
UNIVERSITY OF CALIFORNIA
RIVERSIDE

Identifying Interesting Behaviors from Moving Object Trajectories

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Md Reaz Uddin

March 2014

Dissertation Committee:

Dr. Chinya V Ravishankar, Co-Chairperson
Dr. Vassilis J Tsotras, Co-Chairperson
Dr. Eamonn Keogh
Dr. Vagelis Hristidis

Copyright by
Md Reaz Uddin

2014

The Dissertation of Md Reaz Uddin is approved:

Committee Co-Chairperson

Committee Co-Chairperson

University of California, Riverside

Acknowledgments

I would like to take this opportunity to express my gratefulness to my advisers Dr. Chinya

Ravishankar and Dr. Vassilis Tsotras, without whose help, I would not have been here.

They taught me how to do research and helped me with their experience. I thank my

committee members Dr. Eamonn Keogh and Dr. Vagelis Hristidis for their help. I would

like to thank Dr. Neal Young for helping me to solve critical problems. I truly appreciate

the help of Michael Rice and Marcos Vieira during this journey. I would like to mention

Amy Ricks as one of the most dependable staffs of the CSE Dept.

iv

To my parents, wife Shathi and sister Meher.

v

ABSTRACT OF THE DISSERTATION

Identifying Interesting Behaviors from Moving Object Trajectories

by

Md Reaz Uddin

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, March 2014

Dr. Chinya V Ravishankar, Co-Chairperson
Dr. Vassilis J Tsotras, Co-Chairperson

Understanding moving object behaviors, also known as trajectory semantics, is an important

problem that affects many decision making applications. Previous works typically identify

such behaviors by using known landmarks, also termed as Regions of Interest (ROIs) (parks,

museums, malls, etc.) that are geographically collocated with the trajectory. The main

objective of this thesis is to identify trajectory semantics, by looking only at the trajectory

data, i.e., without assuming pre-knowledge of ROIs.

We first present a new trajectory behavior, by defining the notion of dwell regions.

A region R is a dwell region for a moving object O if, given a threshold distance d and

duration t, every point of R remains within distance d of O for at least time t. Clearly,

points within R are likely to be of interest to O. We present methods for determining

dwell regions for both streaming and archived data. Next, we introduce a novel query

that can be used to track conclaves (i.e., secret meetings) of a group of moving object. In

this environment we assume only partial observations of the individual object movements,

within the context of a local transportation network. This is a realistic assumption due

vi

to sparsely-distributed surveillance cameras or lack of observations in general. Given such

limited observations we seek to infer the set of all possible conclaves. The third chapter

of the thesis addresses ROI identification. An ROI is typically defined as a region where a

large number of moving objects remain for at least a given time interval. Previous methods

require sequential scanning of the entire dataset to find ROIs when the semantics (number

of objects, time duration) change. Here, we propose a novel method based on object density,

to efficiently identify ROIs with arbitrary semantics; this method scans the dataset only

once.

We also revisit indexing of trajectories using Hilbert curves. Instead of using

minimum bounding rectangles we present methods to use Hilbert curves to index trajectory

polylines. Our method outperforms the state of the art methods for spatial range queries

by two to fifteen times. Even though such transformation does not preserve the Euclidean

distance, we show, that our approach can also be used to efficiently answer kNN queries.

vii

Contents

List of Figures x

List of Tables xii

1 Introduction 1
1.0.1 Trajectory Semantics . 2
1.0.2 Trajectory Indexing . 5

2 Online Identification of Dwell Regions for Moving Objects 6
2.1 Background . 9
2.2 Related Work . 12
2.3 Data Structures & Algorithms . 14

2.3.1 Minimum Bounding Polygons . 15
2.3.2 Queries Using SECS and MBP(S) 15
2.3.3 Constructing SECS . 17
2.3.4 The Algorithm . 17

2.4 Query Evaluation . 19
2.4.1 Efficient Computation of SECS . 22
2.4.2 Dwell Region Queries . 24
2.4.3 Goodness of the Approximation . 28

2.5 Dwell Region for Archived Data . 32
2.5.1 R-lists . 32
2.5.2 Query Evaluation using R-Lists . 35

2.6 Experiments . 37
2.7 Conclusions . 38

3 Corridors and Conclaves: Inferring Group Meetings From Partial Obser-
vations 41
3.1 Related Work . 43
3.2 Formal Tracking Model . 45
3.3 Query Types . 47
3.4 Methods . 47

viii

3.4.1 The Näıve Solution . 48
3.4.2 Arbitrary (γ, τ)-Query . 49
3.4.3 Top-k Queries . 51
3.4.4 CH Based Solution . 53

3.5 Experimental Evaluation . 58
3.6 Conclusion . 61

4 Finding Regions of Interest from Trajectory Data 62
4.1 Background . 64

4.1.1 Defining Regions of Interest . 65
4.1.2 Identifying Point-Wise Dense Regions 66

4.2 Related Work . 68
4.3 Indexing Trajectory Segments by Speed . 71
4.4 Finding Regions of Interest . 74

4.4.1 Step 2: Verifying the Duration Condition 74
4.4.2 Step 3: Finding Dense Regions . 75

4.5 Experimental Evaluation . 84
4.6 Conclusions . 91

5 Indexing Moving Object Trajectories With Hilbert Curves 92
5.1 Related Work . 98
5.2 Background . 102
5.3 Methods . 103

5.3.1 Range Query Evaluation . 105
5.3.2 kNN Query Evaluation . 106

5.4 Alternative Approaches . 109
5.5 Cost Model for HT-Index . 111
5.6 Experimental Evaluation . 114
5.7 Conclusion . 118

6 Conclusions 121

Bibliography 124

ix

List of Figures

1.1 A Trajectory (a) without any external information (b) with information from
external source e.g. map layers. 3

2.1 Behaviors considered in this chapter. 7
2.2 (a) A Euclidean vector (b) The scalar projection of ~a onto ~b (c) Eight uni-

formly spaced vectors around a circle. 10
2.3 (a) MBR of a set of points (b) inner and outer circles (c) better estimation

with higher number of directions. 12
2.4 Computing S ′. Although f is a frontier point in the direction of ~d1, it may

not lie on the convex hull. Point h is farther from the center of SECS than
f . We include all points whose projections exceed |Of1| cos

(
π
k

)
. 16

2.5 The shaded region is R−. 22
2.6 Showing the importance of points near the boundary to compute the dwell

regionR when the are at (a) the same angular position (b) a different angular
position. 22

2.7 Trigonometric functions. (a) The ratio R
+

R− = k tan θ
π as k changes (b)Approximation

of cosx with 1− x2

2! . 24
2.8 Replacing the bounding arcs of the dwell region with straight lines. (a) actual

region (b) bounding arcs replaced with straight lines. 26
2.9 Approximating R+. 26
2.10 Proving Theorem 3. MBP(S) = ABCDEFGH. 27
2.11 Average time required for each update of the data structures and evaluating

the query for a moving object. 27
2.12 Fraction of points selected to calculate actual SEC. 31
2.13 Fraction of results where actual SEC has to be computed (e.g., heuristics do

not answer the query). 31
2.14 R-Lists. 36
2.15 Comparison between rq(= r), rbSECSc(= rin) and rdSECSe(= rout). 40

3.1 Partial observations of moving objects and their possible trajectories and
meeting location. 43

x

3.2 The Line-Sweep Algorithm. There are ten intervals {a, b, c, d, e, f, g, h, i, j}
with there presence interval [ta, t

′
a], [tb, t

′
b] etc. at node u. 54

3.3 (a) CPU Time vs Number of Objects (b) Standard Deviation of CPU Time
vs Number of Objects. 59

3.4 ε vs CPU Time. 61

4.1 Framework for Discovering ROIs . 65
4.2 . 68
4.3 l-neighbor regions. 68
4.4 Problem of density based clustering methods for trajectories. 71
4.5 Index Structure. 74
4.6 . 78
4.7 ROIs identified Beijing with long stay duration in weekends. 84
4.8 ROIs identified for the TaxiCab data. 86
4.9 Query parameters vs Time. 87
4.10 Increase in fraction of selected data vs speed range. 88
4.11 (a) Index building cost vs Database size. (b) Histogram computation time

vs Database size. (c) Histogram computation IO vs Database size. 88
4.12 ROIs identified by different methods. 90
4.13 Query time vs Database size. 90

5.1 Hilbert curves: (a) 1st Order (b) 2nd Order (c) 3rd Order. 98
5.2 Runs of a range query. 104
5.3 (a) False negatives when using Hilbert range. (b) Distance between a query

point and a sub-grid. 106
5.4 Number of runs . 111
5.5 Index search time. 112
5.6 Time for post-processing. 112
5.7 Speedup Factor. 116
5.8 Speedup Factor. 117
5.9 Fraction of time used for query mapping, searching and post-processing. . . 117
5.10 . 119
5.11 Disk access estimation. 119

xi

List of Tables

2.1 Symbols used in this chapter. 19
2.2 Description of real data set. 26
2.3 Results of Chi-square test. 38

3.1 Parameters and their default values. 59

4.1 Description of real data set. 82
4.2 Temporal attributes for the GeoLife data Experiments. 86

xii

Chapter 1

Introduction

A trajectory is a time ordered sequence of location data of a moving object (with

a unique ID) over a certain duration. Usually the location data comes from GPS-enabled

devices in the from of (latitude, longitude) coordinate. It is assumed that an object follows

a straight line between two consecutivly reported locations.

The widespread use of GPS-enabled devices has enabled many applications that

generate and maintain data in the form of trajectories (e.g., [1, 2, 3, 4]). Novel applications

[5, 6, 7, 8] allow users to manage, store, and share trajectories in the form of GPS logs, and

find travel routes, interesting places, or other people interested in similar activities. Given

such large amount of data it is not straightforward to understand the semantics of these

movements.

The research effort on moving object trajectory has been mostly on indexing and

storing the data[9, 10, 11] or applying data mining algorithms (trajectory data mining) to

identify statistically significant patterns[12, 13, 14] from the data. The goal of indexing

1

and storing trajectories is to be able to efficiently answer range queries (e.g., what are the

trajectories that passed through the query specified region), nearest neighbor queries (e.g.,

what are the nearest trajectories from a query location or region), etc. It includes represent-

ing the trajectories e.g., with minimum bounding rectangles, polynomial approximation[11],

etc. and then designing a index structure, like MVR-Tree[9], TPR-Tree[10], PA-Tree[11],

etc. to efficiently access the data and answer the queries. Answering range and near-

est neighbor queries when the exact location of an object is unknown, have also been

studied recently[15, 16]. Another interesting development is to evaluate ‘complex pattern

queries’[17, 18] where multiple query predicates are evaluated at the same time instead of

evaluating each of them separately.

Trajectory data mining includes finding frequent movement patterns[12], clustering

similar trajectories[14], anomaly detection[19], etc. Most of these works focus on develop-

ing distance metrics to measure similarity or dissimilarity between trajectories or parts of

trajectories. [20] proposes longest common subsequence as a distance measure [21] uses

Chebyshev approximation to find similarity between trajectories. Sympolic approximation

is used in [22, 23] for similarity measure. These efforts are based on the spatio-temporal

attributes of the trajectory which does not always reveal the semantics of the movement.

Until recently, understanding trajectory semantics has been a less explored area.

1.0.1 Trajectory Semantics

A common way of understanding trajectory semantics is to annotate trajectories

with external information e.g., from geographic or application domain knowledge. For

example, figure 1.1(a) shows a trajectory of a moving object which does not reveal any

2

(a) (b)

Figure 1.1: A Trajectory (a) without any external information (b) with information from
external source e.g. map layers.

insight about the activity of the object. However, if we access information from external

sources e.g., map layers (figure 1.1(b)) then we understand what intersting places the object

has gone by. Without this external knowledge understanding the semantics would not be

possible. However, such knowledge may not always be available. In this thesis we consider

semantics that does not require any extarnal knowledge or cannot be discovered by using

any such knowledge.

We first present a new trajectory semantics dwell region and dwell behavior. Dwell

region has applications in areas such as monitoring and surveillance, as well as to trajectory

simplification. We propose an online algorithm to solve this problem, which can handle

dynamic addition and deletion of data in logarithmic time. We assume an incoming stream

of object positions, and maintain the upper and lower bounds for the radius of the smallest

circle enclosing these positions, as points are added and deleted. These bounds allow us

to greatly reduce the number of trajectory points we need to consider in the query, as

3

well as to defer query evaluation. Our method can approximate the radius of the smallest

circle enclosing a given subtrajectory within an arbitrarily small user-defined factor. Our

experiments show that the proposed method can scale up to hundreds of thousands of

trajectories.

Then we present methods for detecting the potential occurrence of secret or private

meetings, also known as conclaves which involves the assemblage of various persons of

interest (e.g., terrorists, criminals). This is a primary concern amongst many surveillance,

security, and criminal-investigation units. However, for many of these persons of interest,

we have only partial observations of their individual movements. The movement is assumed

to be constrained within a transportation network. Given such limited observations of

these individuals moving independently within the network, we seek to infer the set of all

possible corridors of travel (for each individual) as well as the set of all possible conclaves,

including their potential participants, locations, and durations. We present a formal model

for various strategies along with several algorithms for employing these search strategies.

Experimental results on real-world road networks show that we can efficiently infer such

information typically in only a matter of seconds for very large groups of interest.

Finally, we show how to find regions of interest (ROIs) from trajectory databases

instead of retrieving them from any existing domain knowledge. ROIs are regions where a

large number of moving objects remain for at least a given time interval. Previous techniques

use somewhat restrictive definitions for ROIs, and are parameter-dependent. They require

sequential scanning of the entire dataset to find ROIs when the ROI parameters change.

Our approach is parameter independent, so that the user can quickly identify ROIs under

4

different parametric definitions without rescanning the whole database. We also generalize

ROIs to be regions of arbitrary shape of some predefined density. We have tested our

methods with large real and synthetic datasets to test the scalability and verify the output

of our methods. Our methods give meaningful output and scale very well.

1.0.2 Trajectory Indexing

We also study indexing trajectories with space filling curves. Traditionally, spa-

tial objects are first abstracted by minimum bounding rectangles (MBRs) which are then

inserted in R-trees (or their variations). However, using MBRs to index trajectories intro-

duces large dead space and thus a high number of false positives for queries. Space filling

curves (SFC) have been used extensively for indexing points in two and higher dimensional

spaces. Their advantage arises from their locality preservation and dimensionality reduc-

tion. Extending SFCs to index segments instead of points is not trivial as it may lead to

false negatives and/or higher query times. In this thesis we show how use SFCs to index

trajectory polylines. We provide algorithms that can be used in any DBMS that provides

R-tree support. Furthermore when spatial coordinates are transformed to 1D numbers us-

ing any SFC, the Euclidean distance is not preserved, which negatively affects distance

based queries (e.g. kNN queries). We show, how to implement kNN algorithms without

converting 1D numbers back to spatial coordinates, thus making kNN queries efficient in

this environment.

5

Chapter 2

Online Identification of Dwell

Regions for Moving Objects

The pervasive deployment of GPS devices has made real-time position data from

millions of moving objects readily available. Many applications, especially those involving

monitoring and control, require on-line analysis of such data. We need real-time responses

to spatiotemporal queries, since positions change rapidly, and queries quickly lose their

value. It is essential to keep pace with high incoming data rates.

We consider the problem of online identification of dwell regions. A region R is a

dwell region for a moving object O if, given a radius rq and duration t, if O remains within

distance rq from every point in R for at least time t. We also consider the case where t is

not specified. Incoming position updates for O are grouped into a subtrajectory S, ensuring

that O remains within rq distance from all points in some region. The problem reduces to

computing the smallest enclosing circle SECS of the points in S. Computing R is hard for

6

streaming data. We propose approximate methods to compute dwell regions R.

This problem has many real life applications. In surveillance and security applica-

tions, the object O may represent a threat, and the region R may contain potential targets

for O. For example, O might be collecting information about the region R or maintaining

communication with objects in R which is only possible within a certain distance from

R. Fast detection of R might be of critical importance. Identifying dwell regions is also

important in animal behavior tracking, and may reveal animal territories. Wolf packs are

known to stalk prey before attacking it. Identifying such behaviors reveals many interesting

facts and is very important to ecosystem researchers [24]. The behaviors we consider in this

chapter include both going around a region, as in Figure 2.1(a), or random movement in a

certain enclosed region, as in Figure 2.1(b).

Our work also has applications in real time trajectory simplification based on

spatio-temporal criteria. One such criterion [25] is the “disk criterion”, which collapses into

one segment all contiguous trajectory segments that can be enclosed by a fixed size disk.

Our data structures and algorithms can be used to maintain a subtrajectory as long as it

satisfies the disk criterion. For streaming scenario it is desirable to do this simplification in

real time, without storing the data in a physical medium.

(a) (b)

Figure 2.1: Behaviors considered in this chapter.

7

We assume that every moving object sends regular position updates to a central

system. For every moving object we will have a streaming window (or just window) of

recent position records. We are to identify dwell regions as records are being added to and

deleted from this window in real time.

Given a window S, our approach approximates the smallest enclosing circle SECS

of the points S as a polygon with a user-specified number, k, of sides. We maintain data

structures which are used to compute upper and lower bounds on the radius of SECS . We

show that the actual radius is within a factor of (1 +O(1
k2

)) of the lower bound. The data

structures can be updated for addition/deletion in O(k log n) time, n is the window size |S|.

We can compute the upper and lower bounds in time O(k).

Most of the time, we can decide whether SECS has radius rq or less from just

the upper and lower bounds. When these bounds are insufficient to evaluate the query, we

propose a method which allows us to consider only a few points in the window to compute

SECS . Computing SECS only gives the center of the circle, not the complete region R. We

hence propose a method for quickly approximating the region R. Our contributions are:

• We maintain an approximation of SECS in logarithmic update time.

• We propose upper and lower bounds of the radius of SECS , greatly reducing compu-

tation time.

• We show that the radius of SECS is within a factor of (1+O(1
k2

)) of the lower bound,

for a user defined k.

• We devise a method for selecting a few points using our data structures to compute

SECS exactly.

8

• We discuss how to compute a fairly good approximation of the dwell region R.

• We extend the online method to evaluate dwell region query on archived data.

The rest of the chapter is organized as follows: Section 2.1 provides the definitions

and background while Section 2.2 describes some related works. Our proposed methods

and data structures are described in Section 2.3 while Section 2.4 describes the query

evaluation algorithms. Section 2.5 presents the preprocessing and query evaluation methods

for archived data. Section 2.6 presents the experimental results and Section 2.7 concludes

the chapter.

2.1 Background

Every moving object has a unique object ID and sends its position updates at

certain regular intervals. A position update record contains object ID, spatial coordinate,

and a timestamp. A trajectory, with a particular id, is a finite sequence of (xi, yi, ti) triples.

The xi, yi ∈ R2 are spatial coordinates, and the ti ∈ R+, are timestamps, with ti < ti+1

for i = 0, 1, . . . , n − 1. A trajectory segment is a straight line between two consecutive

tuples (xi, yi, ti), (xi+1, yi+1, ti+1) of the same trajectory, where i ∈ N0. A subtrajectory

of length m of a trajectory T = (x0, y0, t0), . . . , (xn, yn, tn), is a subsequence T ′ = (xi, yi, ti),

. . . , (xm+i, ym+i, tm+i), of m contiguous trajectory segments, where i ≥ 0,m < n. A single

trajectory segment is a subtrajectory of length one.

For each moving object we maintain a streaming window. A streaming window

of size n is the time-ordered sequence of the latest n positions of the moving object. The

length of the window depends on the duration t specified by the query and the frequency

9

a

magnitude

direction

B end

Ɵ
b

B end
point

|a| cos ƟA initial
point

(a) (b) (c)

Figure 2.2: (a) A Euclidean vector (b) The scalar projection of ~a onto ~b (c) Eight uniformly
spaced vectors around a circle.

of position updates from a moving object. A streaming window is updated by adding the

most recent position when a new update record arrives and deleting the least recent point

when necessary. For example, in applications like trajectory simplification, records can be

added (without any deletion) as long as they satisfy the query condition.

We consider two types of queries. A region query (rq, t) requests the dwell region

R, each point of which is within a distance rq from the trajectory for time at least t. A

decision query rq asks whether the positions of a given object in the streaming window

fall within distance rq from any point in R2. This query returns a Boolean value and the

center of the smallest enclosing circle. Decision queries are important for applications like

trajectory simplification [25].

Consider circles of radius rq centered at each point in a window S. The intersection

of these circles is precisely the dwell region R, since all points of in streaming window are

within rq from any point in R. We hence consider two approaches. The first maintains the

overlap region of a set of circles centered at the object positions in S. The other computes

SECS . Finding SECS suffices to answer decision queries, but not region queries.

A naive approach to maintaining the overlap between circles is to re-compute their

intersections whenever a point is inserted into or deleted from the window. However, to the

10

best of our knowledge, there exists no efficient on-line algorithm to maintain intersection of

circles. Additions can be made fast, but a deletion is always O(n) making the update time

O(n). Our proposed method is based on approximating the SEC with a polygon of k sides,

and calculating the upper and lower bounds of the radius to answer decision queries. We

allow the user to make the lower bound arbitrarily close to the actual radius of the SEC by

tuning the value of k.

Computing SECS gives only the center of SECS , not the entire dwell region R.

