.

Wall-clock time (s)

2D 3D

1 
thread

28 
threads

Opt. 
strategy

1 
thread

28 
threads

Opt. 
strategy

(a) Homogeneous 150.53 7.03 (guided) 2099.7
2

93.34 (guided)

(b) Localized 39.88 2.03 (dynamic,3
8)

589.62 26.85 (dynamic)

(c) Extreme 
clustering

1030.1
2

45.45 (dynamic,6
0)

10368.
70

464.96 (dynamic,1
8)

Table 4: Voronoi computation time with the serial code and the  28-thread parallel code for
the three example cases in both 2D and 3D, using each case’s optimal strategy.

all are in the high range above 80% in 2D and 95% in 3D. In comparison, for
the localized particle distribution, the parallel efficiencies are very different,
with  schedule(guided)  and  schedule(static)  performing  significantly  worse
than the others. This large difference is also true for the extreme clustering
case. For a container with random and homogeneous particle arrangement,
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we expect that the computation time for each Voronoi cell to be similar, as
the  Voronoi  cells  are  of  similar  size.  Therefore,  particles  have  similar
workloads.  No  matter  what  strategies  we  use  to  distribute  particles  to
threads,  the threads have similar  workloads as well,  thus  resulting  in  the
similar performance among the five strategies.

However, for the random and localized distribution of particles, where the sizes
of

Voronoi cells are only restricted by the container, many particles in the outer
layer  have  extended Voronoi  cells  that  take  much  longer  to  compute  as
described  in  Sec.  3.1.3.  The  imbalance  in  the  workload  causes
schedule(static)  and schedule(guided) to perform substantially worse, with
parallel efficiencies dropping below 50%. schedule(dynamic) performs much
better, achieving efficiencies above 90% in 2D and 95% in 3D. In addition,
both schedule(dynamic,chunk) and schedule(static,chunk)  can have similar
parallel  performance  to  schedule(dynamic),  if  optimal  chunk  sizes  are
chosen. Table 4 shows that the total computation times for the localized case
are less than the homogenous case, although the localized case only has a
tenth  of  the  particles  of  the  homogenous  case.  The  localized  case  takes
considerably longer per particle.

For  the  extreme  clustering  case,  there  are  many  more  particles
concentrating  in  the  grid  blocks  in  the  domain  center.  The  Voronoi
computation for these particles are substantially more expensive than the
Voronoi  computation  for  particles  in  less  dense  regions.  When  Voro++
computes  Voronoi  cell  of  a  particle,  it  will  loop  through  all  neighboring
particles in the nearby grid blocks (Sec.  3.1.3), and thus more particles will
be  considered.  In  addition,  the  uneven  distribution  creates  imbalanced
workload since the particles in the center will take longer to compute than
those in the periphery. Therefore, similar to the localized case, we see that
schedule(dynamic)  has  huge  benefits  and  performs  much  better  than
schedule(static)  and  schedule(guided).  Also,  schedule(static,chunk)  and
schedule(dynamic,chunk) are able to perform as well as schedule(dynamic),
if optimal chunk sizes are chosen. Table 4 shows that the total time for the
extreme  clustering  case  is  considerably  longer  than  for  the  homogenous
case.

4.1.1.2. Comparison of 2D and 3D Voronoi computation. 3D Voronoi cells are
much more complicated than 2D Voronoi cells. A 2D Voronoi cell is a simple
polygon,  where  every  vertex  is  connected  to  two  others.  By  constrast,
representing  a  3D  Voronoi  cell  requires  an  edge  table  with  varying
connectivity between the vertices. This difference is clear in the timing data
for the homogenous case in Table 4: the serial code computes 664000 cells
per second in 2D, but only 47600 cells per second in 3D.

Since each 3D Voronoi cell computation involves a larger amount of work,
the  code  can  achieve  higher  threading  efficiency  in  3D,  because
comparatively less time is lost to overhead in parallelizing the loop. In Fig. 8
for  the  homegeneous  case  with  schedule(dynamic),  the  2D  computations
only achieve efficiencies of  ≈ 75%  for large thread counts, whereas the 3D
computations achieve efficiences over 95%. The data in Fig. 8 shows that the

23



Figure  9:  Adjusted  parallel  efficiency  as  function  of  the  number  of  particles.  The  data
obtained is from the homogeneous particle distribution case in both 2D and 3D, both using
schedule(guided).

schedule(dynamic,chunk)  strategy  substantially  improves  the  efficiency  of
the 2D computations, since proportion of time spent on thread assignment
will be reduced. With this strategy, the 2D computations can achieve thread
efficiencies approaching 95%, as in the 3D case.

4.1.2. Code performance for different system sizes
We now examine the performance of the code for a random homegenous

particle system when the total number of particles N is varied. For each case,
the grid of  blocks is again set according to the method described in Sec.
3.1.4, and the values of  Nopt  remain  3.4  for 2D and  4.6  for 3D. We use the
schedule(guided) strategy, which was previously shown to achieve very good
parallel  efficiency when  N  = 108,  in  both 2D and 3D (Fig.  8).  We compute
parallel efficiencies by comparing the performance of a single thread to the
performance of 28 threads. As shown in Fig. 9, the parallel efficiencies remain
roughly constant over the range from
N  = 105  to  N  = 108. The Voronoi cell computations are well suited to parallel
computation, and even for N = 105  there is sufficient work for the particles to
be parallelized effectively. As expected, the parallel efficiencies seen in 2D
are lower than those in 3D. Some small fluctuations in parallel efficiency are
observed in Fig.  9, particularly for lower particle counts in 2D. Because the
wall  clock  times  for  these  computations  are  shorter,  they  are  more
susceptible to small variations in computation time.

4.1.3. Effects of clipping extended Voronoi cells
To  illustrate  further  the  effect  of  extended  Voronoi  cells  on  the

computation  cost,  we  examine  another  case  where  the  Voronoi  cells  are
clipped by a bounding volume. This is  demonstrated in Fig.  10  where the
Voronoi  cells  for  the 3D localized arrangement of  Fig.  7  are clipped by a
bounding cube centered on each particle. Clipped Voronoi cells are useful in
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Figure 10: Illustration of the 3D localized particle distribution test from Fig. 7, but where the
Voronoi cells are each clipped by a bounding cube of side length h as described in the text.
Here,  the  total  number  of  particles  has  been  scaled  down  by  a  factor  of  105  from  the
computational test for ease of visualization. Correspondingly, the clipping length h has been
scaled up by a factor of 105/3.

some  practical  situations  [21,  29],  such  as  when  particles  have  a  finite
interaction  range,  and  extended  Voronoi  cells  provide  no  practical
information.

Voro++ can clip Voronoi cells by any convex polyhedron centered on each
particle. This is achieved by starting each Voronoi cell computation using a
fixed shape, instead of making it fill the computational domain as described
in  Sec.  3.1.2.  Here,  we  consider  the  3D  test  using  the  localized  particle
arrangement shown in Fig.  7, with the domain  [0,1]3. This configuration was
made by generating N′  = 108  candidate particle positions at random, and then

retaining the  N  ≈ 107  in a central cube covering√10%  of the domain volume.
We clip each Voronoi cell using a cube with side length h = 1.5 3d0, where d0 = (N
′)−1/3  represents  a  typical  inter-particle  separation  length  in  the  container.
Figure 10 shows an illustration of the clipped Voronoi cells.

As shown in Fig.  11, for the same localized particles in the container, using
schedule(dynamic),  the  computation  time  is  significantly  lower  for  clipped
Voronoi  cells.  For  the  original  localized  case  of  extended  Voronoi  cells,  the
computation time is 589.62s for one thread and 26.85s when using 28 threads.
In  comparison,  when  the  Voronoi  cells  are  clipped,  the  computation  time
decreases to 218.63s with one thread and 10.01s with 28 threads.  Therefore,
compared to  the extended Voronoi  cells,  the computational  costs  for  clipped
Voronoi cells are significantly lower, and in both serial and parallel cases, there is
a three-fold speedup in computation time.  These timing results will depend on
the size of the clipping region, with larger h0  requiring more time, and smaller h0

requiring less time. With the clipped cells, the size of the search space in the
Voronoi  cell  construction  (Sec.  3.1.3)  is  substantially  reduced,  improving  the
performance. Furthermore, using clipped cells removes the large disparities in
computation  time  between  different  Voronoi  cells,  so  the  schedule(static)
parallelization strategy will give good performance.
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Figure 11: Computation time using different numbers of threads for the 3D localized particle
distribution test using (a) the original Voronoi tessellation with many extended Voronoi cells,
and (b) clipping each Voronoi cell by a bounding cube of side length h  as described in the
text. In both cases, the optimal strategy of schedule(dynamic) was used.