To answer region queries, we use efficient pruning to avoid unnecessary computation. First,

no dwell region R can exist if the lower bound for the radius of SECS exceeds rq. In this

case, we do not compute the intersecting region. When the upper bound is less than rq,

we compute an overestimate R+ and an underestimate R− for the actual region R. We

also identify critical points that are more likely to affect the shape of the region. We can

efficiently maintain approximations by considering only critical points. Details are described

in Section 2.4. We start with some basic definitions.

An n dimensional vector is an n-tuple, (v1, v2, . . . , vn), where vi is its component

along the ith axis. We use an overhead arrow to distinguish a vector, as in ~a. The magnitude

|v| of a vector ~v is denoted as |v| =
√
v2

1 + v2
2 + . . .+ v2

n. The dot product of two vectors ~a

and ~b is defined as ~a ·~b = |a||b| cos θ =
∑n

i=1 aibi. If ~b, is a unit vector then the dot product

|a| cos θ is the length of ~a in the direction of ~b, also called the scalar projection of a onto b.

If k vectors are uniformly spaced around a circle, the angle between any two

adjacent vectors is 2π
k . Figure 2.2 shows (a) a Euclidean vector, (b) scalar projection of ~a

onto~b and (c) eight uniformly spaced vectors around a circle. In a Euclidean space each side

11

of a straight line is called a half space. Given the straight line ax0 + by0 = c, (x0, y0) ∈ R2,

one half space is H = {(x, y) : ax+ by ≤ c}.

2.2 Related Work

Trajectories have received much attention recently. The work in [26] considers

pattern queries on trajectories, while [27] considers similarity queries for trajecotries. There

has also been recent work on finding semantic information from trajectory data [28][29][30].

These works focus on identifying regions where objects have remained for a while, but none

of these consider identifying dwell regions. These works also do not consider streaming

environments. Their approaches are not readily adaptible to our context.

There has also been work on identifying group behaviors, such as flock patterns

[31], convoy detection [32], identifying density of moving objects [33], etc. However we

consider individual trajectories instead of group behavior.

The first deterministic linear time algorithm for the smallest enclosing circle ap-

peared in [34]. Several improvements were presented in [35][36][37]. These methods are

bbc

yy

dd
d2

‐x x
d1

d4

d3

‐y

d4

d ad

bbc

yy

dd
d2

‐x x
d1

d4

d3

‐y

d4

d ad

(a) (b) (c)

Figure 2.3: (a) MBR of a set of points (b) inner and outer circles (c) better estimation with
higher number of directions.

12

based on linear programming techniques and involve expensive computations, such as solv-

ing systems of polynomials. None of these methods was designed for streaming environ-

ments, and require repeating the computation for every addition/deletion. Welzl proposed

a simple-to-implement randomized algorithm [38] with expected linear run-time. It recur-

sively finds three points on the boundary of the circle. The algorithm can handle addition

in constant time but deletion has expected linear time. However, the worst case runtime of

Welzl’s algorithm is quadratic. We will adapt Welzl’s algorithm for computing SECS for a

small set of points S.

Algorithm 1 describes the pseudo code of Welzl’s algorithm. Given a set of points

S = {p1, p2, . . . , pn} there is a set, B, of at most three points that determines SECS , e.g.,

SECB = SECS . B is called the basis of S. Computation of basis of a set of at most 4

points can be done in constant time. The algorithm is started with the call MinDisk(S, B)

where B = basis(p1, p2, p3) and the initial circle D = SECB. The remaining points in S are

tested one by one whether they are inside D. If the next point pi is inside D then D is the

smallest enclosing circle of the set of points seen so far, P . Otherwise, a recursive call (line

8) is made to compute SECP . This time the basis is basis(B ∪ {pi}). When this recursive

call returns we have the basis and the smallest enclosing circle of points seen so far.

Several heuristics were proposed in [39] for computing circle intersections. How-

ever, these heuristics are not useful in environments where points are being added/deleted

dynamically. This approach maintains an R-tree [40] for all the static sites and computes

intersection of circles only when a moving object is out of the safe zone. The computation

requires traversing the R-tree and making a heap of R-tree entries. With streaming data,

13

Algorithm 1 MinDisk(S, B)

1: S : a set of points, {p1, p2, . . . , pn}.

2: B : may contain at most 3 points, T ⊂ S.

3: P = B (P : set of points seen so far.)

4: T = B (T : current basis of P .)

5: D = SECB

6: for each pi ∈ S −B do

7: P = P ∪ {pi}

8: if pi is not inside D then

9: T = MinDisk(P , basis(T ∪ {pi}))

10: D = SECT

11: end if

12: end for

13: return T ;

the R-tree must be updated and traversed, building the heap for every addition/deletion.

Moreover, we will show that our proposed data structures render three of the heuristics in

[39] unnecessary.

2.3 Data Structures & Algorithms

We present our algorithms and data structures for approximating the smallest

enclosing circle SECS . We also show how to bound the radius of SECS above and below

using circles constructed from the minimum bounding polygon for S. Some symbols used

14

in this chapter are listed in table 2.1.

2.3.1 Minimum Bounding Polygons

Figure 2.3(a) shows a set of points and their minimum bounding rectangle (MBR).

MBRs indicate the maximum extents of a set of objects or points S. In the 2-D case, we can

construct an MBR for S as follows. We take four vectors ~d1, ~d2, ~d3, ~d4, spaced 90◦ apart,

and four lines ei ⊥ ~di, 1 ≤ i ≤ 4. Now we sweep each ei in the direction of ~di, in from

infinity towards S. We stop when each ei touches a point pi ∈ S. The lines ei form the

edges of the MBR. We denote the set of vertices of the MBR as V.

We can generalize this idea to get tighter upper and lower bounds by using k

uniformly spaced vectors ~d1, ~d2, . . . , ~dk, k > 4. Figure 2.3(c) shows eight uniformly spaced

vectors and the corresponding bounding convex octagon. As before, the lines ei will be

swept inwards from infinity until they touch points pi ∈ S.

Definition 1 The set F = {pi ∈ S} which the lines ei touch is the set of the frontier points

of S in the directions ~di.

We denote the k-polygon bounding the set S by MBP(S). Clearly, if V is the set of vertices

of MBP(S), then V 6⊂ S. However, F ⊂ S by definition.

2.3.2 Queries Using SECS and MBP(S)

Let rSECS be the radius of SECS . We can now get upper and lower bounds for

rSECS as follows. The smallest circle SECV enclosing the set V of vertices of MBP(S) is

guaranteed to contain all the points of S, and yields an overestimate for SECS (see Figure

15

d3

d2

d1

2𝜋
𝑘

 f

o

h

h1 f1

h2
f2

Figure 2.4: Computing S ′. Although f is a frontier point in the direction of ~d1, it may not
lie on the convex hull. Point h is farther from the center of SECS than f . We include all
points whose projections exceed |Of1| cos

(
π
k

)
.

2.3(b)). Similarly, SECF , the smallest circle enclosing all the frontier points of S yields an

underestimate for SECS .

Definition 2 Let the bounding k-polygon MBP(S) for a set of points S, have vertex set V

and frontier F . We define the under-circle for S as bSECSc
∆
= SECF and the over-circle

for S as dSECSe
∆
= SECV . (See Figure 2.3.)

Let rbSECSc and rdSECSe of bSECSc, and dSECSe, respectively. Clearly, rbSECSc ≤

rSECS ≤ rdSECSe. We will show that the distance from the center of bSECSc to any point

in S will be at most (1 +O(1
k2

))rin.

rbSECSc and rdSECSe are useful in optimizing decision queries. The query response

can be YES or NO whenever rq > rdSECSe or rq < rbSECSc respectively.

16

2.3.3 Constructing SECS

If neither rq > rdSECSe nor rq < rbSECSc holds, we must construct SECS explicitly.

We now show how to construct this with minimal overhead.

Definition 3 The convex hull C(S) of a given set S is the minimal convex region enclosing

S. H(S) is the set of points defining the boundary of C(S).

In our case, we know that the convex hull of S is a convex polygon whose vertices, H(S),

are all in S.

Lemma 1 If C(S) is the convex hull for a set S, then SECH(S) = SECS .

Proof: By definition, SECH(S) is the minimal circle enclosing C(S), which is the minimal

convex region enclosing S. �

We proceed as follows. Clearly, C(S) ⊆ MBP(S), since MBP(S) may include dead

space beyond C(S). We identify a subset S ′ ⊆ S such that H(S) ⊆ S ′. We will find SECS′ ,

which will give us SECH(S), and consequently SECS . This approach is efficient, since we

expect S ′ to be much smaller than S.

2.3.4 The Algorithm

The quality of the algorithm depends on k, the number of uniformly spaced vectors

used. The algorithm maintains the frontier point corresponding to each vector. We now

show how to identify frontier points, and how to update them dynamically as points are

added to and deleted from the window S.

Each point p ∈ S defines a vector. To identify a frontier point lying on an edge

of MBP(S), we identify a point whose projection onto the corresponding unit vector has

17

maximum length. We calculate the dot product of each of the k vectors with each point of

S, and use the point with maximum projection length for each of the edges. The algorithm

works as follows.

Select k unit vectors ~d1, ~d2, . . . , ~dk uniformly spaced around a circle. For each

~di, maintain the point p in the current set that maximizes ~di · ~p, which will be the point p

furthest in direction of ~di. This requires computing n dot products and building a max heap

with the values of these dot products. There is one max heap for each vector. The point

at the root of a heap is the one that has maximum scalar projection on the corresponding

vector. Calculating the dot products is O(n) for each vector and is performed only once,

the first time a moving object reaches the required window size. Heap building is also done

at the same time and its complexity is O(n log n). Addition (deletion) of a point from the

streaming window requires one addition (deletion) from the heap. This can be done in

O(log n) time per unit vector i.e. O(k log n) time for k vectors. The set F consists of the

points at the heap roots. The set V is computed from the intersection of adjacent edges of

MBP(S).

Algorithm 2 describes the initial processing. The dot product between each vector

and each point is calculated in line 7. One heap is built with the values of dot products for

each vector. The heapify operation at line 9 builds the heap, which takes O(n log n). The

dot product calculation for each vector in lines 6-8 is O(n). As a result, the complexity of

this pre-processing for k vectors is O(kn + kn log n) = O(kn log n). Note that a particular

point will be at different locations in different heaps because of different dot product values

with different vectors. If we want to access a particular point pj and/or its dot product

18

S A set of 2D points (possibly from the streaming window).

SECS Smallest Enclosing Circle of a set S of points

MBP(S) Minimum k-polygon bounding SECS
F Frontier points S on the edges of MBP(S).

r Radius of SECS .

rin Radius of bSECSc, the inner circle.

rout Radius of dSECSe, the outer circle.

H Half space.

r(S) Radius of the SECS .

hi Heap corresponding to unit vector di

Table 2.1: Symbols used in this chapter.

~di · ~pj of with the vector ~di we need to know where is this value in the heap hi. For example

we need to access a point when if it is to be deleted. To achieve this we also build a Lookup

Table (LT) while building these heaps. The lookup table contains the location of a point

in every heap. For example LT [~di][~pj] contains a pointer to ~di · ~pj in hi.

After building the heaps we must update them when inserting and deleting points

from the S, Algorithm 3 describes the update step. At each update step, a point p is

added to the window S as the most recent point, and the least recent point, p1, is deleted

from S. This requires deleting the record for to p1 from each heap (LT is used). Next,

the dot product between p and each vector ~di is calculated and the result inserted in the

corresponding heap. Insertion and deletion in a heap being O(log n), update is a O(k log n)

operation.

2.4 Query Evaluation

We have described the data structures used to maintain the upper and lower

bounds and to approximate the radius of SECS . We now show how to evaluate queries. We

19

Algorithm 2 buildHeaps(S, H, d)

1: S : streaming window, {p1, p2, . . . , pn}.

2: H : k heaps, {h1, h2, . . . , hk}. One for each direction being tracked.

3: d : k directions, {d1, d2, . . . , dk}.

4:

5: for each di in d do

6: for each point pj in S do

7: hi[j] = di.pj

8: end for

9: heapify(hi)

10: end for

first consider decision queries, which ask whether or not the current window satisfies the

query condition.

As we have seen, we maintain k heaps hi corresponding to the k vectors ~di. The

root of heap hi is a frontier point, since it maximizes the extent of MBP(S) in ~di’s direction.

Let the bounding k-polygon MBP(S) for S have vertices V and frontier points F .

To get rbSECSc and rdSECSe, we use Welzl’s algorithm to compute SECV and SECF

(see Definition 2). As already noted, rbSECSc and rdSECSe can be used to answer decision

queries without actually computing SECS . However, when rbSECSc and rdSECSe are insuffi-

cient for this purpose (when rq < rdSECSe and rq > rbSECSc) we must compute SECS .

20

Algorithm 3 update(S, H, d, p)

1: S : streaming window, {p1, p2, . . . , pn}.

2: H : k heaps, {h1, h2, . . . , hk}. One for each direction being tracked.

3: d : k directions, {d1, d2, . . . , dk}.

4: p : next point to be added in S.

5:

6: for each di in d do

7: delete LT[di][p1] from hi

8: val = di.p

9: insert val into hi

10: end for

11: delete p1 from S

12: add p to the end of S

21

o
 x1 x2

rq

a

b

c1
rSEC

Figure 2.5: The shaded region is R−.

p1

p4

Cp4

p4

p5
a

Cp5

a

p2

p3

p1

p5

Cp5p5

a

Cp

p2
p3

p4

Cp4

p2

(a) (b)

Figure 2.6: Showing the importance of points near the boundary to compute the dwell
region R when the are at (a) the same angular position (b) a different angular position.

2.4.1 Efficient Computation of SECS

We now show how to compute SECS using only a small subset S′ ⊂ S of points.

Our central idea is to identify a set of points S ′ that includes all points on the convex hull

C(S). In Figure 2.4, let O be the center of SECS , and consider the angular sector between

vectors ~d1 and ~d2. Let f be the point in this sector with the maximal projection on to ~d1,

so f is the frontier point in the direction of ~d1.

However, f need not be the furthest point in this sector from O. As Figure 2.4

shows, there could be a non-frontier point h in this sector such that |Oh| > |Of |, but if

22

we consider their projections h1, f1 on ~d1, we have |Oh1| < |Of1|. It is quite likely that h

lies on the convex hull C(S), but we would miss it if we only looked at projections on the

vectors ~di.

Our challenge is to include all such points h in S ′. We first note that this situation

arises because the angular distance of f from ~d1 is less than that of h. (If we consider their

projections h2, f2 on to ~d2, we find |Oh2| > |Of2|.) We first observe that the projection of

f on ~d1 will be largest when f lies on ~d1.

Let the line Oh bisect the sector between ~d1 and ~d2. (We make this choice since

it also minimizes the projection of h on both ~d1 and ~d2, and maximizes the likelihood that

point h will not be a frontier point.) Let f lie on ~d1 and rotate the line Of so that it

coincides with the bisector Oh. The projection of f on ~d1 will now be λf = |Of | cos
(
π
k

)
.

By selecting all points whose projections on ~d1 are of length at least λf , we are sure to

get all points in the half-sector that are at least as far from the center as f is, and remain

candidates for C(S). To get S ′, we proceed as follows:

1. Place all frontier points fi ∈ F into S ′.

2. Let fi be the frontier point in the direction of vector ~di, and let its projection on ~di be

λfi Place into S ′ all points in the half-sector between ~di and ~di+1 whose projections

on ~di are larger than λfi cos
(
π
k

)
.

We can now state the following result.

Theorem 2 SECS = SECS′.

Proof: Since the convex hull C(S) is the maximal convex region enclosing S, all

frontier points fi ∈ F are in C(S). Step 1) above places F into S ′. However, not all points

23

in C(S) are in F . Convexity of C(S) ensures that such points must be farther from the

center of SECS than the frontier points. Step 2) above places all such points into S ′. �

By Theorem 2, we need consider only points in S ′, which is much smaller than S.

Queries now run much faster.

2.4.2 Dwell Region Queries

As we have seen, the dwell region R is the intersection of all the circles of radius

rq centered at each point of S. When rSECS = rq, the circles centered at the points on the

perimeter of SECS will share only its center. In that case, R will consist of only one point,

namely, the center of SECS .

Next, consider the case when rq ≥ rSECS . Let Cx be a circle of radius rq centered

at a point x on the circumference of SECS . Consider the region R− =
⋂
xCx. (See shaded

region in Figure 2.5.) If we move the center of Cx along the circumference of SECS , the

intersection of the resulting circles will be a disk R− of radius δ = rq − rSECS centered at

the center of SECS .

We can also calculate a region, R+, that contains R. The intuition behind our

0 5 10 15 20
1

1.1

1.2

1.3

1.4

k

R
+
/R

−

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

x

f(
x)

f(x) = cos(x)

f(x) = 1−x2/2

(a) (b)

Figure 2.7: Trigonometric functions. (a) The ratio R+

R− = k tan θ
π as k changes

(b)Approximation of cosx with 1− x2

2! .

24

method is as follows. Suppose we have a partially computed region Rm, which is the

intersection of some m circles. To get R, we must compute the intersection of remaining

|S| − m circles with Rm. Now, if any of these circles fully contains Rm, then it will not

affect Rm at all. Our goal is to use those points first that are more likely to intersect Rm,

since the remaining circles are less likely to have an effect on Rm.

Intuitively, points closer to the boundary of SECS are more likely to affect the

region Rm, as we will illustrate through an example. Our reasoning is similar to that used

to prove Lemma 3 of [39].

Figure 2.6(a) shows SECS for som set of points S. Assume that points p1, p2, p3

are on the boundary and c is the center of the SECS . The partial region Rm appears near

the center as the intersection of three circles of radius rq centered at p1, p2, p3, repectively.

Consider two other points p4, p5 inside SECS lying on the same radial vector ~a. Let p5 be

closer to the center of SECS than p4, and let Cp4 and Cp5 be circles of radius rq centered

at p4, p5 respectively. The minimum distances from the center c to any point on Cp4 and

Cp5 are δ1 = rq − |cp4| and δ2 = rq − |cp5| respectively. Since δ1 < δ2, Cp5 is more likely to

fully include Rm than Cp4 .

This illustration shows the importance of points closer to the boundary that are at

a same angular position in the circle. However, if p4 and p5 had different angular position

then p5 might have trimmed R′ more than p4, Figure 2.6(b). Nevertheless, if the points are

uniformly distributed, considering them in order from the boundary towards the center will

still give us a better chance to get points which are more likely to affect the shape of R. Our

experimental evaluation shows that when the answer to the decision query is “yes”, points

25

A

C
D δ

A

CD δ
D δ

B
B

() (b)(a) (b)

Figure 2.8: Replacing the bounding arcs of the dwell region with straight lines. (a) actual
region (b) bounding arcs replaced with straight lines.

O

B

D

C

A
θ

rSEC
δ

α

Figure 2.9: Approximating R+.

are fairly uniformly distributed around the circle and thus the above heuristic applies in

practice.

Time of collection Number
of trajec-
tories

Number
of spatial
points

Sampling
fre-
quency

Description

Apr 2007 to Aug 2009 165 24778552 2-5 sec GeoLife Data:

April to August of 1993-
1996

253 >287,000 1hr DeerElk Data:

Table 2.2: Description of real data set.

To calculate a region R+ ⊇ R, it suffices to consider points in a subset of S. Our

goal is to make this subset as small as possible, and make R+ as close to R as possible.

Towards this goal, we select points closer to the boundary of SECS first. The heap data

structures we maintain can be used to select points that are closer to the boundary of the

26

C B

di-1

di+1

di
O π/k

π/k

H

G F

E

D A

2π/k

2π/k
π/k

π/k

X

Y

f1

f2 f3

Figure 2.10: Proving Theorem 3. MBP(S) = ABCDEFGH.

4 6 8 10 12 14
0.5

1

1.5

2

2.5

3

3.5

4x 10
−5

vectors, k

av
g

tim
e(

se
c)

 fo
r

ea
ch

 u
pd

at
e

n=4k, r
q
=1.0mi

n=4k, r
q
=0.8mi

n=4k, r
q
=0.6mi

4 6 8 10 12 14
0

1

2

3

4

5

6x 10
−5

vectors, k

av
g

tim
e(

se
c)

 fo
r

ea
ch

 u
pd

at
e

n=1k, r
q
=1.5mi

n=1k, r
q
=1.0mi

n=1k, r
q
=0.5mi

(a)GeoLife Data (b)ElkDeer Data

Figure 2.11: Average time required for each update of the data structures and evaluating
the query for a moving object.

27

circle. If we consider only the k points that make up the frontier points (the heap roots),

we will get an intersecting region that contains R. If a tighter approximation is required

(at the cost of more CPU time) points in the set S ′ (figure 2.4) can be considered.

[39] describes five heuristics to discard circles which are not going to affect the

intersecting region. Heuristics 2, 3, 5, are used to discard circles that do not have a common

intersecting region. For our case since we want to find the intersection only when every circle

shares the intersecting region we do not need to consider heuristics 2, 3, 5. Heuristics 1, 4,

are used to discard circles that fully contain the intersecting region computed so far and so

are not going to affect the region. By considering points in the above mentioned order and

applying heuristics 1 and 4 from [39] we can further avoid computing unnecessary circle

intersections.

The correctness of the algorithm for the decision query follows from 1) the fact that

we actually compute the SEC when upper/lower bounds cannot decide the query answer

and 2) theorem 2.

2.4.3 Goodness of the Approximation

To measure the goodness of the region approximations, we will attempt to derive

the ratio R+/R−. The area of the circular region R− is πδ2, where δ = (rq − rSECS). We

calculate the area of R+ in the following ideal scenario. We assume R+ is calculated using

k frontier points at the heap roots, so that there are k circular arcs defining the boundary

of R+. We further assume that the arc lengths are equal. Figure 2.8(a) shows R+ with

eight bounding arcs. Each of the sectors in this figure is equivalent to the sector ABDC in

Figure 2.9. We obtain the area of this sector as follows.

28

We begin by noting that |BC| = 2δ sin(θ), and further that

α = arcsin

(
|BC|

2rSECS

)
= arcsin

(
δ sin(θ)

rSECS

)
. (2.1)

Standard formulas yield the area of the circular segment

BCDB =
r2

SECS

2
(2α− sin(2α)) .

Now, applying elementary trigonometry and simplifying,

ABDC = ABCA + BCDB

=
1

4
δ2 sin(2θ) +

r2
SECS

2
(2α− sin(2α)) .

The combined area of all sectors in Figure 2.8 is k times the above area. Hence,

R+

R−
=

k

(
1
4δ

2 sin(2θ) +
r2SECS

2 (2α− sin(2α))

)
πδ2

=
k

π

(
1

4
sin(2θ) +

(rSECS

δ

)2
(
α− 1

2
sin(2α)

))

We can now use the value of α in Equation 2.1.

While the above analysis gives the exact equation of the ratio, we do the following

estimation to better understand how it changes with k. Consider the area CADB where C

is the center of the SECS . Recall that the centers of the bounding arcs are on the boundary

of SECS . The closest point from C on arc AB is D, with |CD| = δ. The bounding arcs

are expected to be very small and hence these arcs can be replaced with straight lines at

distance δ from C. The result is a polygon with k boundary lines. Figure 2.8(b) shows

the polygon with eight lines which replaces the area of figure 2.8(a). The computation of

29

R+/R− is given below-

∠ACD =
1

2
∠ACB = π/k = θ

AD = δ tan θ

M CAD =
1

2
AD × CD =

1

2
δ2 tan θ

⇒M CAB = δ2 tan θ

∴
R+

R−
=
kδ2 tan θ

πδ2

=
k tan θ

π

We want this ratio to be as close to 1.0 as possible. Figure 2.7(a) shows how this

ratio decreases towards 1.0 as k increases. As we increase k linearly, tan θ decreases at

a faster rate than the rate of increase of k. This results in decreasing the ratio with the

increase of k.

Finally, we prove that rSECS ≈ (1 + O(1/k2))rSECF . This means that we can get

an arbitrarily good approximation of the radius by maintaining just a constant number k

of direction vectors, in O(log n) time per update.

Theorem 3 Let S be the current set of points in the streaming window, and F be the set

of frontier points. Then, rSECS ≤ rSECF (1 +O(1/k2)).

Proof: Figure 2.10 shows a set of points S, their minimum bounding k-polygon

MBP(S) = ABCDEFGH, the set F of frontier points in the directions of vectors ~d1, ~d2, . . .,

as well as the frontier circle SECF defined by the frontier points f1, f2, and f3. Let O be

the center of SECF . Clearly, |Of1| = rSECF . Let OX bisect the angle between ~di and ~di+1,

and OY bisect the angle between ~di and ~di−1.

30

4 6 8 10 12 14
5

10

15

20

25

30

35

vectors, k

%
 p

oi
nt

s
le

ft
af

te
r

fil
te

rin
g

n=4k, r
q
=1.0mi

n=4k, r
q
=0.8mi

n=4k, r
q
=0.6mi

4 6 8 10 12 14
0

2

4

6

8

vectors, k

%
 p

oi
nt

s
le

ft
af

te
r f

ilt
er

in
g

n=1k, r
q
=1.5mi

n=1k, r
q
=1.0mi

n=1k, r
q
=0.5mi

(a)GeoLife Data (b)ElkDeer Data

Figure 2.12: Fraction of points selected to calculate actual SEC.

4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

vectors, k

%
 u

nc
on

fir
m

ed
 r

es
ul

ts

n=4k, r
q
=1.0mi

n=4k, r
q
=0.8mi

n=4k, r
q
=0.6mi

4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

1.2

1.4

vectors, k

%
 u

nc
on

fir
m

ed
 r

es
ul

ts

n=1k, r
q
=1.5mi

n=1k, r
q
=1.0mi

n=1k, r
q
=0.5mi

(a)GeoLife Data (b)ElkDeer Data

Figure 2.13: Fraction of results where actual SEC has to be computed (e.g., heuristics do
not answer the query).

31

The sector between the bisectors OX and OY is fully contained in the isosceles

triangle defined by the lines OX, OY , and AH (extended as needed). From elementary

trigonometry, all points in this isosceles triangle, and hence all points in the sector of

MBP(S) defined by OX and OY lie within distance |Of1|/ cos
(
π
k

)
= rSECF/ cos

(
π
k

)
of the

point O.

Since all points in S lie within the polygon MBP(S), all points pi ∈ S in this

sector are within distance rSECF/ cos
(
π
k

)
of the point O. Clearly, this means that we can

include all of S in a circle of this radius.

Hence, rSECS ≤ rSECF/ cos
(
π
k

)
. We can now use a Taylor series expansion to

obtain cos
(
π
k

)
= 1− π2

2k2
+ O

(
π4

k4

)
, so that cos

(
π
k

)
= 1− O

(
1
k2

)
as
(
π
k

)
→ 0, that is, as k

increases. We now have rSECS ≤ rSECF

(
1 +O

(
1
k2

))
. �

2.5 Dwell Region for Archived Data

So far we have described the online algorithm to find dwell region for streaming

data. If we want to evaluate the same query on archived data we can still scan the data and

use the online algorithm. However, the archived data allows us to save any preprocessed

information about the data which might make the query evaluation faster. In this section

we present such a preprocessing method for archived data.

2.5.1 R-lists

We assume a minimum and maximum possible value of query radius Rmin and

Rmax respectively. We consider n − 1 equally apart values between Rmin and Rmax, i.e.

32

Algorithm 4 ExtendSubT(S, H, d, ri)

1: S : current subtrajectory, {p1, p2, . . . , pn}.

2: H : k heaps, {h1, h2, . . . , hk}. One for each direction being tracked.

3: d : k directions, {d1, d2, . . . , dk}.

4: ri : current list radius.

5:

6: for each di in d do

7: val = di.pn

8: insert val into hi

9: end for

10: X = MBP(H)

11: dSECSe = MinDisk(X)

12: if rdSECSe > ri then

13: SECS = effMinDisk(S,H)

14: if rSECS > ri then

15: Insert an entry in ri-list.

16: Delete p1 from S

17: end if

18: end if

33

r0 = Rmin, r1, . . . , rn−1, rn = Rmax. These values are called list radii. For each list radius ri

we evaluate all possible maximal duration subtrajectories which can be enclosed in a circle

of radius ri (ri-circle). For each radius ri we maintain a list, ri-list, of these subtrajectories

sorted by duration. The collection of all ri-lists is called R-lists.

To build R-lists we have to scan a trajectory T once for every ri and use the

online algorithm, i.e. each trajectory is scanned n+ 1 times. We start with the first point

(x0, y0, t0) of T and add one by one from remaining points of T in temporal order. Let S be

the current subtrajectory of T being considered. After adding each point to S we compute

rbSECSc and rdSECSe using the online algorithm. We keep adding points to S as long as we

have rdSECSe ≤ ri. When rdSECSe exceeds ri we compute rSECS and check if rSECS ≤ ri.

If yes, we continue adding points. When we find rSECS > ri for the first time, we make

an entry in the ri-list. The entry contains trajectory ID, starting point of S in T and the

duration up to the point preceding the last one in S. After making the entry we move the

start point of S by one and keep adding points to S using the same procedure described

above. Algorithm 4 shows the method for building R-lists. After scanning for ri, we scan

T for ri+1.

A ri-list records every maximal duration subtrajectory starting at any point of

each trajectory. Consider an entry eri in ri-list with radius reri ≤ ri and duration deri

starting at the kth point (xk, yk, tk) of T . When we will scan T for ri+1-list we will have

an entry eri+1 starting at (xk, yk, tk) with radius reri+1 ≤ ri+1 and deri+1 . Lets Seri and

Seri+1 be the subtrajectories represented by eri and eri+1 . Its easy to see that reri ≤ reri+1 ,

deri ≤ deri+1 and Seri ⊆ Seri+1 . This subset property is important in query evaluation. We

34

say eri+1 is the next radius entry of eri .

2.5.2 Query Evaluation using R-Lists

In this section we describe how R-lists can be used to efficiently evaluate dwell

region queries on archived data. If we plot radius and duration (r, d) pairs from R-lists we

will get points along a vertical line for each ri-list, figure 2.14. If the query radius rq is equal

to any list radius ri then query evaluation is straightforward, just look up the ri-list. Entries

of ri+1-list has radius more than rq. And because of the subset property described above,

we do not have to look into any previous lists either. In the following text we describe how

to evaluate queries when rq is not equal to any list radius.

Consider a query point q = (rq, dq) where ri < rq < ri+1. q divides the space into

four quadrant, figure 2.14. None of the entries in SE -quadrant satisfies the query condition

(larger radius but lower duration than those of the query). In NW -quadrant all the entries

satisfies the query condition. Entries in SW -quadrant satisfy the radius condition but have

the duration less than dq. So we can extend the corresponding subtrajectories (by adding

points from the trajectory) up to duration dq and check whether any of them meets the

radius condition. Similarly, entries in NE -quadrant satisfy duration condition but radius

is more than rq. We can shorten the corresponding subtrajectories so that they can be

enclosed in a rq-circle and check the duration condition.

However, because of the subset property all the entries of NW -quadrant do not

need to be in the query result. Also we do not need to extend or shorten and check all

the entries of SW or NE -quadrant respectively. We need to look into ri-list and ri+1-

list only. Let r↑i (r↓i)-list be the part of ri-list where any entry er
↑
i (er

↓
i) has duration

35

dd

NENW

dq

SESW SESW

ri ri+1 r
rq

ri ri+1

Figure 2.14: R-Lists.

d
er
↑
i
< dq(d

er
↓
i
≥ dq). Similarly, ri+1-list is divided into r↑i+1 and r↓i+1-list by dq. All the

entries in r↑i -list goes to the result. This is easy to do, because R-lists are sorted by duration.

None of the entries in r↓i+1-list satisfies the query condition.

Now, we have to check entries in r↓i and r↑i+1-list. Entries in r↓i -list needs to be

extended up to at least duration dq and check if rSECS < rq. Similarly, entries in r↑i+1-list

needs to be shortened down to radius rq and check if dS > dq. This requires to read the

corresponding trajectory data from the disk and use the online algorithm. So this step

might be an expensive operation.

However, if an entry er
↓
i has it’s next radius entry in er

↓
i+1 then extending er

↓
i will

not add to the result. Similarly, if er
↑
i+1 is a next radius entry of er

↑
i then shortening er

↑
i+1 is

redundant. If an entry er
↓
i has it’s next radius entry in er

↑
i+1 only then extending er

↓
i might

add to the result. So it suffices to extend only these entries. To identify which entries are

required to extend, at each entry we store the duration of its next radius entry. With this

information we can easily identify which entries to extend. Since, we are extending entries

from r↓i -list, entries from r↑i+1-list are not required to shorten.

36

2.6 Experiments

All the experiments were run in an Intel Xeon 3.0GHz processor running Linux

2.6.18 with 8GB of main memory. In our experiments we use two real datasets. The GeoLife

dataset [41] contains public activity data (i.e. shopping, dining, sightseeing, hiking, cycling

etc.) in Beijing, China. The DeerElk data contains the trajectories of deer, elk and cattle

in the Starkey Experimental Forest and Range in Oregon, USA [42]. Table 4.1 provides the

description of the real datasets. Different set of parameter (window size, query radius, and

number of vectors) values were considered for different datasets as indicated in the plots.

First, we examine the average time required to update the data structure as the

number of vectors changes. The experimental results appear in figure 2.11. As expected,

with the increase of the number vectors the time required for each update increases. How-

ever the rate of increase is very slow, e.g., using up to 10 vectors the update process is

efficient enough to handle orders of hundreds of thousands of moving objects. Since the

approximated radius is a factor of 1 + O(1
k2

), using k = 10 can approximate the radius

within order of 1% of the actual radius.

To depict the pruning power of our data structures, next, we compute the fraction

of points used by our method to evaluate the query when the upper and lower bounds

are not enough to answer the query. As seen in figure 2.12, while the number of vectors

increases, the fraction of points considered falls sharply. For example with 10 vectors we

need to consider only 10% of the window size.

Figure 2.13 shows the percent of unconfirmed results as the number of vectors

changes. The fraction of unconfirmed results decreases as the number of vectors increases.

37

4k, 1.0mi 0.525011 0.514656 0.495247 0.475605

4k, 0.8mi 0.523428 0.516502 0.486613 0.470082

4k, 0.6mi 0.522052 0.498885 0.479042 0.461957

Table 2.3: Results of Chi-square test.

As a matter of fact, the query is actually evaluated less than 2% of the times, while in the

rest it is answered through the heuristics.

Figure 2.15 depicts the percentage of difference between the actual radius of the

SEC and the upper and lower bounds. While the lower bound is always very close to the

actual radius the upper bound might be higher.

Finally, we examined the distribution of points around the circle when there is a

circle of desired radius. We do Chi-square test of the angular position of the points near

the perimeter of the circle. These are the points in the set S ′. The null hypothesis for the

Chi-square test is “Points are uniformly distributed around the circle”. Table 2.3 shows the

p-values of Chi-square test. A p-value of 0.05 or less would mean that there is a significant

difference between the observed distribution and the theoretical (uniform) distribution. Its

equivalent to say that with 95% confidence interval a significant difference is observed. In

that case we could reject the null hypothesis. As the experimental results show, p-values

are around 0.5−0.6, i.e., we cannot reject the null hypothesis with 95% confidence interval.

2.7 Conclusions

This chapter considers a novel problem for moving objects: real time identification

of moving objects that are staying within a certain distance from a (unspecified) dwell

38

region, for at least a certain duration. The main contribution of our work is to propose online

method to evaluate the decision query in logarithmic time. Our proposed methods lend to

approximating the radius of the smallest enclosing circle of a given subtrajectory within user

defined arbitrary factor and efficient approximation of the dwell region. Our experimental

evaluation shows that our algorithm is capable of evaluating the query condition on hundreds

of thousands of moving objects per second on average.

39

7

n=4k r =1 0mi
6

r ou
t)

n=4k, rq=1.0mi
n=4k, rq=0.8mi

4

5

%
 d

iff
(r

, n=4k, rq=0.6mi

% diff(r r)

3

4

n
),

 %

% diff(r, rin)
% diff(r, rout)

2

di
ff(

r,
r i

0

1%

4 6 8 10 12 140
vectors, k

15

n 1k r 1 5mi

r ou
t)

n=1k, rq=1.5mi
n=1k, rq=1.0mi

10

%
 d

iff
(r

, q
n=1k, rq=0.5mi

% diff(r r)

n
),

 %

% diff(r, rin)
% diff(r, rout)

5

di
ff(

r,
r i

0

%

4 6 8 10 12 140
vectors, k

(a)GeoLife Data (b)ElkDeer Data

Figure 2.15: Comparison between rq(= r), rbSECSc(= rin) and rdSECSe(= rout).

40

Chapter 3

Corridors and Conclaves: Inferring

Group Meetings From Partial

Observations

Consider the scenario in which we wish to track the spatio-temporal trajectories

of an adversarial group of associated persons of interest (e.g., terrorists, fugitives, etc.).

Unfortunately, tracking such groups using available intelligence-gathering means does not

always yield full trajectory data due to either adversarial countermeasures or lack of con-

tinuous surveillance. However, it may still be possible to obtain partial information about

object movement and behavior by integrating data from multiple sensory means.

Although GPS devices are now common, full trajectory data for moving objects

is not always available because of privacy issues (or even because GPS may not be avail-

able, e.g., within a mall, etc.). Yet, spotty location data for moving objects may still be

41

available from many sources, such as location sharing in social networks, check-in appli-

cations, surveillance cameras, cell-phone usage, sighting reports, etc. Devising techniques

for inferring useful intelligence from such spotty data and other available information (e.g.,

the underlying transportation network, via which the persons of interest must travel) is an

important challenge.

As a simple example, in Fig. 3.1, we have observations of 2 objects (persons) of

interest, O1 and O2, but only at their respective entry points, s1 and s2, and exit points,

t1 and t2. However, we have no information about the possible object trajectories (shown

as dashed lines) within the unobserved area (i.e., the “blind” region), nor do we have any

information about where these two objects could have possibly met while unobserved (e.g.,

at node v). Regardless, we would like to be able to draw inferences about object behavior

inside these unobservable regions, specifically about possible meetings and/or communica-

tions between the moving objects. For this, we may assume that we know the underlying

network topology within the region (i.e., the grid lines in the Fig. 3.1; in general, the

transportation network), but not the actual trajectories that the objects followed.

Given the known associations amongst the group of interest, chances are high that

group members may eventually meet somewhere within the unobserved area (in secrecy)

to exchange information or for some other tactical purposes, such as planning. Being able

identify the place(s) where all or some fraction of them could have visited at the same time

could give a useful lead to their eventual apprehension or further surveillance (as they may

be likely to meet there again in the future). It is also useful to be able to prioritize these

places based on either the number of people that could have met at such places or the

42

s1

t1s2

t2

v

1

Figure 3.1: Partial observations of moving objects and their possible trajectories and meet-
ing location.

potential duration of the possible meetings.

3.1 Related Work

Typically a moving object location is a tuple of the form (x, y, t). Here (x, y) is the

spatial coordinate where the moving object was at time t. Such tuples can come from GPS

sensor updates, social network check-ins, surveillance systems, etc. In between consecutive

tuples (x1, y1, t1) and (x2, y2, t2) where t2 > t1, the object is assumed to follow a straight

line. However, this is not always true. For example, in a road network an object can take

only certain routes (which may not be a straight line) while in a free space the object can

possibly randomly deviate from the straight line. The number possible routes or amount

of deviation is limited by the cost of the path taken between t1 and t2, and a maximum

possible speed of the moving object.

43

In the literature, two sources of uncertainty in moving object location have been

considered. First one is because of the precision of the GPS sensor (type-I uncertainty).

The second one is because of the location update frequency (type-II uncertainty). To

handle type-I uncertainty, a disk of a certain radius around each GPS reported location is

considered, i.e., the object can possibly be anywhere inside that disk. Type-II uncertainty

occurs when two consecutive updates are so far apart that the intermediate position is not

known for sure. For moving object in road network, type-II uncertainty exists if there are

multiple possible routes between two consecutive location updates. In free space, type-II

uncertainty always exists as the location updates occur at discrete timestamps. An elliptical

region, with the two consecutive locations as the foci of the ellipse, that contains the possible

location of the object is considered to handle this uncertainty. A better model is to have a

probability distribution function of the location of the object inside the disk or the elliptical

area.

Type-I uncertainty for range query is considered in [43, 44, 45, 46], where [44]

provides the detailed model for including uncertainty in the data indexing and query pro-

cessing. Ni et al. [43] Consider type-I uncertainty about the location of static spatial

objects. They consider spatial join of uncertain polygons (representing the boundary of

static spatial objects) and propose an R-Tree based method PrTree for the join. [44] pro-

vides algorithms for querying both past and future location of the moving object. [47] tries

to solve type-I uncertainty (in free space) differently than these previous works by using

a stochastic model. According to this model, the location probabilities of an object at a

particular time is dependent on its previous location.

44

Range queries with type-II uncertainty is considered in [16, 15]. [16] considers

range query on moving objects in free space while [15] considers snapshot and continuous

range queries in network space. [48] considers continuous nearest neighbors query in free

space with type-II uncertainty. These works are implicitly using the notion of a corridor

between two consecutive location updates. Among these works, [15] is the closest to ours as

it considers type-II uncertainty in road network. However, our problem requires to compute

intersection of the corridor nodes in the road network of a number of moving objects, which

was not attempted in any previous work.

The map matching problem [49] is to match actual GPS data to a digital map or

road network. Map matching problem can occure in both type-I and type-II uncertainty.

[50, 51, 52] propose map matching algorithms to find the potential routes taken by a moving

object under type-II uncertainty in a road network. [50] uses historic trajectories to find

potential routes while [51, 52] use road network topology and spatio-temporal attributes

of the trajectory (for which map matching is being done). None of the map matching

algorithms can be used to identify the corridor between two contiguous GPS samples.

3.2 Formal Tracking Model

The underlying transportation network is represented as a weighted, directed graph

G = (V,E,w), where V is the set of nodes representing, e.g., road intersections, E ⊆ V ×V

is the set of edges representing, e.g., roads crossing between nodes in V , and w → R>0 is

a positive weight function mapping the edges to their respective travel times. Let d(u, v)

denote the duration to travel the quickest path from nodes u to v.