4.2. Performance of the parallel insertion routine
We now test the performance of the parallel  insertion routine that was

described in Sec.  3.2.5. We test in 2D and 3D using the domains  [0,1]2  and
[0,1]3,  respectively, with  108  homogenous random particle positions.  We use
the default values of  Nopt  = 3.4  and  Nopt  = 4.6  for the 2D and 3D calculations,
respectively. In each case we use an initial assignment of mem[k] equal to 8.
The total number of particles in each block is well-approximated by a Poisson
distribution, Pois(Nopt). This results in 0.83% and 4.51% of blocks exceeding
the initial memory allocation in 2D and 3D, respectively. We expect 0.36%
and 1.66% of the total particles will be placed into the overflow buffer in 2D
and 3D, respectively.

We  note  that  the  performance  of  parallel  insertion  will  depend
substantially on many factors. Due to the small difference in Nopt between 2D
and 3D, this results a 4.6-fold difference in the number of particles going into
the overflow buffer. Since the overflow buffer is processed serially at the end
of the insertion, this will affect parallel efficiency. This will also depend upon
the particle  configuration;  for  example,  in  molecular  dynamics simulations
often employ a repulsive potential at a short well-defined length scale (e.g.
the  Lennard-Jones  potential  [79]).  This  causes  particles  to  be  spatially
distributed more evenly than uniform random samples, so that the overflow
buffer  may  not  be  needed.  In  constrast,  particle  configurations  like  the
extreme clustering case of Fig. 7 may have a large fraction of particles going
to the overflow buffer.

In  many  practical  uses  of  Voro++,  the  Voronoi  tessellation  may  be
computed at multiple time points in a simulation, where the particle positions
only  vary slightly  between successive  snapshots.  To  handle this  scenario,
Voro++ has the ability to re-use the container data structure, by clearing the
particles for inserting a new configuration. This is achieved by

Wall-clock time (s), 2D 3D
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add_parallel(...)
1 
thread

28 
threads

1 
thread

28 
threads

With overflow buffer 72.76 3.43 72.65 5.34
No overflow buffer 72.37 3.03 73.65 3.06

Table 5: Average computation time for the parallel particle insertion test. For each case, the
insertion is performed once, when the overflow buffer will be used. The container is cleared
and the insertion is repeated. Since block memory was extended during the first test, the
overflow buffer will not be used on the second insertion. Each test was performed ten times,
and the average wall-clock times are shown for the serial code and 28-thread parallel code in
both 2D and 3D.

zeroing out the block-based particle counters co[k], but leaving any extended
memory allocation mem[k] in place. Thus, assuming only small movements in
particles, the previously extended block memory should be well-matched to
the new particle configuration and only a small number of particles will need
to be placed in the overflow buffer.

To illustrate this and isolate the effect of the overflow buffer, we perform a
sequence of two parallel insertion tests, in both 2D and 3D. We generate a
list of  N uniformly distributed particle positions, and call the add_parallel(...)
function to add these particles into the container. On the first time, some
particles will be placed into the overflow buffer, and will then be reconciled
and store serially via the put_reconcile_overflow() function. This will result in
mem[k] being adjusted to accommodate the additional  particles.  We then
clear  the container  and make another  add_parallel(...)  call  to  reinsert  the
particles.  Since the block memory was already extended to accommodate
this  particle  configuration,  zero  particles  will  be  placed  into  the  overflow
buffer on this second test. Each test was performed ten times with between 1
and 28 threads, and the average wall-clock time was recorded to calculate the
average parallel efficiency. Since the parallel insertion routine involves both
parallel and serial components, the changing clock frequency complicates the
performance analysis. We therefore turn off Turbo Boost, so that all cores run
at the same clock frequency regardless of the number of active threads. The
average wall-clock time for the serial code and the 28-thread parallel code in
both 2D and 3D are reported in Table. 5.

4.2.1. Efficiency against number of threads
Figure 12 show the results of parallel insertion in 2D and 3D using N = 108

particles  with  a  varying  number  of  threads.  On  the  first  time,  when  the
overflow buffer is used, the parallel efficiency in 2D is approximately 76%
using 28 threads. In 3D, parallel efficiency is lower, and gradually descreases
to 29% when 28 threads are used.