45

Let O = {o1, o2, . . . or} be the set of moving objects being tracked (e.g., individual

persons of interest). We use oi@〈u, τ〉 to denote that the object oi was at node u ∈ V at

time τ . For every object oi ∈ O, we know their start and end nodes and the timestamps

for when the object was at those nodes. Specifically, for each oi ∈ O, we know the values

si, ti ∈ V and αi, ωi, δi ∈ R≥0 such that oi@〈si, αi〉 and oi@〈ti, ωi〉, indicating that object oi

takes a duration of δi = ωi − αi ≥ d(si, ti) time units to travel from si to ti.

For a node u ∈ V , eai(u) = αi + d(si, u) is the earliest-arrival time at which oi

can arrive at u and ldi(u) = ωi− d(u, ti) is the latest-departure time at which oi can depart

u to reach ti at ωi. Let ρi(u) = [eai(u), ldi(u)] be the possible presence interval of oi at

node u. An interval [a, b] is valid iff a ≤ b. Otherwise, we say that [a, b] = ∅ represents an

“empty” interval. We say u is reachable by oi iff ρi(u) 6= ∅. Let Ci = {u ∈ V | ρi(u) 6= ∅}

be the set of corridor nodes for oi (i.e., nodes reachable by oi on its way from si to ti).

Two objects oi and oj (i 6= j) can possibly meet at u if their presence intervals

overlap at u: ρi(u) ∩ ρj(u) 6= ∅. The longest possible conclave interval for a given set of

objects O′ ⊆ O, at node u, is IO′(u) = ∀oi∈O′
⋂
ρi(u). Let the set of conclave nodes for a

subset of objects O′ ⊆ O be defined as CO′ = {u ∈ V | IO′(u) 6= ∅}. Note that meeting

duration includes the start and end timestamps (e.g., the meeting duration of two objects

is considered one time unit when the arrival time of one object coincides with the departure

time of another object).

46

3.3 Query Types

Given the tracking model presented above, the most basic types of queries to

support within this model are reporting either the set of corridor nodes for a given object

oi (to see where oi could have traveled) or the set of conclave nodes for a given a subset

of objects O′ ⊆ O (to see where these objects could have met). However, we may further

extend this model to support various other queries of interest by incorporating additional

constraints and query objectives.

The first of these extended queries is the (γ, τ)-Query, which returns {u ∈ V |

∃O′ ⊆ O, |O′| ≥ γ, |IO′(u)| ≥ τ}. That is, we report the set of conclave nodes at which at

least γ objects could have met for at least a duration of τ time units. This allows for finer

control over the sizes of groups or durations of meetings which we are interested in tracking.

Other extended queries that we also consider in this model include the Top-k-γ

Query, in which we report the k conclave nodes with the largest-possible meeting sizes (γ) of

at least some fixed duration (τ), and the Top-k-τ Query, in which we report the k conclave

nodes with the longest-possible meeting durations (τ) of at least some fixed meeting size

(γ).

3.4 Methods

Let ∆ = {δ1, . . . , δr} be the set of object travel times and so CO be the set of

conclave nodes for all objects in O with the travel times given by ∆. We first describe an

algorithm for the (γ, τ)-query with γ = |O| = r and τ = 1. We shall call this the (r, 1)-

query. After describing the concepts of the basic (r, 1)-query algorithm, we then extend

47

this approach to show how to evaluate the query for any arbitrary value of (γ, τ) and top-k

queries.

3.4.1 The Näıve Solution

The näıve solution we present to evaluate an (r, 1)-query has two main phases:

a search phase and an evaluation phase. Beginning with the search phase, a bidirectional

Dijkstra[53] search is carried out by searching forward from the source, si, and backward

from the destination, ti, of each object oi ∈ O, with δi ∈ ∆ as the search cutoff bound.

Initially, ∀u ∈ V , we set IO(u) = [Ia, Ib] = [−∞,∞] and, ∀ oi ∈ O, we set eai(u) =

∞ and ldi(u) = −∞. Each forward and backward search then sets eai(u) = d(si, u)

and ldi(u) = d(ti, u), only when d(si, u) ≤ δi and d(u, ti) ≤ δi, respectively. After the

bidirectional search for a given object oi, for each u ∈ V reachable by oi, we update

IO(u) = [max{Ia, eai(u)},min{Ib, ldi(u)}]. After each bidirectional search, we may also

easily establish the set of corridor nodes Ci for the corresponding moving object oi, according

to the definition given in Sec. 3.2. Note that a node can be in the corridor of multiple objects

and thus be reachable by multiple objects. During the search phase we also keep count of

the total number of objects that can reach a node u. We call this the reachability number

η(u) of node u. We initialize η(u) = 0 for all u ∈ V before beginning the search phase. As

we do the bidirectional search for each object, η(u) is incremented when node u becomes

reachable by that object. After running bidirectional searches for all objects in O (i.e., the

search phase), we start the evaluation phase. In this phase, we evaluate all relevant nodes

to determine if they are possible conclave nodes for all of the objects of interest. Since an

(r, 1)-query requires nodes at which all r objects could have met, we therefore evaluate a

48

node iff η(u) = r (note that this only means that all r objects could reach node u within

their respective corridors, but it does not guarantee they could have all been present at the

same time). Therefore, if a node has η(u) = r, we then check it’s conclave interval IO(u).

If IO(u) 6= ∅, then u is a conclave node (i.e., all objects could meet at u).

Note that the above method needs to run exactly 2r Dijkstra searches for r objects.

This implies that a node can be explored by up to 2r distinct searches in the worst case.

Later in Sec. 3.4.4, we propose an alternate method based on a pre-processing technique

for speeding up shortest-path computations, which allows us to instead explore every node

at most twice, making for a much faster and more scalable approach overall.

3.4.2 Arbitrary (γ, τ)-Query

To maintain the minimum meeting duration (τ) condition, we may simply adjust

the travel times to δ′i = δi− τ before starting the search phase. Let ∆ = {δ′1, . . . , δ′r} be the

set of adjusted of travel times from this point on unless specified otherwise. This implies

that, after the search phase, eai(u) ≤ ldi(u) iff |ρi(u)| ≥ τ and, for a subset of objects O′,

if IO′(u) = [a, b] and a ≤ b, then the objects in O′ can meet at u for at least a duration of

τ units.

Let OCu be a maximal set of objects that can meet at node u. The minimum

meeting size (γ) condition requires that |OCu | ≥ γ for u to be a conclave node. Unlike

the (r, 1)−query, we cannot update conclave duration for a node because during the bidi-

rectional searches(search phase) we do not know which subset of O is going to satisfy the

(γ, τ) condition. So we cannot decide whether a node is a conclave node by checking the

reachability number and conclave duration for u. Even if η(u) ≥ r, all the objects may not

49

reach u at the same time and so |OCu | may be less than γ. To evaluate an (γ, τ)-query with

arbitrary values of γ and τ , potential nodes are evaluated (during the evaluation phase) at

the end of the search phase.

Nodes with reachability number η(u) ≥ γ are the potential nodes and evaluated in

the evaluation phase. Let ORu be the set of objects for which u is reachable. A brute force

method is to consider all subsets O′ ⊆ ORu with |O′| ≥ γ and compute IO′(u). However,

this is expensive when many subsets of size γ or more is possible(e.g. when γ is not close

to |ORu |). To avoid this expensive operation we devise the following line sweep algorithm.

We start by selecting nodes {u|η(u) ≥ γ}. Figure 3.2 illustrates the line-sweep

algorithm with 10 objects with ta, tb, t
′
a etc. being the ea, ld timestamps for a node u. To

determine whether at least γ objects from ORu can meet at node u, we sort the ea and ld

timestamps of all objects in ORu in increasing order. Then we “sweep the line” from the

earliest to the latest timestamp. As we sweep the line, we keep a counter c of intervals

that have started but not ended yet i.e. live entries. The value of c gives us the number of

overlapping intervals at the current position of the line. The maximum value of the counter,

cmax, gives the maximum number of objects that can meet at node u e.g., 6 in figure 3.2.

Note that there might be multiple subsets of objects that satisfy the γ condition. If we want

to determine all such subsets we have to continue the line sweep up to the last timestamp.

However, if we only want to know whether there is at least one subset that satisfies the γ

condition, we can stop the line sweeping as soon as c ≥ γ. For example, if γ = 3 then we

ca stop at timestamp tc. Another quantity for early stopping is c plus number of future

objects f . Future objects are the ones whose interval hasn’t started yet. If c+ f < γ, then

50

at least γ objects will not be able to meet at node u and we can stop the line sweeping.

For example if γ = 8 then at timestamp t′c we have c = 3 and f = 4 and so we can stop

the line sweeping. This condition can always be used (i.e., whether we are looking for all

subsets that satisfy the query condition or just a yes/no answer).

3.4.3 Top-k Queries

We consider two types of top-k queries: i) Top-k-γ with a minimum τ requirement

and ii) Top-k-τ with a minimum γ requirement.

To evaluate top-k-γ(top-k-τ) query a priority queue, Qγ(Qτ), for the top-k can-

didate nodes is maintained in the evaluation phase of the above algorithm for (γ, τ)-query.

Nodes with a certain reachability number(depending on top-k-γ or τ query) are evaluated

and the top-k queue is updated if this node can improve the current list of top-k candidates.

Let χQ
γ

min be the minimum conclave size in the priority queue Qγ . For top-k-γ

query, a node u is evaluated if Qγ has at least k elements (Qγ ≥ k) and η(u) ≥ χQ
γ

min.

A node is always evaluated if Qγ < k. We use the same line sweep algorithm described

above to evaluate a node, but we cannot use the same early stopping conditions described

above. Because, if the maximum number of objects that can meet at node u is higher

than the minimum meeting size in Qγ then we need to update the Qγ by deleting the

node with minimum meeting size and inserting the node u with its maximum conclave

size. To compute the maximum conclave size at node u, we need to complete the line

sweep algorithm for u. However, as before, if we can figure out early that the node cannot

possibly improve the current top-k list then we can stop early. One early stopping criterion

we use is c+ f ≤ cmax, which means continuing the line sweep algorithm will not improve

51

the maximum conclave size we have already seen. Note that, if we stop early with this

condition we might have cmax ≥ χQ
γ

min and we will have to update Qγ . Consider a top-k-γ

query and χQ
γ

min = 5. According to the example in figure 3.2 at time tg we have c + f = 6

which is not going to improve the current best for this node. So we stop at this point but

we still update Qγ and χQ
γ

min becomes 6. Another condition is c + f ≤ χQ
γ

min which implies

that a bigger conclave size than χQ
γ

min cannot be achieved from the current position of the

sweeping line. In this case we do not have to update Qγ . This time consider the above

query with χQ
γ

min = 9. At time t′f we have c + f = 9. So we stop at this point and do not

update Qγ .

To evaluate top-k-τ query with a minimum conclave size γ we do not adjust the

travel times to account for a minimum coclave duration. We evaluate a node u if η(u) ≥ γ.

To evaluate a node we modify the above line sweep algorithm. Since our goal is to maximize

the meeting duration for a minimum meeting size γ, considering meeting size more than γ

may reduce the meeting duration. So, as we sweep the line the start of a meeting duration

is recorded as soon as an interval (γth interval) comes alive and the number of live objects

increases to γ. Then we continue the line sweep and do not adjust the meeting duration for

meeting sizes larger than γ. We record the end of the meeting when an interval dies and the

number of live objects falls below γ. The meeting duration is computed from the start time

of the γth interval. To do this we need to keep track of the γth interval as we continue the

line sweep and intervals start and end. We maintain a list of live intervals sorted by their

start time and a pointer to the γth interval in this list. When an interval, with earlier start

time than that of γth interval, dies we advance the pointer γth to the γth interval by one

52

(when there are more than γ intervals in the list of live intervals). If an interval that started

after γth interval dies we simply delete it from the list and do not modify the pointer.

Consider the example in figure 3.2 again. Consider a top-k-tau query with γ = 3.

At time tc we have 3 alive intervals {a, b, c}. So c becomes the γth interval and tc is the start

time of a conclave of at least γ objects. Then interval d, e, f starts and interval f ends but

the γth entry remains the same (and so does the start time of the conclave). Next, interval

a dies at t′a and the pointer to the γth interval is moved forward to d since a is within the

first γ intervals. When the end of an interval requires to update the γth interval pointer,

we compute the convlave duration and update the maximum conclave duration found so

far if necessary. At time t′c the set of live intervals is {b, d, e}. The next end of the interval

b makes the set of live intervals of size 2 < γ and the γth interval pointer becomes invalid.

At this point the conclave duration of at least γ objects is t′b − te, which is also the largest

duration so far. As the line sweeping proceeds on, conclaves of size at least γ start at time

tg and tj and they end at t′e and t′g with duration t′e − th and t′g − tj . Out of all these

conclaves we take the longest one and update the Qτ if necessary. Note that, along the

line-sweep as we not only find the longest conclave duration, we also know the object IDs

of those who were present in that conclave. This line-sweep algorithm can also be used to

find all possible conclaves of size at least γ or more.

3.4.4 CH Based Solution

In this section we show that, the search phase can be significantly improved using

our proposed method based on contraction hierarchy. We, again, describe the search phase

for (r, 1)-query first. The evaluation phase is same for both Dijkstra based and CH based

53

t
ta tb tc td te tg th ti t’g t’h t’i t’a t’c t’b t’d t’e tf t’f

1

0

2

3

4

5

6

7

a

b

c

d

e

f g

h i

j

tj t’j

counter

Figure 3.2: The Line-Sweep Algorithm. There are ten intervals {a, b, c, d, e, f, g, h, i, j} with
there presence interval [ta, t

′
a], [tb, t

′
b] etc. at node u.

54

solutions and the extension to other queries is done by using the line-sweep algorithm in

the same way. However, we will show that, for the CH based methods, we do not have to

finish the search phase to start the evaluation phase. The evaluation phase can be carried

on along with the search phase. A node is evaluated when it is accessed during the search

phase. We start with a brief description of CH before presenting our methods in detail.

CH pre-processing has two phases: i) ordering the nodes of the graph, and ii)

contracting nodes one by one in that order. Any arbitrary ordering would preserve the

correctness of the algorithm but some orderings improve the performance more than others.

After setting up a particular order of the nodes in G, φ : V → {1, . . . , |V |}, they are

contracted in this order. Contracting a node means adding shortcuts to bypass the node

when there is a unique shortest path through that node. For example, if there is a pair of

incoming and out going edges (u, v) and (v, x) respectively, and (u, v, x) is a unique shortest

path then a shortcut edge (u, x) with weight w(u, v) + w(v, x) is introduced. In this way,

the contracted node is not deleted from the graph but new edges are introduced to bypass

this node during shortest path computation. After contracting all nodes, the graph contains

higher number of edges, i.e., G = (V,E ∪ E′, w) where E′ is the set of shortcut edges.

To achieve speedup in shortest path computation from s to t where s, t ∈ V in the

contracted graph, the regular bidirectional Dijkstra algorithm needs to be modified. The

forward search from s is run in the graph G↑ = (V,E↑), where E↑ = {(u, v) ∈ E∪E′|φ(u) <

φ(v)} and the backward search from t is run at the same time in G↓ = (V,E↓), where

E↓ = {(u, v) ∈ E ∪ E′|φ(u) > φ(v)}. A candidate shortest path cost is updated when the

two searches meet at some node in the graph. The search in a particular direction may be

55

stopped when the minimum cost in the priority queue for that direction is higher than the

minimum candidate path cost seen so far.

Note, however, that, unlike CH, our first goal is to, compute the corridor nodes

for each (si, ti) pair, not just the shortest path. And then, compute the set of conclave

nodes which is a subset of the intersection of the corridor nodes of all objects. A two phase

algorithm for finding corridor nodes for a given (s, t) pair is described in [54]. The first

phase (upward search) runs a forward search from s in G↑ and a backward search from t in

G↓. In the second phase (downward search), nodes touched in the first phase are accessed

in decreasing order and downward edges are expanded to find the corridor nodes. Both the

upward and downward searches are bounded by a threshold (e.g., travel time in our case).

To compute corridor nodes for multiple (si, ti) pairs, a straightforward way would be to use

the above algorithm once for each (si, ti) pair.

However, because of the structural properties of CH, we can compute the corridor

nodes for all (si, ti) pairs simultaneously by running a modified version of the above two

phase algorithm (bounded by thresholds in ∆) just once. In the upward search phase we

run a forward search from si in G↑ and backward search from ti in G↓ for all oi ∈ O. Let

dsi(v) (dti(v)) be the duration of the quickest path found in the forward and backward

search to(from) v from(to) si(ti). We start with an increasing rank order queue, incQ,

containing ∀oi∈Osi, ti ∈ V . We set ∀oi∈O dsi(si) = 0, dti(ti) = 0, and dsi(v) = dti(v) = ∞

where v 6= si, ti at the beginning of the search. When a node v is accessed from incQ i) it is

inserted into a decreasing rank order queue, decQ if ∃oi∈O dsi(v) ≤ δi or dti(v) ≤ δi and ii)

the upward edges of v are expanded (in the same way as regular Dijkstra search). After the

56

upward search, we set V∆ = ∅ and access nodes in decQ in decreasing rank order. When

a node v is accessed from decQ i) if ∀oi∈O dsi(v) + dti(v) ≤ δi then we set V∆ = V∆ ∪ {v}

and ii) the edges of v are expanded downward in the following way. For all (v, x) ∈ E ∪E′,

φ(v) > φ(x) set ∀oi∈O dsi(x) = min{dsi(x), dsi(v) + w(v, x)} and if x 6∈ decQ and ∃oi∈O,

dsi(x) + dti(x) ≤ δi set decQ = decQ ∪ {x}. For all (u, v) ∈ E ∪ E′, φ(v) > φ(u) set ∀oi∈O

dti(u) = min{dti(u), dti(v) + w(u, v)} and if u 6∈ decQ and ∃oi∈O, dsi(u) + dti(u) ≤ δi set

decQ = decQ ∪ {u}. The downward search ends when decQ becomes empty.

Theorem 4 Upon completion of the above algorithm, we have u ∈ V∆ if and only if u ∈ CO.

Proof: u ∈ V∆ ⇒ u ∈ CO: Note that, the values of dsi , dti are the upper bounds

(found during the search) of the true shortest path cost from si and to ti respectively for

all oi. A node u is included in V∆ when ∀oi d(si, u) + d(ti, u) ≤ dsi(u) + dti(u) ≤ δi. So by

definition of CO, u ∈ V∆ ⇒ u ∈ CO.

u ∈ CO ⇒ u ∈ V∆: Consider all nodes in K = C1∩C2∩ . . .∩Cr = {u1, u2, . . . , ux}

in decreasing rank order, i.e., φ(ui) > φ(ui+1). Consider the highest ranked node u1 in K.

Let u1 be a corridor node for a subset of objects oi ∈ O′ ⊆ O. We argue that u1 must be the

highest ranked node in the path from si to u1 and u1 to ti for all objects in O′. Otherwise,

there would be a higher ranked node in K according to Lemma 1 in [54].

According to [55] the highest ranked node on a shortest path si − v or v − ti has

dsi(v) = d(si, v) and dti(v) = d(v, ti) after the bidirectional upward search in G↑ and G↓

respectively. This implies that we have dsi(u1) = d(si, u1) and dti(u1) = d(u1, ti) after the

first phase and u1 ∈ decQ = {v ∈ V |∃oi∈O dsi(v) ≤ δi, dti(v) ≤ δi}. So u1 will be removed

first from decQ and added to V∆ if u1 is in the corridor of all moving objects i.e. if O′ = O

57

(∀oi∈O dsi(u1) + dti(u1) = d(si, u1) + d(ti, u1) ≤ δi).

Now, consider uk ∈ K, k > 1. Since we are accessing nodes of K in decreasing

rank order, before uk is accessed all nodes uj ∈ K, 1 ≤ j < k are accessed and have

dsi(uj) = d(si, uj) and dti(uj) = d(uj , ti) for all oi ∈ O. If uj is the highest ranked

node in si − uj and/or ti − uj path then the above logic applies for uj straightforwardly.

Otherwise, according to the definition of weakly bitonic path [54], there is a last edge

(vj , uk), φ(vj) > φ(uk) along the weakly bitonic path from si to uk. In that case, by Lemma

1 in [54], vj is accessed from decQ before uk and dsi(vj) = d(si, vj) is correct by then. Also,

when vj is accessed edge (vj , uk) is relaxed and dsi(uk) = d(si, uk) is established. Similar

arguments hold for all ti. Thus, when uk is accessed from decQ the si−uk and uk− ti path

costs are correct for all oi and added to V∆ if uk is in the corridor of all objects. �

3.5 Experimental Evaluation

All the experiments were run in an Intel Xeon 3.0GHz quad core processor running

Linux 2.6.18 with 8GB of main memory. We present the CPU time for all the experiments.

We used the road netowrk of California and Nevada to perform the experiments. There

are 1890815 nodes and 4630444 edges and edge weights represent travel times in the road

network. We generate queries by randomly selecting a source-destination (s, t) pair for

each moving object. The travel time between a pair (si, ti) has to be at least di = d(si, ti).

However, since the object may not follow the quickest path and/or spend some time at some

node we increase di to (1 + ε)di. We experiment the impact of the values of the parameters

mentioned in table 3.1.

58

Parameter Value Default

Detour length ε 0.1− 1 0.5
Num. objects r 2 to 100 20

Num. top nodes in top-k query k 10 to 100 100
Min. conclave size γ r/10 to r r/2

Min. conclave duration τ εd/10 to εd εd/10

Table 3.1: Parameters and their default values.

2 10 20 30 40 50 60 70 80 90 100
10

−2

10
−1

10
0

10
1

10
2

Number of Objects

CP
U

Ti
m

e
(s

ec
)

(γ, τ) Query, Dij.

(γ, τ) Query, CH

Top−K−γ, Dij.

Top−K−γ, CH

Top−K−τ, Dij.

Top−K−τ, CH

2 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of Objects

St
an

da
rd

 D
ev

ia
tio

n
of

 C
PU

 T
im

e

(γ, τ) Query, Dij.

(γ, τ) Query, CH

(a) (b)

Figure 3.3: (a) CPU Time vs Number of Objects (b) Standard Deviation of CPU Time vs
Number of Objects.

59

We first experiment the effect of the number of moving objects r being tracked

on the query evaluation time for all three types of queries, figure 3.3. We vary the number

of objects from 2 to 100 for the CH based methods. For Dijkstra based methods we stop

the experiment after 50 objects since it does not scale. For each value of r, we compute

the average query evaluation time by running 100 random queries (e.g. for 10 objects,

we consider 100 different sets of moving objects of size 10). For these experiments we set

ε = 0.5, γ = r/2, τ = εd/10. That means, at least half of the moving objects have to spend

at least half of additional travel time(εd) in a conclave. The query times are presented in log

scale, figure 3.3(a). The query time for the CH based methods rises very slowly compared

to the Dijkstra based method. The query times for top-k queries are very similar to (γ, τ)-

query. This implies that the cost of the line-sweep algorithm and maintaining the queues

are very little expensive. Note that, the standard deviation of query time for (γ, τ)-query

for Dijkstra based method is much higher than that for CH based method, figure 3.3(b). So

the query time for Dijkstra based method can vary widely. For the next set of experiments

we evaluate the impact of the values of the remaining parameters on (γ, τ)-query only.

Next, we experiment the effect of ε, which determines the additional travel time to

the quickest time. The value of ε determines the size of the search space for our algorithms.

We vary ε from 0.1 to 1.0 in steps of 0.1. We set the number of objects to 20, γ = r/2,

τ = εd/10. The average CPU time is computed by running 100 random queries for each

value of ε. The effect of ε on the query time for Dijkstra based method is much more than

that for CH based methods, figure 3.4. The query time for CH based method rises very

slowly while the query time for Dijkstra based method rises very sharply with ε.

60

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

45

ε

CP
UT

im
e

(s
ec

)

GT DJ
GT CH

Figure 3.4: ε vs CPU Time.

3.6 Conclusion

We introduce a novel problem of identifying potential secret meetings of of moving

objects when their exact location is uncertain. We present a number of variations where the

query can specify meeting duration or size or seek top-k nodes based on these attributes.

We present a formal model for the problem and prove the correctness of our algorithm. We

show how to utilize contraction hierarchy to gain orders of magnitude speed up over näıve

Dijkstra based methods.

61

Chapter 4

Finding Regions of Interest from

Trajectory Data

Regions of interest is a basic concept for trajectory semantics. Previous research

efforts have been geared towards understanding and extracting people’s activities from

trajectory databases. Examples include querying for a certain sequence of activities during

traveling [56], mining similarity between travelers based on their activity sequence [57],

inferring popular locations from GPS traces [58], etc. Typically, these queries assume that

information about the locations of specific activities is provided as a set of Regions of

Interest.

There is recent work on discovering Regions of Interest (ROIs) from trajectory

databases [57, 58, 59]. However, these methods are aimed at using ROIs to identify user

travel similarity, top-k interesting locations, etc. They identify “stay points” (equivalent

to ROIs), where a stay point is an (x, y) average of the points of a subtrajectory in which

62

the object moves less than a prespecified distance threshold δ and takes longer than a

prespecified time threshold τ . If either δ or τ changes, the entire trajectory database must

be re-scanned. In contrast, our work removes this important limitation.

It is more intuitive to define ROIs in terms of speed. If an object takes at least

time τ to travel at most distance δ, it maintains an average speed no more than δ
τ for

at least time τ . In our framework, we actually use a speed range to define ROIs, as this

leads to a more generic definition. Further, we introduce the notion of trajectory density

to define ROIs. A region is dense if the number of objects per unit area is no less than a

pre-specified threshold. In summary, our ROI definition uses (1) a range of speed that an

object maintains while in an ROI (2) a minimum duration of staying in an ROI area and

(3) the density of objects in that area.

We build an index on object speeds to avoid scanning the whole database. Given

a range or a particular speed, we first retrieve trajectory segments with that speed using

this index. We then verify the minimum stay duration condition. Objects that fulfill the

speed and duration condition are candidate objects. Finally, we identify dense regions of

candidate objects. For this we extend the pointwise density method [33]. Figure 4.1 shows

our proposed framework to discover ROIs.

Our contributions are summarized as follows. We provide:

• a generalized ROI definition for trajectories,

• a framework and several approaches to find ROIs efficiently, and

• an extensive experimental evaluation of the proposed methods using one synthetic

and three real datasets.

63

The remainder of the chapter is organized as follows: Section 4.1 presents the basic

definitions and formal description of the regions of interest while Section 4.2 provides an

overview of related works. Section 4.3 describes the framework for storing trajectories in

order to efficiently find ROIs; the proposed methods to find regions of interest are described

in Section 4.4. Section 4.5 presents the experimental evaluation and Section 4.6 concludes

the chapter.

4.1 Background

We begin with some definitions.

Definition 5 A trajectory is a finite sequence of (xi, yi, ti) triples. The xi, yi ∈ R2 are

spatial coordinates, and the ti ∈ R+, are timestamps, with ti < ti+1 for i = 0, 1, . . . , n− 1.

Each (xi, yi) pair represents the position recorded of a moving object at time ti (typically

from a GPS enabled device). Each trajectory has a unique trajectory ID (TID).

Definition 6 A trajectory segment is a straight line between two consecutive tuples

(xi, yi, ti), (xi+1, yi+1, ti+1) of the same trajectory, where i ∈ N0.

Definition 7 A subtrajectory of length m of a trajectory T = (x0, y0, t0), . . . , (xn, yn, tn),

is a subsequence T ′ = (xi, yi, ti), . . . , (xm+i−1, ym+i−1, tm+i−1), of m contiguous trajectory

segments, where i ≥ 0,m ≤ n.

A single trajectory segment is a subtrajectory of length one. In the rest of the

chapter we use trajectory segment, line segment or line interchangeably.

64

Trajectory
Database

Inverted
(speed)
Index

Verify
Temporal
Condition

Find
Dense
Regions

Query

ROIs

Figure 4.1: Framework for Discovering ROIs

4.1.1 Defining Regions of Interest

Conceptually, an ROI is intended to be a region where moving objects pause or

wait in order to complete activities that are difficult or impossible to carry out while in

motion. Examples of ROIs are restaurants, museums, parks, places of work, and so on.

Generally, individual trajectories display idiosyncrasies, so ROIs are best defined in terms

of collective behaviors of a collection of trajectories. That is, a collection of trajectories is

needed to identify a location as an ROI.

One simplistic approach to define ROIs is to consider places where many trajec-

tories intersect. However, not all intersections may be ROIs. For example, it may not be

appropriate to declare a busy road intersection as an ROI. The duration of an object’s stay

in a location is important in filtering out spurious ROIs, so we will require a minimum

stay duration for objects at ROIs. Nevertheless, if an object spends a long time in a large

spatial region, a city, say, then that large region should not be considered as an ROI either.

Hence, we must also consider the geographic extent of the object’s movement, that is, the

65

maximum area within which an object remains (or the maximum distance traveled by an

object) during the minimum stay duration.

Since the number of objects visiting a potential ROI is also important, we consider

the density of candidate objects in such a region. The problem of finding ROIs can then be

viewed as that of finding dense regions of candidate objects.

4.1.2 Identifying Point-Wise Dense Regions

We identify dense regions adapting the point-wise dense region approach of [33].

In this approach, a region R ⊂ R2 is dense if every point in R has a neighborhood which

contains a sufficient number of objects. This density approach removes various anomalies

(e.g., answer loss, lack of local density guarantee, etc.) that other density computation

methods, [60, 61], have. We thus adapt the following definitions from [33]:

Definition 8 The l-square neighborhood of a point p ∈ R2 is a square with edge length

l centered at p, including top and right edges, but excluding bottom and left edges. Figure

4.2(a) shows the l-square neighborhood of a point p. We assume l ≥ lmin, where lmin is

predefined.

Since we must find the density around trajectory segments, we extend this defini-

tion by defining l-neighborhoods around line segments and rectangles.

Definition 9 The l-rectangle neighborhood r of a rectangle c with lower-left and upper-

right corners at (xl, yb) and (xr, yt) is the rectangle (Figure 4.2(b)) with left-bottom corner

(xl − l
2 , yb − l

2) and right-top corner (xr + l
2 , yt + l

2). If c is a square, r is the l-square

neighborhood of c.

66

Definition 10 The l-rectangle neighborhood of a line segment is the rectangle with

edge lengths l and l+ |L|. The edges parallel with the line L are l/2 apart L and have length

l + |L| while the other edges are l/2 apart from the end points of L having length l.

Figure 4.3(a) illustrates this idea. Figure 4.3(b) shows a variant of this definition

that is useful in simplifying the evaluation of certain integrals while computing dense regions.

Here, two rectangle boundaries are parallel to the coordinate axes.

Definition 11 A point p in a region is dense if at least N different trajectories pass through

the l-square neighborhood of p. The thresholds l and N are specified by the ROI query.

Given thresholds l, N, τ , we consider R to be an ROI if at least N objects remain

for time τ in the l-square neighborhood of every point p ∈ R.

We note that the behavior of an object within a region of interest can be described

in terms of its speed and duration of stay. If the object remains within the l-square neigh-

borhood of a point for time at least τ , the net speed of the object (in terms of its net

displacement) can not exceed
√

2l/τ during the time interval τ . Therefore, we define a

region of interest in terms of speed.

Definition 12 A region R is a region of interest if every point p ∈ R has an l-square

neighborhood containing segments from at least N distinct trajectories with object speeds in

the range [s1, s2], and each such object remains in R for at least time τ before leaving R.

The parameters l, N, τ, s1, s2 are user-defined.

Our definition also supports timestamps, i.e. weekends or weekdays, lunch or

dinner time, etc. This allows the user to distinguish between ROIs with different semantics.

67

l/2 l/2

l/2

l/2
p

r

l/2

l/2

l + lc

c

(a) l-square neighbor-
hood of a point p.

(b) l-square neighborhood
of the rectangle c.

Figure 4.2:

(a) (b)

l/2

l/2

l/2

Figure 4.3: l-neighbor regions.

ROIs found with long stay duration on the weekends have different semantics than those

found on weekdays with short stay duration.

4.2 Related Work

Retrieving semantic information from trajectory databases has attracted much

research attention. In [56, 62] ROI information is given in a relational database and a join

operation between trajectory and ROI relations is performed to evaluate activity sequence

queries. [62] and [56] assume that the querying application will specify a finite set of pairs

(∆, τ) of interesting geographic regions ∆ and durations τ . If a trajectory spends at least

τ duration in a specified region ∆, then the portion of the trajectory inside region ∆ is

considered as a stop area in that trajectory. These stops are similar to ROIs. Nevertheless,

68

these approaches do not discover new ROIs as they consider only the application specified

regions.

Recently, various works on discovering ROIs have appeared, [57, 58, 59, 63, 12],

and are discussed below.

In [57, 58] the notion of “stay point” is presented using a maximum distance

threshold Dthreh and a minimum duration threshold Tthreh. In particular subtrajectories

are identified that take at least Tthreh duration to travel no more than Dthreh distance. A

fixed pair of values (e.g., Dthreh = 200m and Tthreh = 30min) is considered for finding these

subtrajectories. The (x, y) points of these subtrajectories are then averaged to identify

stay points (one stay point for each subtrajectory). Note that, these stay points might

not be on a trajectory (Figure 4.4). Density based clustering methods are then applied

to group spatially collocated stay points. Each cluster is called a “stay region”. These

stay regions are then used to find similar travel sequences [57], top n interesting locations

[58, 59]. However, reducing a subtrajectory into a particular point (possibly not on the

trajectory) leads to possible loss of information. For example, if density based methods are

applied on stay points to identify stay regions they might generate false negatives. Stay

points (solid circles) shown in Figure 4.4 are obtained by taking the average of points in the

low speed part of each trajectory. These stay points are too far from each other to form a

cluster although there is a dense region (the grey region) of slow moving objects.

[59] takes the first of the two contiguous trajectory points that are logged more

than Tthreh time apart (the empty circles in Figure 4.4). These stay points are always on

the trajectory but still subtrajectories are reduced to a single point and thus this approach

69

also suffers the above problem. In addition, [59] does not consider the situation when an

object is moving slowly or stopped but the GPS is frequently recording its positions.

In our approach we find dense regions considering the whole low speed subtrajec-

tories instead of particular points and thus overcome the above problems. We achieve this

by identifying as dense points, those points which have a certain number of trajectories in

their predefined neighborhood.

In [63] ROIs are discovered for each individual trajectory instead of considering

all trajectories and identifying commonly interesting places. The DBSCAN method [64] is

modified so that parts of a particular trajectory within a small region and with sufficient

stay duration in that region will be considered as clusters (ROIs).

The above methods do not index the data and so they need to rescan the whole

database for every different set of values of parameters. If these approaches wanted to

index the data to retrieve subtrajectories with arbitrary combination of maximum distance

traveled and minimum stay duration then they would have needed an index with all possible

combinations of values of Dthreh and Tthreh, which is not practical. We instead define stay

points in terms of the speed of the object and index the trajectory database for speed values.

With the speed index, we do not need to access the whole database for every different query:

only the low speed (as specified by the query) trajectory segments are accessed.

[12] presents an approach to mine common sequence of locations, ROIs, visited

with similar travel times between them. An example of such a sequence is ’Railway Station

−→15min Book Store −→30min University’, which says Railway Station to Book Store to

University is a common travel sequence with travel time between them 15min and 30min

70

Stay Point (x,y average)

Low speed part
High speed part

Stay Point (first point)

Figure 4.4: Problem of density based clustering methods for trajectories.

respectively. In this work ROI implies dense regions which are visited by a certain fraction

(i.e. 10%) of all trajectories. Dense regions are identified by discretization of the space

into grids, which can also introduce false negatives [33] i.e., when a dense region spans

over multiple cells but none of those cells are individually dense. Moreover, considering all

segments of all trajectories will identify places which are not ROIs, i.e. road intersections.

Other than density, this method is different from ours because it does not identify ROIs

with query specified parameter values.

To summarize, our approach has the following characteristics: 1) it does not as-

sume any a priori knowledge about ROIs, 2) it can identify ROIs for arbitrary values of

parameters without rescanning the whole database 3) it identifies commonly interesting

places by also considering the number of objects that visited the place.

4.3 Indexing Trajectory Segments by Speed

Typically, objects in an ROI will maintain very low (or zero) speed. Hence, if we

can quickly retrieve and analyze low speed trajectory segments, we can reduce query costs

71

Algorithm 5 BuildIndex(T :Dataset, R:Ranges)

1: for each trajectory T ∈ T do

2: ρprev = −1

3: start = 1

4:

5: for each segment (pi, pi+1 ∈ T) do

6: σ =Speed(pi, pi+1)

7: ρ =Range(σ, R)

8: if ρ 6= ρprev then

9: length = i− start

10: ptr =MakePtr()

11: e =indexEntry(T.ID, start, length, ptr)

12: insertIntoBucket(ρ, e)

13:

14: start = i

15: end if

16: ρprev = ρ

17: end for

18: end for

72

significantly.

Let smax and smin be the maximum and minimum speeds specifiable in an ROI

query. We partition the speed values into index ranges R = [smin, s1), [s1, s2), . . . , [sn−1, smax).

These ranges can be of arbitrary length. We maintain one bucket for each index range, with

bucket Bi holding trajectory segments with speed range [si, si+1).

We consider the segments for trajectory sequentially, and compute speeds assuming

linear motion between two successive timestamps. If a series of consecutive segments fall

within the same speed range, we combine them into one subtrajectory, and insert it into

the index as one entry. Thus each entry in an index bucket points to a subtrajectory all

of whose segments fall into within the speed range of the bucket. Figure 4.5 illustrates

how subtrajectories are assigned to different buckets. The dotted and dashed lines show

the subtrajectories which are contiguous parts of the same trajectory. The pseudo code for

building the speed index appears in algorithm 5. Lines 6 and 7 calculate the speed of a

segment and decide which of the index ranges contains it. If the speed range is same as

that of the previous segment then we proceed to the next segment and so on. Otherwise, a

new entry, e, is created which points to the last subtrajectory with same speed range; e is

then inserted into the appropriate bucket (lines 8 to 15).

We assume trajectories are sorted according to TID, so that subtrajectories in the

buckets are also sorted according to TID. Having TID sorted entries in the buckets allows to

perform a merge join to reconstruct trajectories from these buckets. When new trajectories

are added to the database the index can easily be updated using the above algorithm.

Finding trajectory segments having speed within range [s1, s2) is straightforward.

73

speed: 10.3 10.0 10.9 5.6 5.8 5.0 16.0 16.9 16.8 16.5

[5, 6) [10, 11) [16, 17)

… …

… …

…

Figure 4.5: Index Structure.

Every bucket whose speed range overlaps with the range [s1, s2) is accessed. If the speed

range of a bucket Bi is completely contained within the query speed range then all sub-

trajectories of Bi are considered. If there is partial overlap, the subtrajectories of Bi are

checked for containment of speed within the query range.

4.4 Finding Regions of Interest

We find ROIs in three steps. First, we retrieve the appropriate buckets from the

index. In the second step, we collect subtrajectories spanning multiple buckets by perform-

ing a merge-join, and check the stay durations. In the third step, we find regions with line

segment density N/l2, where each of N segments has to be from different trajectories.

It is straightforward to retrieve the segments falling into a given speed range [s1, s2)

using the speed index. No further discussion is needed.

4.4.1 Step 2: Verifying the Duration Condition

In this step, we consider only the buckets obtained from the previous step. To

verify the duration condition for each trajectory we must join subtrajectories with same

74

TID from different buckets. Let the query speed range include buckets Bi and Bj , and let

Si ∈ Bi and Sj ∈ Bj be subtrajectories. Let the start and end timestamps for Si and Sj be

[ti1, ti2] and [tj1, tj2] respectively. If Si and Sj have the same TID and ti2 = tj1 or ti1 = tj2,

then Si and Sj should be merged into a single subtrajectory. The object’s stay duration

is the interval between the first and the last timestamps of the merged subtrajectory. We

discard all subtrajectories with stay duration less than τ after merge, since they do not

fulfil the stay duration condition. Since we have a TID-sorted list in each bucket we need

one pass over every bucket entry. The segments that belong to a subtrajectory with stay

duration τ or more are input to the next step.

In addition to minimum stay duration, our implementation also supports other

temporal conditions, such as time intervals and weekdays/weekends. For example, ROIs

during any weekday with τ = 15 to 30 minutes, carry different semantics than those found

in the afternoon or evening of any weekend, with a few hours of stay duration.

4.4.2 Step 3: Finding Dense Regions

This step involves finding points p whose l2-neighborhood contains at least N

distinct trajectories. For our purpose we extend the Pointwise Dense Region (PDR) method

[33] which was originally presented for point objects. We extend those techniques here

for line segments. The work in [33] describes two variations: (1) an exact, and (2) an

approximate method.

75

Exact PDR Method

The spatial region is assumed to be a L×L square area. This space is partitioned

into m × m grid, with cell width lc = L
m . Here, m must be such that lc ≤ lmin

2 where

lmin ≤ l. For each cell, ci,j where 1 ≤ i, j ≤ m, we maintain a histogram. Initially all

histogram values are set to zero. The histogram value for each cell is increased by one,

for each distinct overlapping trajectory. We index the trajectory segments obtained from

the previous step using an R∗-tree [65]. The cost for building such an R∗-tree is included

in the query cost, which is, according to our experimental evaluations, quite small. For

each cell we perform an R∗-tree search to determine the number of overlapping trajectories.

Histogram values for all the cells form an m×m matrix, which we call a histogram matrix.

PDR [33] is designed for moving objects, and evaluates predictive queries about

dense regions at a future timestamp. Hence, the numbers and positions of objects could

be different for different queries. As a result, histogram values must be computed for every

different query. However, we evaluate the query on historical data (GPS traces), and can

calculate histogram values once, and use to evaluate queries. That is, to speed up queries,

we pre-compute a histogram matrix for every index range and then use these to answer

queries with any arbitrary speed range. As new trajectories are added to the database, the

histogram values and the speed index are both updated. We assume that the data is always

up-to-date.

Calculating the histogram matrix for a query speed range requires adding his-

togram matrices whose speed ranges overlap with the query range. If the upper and lower

limits of the query range exactly match the limits of index ranges then no histogram values

76

are calculated. Otherwise we have to calculate one or two histogram matrices for a very

small size of data. The following example illustrates the idea.