On  the  second  time,  without  using  the  overflow  buffer,  the  28-thread
parallel  efficiency is approximately 85% in both 2D and 3D. These results
indicate  how  the  overflow  buffer  substantially  affects  the  efficiency.  The
worse parallel performance in 3D is due to more particles being placed into
the overflow buffer. The number of particles being placed into the overflow
buffer  averaged  over  ten  tests  are  356,044  and  1,675,330  for  2D  and  3D,
respectively, which are consistent with the aforementioned calculations using
the Poisson distribution.
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Figure 12: Average parallel efficiency for the parallel particle insertion test of  108  particles
using a varying number of threads. For each case, the insertion is performed once, when the
overflow buffer will be used. The container is cleared and the insertion is repeated. Since
block memory was extended during the first test, the overflow buffer will not be used on the
second insertion. Each test was performed ten times, and the average
wall-clock times were recorded to calculate the average parallel efficiency.

Figure  13:  Average parallel  efficiency for  the parallel  particle  insertion test  of  a  varying
number of particles, using 28 threads. For each case, the insertion is performed once, when
the overflow buffer will be used. The container is cleared and the insertion is repeated. Since
block memory was extended during the first test, the overflow buffer will not be used on the
second insertion. Each test was performed ten times, and the average
wall-clock times were recorded to calculate the average parallel efficiency.

4.2.2. Efficiency against number of particles
Figure  13  shows the parallel  efficiency using 28 threads as number of

particles  N  is  varied.  For  both  2D  and  3D,  we  observe  a  clear  trend  of
increasing  parallel  efficiency  for  larger  N,  demonstrating  that  parallel
insertion becomes more effective for larger particle configurations. We also
see  that  with  overflow  buffer,  the  3D  case  has  worse  parallel  efficiency.
Without overflow buffer, the parallel efficiencies are comparable in 2D and
3D, consistent with the results of Sec. 4.2.1.
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Figure 14: A central red atom and its Voronoi cell, surrounded by gold-colored neighboring atoms.

5. Application: Topological analysis using VoroTop

Voronoi tessellations are commonly used, among other applications, in the 
classification of local, structural features of atomistic data sets [57, 80, 81, 
82]. Computational material scientists and physicists, for example, are often 
interested in identifying localized defects in materials [57], or else in 
characterizing the structure of nominally disordered systems such as liquids 
[83, 84], granular packings [39, 85], and soft glassy materials [86, 87]. 
Voronoi cells provide a proxy for describing local arrangements through 
consideration of their geometric and combinatorial properties [31, 88, 89].

Voronoi topology provides a robust method of classifying local structure
[57, 60]. In particular, the types of faces of a Voronoi cell and the manner in
which  they  are  arranged  describe  the  manner  in  which  neighbors  are
arranged  relative  to  a  central  particle  and  to  one  another.  Figure  14
illustrates a central red atom and its Voronoi cell, surrounded by gold-colored
neighboring atoms. Each face of the Voronoi  cell  corresponds to a unique
neighboring particle, and so the total number of faces can be considered as a
count of neighbors. Furthermore, the number of edges of a face counts the
number  of  common  neighbors  between  the  central  particle  and  the
associated neighbor. A five-sided face, for example, indicates that the central
particle  shares  five neighbors  in  common with  the  associated  particle.  In
finite-temperature systems, particles are located in “general position” and
small  perturbations  of  the  coordinates  do  not  change  features  such  as
numbers of faces and edges, making them particularly useful for analyzing
noisy data. Voronoi topology is thus particularly well-suited for studying high-
temperature  crystalline  systems,  where  conventional  methods  such  as
centrosymmetry and common-neighbor analysis are typically ineffective [90].

Fully characterizing the topological structure of a Voronoi cell can be done
efficiently  using  an  algorithm  of  Weinberg  [66]  designed  to  determine
whether  two  planar  graphs  are  isomorphic.  Although  the  general  graph-
isomorphism problem is not known to be solvable in polynomial  time, the
edge graphs associated with Voronoi cells, as convex polyhedra, are always
3-connected  and  planar  [91].  This  enables  the  use  of  Weinberg’s  graph-
tracing  algorithm  to  provide  a  systematic  description  of  Voronoi  cell
topologies. In particular, Weinberg’s algorithm traces the edge network of a
graph to produce a unique “code”; two
Voronoi  cells  are  topologically  equivalent  if  and  only  if  their  codes  are
identical.  This algorithm takes as input a representation of a planar graph
and outputs a code whose length is twice the number of edges of the graph.
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Constructing each code is done in O(n2) time, where n is the number of faces
of  the Voronoi  cell.  Voronoi  cells  in  uniformly  distributed particle  systems
typically have a narrow range of faces (between 10 and 20), but this number
can grow for non-uniformly distributed ones.