Let the query range be [sq1, sq2), and the index ranges be [s0, s1), . . ., [si, si+1),

. . ., [sj , sj+1),. . ., [sn−1, sn). If sq1 = si and sq2 = sj where 0 ≤ i ≤ n − 1, 1 ≤ j ≤ n, and

i < j, then we add up the histograms for the ranges [si, si+1), . . . , [sj−1, sj). However, if

si−1 < sq1 < si, sj < sq2 < sj+1, where 1 ≤ i ≤ n − 2, 2 ≤ j ≤ n − 1, and i < j, then we

have to calculate histogram values for the ranges [sq1, si) and [sj , sq2) in addition to adding

up histogram matrices for the speed ranges [si, si+1), . . . , [sj−1, sj).

The Filtering Step Let ηl = b l
2lc
c, ηh = d l

2lc
e. We use the following definitions from

[33]:

Definition 13 The conservative neighborhood of a cell ci,j is the union of grid cells

cu,v such that i− ηl < u < i+ ηl and j − ηl < v < j + ηl.

The l-square neighborhood of any point inside ci,j fully contains its conservative

neighborhood, Ci,j .

Definition 14 The expansive neighborhood of a cell ci,j is the union of grid cells cu,v

such that i− ηh ≤ u ≤ i+ ηh and j − ηh ≤ v ≤ j + ηh.

The l-square neighborhood of any point inside ci,j is fully contained in its expansive

neighborhood, Ei,j . Figure 4.6(a) shows the conservative and expansive neighborhood for

a cell ci,j , with ηl = 2 and ηh = 3.

If the conservative neighborhood of any cell overlaps with N trajectories, then

all points inside cell ci,j are guaranteed to be dense, and ci,j is accepted as a dense cell.

77

Ci,j

Expansive Conservative

r

l/2

l/2

l + lc

c

(a) Conservative and
Expansive neighbor-
hood of a cell ci,j .

(b) MBRs in the
l-square neighborhood
of the cell c.

Figure 4.6:

On the other hand, if the expansive neighborhood of any cell overlaps less than N line

segments, then no point in cell ci,j is dense, and ci,j is rejected. Cells that are neither

accepted nor rejected are candidate cells. We use the FilterQuery algorithm from [33] to

identify accepted, rejected and candidate cells. In our case ρl2 = N and there is no query

timestamp, qt. Candidate cells are further analyzed to identify dense points inside them.

Refinement Step To identify dense points in a candidate cell ci,j first, we will find all

segments that overlap with the l-square neighborhood, r, of the cell ci,j .

We do an R∗-tree search to retrieve segments overlapping with r. We retrieve only

the portion of a line that overlaps with r. Each segment is represented by its MBR. Figure

4.6(b) shows the region r and the MBRs of the overlapping line segments. We sort the

MBRs of line segments according to the x coordinate of their left-bottom corner.

In the refinement step, an l-band is swept along the X axis for each candidate cell

ci,j . An l-band is a rectangle with width l and height l+ yt− yb. The position of the l-band

is identified by the position of its vertical median. The plane sweep algorithm along the

78

X-axis starts with the l-band’s vertical median at the left edge of ci,j and stops when it

touches the right edge of ci,j . Let L be the sorted list of MBRs that overlap the l-band at

the beginning. As the l-band is swept, when the right edge of the l-band touches the left

edge of an MBR we insert it into the list L. When the left edge of the l-band touches the

right edge of an MBR we delete it from L. The x coordinates of the vertical center line

when any edge of l-band touches any edge of an MBR are the stopping points. Instead of

sweeping through all the x coordinates it is sufficient to consider only the stopping points.

Algorithm 6 describes the plane sweep along the X-axis. In this algorithm the

l-band is placed at each stopping point and the left and right edges of the candidate cell .

If the l-band overlaps at least N objects then SweepY is called to identify dense regions,

where l-square neighborhood of each point overlaps N lines. Plane sweep along Y axis

proceeds in the same way. An l-square is swept instead of an l-band.

Approximate PDR Method

The exact PDR method requires to run the plane sweep algorithm for all candidate

cells, which can be a costly operation. The number of plane sweeps required depends on

the number of candidate cells. If most of the cells cannot be accepted or rejected during the

filtering step then a large number of plane sweeps is needed. This will significantly increase

the query execution time. However in practice the querying application or the user can

accept some loss of accuracy and identifying dense regions exactly is not necessary.

The work in [33] therefore presents an alternate method using Chebyshev polyno-

mials of the first kind to approximate the density function D(x, y) of the two dimensional

space. l is assumed to be fixed. We adapt this method we adapt to our case. Our experi-

79

Algorithm 6 RefineQuery(N , ci,j)

1: S = MBRs in l-square neighborhood of ci,j

2: sort S according to the left x-coordinate, x′l, of MBRs

3: stopX = xl, xr

4: for each MBR(x′l, y
′
b, x

′
r, y

′
t) in S do

5: insert x′l −
l
2 if x′l −

l
2 ∈ [xl,xr]

6: insert x′r − l
2 if x′r − l

2 ∈ [xl,xr]

7: insert x′l + l
2 if x′l + l

2 ∈ [xl,xr]

8: insert x′r + l
2 if x′r + l

2 ∈ [xl,xr]

9: end for

10: L = MBRs inside l-band at the initial position

11: n = #elements in L.

12: for i = 1 to n do

13: xi = L[i]

14: delete MBR whose x′r is xi − l
2 from L

15: insert MBR whose x′l is xi + l
2 into L

16: if |L| ≥ N then

17: SweepY(L, N)

18: for each dense segment [yj , yj+1) do

19: [xi, xi+1)× [yj , yj+1) is a dense region.

20: end for

21: end if

22: end for

80

mental results mirror that of [33], and show that the approximation method is very fast, so

that approximations for different l can be computed on the fly.

Chebyshev Polynomials The Chebyshev polynomial Tk(x) of the first kind is a polyno-

mial in x of degree k and defined by the relationship Tk(cos θ) = cos(kθ). When x ∈ [−1, 1],

then θ ∈ [0, π]. These polynomials obey the recurrence

Tk(x) = 2xTk−1(x)− Tk−2(x), k ≥ 1

T0(x) = 1, T1(x) = x.

The approximation f̂(x, y) of a function f(x, y) with Chebyshev polynomials of degree k is

given by:

f̂(x, y) =

i+j≤k∑
i=0,j=0

ai,jTi(x)Tj(y)

The Chebyshev coefficients ai,j are computed using the following formula:

ai,j =
c

π2

∫ 1

−1

∫ 1

−1

f(x, y)Ti(x)Tj(y)
√

1− x2
√

1− y2
dxdy

where,

c =

4 when i 6= 0, j 6= 0

2 when i = 0, j 6= 0 or i 6= 0, j = 0

1 when i = 0, j = 0

The x and y coordinates are normalized to between +1 and −1, with the bottom-

left corner at (−1,−1) and top-right corner at (1, 1). In [33], Chebyshev coefficients are

updated for the l-square neighborhood of each point as objects are added, so that that the

density of the l-square neighborhood of a point is increased by 1/l2 for this point.

81

We will use a similar approach, considering the line segments obtained from step 2

one by one, and updating the coefficients. We first describe how to update coefficients for a

l-square neighborhood of a point and then focus on updating coefficients for a line segment.

Time of collection Number
of trajec-
tories

Number
of spatial
points

Sampling
fre-
quency

Description

Apr 2007 to Aug 2009 165 24778552 2-5 sec GeoLife Data

2008-05-17 to 2008-06-
10

536 11219955 10 sec TaxiCab Data

April to August of 1993-
1996

253 >287,000 1hr DeerElk Data

Table 4.1: Description of real data set.

For each point p we need to update each coefficient ai,j , for i = 0, j = 0 to i+j ≤ k,

so that the density of l-square neighborhood of p is increased by 1/l2. It has been shown

in [33] that for each point if we can calculate the increment aδi,j of coefficient ai,j , then the

updated coefficient a′i,j is:

a′i,j = ai,j + aδi,j .

aδi,j is calculated as follows.

aδi,j =
c

π2

∫ xr

xl

∫ yt

yb

1
l2
Ti(x)Tj(y)

√
1− x2

√
1− y2

dxdy

=
c

π2l2

∫ xr

xl

Ti(x)√
1− x2

dx

∫ yt

yb

Tj(y)√
1− y2

dy

=
c

π2l2

∫ xr

xl

cos(i arccos(x))√
1− x2

dx

∫ yt

yb

cos(j arccos(y))√
1− y2

dy

[using the trigonometric representation of Ti(x)] (4.1)

yb, yt, xl, xr, are bottom, top, left, and right boundaries respectively of the l-square.

However, computing the above integrals for the l-rectangle region of a line segment

82

is complicated, since the boundaries of a line segment’s l-rectangle are not fixed values. This

causes the y-limits to become functions of x. We will simplify the integrals by assuming that

two boundaries of the l-rectangle neighborhood are parallel to y axis, as in Figure 4.3(b).

Now x-limits are fixed values and y-limits are linear functions f1(x, xl, xr) and f2(x, xl, xr).

The integrals now assume the form

aδi,j =
c

π2l2

∫ xl

xr

cos(i arccos(x))√
1− x2

dx

×
∫ yt=f2(x,xl,xr)

yb=f1(x,xl,xr)

cos(j arccos(y))√
1− y2

dy (4.2)

=
c

π2l2

∫ xl

xr

cos(i arccos(x))√
1− x2

× sin(jf1(x, xl, xr))− sin(jf2(x, xl, xr))

j
dx

=
c

π2l2j
[I1 − I2]

where

Ik =

∫
cos(i arccos(x)) sin(jfk(x, xl, xr))√

1− x2
, k = 1, 2 (4.3)

Unfortunately, using linear f1() and f2() in (4.2) results in an elliptical integral,

which has no closed form. Numerical integration is expensive, and will not allow us to

achieve our goal of quickly approximating the density function.

Since updating the Chebyshev coefficients for the l-rectangle neighborhood of a

line segment will not be efficient, we proceed using a simpler region around line segments.

Our final goal is to approximate the dense regions quickly. We take the middle point pm of

each segment, and update the coefficient for the l-square neighborhood of pm. This makes

the approximation method simple and quick, although it might harm the goodness of the

83

approximation. Usually trajectory segments are much smaller than grid cells, and fully

contained within a cell. If a line segment is bigger than grid cell width, lc, then we segment

the line into multiple lines of length lc, except the last segment, which might be smaller.

4.5 Experimental Evaluation

In our experiments we used three real and one synthetic datasets. All the experi-

ments were run in an Intel Xeon 3.0GHz processor running Linux 2.6.18 with 8GB of main

memory. We used the disk manager and R∗-tree implementation of the spatial index library

[66] with page size 16KB.

Table 4.1 provides the description of the real datasets. The GeoLife dataset [41]

contains public activity data (i.e. shopping, dining, sightseeing, hiking, cycling etc.) in

Beijing, China. The TaxiCab dataset was collected from GPS equipped taxi cabs in San

Francisco, USA [67]. The DeerElk data contains the trajectories of deer, elk and cattle in

the Starkey Experimental Forest and Range in Oregon, USA [42]. The synthetic dataset

contains two hundred thousand trajectories, each of length 250 recordings, generated for

the Chicago metropolitan area road network.

We first consider identifying ROIs in the real datasets. For experiments we used

(a) (b)

Figure 4.7: ROIs identified Beijing with long stay duration in weekends.

84

the exact PDR method. Table 4.2 shows the temporal conditions used for the experiments

on the GeoLife data. The results of our algorithms were then validated using Google Maps.

Note that GeoLife data comes from Microsoft Asia employees, visitors, etc. Using a short

stay duration (15 to 30 min) we found bus stops, railway and subway stations, the Tsinghua

University canteen, etc. We then considered weekends and a longer stay duration (1.5 to 4

hr). This resulted in ROIs in (1) the Sanlitun area which houses many malls, bars and is

a very popular place, (2) the Wenhua square which contains churches, theaters, and other

entertainment places, and (3) Zhongguancun, referred to as ‘China’s Silicon Valley’, having

a lot of IT and electronics markets. Figure 4.7(a) and (b) shows Sanlitun and Zhongguancun

area respectively in Beijing. When considered lunch and dinner time we found places that

contain many restaurants. Interestingly ROIs found at lunch time contain regions near the

Microsoft China head quarters which are absent in dinner time ROIs. Finally we identified

ROIs on each individual day from April 2007 to August 2009. These resulted in (1) the

Olympic media village, the Olympic sports center stadium during the Olympics 2008, (2)

Peking University when the ‘Regional Windows Core Workshop 2009 - Microsoft Research’

was taking place in the PKU campus, (3) areas near the Great Wall in a weekend, (4) the

Beijing botanical gardens, (5) the Celebrity International Grand Hotel, Beijing, etc.

Figure 4.8(a) shows all the ROIs found using the TaxiCab dataset. We further

zoom in to ROIs and these are shown in figure 4.8(b) The San Francisco international

airport, (c) a car rental, (d)the main downtown, union square (e) hotels: Star Wood,

Westin, Mariott, (f) hotel Radisson (g) Ramada Plaza hotel (h) Embarcadero, Regency

hotel, (i) San Francisco Caltrain station (j) the yellow cab access road. These were found

85

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 4.8: ROIs identified for the TaxiCab data.

for short stay duration of 10 minutes. When the stay duration was increased to 12 hours

we found only yellow cab access road, while for 2− 3 hours of stay duration we also found

the airport.

Time Period Duration

1 Any day 15-30 min

2 Weekends 1.5-4 hr

3 Lunch time 0.5-1.5 hr

4 Dinner time 0.5-1.5 hr

5 Any day 1-4 hr

Table 4.2: Temporal attributes for the GeoLife data Experiments.

Finally, when using the DeerElk dataset, the ROIs found tend to be near a valley,

with the largest ROI being close to a big water body (0.56 miles in length).

Figure 4.9 shows the query evaluation time for different values of parameters on

86

0−1 0−3 0−5
0

50

100

150

a) Query speed range (GeoLife)

T
im

e
 r

e
q

u
ir
e

d
(s

e
c)

0−1 0−3 0−5
0

500

1000

1500

b) Query speed range (TaxiCab)

T
im

e
 r

e
q

u
ir
e

d
(s

e
c)

10 100 500 10005000
0

50

100

150

c) Num Temp Cond. (GeoLife)

T
im

e
 r

e
q

u
ir
e

d
(s

e
c)

10 100 500 10005000
0

100

200

300

400

d) Num Temp Cond. (TaxiCab)

T
im

e
 r

e
q

u
ir
e

d
(s

e
c)

Figure 4.9: Query parameters vs Time.

real data. We do not consider the DeerElk data because there is not much variation of speed

in this dataset. As we increase the speed range the query evaluation time increases very

slowly for the GeoLife data. However, for the TaxiCab data the evaluation time increases

sharply (the reason behind which is explained in the next paragraph). On the other hand,

the effect of the number of the temporal conditions on query evaluation time is very small.

This is because evaluating the temporal condition requires a sort merge join which is very

fast. While varying the number of temporal conditions the amount of selected data from

the index was kept the same, which ensures that the subsequent parts of the algorithm after

verifying the temporal condition processed the same data.

Figure 4.10 shows the percentage increase in the selected data from the speed

index as the query speed range increases from 0 − 1mph to 0 − 3mph and from 0 − 3mph

to 0 − 5mph. Increasing the query speed range results in much higher increase of selected

87

0−1 to 0−3 0−3 to 0−5
0

20

40

60

80

100

Increase of speed range

P
e

rc
e

n
ta

g
e

 in
cr

e
a

se
 o

f
se

le
ct

e
d

 d
a

ta
.

TaxiCab Data
GeoLife Data

Figure 4.10: Increase in fraction of selected data vs speed range.

data in case of the TaxiCab data than that in the GeoLife data. This explains why the

performance of query evaluation in the TaxiCab data is more affected by the query speed

range than that in the GeoLife Data.

We also ran experiments on the synthetic dataset to determine the algorithm’s

behavior over large datasets. Figure 4.11(a) shows the time required to build the speed

index. Here we report index construction times for indexing subtrajectories with speeds

between 0 and 100, (although we need only low speed segments, i.e. 0 to 5, to answer

typical ROI queries). Our index ranges are [0, 1), [1, 2), . . . , [99, 100). The cost of building

the index is linear with the data size. The difference between CPU time and elapsed time is

0 50 100 150 200
0

100

200

300

400

500

600

700

#Trajectory (103)

T
im

e
 (

se
c)

cpu
elapsed

0 50 100 150 200
2

2.5

3

3.5

4

4.5

5

5.5

#Trajectory (103)

T
im

e
 (

se
c)

cpu
elapsed

0 50 100 150 200
0

20

40

60

80

#Trajectory (103)

A
ve

ra
g

e
 n

u
m

b
e

r
o

f
IO

(a) (b) (c)

Figure 4.11: (a) Index building cost vs Database size. (b) Histogram computation time vs
Database size. (c) Histogram computation IO vs Database size.

88

slowly increasing which is due to the increasing number of disk IO as the data size increases.

Figure 4.11(b) shows the time required for the histogram computation for each

index range as a preprocessing step. Computing histogram matrices requires accessing the

speed index and building an R∗-tree with the selected data. Note that the elapsed time is

very close to CPU time. This is because the histogram matrices are typically small and

can fit into main memory. Moreover, the data indexed by the R∗-tree is also small. Figure

4.11(c) shows the average number of IOs required for computing each histogram matrix.

For comparison purposes we also implemented the CBSMOT approach [63]. CB-

SMOT estimates the eps parameter using a quantile function where the user has to specify

the fraction of trajectory points that is expected to be in an ROI. Since in our approach we

assume that the user will specify speed and distance, we can equivalently assume that the

eps-distance is specified by the user. To compare CBSMOT with our method we ran it for

a certain value of eps and minimum stay duration τ . Then we ran our method with speed

range [0, epsτ) and minimum stay duration τ . Note that, CBSMOT finds ROIs for each

individual trajectory but our method considers all trajectories of the dataset and identifies

regions that are commonly interesting. Thus, CBSMOT identifies more ROIs than those

identified by our method. To make the results of CBSMOT comparable with ours we ex-

tend it (E-CBSMOT) by applying the pointwise density method on its output. Note that,

E-CBSMOT, similarly to CBSMOT, cannot evaluate temporal conditions as our approach.

Figure 4.12 shows the regions of interest found in the synthetic data using the

exact, approximate and E-CBSMOT methods. ROIs identified by the Chebyshev approx-

imation have more area than those by the exact method. This is due to the fact that

89

0 500 1000
0

200

400

600

800

1000

x

y

(a) Exact

0 500 1000
0

200

400

600

800

1000

x

y

(b) Approximate

0 500 1000
0

200

400

600

800

1000

x

y

(c) E−CBSMOT

Figure 4.12: ROIs identified by different methods.

the density coefficients are being over estimated because of considering the l-square neigh-

borhood around the center of a line segment. The subtle difference between the result of

E-CBSMOT and our method is because of the different definitions of ROIs.

Figure 4.13 shows the query evaluation time. As expected, the time for the approx-

imation method is quite less than that of the exact method. Recall that the approximate

method computes Chebyshev coefficients and finds dense regions for every different value of

l. From the experimental results we argue that the whole approximation process is so fast

that it is feasible to run the approximation for every different value of l. For the exact PDR

method we experimented with two cases, when we (1) only add precomputed histogram

matrices and (2) need to compute the histogram values after retrieving required subtra-

0 50 100 150 200
0

10

20

30

40

50

60

70

80

#Trajectory (103)

T
im

e
 (

se
c)

Exact (pre)
Exact (on the fly)
Approximate
E−CBSMOT

Figure 4.13: Query time vs Database size.

90

jectories from the speed index. In the later case we need to (i) access the speed index to

retrieve the required trajectory segments (ii) build the R-Tree on them and (iii) compute

the histogram values. This experiment shows the benefit of precomputing the histogram

matrices and thus avoid accessing the speed index. Finally, E-CBSMOT takes much longer

than our method since it has to scan the whole dataset.

4.6 Conclusions

In this chapter we address the problem of discovering regions of interest from

trajectory databases. We give formal definition of ROIs in a more generic way than previous

approaches and propose a framework to discover ROIs efficiently. We allow users to specify

any arbitrary values for attributes defining ROI. Unlike previous approaches we do not scan

the whole database to identify ROIs for a certain set of attribute values defining ROIs,

neither assume any spatial information given about these regions.

We also consider a minimum number of objects must stay in an ROI for a minimum

duration, which is absent in previous methods. We extend the Pointwise Density method

to identify these regions with a minimum density of trajectories. Experimental results show

that our proposed methods discover ROIs efficiently and correctly. As a future work we

want to address the issue of dealing with data with uncertainty e.g., noisy, low resolution

data.

91

Chapter 5

Indexing Moving Object

Trajectories With Hilbert Curves

The availability of mobile technologies (ubiquitous cellular networks) combined

with highly accurate GPS devices has enabled many applications that generate and main-

tain data in the form of trajectories. As an example, location-based services have now

become common, creating large trajectory repositories. Given the ever increasing size of

such repositories, to efficiently access and analyze trajectory data, we need fast indexing

methods.

For simplicity, we assume trajectories are created by objects moving in a 2-

dimensional space. For our purposes, a trajectory consists of a unique id (corresponding

to the moving object that created it) and a poly-line whose endpoints are tuples of the

form (x, y, t). Here (x, y) is the spatial coordinate where the moving object was at time t.

Typically, such tuples come from sensor readings, GPS updates, social network check-ins,

92

etc. In between consecutive tuples (x1, y1, t1) and (x2, y2, t2) where t2 − t1 < δ, we assume

that the object followed a straight line. If the time duration between two consecutive tuples

from the same object is larger than the threshold δ we assume that this object starts a new

trajectory (or trip). This allows us to create meaningful trajectories per application (using

different δ thresholds). Thus, the same object can have multiple trajectories representing its

different trips over time (but non-overlapping in the time domain). By considering an ob-

ject’s movement as a sequence of line segments (instead of simply a collection of endpoints)

we can answer queries about the moving object’s position in between these endpoints as

well.

Space filling curves (Hilbert Curve, Z Curve) have been shown to be advantageous

in indexing spatial objects since they can reduce the space dimensionality. In past research,

SFCs have been mainly used to index multidimensional points [68, 69, 70] or order arbitrary

objects [71, 72]. Orenstein [73, 74] provided a general approach by which any spatial object

can be represented as a collection of ranges (where a range starts when the SFC enters the

spatial object’s area and ends when the SFC exits it). Each such range corresponds to a

continuous part of the SFC that overlaps the spatial object. A spatial range query is also

translated into a collection of range queries in the SFC space.

When considering a SFC, an important property is how well it performs clustering

or preserves proximity (i.e. points that are nearby in the original space are also close to

each other in the transformed space). This is important as it reduces the number of disk IO

for hierarchical indexing methods. Another important property is the average number of

SFC ranges per object. Higher proximity preservation and lower number of ranges result in

93

better performance. Among all the SFCs, the Hilbert curve has been shown to have better

proximity preservation [75, 76, 77], and lower average number of ranges per object [78].

In this chapter, we utilize Hilbert curves to index the trajectory poly-lines. Using

a SFC to represent trajectory line segments sets forth a number of challenges. First, a line

segment does not have an area. Hence, a Hilbert curve either crosses a line segment (i.e.

the SFC enters and exits the line segment at the same point, resulting into a degenerate

range that contains a single point) or visits very few continuous points on a line segment

(since the SFC by construction is not a straight line). As a result, Orenstein’s method will

transform a line segment mainly to its points (degenerate ranges) and few (small) ranges,

resulting in (i) increased data storage, and, (ii) very high query evaluation time.

Since the endpoints of a line segment are important (as they define the limits of

the segment), another approach would be to represent the line segment by the Hilbert range

of its endpoints. This is intuitive and correct in the Euclidean space but it does not work

when using a SFC. Consider the Hilbert numbers (h1, h2) assigned to the endpoints (e1, e2)

of a line segment. The part of the Hilbert curve between h1 and h2 may not go through

all the points of the euclidean line (e1, e2). As a result, we can have a range query that

overlaps (e1, e2) but the query’s Hilbert transformation may not overlap the (h1, h2) range,

thus introducing false negatives.

The above approaches can be thought as two extremes. Instead, our proposed

approach introduces splits on the original line segments in an effective way that (i) avoids

the degenerate ranges of the Orenstein approach and (ii) maintains the segment endpoints

while avoiding the false negatives.

94

When implementing our approach, the next important decision is what space to

fill (represent) with the Hilbert curve. One approach is to use the SFC over the full 3-

dimensional spatiotemporal space (two spatial coordinates plus time dimension). However,

the temporal dimension is semantically different than the spatial ones. One such difference is

that time always increases. Typically, the space filled by a SFC has fixed size, a requirement

that is easily satisfied for the spatial domain but not the temporal dimension (unless one

splits the temporal dimension into fixed intervals and introduce a distinct SFC for each

time-space cube; however this approach will introduce unnecessary overhead at query time).

Furthermore, the inclusion of time may force closely located positions in the spatial domain

to be far away on the Hilbert space. Consider for example a slowly moving object over a

long time interval. The trajectory of this object contains locations that are spatially close

but if seen in the 3-dimensional space they are not. Hence, a 3-d SFC may assign to such

a trajectory ranges that are far away, thus eliminating the desired spatial locality. To this

end, we use a SFC over the 2-dimensional spatial domain.

As a result, a trajectory segment (whether original or introduced from a split)

with endpoints (x1, y1, t1), (x2, y2, t2) is represented by the MBR (h1, t1), (h2, t2) where hi

is the Hilbert number allocated to spatial position (xi, yi). Such MBRs are then indexed

using a 2D R-tree. We call this approach the Hilbert Trajectory Index or HT-Index.

Most of the previous trajectory indexing approaches are based on R-trees [40, 79,

10] or cell-based partitions [80]. The R-tree based methods (e.g., STR tree, TB tree [79],

TPR tree [10] etc.) use minimum bounding rectangles (MBRs) to store trajectory segments.

MBRs are known to introduce large dead space when storing 2-dimensional lines which can

95

generate a lot of false positives for range queries. The problem becomes more significant

when adding the time dimension (the dead space increases exponentially). Among the space

partitioning approaches, the most efficient has been the TrajStore [80]. It adaptively splits

the 2-dimensional space in cells based on the density of trajectories passing within a cell (as

time proceeds) and facilitates a quad tree to index them. We compare the HT-Index against

both the R-tree and TrajStore approaches; our experiments show that for range queries, the

HT-Index depicts 2− 15 times speedup over a 3D R-tree and 2− 3 times speedup against

the TrajStore.

We also considered supporting the temporal dimension by using a temporal access

method. We describe a new indexing method called ’Multiversion Interval Tree’ (MI-tree).

MI-tree combines idea from Interval tree[81] and Multiversion B-tree[82]. Ranges of Hilbert

numbers can be indexed with interval tree. To manage the temporal intervals we propose

Multiversion Interval Tree which can be implemented with two MVB-Tree. However, this

method does not outperform HT-index.

While the above discussion focuses on spatial range queries, another challenge

arises from the support of distance-based queries (kNN, skyline, etc.) In general, a transfor-

mation needs to preserve Euclidean distance so as to avoid false dismissals in the evaluation

of distance based queries. Unfortunately, unlike many orthogonal transformations [83], the

transformation from the 2-d spatial space to SFC ranges does not lower bound the Euclidean

distance. Because of this, it has been assumed to be impossible [84] to evaluate distance

based queries using SFC transformations, without first converting the SFC ranges back to

spatial coordinates. This adds significant overhead to every distance computation during

96

query evaluation, making the SFC approach impractical. Instead, our proposed method

avoids this overhead by calculating a lower bound on the Euclidean distance by inspecting

a few bits of the SFC numbers of the segment endpoints. As a result, we can evaluate

distance based queries with minimal overhead. Our experimental evaluation showed that

for kNN queries, the existing methods can be made two times faster using the HT-Index.

Contributions of this chapter are:

• We mitigate the problems of representing line segments using Hilbert curve. We keep

the temporal dimension separate from spatial dimensions because of their inherent

semantic difference and index spatio-temporal trajectories with a 2D R-Tree. This

results in a large performance improvement for range queries and is usable in any

available database system with R-Tree implementation.

• We show how to evaluate distance based queries using existing branch and bound

algorithms on HT-Index without fully converting Hilbert numbers to Euclidean coor-

dinates for every distance computation.

• We perform extensive experiments and show our proposed method outperforms any

state of the art methods.

We also show how to use existing R-Tree cost model [85] to determine grid cell

size.

The rest of the chapter is organized as follows: Section 5.2 provides the definitions

and background while Section 5.1 describes some related works. R-Tree based methods are

described in Section 5.3 while Section 5.4 describes index structures that consider as alter-

97

NENW

1
1 2

NE

0
start end

0 3P

SW SE

0 1

SW SE

9 10

10

11

4

5 6

7

9 10

11

01

10

23

4 7 8
11

12
13

00 0 1

12

14 15

P

00 01 10 11

111

101

110

111

011

100

000

001

010 P

000 001 010 011 111110100 101

000

(a) (b) (c)

Figure 5.1: Hilbert curves: (a) 1st Order (b) 2nd Order (c) 3rd Order.

native to R-Tree. Section 5.6 presents the experimental results and Section 5.7 concludes

the chapter.

5.1 Related Work

Orenstein [74] demonstrated a generic method to convert multidimensional objects

to a number of disjoint continuous segments (ranges) of the SFC, also called runs [78].

Spatial Range Queries: In [68, 70, 69] the Hilbert curve is used to represent

locations of moving objects. The Bx-Tree [68] indexes current and future moving object

positions (i.e., it answers ‘predictive’ queries about where the moving objects will be in the

future). It partitions the time axis into fixed intervals according to the maximum duration

between two updates from a moving object. Each interval creates an index partition while

the update timestamp determines an object’s index partition. The value indexed for each

object update is a concatenation of the index partition and the Hilbert representation of the

object’s position at that time. As time passes the earliest interval (and its index) expires

and a new interval is added. The ST2B-Tree [69] also considers predictive queries and uses a

98

similar approach to the Bx-Tree but allows for different HC resolution based on the moving

object density. In contrast, the BBx-Tree [70] keeps one B+-Tree for each time interval

and thus preserves the past positions of the moving objects; it can thus answer ’historical’

queries as well. One key property of these B-tree based methods is that moving object

updates need to occur within a maximum interval; that is, a moving object has to report

its position within that interval. The methods we propose in this chapter, do not have this

limitation.

[71, 72] use Hilbert numbers not to represent but instead to sort spatial objects.

The Hilbert R-tree [71] uses a HC to decide object insertion order. The idea is to improve

R-tree performance by inserting objects together that are close to each other in the actual

space. [72] focuses on indexing trajectories of objects moving on some constrained network

(road network, etc.) Edges of the road network are sorted according to the Hilbert number

representing their midpoint. Then edges are assigned 1D non-overlapping adjacent intervals

of length proportional to the length of the edge. The spatial coordinates of trajectory

segments are mapped to 1D intervals by corresponding them to network edges. Network

edges and trajectories are indexed separately and evaluating a range query requires searching

both indices.

The trajectory indexing methods that do not use SFCs can be categorized by

the index they use (an R-tree or cell-based partitioning). Among the R-tree methods, the

STR-Tree and TB-Tree [79] focus on clustering segments of the same trajectory close by in

the index leaves, while the TPR-Tree [10] is for predictive queries; because of using MBRs

to store segments, all these approaches have the dead space disadvantage. TrajStore [80],

99

facilitates a quad tree to store cells that are created by partitioning the spatial domain

based on the trajectory density. The time dimension is not used explicitly in the index

(conceptually, all trajectories are projected on their spatial coordinates) but as an interval

that is assigned to each data page within a cell. At query time, cells are picked based on

the query spatial range; out of the pages that a cell contains, the method considers only

those pages with appropriate time interval. Having a good estimate of a cell’s density is

important for the method’s efficiency. However, the cell density is estimated by using all

the endpoints of the trajectories crossing the cell, which implies that the location update

frequency should be high (so that that there is an endpoint in the cell for a fast object

that passes through the cell) and the same for all moving objects (so that fast and slow

objects contribute the same in the density estimation). Such requirements may be limiting

for many location-based applications.

All the above methods consider time as a separate dimension that is explicitly

or implicitly added to the index. Work on indexing temporal data [86] has proposed yet

another approach for indexing time, that of partial persistence [87]. In particular, consider

an object that was at spatial position e1 at time t1 and moved to e2 at time t2. This

move can be approximated as a segment (e1, e2) that first appeared at time t1 and ’lived’

until time t2. As time proceeds, new segments are created and ’live’ until they expire.

The problem is then translated into maintaining a data structure that can maintain such

segment evolution. This is achieved by taking an ’ephemeral’ data structure that can solve

the problem for a single time instant and making it partially-persistent [87] so as to also

maintain the temporal evolution. This is the approach taken by the multi-version R-tree

100

(MVR-tree) [9] and the MV3R-tree [88] for storing spatial objects that change over time.

The multiversion approach typically provides very fast query times for single time instant

(or short time interval) queries. Nevertheless, it introduces additional space through a

controlled duplication (so as objects are temporally clustered). Moreover, this approach still

uses some dead space, since in the above example the whole segment (e1, e2) is approximated

from time t1 even though the object was only at e1 at that instant.

kNN Queries: Among the distance based queries, kNN queries are the most

popular. Several variations of such queries on spatio-temporal data have been considered in

the literature. Approaches are distinguished by i) the type of the query object (i.e., static

point, trajectory, moving query), ii) the type of the data being queried (archival trajectory

repository or streaming moving object data), and iii) the temporal predicate. The temporal

predicate is either a time instant, but more frequently it is a time interval. There are two

meanings considered in the interval case: (a) (interval semantics) the query result is a single

set with the k closest neighbors over all time instants in the query interval, or, (b) (instant

semantics) the query result provides a kNN set for each time instant in the interval.

In [89, 90], both static point and trajectory queries on archived trajectorial data

are considered. They consider both interval and instant semantics. [91] considers interval

semantics on static point and trajectory queries on archived data while the approach is

extended to instant semantics in [92].Instant semantics for trajectory query and static point

data is considered in [93]. In contrast, [94] considers instant semantics, trajectory query

over archived trajectory data indexed in a 3D-R-tree. Ṅearest neighbor queries on moving

point data have been discussed in [95, 96, 97]. These methods are focused on, once the kNN

101

query is evaluated for an initial timestamp, how to update the result as the moving point

data or query is being updated.

The above works are build on the classic approaches to perform kNN on static

data indexed by an R-tree, namely, the ‘branch and bound’ [98, 99] and the ‘best first’ [100]

algorithms. In section 5.3.2 we show that both algorithms can be evaluated using a Hilbert

curve without converting the SFC ranges back to spatial coordinates, thus providing an

efficient way to implement kNN queries in general.

5.2 Background

A trajectory is a polyline with endpoints T = (x0, y0, t0), . . . , (xn, yn, tn), ti <

ti+1 for i = 0, 1, . . . , n−1. A trajectory segment is a straight line between two consecutive

location updates (xi, yi, ti), (xi+1, yi+1, ti+1) of the same moving object, where i ∈ N0. A

subtrajectory of length m of the trajectory T , is a subsequence T ′ = (xi, yi, ti), . . . ,

(xm+i, ym+i, tm+i), of m contiguous trajectory segments, where i ≥ 0,m < n.

A Hilbert curve (HC) [101] is a self avoiding, continuous curve that goes through

every point of a discretized multidimensional space exactly once. We thus assume that the

spatial domain is represented by a N ×N-grid where N = 2l, l = 0, 1, 2, Each cell in

this grid corresponds to a point; i.e., there are a total of N2 possible locations (points) in

the spatial domain all of which are visited once by the HC. Clearly, the higher the l (also

called the order of the Hilbert Curve) the higher the space resolution.

To construct a HC of order l we partition the space recursively until we reach

the maximum resolution at level l. The 1st−order HC is the smallest Hilbert curve (figure

102

5.1(a)), also called the unit shape. It corresponds to the basic building block, since a

higher order HC is constructed by replicating the unit shape with appropriate rotation

and direction as we recursively partition the space, and finally, connecting the unit shapes

through their start and end points. Figure 5.1(b), (c) shows the 2nd order and 3rd order

HC, respectively.

5.3 Methods

Given a spatial object S (which for the purposes of the remaining discussion can

be either a query rectangle or a line segment) and a Hilbert curve H, let hSmin(hSmax) be the

minimum (maximum) number on H overlapping S. The run (hSmin,hSmax) contains all the

points on S as well as many points not overlapping with S since this run leaves and enters

S many times. Each continuous part of the run (hSmin,hSmax) that is outside the object S is

called a jump, while the number of cells a jump contains is its length.

An example where the spatial object is a rectangle (query range R) appears in

Figure 5.2(a); here a 3rd−order Hilbert curve is used. Based on Orenstein’s approach [74],

to avoid all points in the run (hRmin,hRmax) that are not in the rectangle, the run is split

into multiple smaller runs, namely: (a, b), (c, d), (e, f), (g, g) and (h, h). This creates the

following jumps: (b′, c′), (d′, e′), (f ′, g′) and (g′′, h′), as seen in Figure 5.2(b). The number

of cells in a jump is the length of the jump e.g. the length of (d′, e′) is e′ − d′ + 1.

We observe that most of the jump lengths are very small except a few exorbitantly

high. If we merge two runs with a small jump between them, it will add a few redundant

points (e.g. resulting in a few false positives). On the other hand, merging runs with big

103

jump between them will result in many false positives and increase the query time. It might

be more efficient to run another range query instead. So we split an object only when there

is a big jump. To identify big jumps we use a threshold computed based on simple statistics

e.g., mean, standard deviation. We choose not to use complex method as this will add extra

time to query evaluation. Using this approach the runs for R would be (a, d), (e, g), (h, h).

Querying HT-index with these runs adds few false positives but reduces number of search

required per range query. We present experimental result on the effects of the threshold

value to merge runs in section 5.6. The above approach can be applied for line segments

as well. Note that, when a trajectory segment is split, the timestamp at the split point is

calculated assuming linear motion between original endpoints of the line.

While the above method reduces number of runs used to represent a spatial ob-

ject, we still need to avoid false negatives when representing a trajectory segment with its

endpoints. Given a line segment L, let hL1 and hL2 (hL1 ≤ hL2) be Hilbert numbers of the end

points of L. Taking the run hL1 -hL2 to represent L may result in false negatives. Because

the actual run containing all the cells overlapping with L is (hLmin, h
L
max) and the numbers

hLmin and/or hLmax) might not always lie at the end of L, i.e. hL1 6= hLmin and/or hL2 6= hLmax.

r

a b c

d e

f

g

h

d'

b’ c’

e’ g’’

f’

h’

a’

g’

(a) (b)

Figure 5.2: Runs of a range query.

104

For example, if we have a range query that maps to Hilbert numbers 12−15 in figure 5.3(a)

and line ab is represented with the Hilbert numbers at the endpoints e.g. (1, 10) we will

have a false negative. On the other hand, If we use (hLmin, h
L
max) to represent L we loose

the endpoint information. So, we want to maintain that hL1 = hLmin and hL2 = hLmax.

The above condition can be achieved by recursively splitting a line segment ac-

cording to the following heuristic. We split a line segment when hL1 6= hLmin(hL2 6= hLmax)

so that the endpoints of one of the new line segments is (hL1 , h
L
min) ((hL2 , h

L
max)). Then we

recursively split the other segment until the above condition is satisfied. The above splitting

rules (to avoid false negatives or big jumps) generates less splits than Orenstein’s method

leading to less query evaluation time. Finally, we combine time intervals with the runs and

index MBRs of (h, t) coordinate pair (ht−MBRs) with a R-Tree.

5.3.1 Range Query Evaluation

We consider 3D range queries i.e. a spatial range and a temporal interval. The

spatial range of the query is, first, mapped to the overlapping cells of the underlying grid

(and thus the actual query rectangle is enlarged to align with the nearest cell boundaries).

The spatial range is, then, split into a number of runs query runs according to Orensteins

method and then the runs with small jumps are merged (merged runs). Finally, the query

temporal interval is combined with each of them to obtain the ht−MBRs. Effectively, the

original query is thus divided into many smaller range queries. These ht−MBRs are searched

in the HT-index which returns a set of ht−MBRs representing spatio-temporal trajectory

segments. However, we need to verify these results since they might contain false positives.

A straightforward way to detect the false positives would be to take the runs (result runs)

105

from the ht−MBRs in the search result , convert them to spatial (x, y) coordinates and

then, check if they are within the spatial range specified by the query. However, we use the

query runs and result runs to avoid the Hilbert to spatial conversion.

False positives may occur because of 1) query enlargement and 2) merging query

runs. To verify the query result we consider two rectangles with edges aligned with bound-

aries of underlying grid cells. The smallest rectangle Rout containing the range query Rq

and the largest rectangle Rin contained by Rq. Rmid is the region between Rout and Rin.

If a result run rh does not overlap with any of the query runs then the corresponding tra-

jectory segment is outside Rout and resulted because of merging query runs. If rh overlaps

with the IHRin then it belongs to the query result. We need to convert the Hilbert numbers

of rh and the cells in Rmid to spatial coordinates only when rh is neither inside Rin nor

outside Rout. Thus by using Rout and Rin we can verify most of the results efficiently.

5.3.2 kNN Query Evaluation

Algorithm 7 shows the pseudo code for incremental kNN search [100]. The only

problem towards using InckNN with HT-Index is the distance function dist(a, b) which

9 10

4

5 6

7

9 10

11

bd

23

4 7 8
11

12
13

0 1

12

14 15

P

a cc

p

q

(a) (b)

Figure 5.3: (a) False negatives when using Hilbert range. (b) Distance between a query
point and a sub-grid.

106

evaluates Euclidean distance between two spatial objects a and b. Evaluating dist() is not

possible when the (x, y) coordinates are replaced with Hilbert numbers. Any two points

close to each other on the HC is also close to each other in the Euclidean space. However, the

reverse is not always true i.e. sometimes there are big difference between Hilbert numbers

of two spatially close points. So its not always possible to lower bound Euclidean distance

from Hilbert numbers.

The straight forward way to use the InckNN algorithm is to compute spatial

representation from the Hilbert representation of an object or node MBR before computing

the Euclidean distance. But it will add significant overhead to kNN search. We want to be

able to implement kNN search with zero of very little overhead.