Calculating the Voronoi cell topology for large particle systems is a good
test case for a multi-threaded version of Voro++ because the Weinberg code
for each cell is computed individually after the Voronoi cell itself has been
constructed. A program called VoroTop, developed by Lazar, uses Voro++ to
calculate  the  Voronoi  cells  and  then  implements  Weinberg’s  algorithm to
produce a code for each particle, enabling further structural analysis [64].
When limited to running with a single-thread,  the ability  to analyze large
systems  is  limited.  While  smaller  systems  can  be  analyzed  separately  in
parallel using batch runs, this approach is ill-suited for large systems where
memory constraints may limit the number of systems that can be computed
simultaneously. We have thus incorporated the multithreaded version of
Voro++ into an updated version of VoroTop to take advantage of its parallel
architecture.

To  test  the  efficiency  of  the  multithreaded  Voro++  in  VoroTop,  we
considered  systems  with  between  100,000  particles  and  102.4  million
particles. These systems were analyzed on a single computer with two Intel
Xeon Gold 6240 CPUs running at 2.60GHz. Each of the two processors has 18
cores, allowing us to run up to 36 threads while limiting each core to a single
thread. Running VoroTop and Voro++ with more threads than physical cores
can  still  reduce  total  runtime,  even  while  decreasing  overall  parallel
efficiency.  Running  VoroTop  and  Voro++  with  more  than  72  threads,
however,  led  to  decreased  total  performance,  as  the  overhead  cost
associated with running more than two threads per core outweighed gains
from multithreading. To better understand the impact of the parallel version
of  Voro++ on  this  topological  analysis,  no  further  computations,  such  as
structure classification, were performed.

As in Sec.  4.2, we turned off Turbo Boost for this test. This reduces total
performance but enables a simpler comparison of efficiency of the parallel
versions  of  Voro++  and  VoroTop.  Furthermore,  we  only  considered  the
schedule(dynamic)  strategy.  We  constructed  systems  with  each  given
number of particles, distributed randomly and uniformly in the unit cube with
periodic  boundary  conditions.  Each  system  was  analyzed  ten  times  with
between 1 and 50 threads, and the average wall-clock runtime was recorded
for computation of the Voronoi cells and the computation of their Weinberg
codes.

Figure 15 shows the average wall-clock time for each system as a function
of number of threads. It can immediately be seen that the total average wall-
clock time decreases with additional cores, as expected. Figure 16 shows the
unadjusted parallel efficiency  Te  computed via Eq. (4) for different systems
sizes  and  numbers  of  threads.  Parallel  efficiency  is  over  95%  when  the
number of threads is at most equal to the number of physical cores, in this
case 36. Figure  17 illustrates the parallel efficiency as a function of system
size,  for  different  numbers  of  threads.  This  efficiency  is  close  to  95% in
systems  with  at  least  half  a  million  particles.  Voronoi  topology  analysis
through  VoroTop  thus provides  an example in  which  implementation of  a
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multithreaded version of Voro++ facilitates a significant speedup in practical
applications.

Figure 15: Computation time against number of threads for the different systems. The two
guidelines are graphs of functions proportional to 1/threads.

Figure 16: Parallel efficiency as a function of threads for systems with different numbers or 
particles. For systems with at least half a million particles, VoroTop runs at over 95% parallel 
efficiency when the number of threads is at most the number of physical cores.
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Figure 17: Parallel efficiency as a function of number of particles for different numbers of
threads. For systems with at least half a million particles, VoroTop runs at over 95% parallel
efficiency when the number of threads is at most the number of physical cores.

6. Conclusion

In this paper we have introduced a multithreaded extension to the Voro++
library using the OpenMP standard. Since Voro++ constructs each Voronoi
cell individually, it is ideally suited for multithreaded computations, and we
demonstrate  parallel  efficiencies  above  95%  across  a  range  of  different
examples  in  2D  and  3D.  Our  extension  to  Voro++ is  designed  to  follow
standard OpenMP programming methods, making it straightforward for users
to incorporate into their own programs. In Sec. 5, we presented an example
of this using the
VoroTop software package, where both Voronoi cell calculations and topology
analysis  were  performed  within  an  OpenMP  loop,  again  resulting  in
efficiencies above 95%.

There are a number of extensions to consider. First, as described in Sec.
3.1.1,  Voro++  is  based  upon  dividing  the  computational  domain  into  a
regular grid of blocks. This simple data structure is efficient to compute on. It
is also well-suited to roughly even particle distributions, since each block is
responsible for a similar number of particles. One of the primary usages of
Voro++ has been in analysis of molecular dynamics (MD) or discrete-element
method  (DEM)  simulation,  where  particles  often  have  a  fixed  interaction
length,  and  therefore  tend to  have  roughly  even distributions,  leading  to
good performance. However, there are other scenarios, such as computing
the  Voronoi  tessellation  for  gravitationally  interacting  particles,  where
particles may be heavily clustered in small parts of the domain. In this case,
the particles are unevenly distributed, resulting in worse performance. This
was demonstrated in the extreme clustering example, which ran substantially
slower than the homogeneous example despite having the same number of
particles  (Table  4).  One  possibility  to  improve  this  would  be  to  sort  the
particles into a structure like a k-d tree [92] or quad/octree [93], which would
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allow clustered regions of particles to be adaptively refined. This would entail
a more complicated search through the blocks when computing a Voronoi
cell,  since  the  blocks  would  no  longer  be  of  uniform  size.  Applying  a
restriction in the tree construction (e.g.  using a graded grid [94,  95]) may
help simplify the implementation and reduce the number of cases that need
to be considered. Since the tree data structure would even out the particles
among  the  blocks,  it  would  likely  improve  the  parallel  efficiency  of  the
OpenMP implementation.

Another possible extension is to explore distributed memory calculations,
which would allow the library to handle even larger particle systems, such as
those generated by supercomputing facilities. Furthermore, many codes that
are  designed  for  supercomputers  already  use  distributed  parallel
programming, such as via the Message Passing Interface (MPI). Thus if Voro+
+ could work in a distributed parallel setting, it could directly interface with
the parallel simulation, rather than having to save the data and reload it for
analysis. The issue of saving and reloading data is an important performance
bottleneck  in  distributed  parallel  computing,  and  has  previously  been
addressed in related work in the context of GPU parallelization [82].

Computing  Voronoi  cells  in  a  distributed  parallel  environment  is
considerably  more  challenging  than  the  multithreaded  case  and  requires
different  algorithms.  It  is  necessary  to  communicate  to  neighboring
processors  to  obtain  some  of  their  particle  positions.  For  dense  particle
arrangements,  it  should  usually  be sufficient  for  each processor  to obtain
particles in a region of fixed width beyond its domain, and then use those to
apply plane cuts during the Voronoi cell construction. This is the approach
taken by the voronoi command in LAMMPS [43]. However, in some situations,
such as when a Voronoi cell extends out by a long way in one direction (Fig.
5(b)), the fixed-width region will be insufficient to completely determine the
Voronoi cells. Because of this the parallel implementation would also have to
allow for the possibility of non-local communication, where a processor could
potentially  talk  to  any  other  to  obtain  its  particle  information.  These  are
interesting parallel  computation challenges that can be explored in  future
work.
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Appendix A Turbo Boost and parallel efficiency

Modern Intel CPUs make use of the Turbo Boost technology, which boosts
the CPU clock speed from its base value, depending on many factors (e.g.
CPU  temperature  and  available  power).  Most  significantly,  Turbo  Boost
depends on the number of cores in use. Our test system has dual Intel Xeon
E5-2650L v4 processors with a base clock speed of 1.7GHz.
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Cores in 
use

Normal frequency each core 
(GHz)

Turbo Boost frequency each core 
(GHz)

1–2

1.7

2.5
3 2.3
4 2.2
5 2.1

6–14 2.0
Table 6: Normal clock frequency and Turbo Boost frequency for Intel Xeon E5-2650L: v4
microprocessor used in the performance tests.

Figure A.1: Comparison of parallel efficiencies against number of threads, with Turbo Boost
on, and with
Turbo Boost off. The data obtained is from the homogeneous particle distribution case in 3D,
using its optimal strategy schedule(guided). The data with Turbo Boost off is obtained from
four runs of the same test. We take the minimum computation time of the four runs against
number of threads, and calculate the parallel efficiency using the minimum time. This avoids
small timing fluctuations and gives a more representative picture in parallel performance.

Table 6 shows the boosted clock speeds in terms of the number of cores in
use, ranging from 2.5GHz for a single core to 2.0GHz six or more cores.

Turbo  Boost  has  a  noticeable  effect  on  the  measurement  of  parallel
efficiency.  Figure  A.1  shows  the  parallel  efficiency  for  the  random
homogeneous test case with 108  particles with the schedule(guided) strategy,
evaluated using Eq. (4). Once the number of threads reaches 12, the parallel
efficiency plateaus at ≈ 80%. This is precisely in agreement with the ratio of
clock speeds from 2.5GHz to 2.0GHz.  This  suggests  that  the reduction  in
efficiency is almost entirely explained by Turbo Boost, rather than effects of
the Voro++ parallelization. To verify this, we switched off Turbo Boost so that
that the clock speed remains at 1.7GHz regardless of the number of cores in
use. Figure  A.1  shows the parallel efficiency for this case. Even though the
simulation is slower overall, the parallel efficiencies remain close to 100%,
confirming that Turbo Boost is responsible for the loss in parallel efficiency.
Across many of the timing results, Turbo Boost has a clear signature in the
unadjusted parallel efficiency, with plateaus at 80% visible (Fig. A.2).
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For the timing tests, we aim to use a measure of parallel efficiency that is 
not closely tied to the computer hardware. One approach is to switch off 
Turbo Boost completely, but this results in an overall loss of performance, 
and is not reflective of typical computer usage. We therefore decided to 
adjust the efficiency calculation to factor out the Turbo Boost as given in Eq. 
(5), scaling the usual measure by a factor of A(p) for p threads. Our first 
approach to construct the adjustment was by using the frequencies of Table 
6, so that boost frequency for a single thread

A(p) = . (7)
boost frequency for p threads

However, this approach is not suitable for the less efficient strategies. For
example,  the  schedule(guided)  strategy of  the  2D localized  case has  low
efficiencies.  During  this  computation,  some  threads  become  idle  while
waiting for other threads to finish their computation, and therefore the Turbo
Boost frequency changes depend on the number of active cores. Since the
adjustment  in  Eq.  (7)  assumes  that  all  threads  remain  active,  it  can
overestimate the parallel efficiency.

We therefore  used  a  more  general  and accurate  way  to  calculate  the
adjusted parallel efficiency by replacing the boost frequencies in Eq. (7) with
average clock speeds of the computation. Average clock speed represents
the  true  computational  speed,  and  it  is  computed  by  dividing  the  total
unhalted core cycles by the total task-clock time. Unhalted core cycles is a
hardware performance counter, and can be measured for each thread using
perf, a Linux performance analyzing tool [96]. The number of unhalted core
cycles  for  a thread captures  the CPU cycles  run on the thread when the
thread is active, which is an estimate of the work that the thread contributes
to  the  parallel  computation  of  the  program.  Specifically,  we  use
perf_event_open with the PERF_COUNT_HW_CPU_CYCLES configuration option
for measurement [97]. Task-clock time is a software performance counter,
and  it  can  be  measured  for  each  thread  using  the
PERF_COUNT_SW_TASK_CLOCK  configuration  option  with  perf_event_open
[97]. The task-clock time of a thread reports a clock count specific to the task
that is running on that thread.

We  then  measure  unhalted  core  cycles  Cserial  and  the  task-clock  time
Tserial

task  that the computation uses for the serial code. For the parallel code,
we measure the unhalted cycles
Ci the task-clock time Ti

task for each thread i = 1,...,p. Then we compute

average clock speed for 1 thread , (8)

average clock speed for p threads , (9)

which are used in Eq. (6) to compute the adjustment factor.
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Figure A.2: Unadjusted version of the parallel efficiency shown in Fig. 8, for the three particle
arrangement cases in both 2D and 3D. (a) Homogeneous and random particle distribution.
(b) Localized and random particle distribution. (c) Extreme clustering particle distribution.
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