The InckNN algorithm efficiently finds out the nearest neighbors by pruning nodes

that contains objects that are too far away to belong to the kNN result (e.g. if a new

object is farther than the current candidate object in the queue then the new object is not

considered). So to determine whether a node can be a kNN candidate we only need to

know a lower bound of the distance to that node(MBR). Consider query point q and a data

point p in figure 5.3(b). Suppose the distance of the k farthest object in the queue is x. If

dist(p, q) > x then p cannot be a candidate for kNN. This decision can also be made if we

know that the distance between q and a low level grid cell (e.g. a cell of a 2× 2-grid where

as the space is actually partitioned into a 8× 8-grid) that contains p is more than x.

We can compute a lower bound of Euclidean distance between a query point and

a object by inspecting a few bits from the Hilbert representation of the object. Higher

the number of bits inspected, tighter is the lower bound.Consider point p in figure 5.1(a).

107

We will demonstrate how to compute the 3rd−order Hilbert number h of P from its (x, y)

coordinate and the reverse (e.g. (x, y) from h). We start with a 2×2-grid, 1st−order curve.

The coordinate of P in this 2× 2−grid is (1, 0), figure 5.1(a). The Hilbert number for this

cell is 11(in binary) which are the two MSBs of h. So now we have h = 11 ∗ ∗ ∗ ∗, x = 1 ∗ ∗

and y = 0 ∗ ∗. Now, we further partition all the cells in the current 2 × 2−grid and get

the 4 × 4−grid and corresponding 2nd−order Hilbert curve, figure 5.1(b). The coordinate

of P in the SE 2× 2−grid is (0, 1) and it maps to 01 in the 1st−order curve which gives us

h = 1101∗∗, x = 10∗ and y = 01∗. Finally we partition the cells again and get a 3rd−curve.

The coordinate of P in its current 2×2−grid is (1, 0) and number 11 along the curve, figure

5.1(c). So we have the final results h = 110111(= 55), x = 101, y = 010.

From the above illustration, we can compute a lower level grid cell b containing a

given point p by inspecting a few most significant bits of the points Hilbert number h. We

start by inspecting first two MSBs of

If dist(q, b) is too high to be kNN candidate we stop decoding and discard this

point. Otherwise we .

The same approach can be used for a pair of Hilbert numbers (h1, h2) representing

a line segment since they are contained by the same low level grid cell most of the times.

Very rarely, we may have to inspect higher number of bits

The real distance is calculated only when an entry e is popped from the queue.

After calculating the actual distance dist(q, e), e may not be the top element of the queue.

In that case e needs to be inserted in the queue and the next element has to be processed.

Another way is not to fully process e. Suppose n bits of e have been processed. We can

108

decode next two bits and check if it still is the top element of the queue. We stop when e

is fully decoded or cease to be the top element of the queue. If e is fully decoded then e is

the nearest entry to q. In this way only entries close to the query point are fully decoded.

Entries that are far away are only partially decoded e.g. the farther the entry the less

number of bits is decoded. Our experiments suggests this adds very little overhead to kNN

search.

5.4 Alternative Approaches

We consider a number of alternative index structures besides R-Tree to index

trajectories represented with Hilbert numbers. First, we consider multi version R-Tree [9]

with elongated MBRs of one dimensional Hilbert numbers e.g., an MBR with (h1, 0), (h2, 0)

as corner points. However, we find that these elongated MBRs are not clustered properly

i.e., MBRs too far away from each other are put under the same leaf node and thus a very

big MBR with large dead space is created. This in turns, results in many false positives

and increase query evaluation time.

Next approach we consider is a combination of a multi-version indexing and a

one dimensional indexing. Namely MI-Tree: multi-version B-Tree (MVB-Tree)[82] and

Interval Tree[81]. Interval tree was developed to index one dimensional intervals. However,

our goal is to index runs that also have temporal intervals. Kriegel et al. [102] shows that an

Interval Tree can be implemented using two B+-Trees. So, runs (without temporal intervals)

can be indexed with Interval Tree which in turn can be implemented with two B-trees. To

handle the corresponding temporal intervals associated with these runs we propose using

109

multi-version B-Trees instead of regular B-Trees.

[102] shows that for each range query on interval tree, it requires to do 2h range

queries on B+-Tree, where the height of the interval tree h = log(x), x = extension of the

data space. In our case, x = 22∗ord, ord = order of the Hilbert curve being used. So if we use

a 10th order Hilbert curve we need to do 40 range queries(in the MVB-Tree). Remember,

using Hilbert curve already requires multiple index search for each range query. Using MI-

Tree will multiply the number of index search required by another significant factor. In our

experiments we find that query evaluation in MI-Tree is more than 50 times slower than

that in a R-Tree. This is impractical, and so, don’t consider this as a competitor.

Finally, we consider a one dimensional indexing method, Snapshot Index [103], to

index runs. Snapshot index was proposed to record changes over time e.g., the lifetime of

an object starts at time t1 and ends at t2. However, we use snapshot index to record the

changes in Hilbert dimension i.e. Hilbert dimension is considered as time dimension. For

example a run (h1, h2) for an object o is interpreted as o becomes alive at h1 and dies at h2.

We split the actual time dimension into m equal intervals and maintain one snapshot index

for each interval. Within each interval we ignore time and consider only Hilbert numbers.

For example, given an ht−MBR (h1, t1)-(h2, t2) for an object o, we insert o with the lifetime

(h1, h2) into each snapshot index with temporal interval overlapping with (t1, t2).

Note that time is always increasing but there is no order among the Hilbert num-

bers visited by a trajectory. So we need to sort the Hilbert numbers visited by a trajectory.

But this makes the update harder. Because updates can never happen in the past but a

trajectory can go back at the same location many times. So an update might require to

110

resort the data and rebuild an index. Moreover, an object o can have same (h1, h2) segment

multiple times i.e., o needs to be inserted multiple times with the same lifetime. To avoid

this we use concatenation of the actual starting time stamp t1 and the object ID of o as the

insertion key. So each run is going have a different ID.

5.5 Cost Model for HT-Index

We attempt to relate the order of Hilbert curve to query evaluation performance

so that the optimum grid size can be selected for a given data. Cell size determines 1)

number of search required for each query 2) data size increment 3) dead space 4) query

enlargement.

Smaller cell size implies higher number of runs, consequently higher number of

search for each query. Data size increment depends on number split required. The average

number of split for each segment depends on the cell size and frequency of location update.

Smaller cell size will result in higher number of splits, and lower dead space. For low

frequency data (i.e. long line segments) there will be more split. Query enlargement depends

6 8 10 12 14 16
0

1

2

3

4

5

6

Order of Hilbert Curve

Nu
m

be
r o

f r
un

s

67.518.36.1Actual

σ=0

σ=1

σ=3

6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Order of Hilbert Curve

Nu
m

be
r o

f r
un

s

656.56165.5942.91Actual

σ=0

σ=1

σ=3

6 8 10 12 14 16
0

5

10

15

20

25

30

35

40

45

50

Order of Hilbert Curve

Nu
m

be
r o

f r
un

s

6526.821642.14408.546103.865Actual

σ=0

σ=1

σ=2

(a)0.1% Queries (b)1% Queries (c)10% Queries

Figure 5.4: Number of runs

111

4 6 8 10 12 14 16 18
0

50

100

150

200

250

300

350

400

450

Order of Hilbert Curve

Q
ue

ry
 T

im
e(

se
c)

θ = µ
θ = µ+σ
θ = µ+3σ

4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

Order of Hilbert Curve

Qu
er

y T
im

e(
se

c)

θ = µ
θ = µ+σ
θ = µ+3σ

4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

Order of Hilbert Curve

Qu
er

y T
im

e(
se

c)

θ = µ
θ = µ+σ
θ = µ+3σ

(a)0.1% Queries (b)1% Queries (c)10% Queries

Figure 5.5: Index search time.

6 8 10 12 14 16
0

20

40

60

80

100

120

Order of Hilbert Curve

Po
st

 p
ro

ce
ss

in
g

tim
e(

se
c)

σ=0

σ=1

σ=3

6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

20

Order of Hilbert Curve

Po
st

pr
oc

es
sin

g
tim

e(
se

c)

σ=0

σ=1

σ=3

6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

Order of Hilbert Curve

Po
st

pr
oc

es
sin

g
tim

e(
se

c)

σ=0

σ=1

σ=3

(a)0.1% Queries (b)1% Queries (c)10% Queries

Figure 5.6: Time for post-processing.

112

on both cell size and query size. Usually, smaller queries (e.g.0.1%) have higher percent

of enlargement than larger queries (e.g. 10%). And, smaller cell size implies lower query

enlargement. Query enlargement results in false positives requiring higher post-processing

time. Our experiments confirm that post-processing for smaller queries are more affected

by cell size.

Post-processing is a very light weight operation compared to disk access(DA) dur-

ing the search. So we attempt to estimate average disk access for a range query. HT-Index

is an R-tree based method. Each Hilbert number represents a cell in the underlying grid.

A Hilbert run represents an arbitrary shaped area composed of a number of grid cells. This

implies that we can apply the cost model in [85] for R-tree to predict disk access for HT-

Index. The formula in [85] uses number of MBRs and MBR density to estimate average

number of disk access for range queries. MBR density is defined as average number of

MBRs that contain a given point. If the space is a unit area, the MBR density is just the

sum of area of MBRs. We can apply the same definition in our arbitrary shaped regions

too.

As we discussed before, a trajectory segment might be needed to split and so

data size may increase. Computation of the number of segments and density of the regions

corresponding to their Hilbert runs for a given order of Hilbert curve, requires one pass over

the data. If the data is too big any good sampling algorithm can be used. After computing

these values estimating disk access using the formula in [85] is very straight forward. This

estimation can help selecting the Hilbert order for a given data set.

113

5.6 Experimental Evaluation

All the experiments were run in an Intel Xeon 3.0GHz processor running Linux

2.6.18 with 8GB of main memory. C++ was used for implementation. In our experiments

we use the GeoLife dataset [41]. It contains public activity data (i.e. shopping, dining,

sightseeing, hiking, cycling etc.) in Beijing, China.

We experimented query performance for queries with spatial extent 0.1%, 1% and

10% of the total area. For temporal extent we use one second (timestamp), 12 hours and 24

hours. We also experiment with different threshold values for merging the runs of a range

query. To evaluate query performance for various cell sizes we vary Hilbert order from 6 to

16. We consider is a 4o latitude by 4o longitude area. An order-16 Hilbert curve implies

approximately 7m by 7m grid cells.

We first experiment the effect of the threshold value for merging runs. To identify

a threshold that separates small and big jumps we looked into the distribution of these

jumps, and their mean (µ) and standard deviation (σ). We observe that there are very few

extremely large jumps. Those large jumps can be eliminated just by using µ as a threshold.

We experiment number of runs with µ, µ + σ and µ + 3 ∗ σ as threshold value, figure 5.4.

For lower order and smaller query size, number of ranges is small and so there is not much

reduction of number of runs for different threshold values. However, for higher order there

is a significant reduction. Also, larger the query size higher the reduction. Experiment

shows, we are getting most of the reduction just by using µ as the threshold. Using µ+σ or

µ+ 3 ∗ σ results in more reduction, but they will also add more false positives too. Which

in turn, will result in higher index search and post processing time. Figure 5.5 and 5.6

114

shows a big increase in search and post-processing time respectively with low order HC

when θ = µ+ 3 ∗ σ. From these experiments we select θ = µ+ σ as a threshold to identify

big jumps.

Next, we compare our method with 3D R-tree for range query evaluation. We run

100k, 10k, and 1k instance of queries with 0.1%, 1%, 10% spatial range respectively, figure

5.7. For each spatial extent we use three temporal extents of 1sec, 12hr and 24hr. Higher

speed up (14 times) is obtained for timestamp queries, as R-tree does not perform well for

timestamp queries. As we increase the order of the HC speedup factor increases and then it

starts to decrease. This is because with lower order HC the bigger grid cells results in bigger

query enlargement. Also, merging runs with bigger cell size result in more false positives

and higher search time. The reason why performance deteriorates at higher order will be

explained with the cost model later in this section.

We also compare our method with a quad tree index that has the same cell splitting

formula as TrajStore. We note that [80] also suggests adding in TrajStore techniques like:

delta compression for trajectories, bundling trajectories on the same path and adaptive

query processing; however, all of these optimizations can be applied independently of the

underlying indexing (whether it is quad-tree, R-tree or SFC-based). Thus in our comparison

with the HT-Index we considered the basic TrajStore implementation with data adaptive

cell size. The results appear in figure 5.8. The speedup factor is less than that with 3D

R-tree which is consistent with the claim of the authors about TrajStore’s speedup over

R-tree based method. Our method not only outperforms this quad tree based approach but

also has the advantage that

115

6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Order of Hilbert Curve

Sp
ee

du
p

Fa
cto

r

t = 24h

t = 12h

t = 1s

6 8 10 12 14 16
0

1

2

3

4

5

6

7

Order of Hilbert Curve

Sp
ee

du
p

Fa
cto

r

t = 24h

t = 12h

t = 1s

6 8 10 12 14 16
0

2

4

6

8

10

12

14

Order of Hilbert Curve

Sp
ee

du
p

Fa
cto

r

t = 24h

t = 12h

t = 1s

(a)0.1% Queries (b)1% Queries (c)10% Queries

Figure 5.7: Speedup Factor.

Figure 5.9 shows, the fraction of query evaluation time spent for query mapping,

search and post processing. Query mapping includes converting the query range to runs

and then merging them to reduce the number of search. Mapping time is virtually zero or

negligible(for higher order). For higher order, there are higher number of runs and more

time required to merge them. The threshold value used to merge runs has no effect on

mapping time. Experiments support our expectation that postprocessing (due to query

enlargement) is affected more by cell size for smaller queries. A small query is enlarged

more for lower order (bigger cells). For bigger queries post-processing time remains same

independent of the cell size. These experiments show that post-processing time is very

small. Search time (number of search required) dominates the overall performance.

Figure 5.10(a) shows speedup of our method over R-tree in kNN queries. In spite of

the little added overhead in distance computation, our method outperforms regular R-tree

based method. One possible reason is the better clustering property of Hilbert curve. Better

clustering of spatial objects will quickly lead to the nodes containing nearest neighbors.

Although our method outperforms R-tree and quad tree based methods the speedup drops

as we increase the order. We look for the reasons in the following experiments.

116

6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

Order of Hilbert Curve

Sp
ee

du
p

Fa
ct

or

t = 24hr

t = 12hr

t = 1sec

6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

Order of Hilbert Curve

Sp
ee

du
p

Fa
ct

or

t = 24hr

t = 12hr

t = 1sec

6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

Order of Hilbert Curve

Sp
ee

du
p

Fa
cto

r

t = 24hr

t = 12hr

t = 1sec

(a)0.1% Queries (b)1% Queries (c)10% Queries

Figure 5.8: Speedup Factor.

6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Order of Hilbert Curve

%
 o

f t
im

e

Mapping

Search

PostProc

6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Order of Hilbert Curve

%
 o

f t
im

e

Mapping

Search

PostProc

6 8 10 12 14 16

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Order of Hilbert Curve

%
 o

f t
im

e

Mapping

Search

PostProc

(a)0.1% Queries (b)1% Queries (c)10% Queries

Figure 5.9: Fraction of time used for query mapping, searching and post-processing.

117

Finally, the reason behind the performance drop of our method above a certain

resolution of space can be explained from the estimated disk access(DA) according to the

cost model. As mentioned before DA depends on number of MBR (N) and density of MBRs

(ρ). Figure 5.11(a), (b) and (c) shows number of MBR, MBR density and estimated DA

for different orders. With increasing order, N increases but ρ decreases. Increasing N or

ρ will increase DA and vice versa. In our experiment, DA increases in a similar fashion as

N . From the simplified formula in [85] for two dimensional space, its easy to see that DA is

more dependent on N than ρ. According to the cost model the DA increases sharply after

order 12 which is very consistent with the performance drop in our experiments after order

12.

5.7 Conclusion

In this chapter we propose technics to improve query performance on trajectory

data. We utilize Hilbert curve to represent trajectory polylines. Using Hilbert numbers

instead of Euclidean coordinates to represent trajectories is not straightforward. We present

techniques to overcome the complexities involved in this approach. We have also shown, for

the first time, how to use existing branch and bound algorithms to evaluate kNN queries.

Our proposed method outperforms traditional 3D R-tree and quad tree based method

TrajStore. Our proposed method can easily be integrated with any available RDBMS that

provides an R-Tree implementation. In this work we mostly focus on spatial dimensions.

In future we plan to include temporal dimension as well.

118

6 8 10 12 14 16

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Order of Hilbert Curve

Sp
ee

du
p

Fa
ct

or

k=1
k=5
k=10
k=15

(a)Speedup for kNN queries.

Figure 5.10:

6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

x 10
7

Order of Hilbert Curve

N
U

M
 M

B
R

S

6 8 10 12 14 16
0

0.02

0.04

0.06

0.08

0.1

Order of Hilbert Curve

M
B

R
 D

en
si

ty

6 8 10 12 14 16
0

100

200

300

400

500

600

Order of Hilbert Curve

D
A

(a)Number of MBR (b)MBR Density (c)Estimated DA.

Figure 5.11: Disk access estimation.

119

Algorithm 7 InckNN(R-tree T , Query p)

1: Q : a priority queue.

2: Q.enqueue(T .root, 0)

3: while Q not empty do

4: e ← Q.dequeue()

5: if e is a data object or its MBR then

6: if e is MBR of o and Q not empty and dist(p, o) > Q.min.dist then

7: Q.enqueue(o, dist(p, o))

8: else

9: e (or o) is the next NN.

10: end if

11: else if e is a leaf then

12: for each entry (o,mbr) in e do

13: Q.enqueue(o, dist(o,mbr))

14: end for

15: else

16: for each entry (n,mbr) in e do

17: Q.enqueue(n, dist(n,mbr))

18: end for

19: end if

20: end while

120

Chapter 6

Conclusions

The volume of moving object trajectory data is increasing every day. Data is being

produced at a higher rate than we can process and make sense of. More and more intelligent

algorithm is required to analyze this data and automatically discover the hidden knowledge.

The contributions of thesis are following.

• We propose online identification of Dwell Region and Dwell Behavior. Dwell Behavior

is a new trajectory semantics that we propose for the first time. This problem has

applications in surveillance, understanding animal behavior, trajectory simplification,

etc. We propose online algorithm to identify Dwell Region and Dwell Behavior. We

also show how to estimate Dwell Region when exact computation is not necessary.

• In an effort to infer the movement of a group of objects when their exact location is

unknown we propose computing Corridors and Conclaves for these objects. We as-

sume discrete (and possibly distant) locations of these objects are known from diverse

sources e.g., surveillance camera, ATM usage, etc. A corridor includes all possible

121

locations an object could have gone through while traveling between two locations

where the object is known to be. The conclaves of a group of object show the poten-

tial locations where they could have met. This problem is useful in tracking persons

of interest (e.g. fugitives, criminals) who are suspected to have interaction between

them and put a collective effort to achieve a common goal.

• We show how to identify regions of interest from trajectory data without accessing any

external data. Our method allows querying regions of interest with different semantics

with any arbitrary values of the parameters defining the ROIs. We consider trajectory

density to estimate the popularity of these ROIs.

• We present methods to represent trajectories with Hilbert curves and index them using

several existing index structures. This is not straightforward because of the following

reasons. First, it might result in false negatives. In our method we carefully avoid

any false negatives. Second, it requires splitting a query in to multiple queries and

searching the index multiple times. We show how to minimize the number of searches

required per query. Third, evaluating distance based queries was never attempted

when Hilbert curve is used to represent spatial objects. This is because the Euclidean

distance is not preserved when spatial coordinates are transformed to Hilbert numbers.

We present simple techniques to lower bound the Euclidean distance from Hilbert

numbers. Finally, we show how to use an existing cost model for R-Tree to determine

the order of the Hilbert curve.

Understanding trajectory semantics will have increasing usefulness in the upcom-

ing days. In this thesis we present a few novel semantics out of numerous possibilities.

122

While existing works do not relate their discovered patterns to any semantics we consider

only those patterns that have useful semantics. We believe this thesis will encourage the

research community to think of novel and useful semantics.

123

Bibliography

[1] www.accutracking.com.

[2] tracNet24, www.isecuretrac.com.

[3] Footpath, www.pathintelligence.com.

[4] GeoChat, instedd.org/geochat.

[5] www.bikely.com.

[6] www.gpsxchange.com.

[7] www.everytrail.com.

[8] www.sports-tracker.com.

[9] M. Hadjieleftheriou, G. Kollios, V. J. Tsotras, and D. Gunopulos, “Indexing spa-
tiotemporal archives,” in VLDB Journal, 2006.

[10] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez, “Indexing positions of
continuously moving objects,” in SIGMOD, vol. 29, no. 2, 2000, pp. 331–342.

[11] J. Ni and C. V. Ravishankar, “Indexing spatio-temporal trajectories with efficient
polynomial approximations,” in TKDE, 2007.

[12] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi, “Trajectory pattern mining,”
in ACM KDD, 2007, pp. 330–339.

[13] F. Giannotti, M. Nanni, and D. Pedreschi, “Efficient mining of temporally annotated
sequences,” in SDM, 2006.

[14] J.-G. Lee, J. Han, and K.-Y. Whang, “Trajectory clustering: A partition-and-group
framework,” in ACM SIGMOD, 2007, pp. 593–604.

[15] G. Trajcevski, “Probabilistic range queries for uncertain trajectories on road net-
works,” in EDBT, 2011.

[16] ——, “Uncertain range queries for necklaces,” in MDM, 2010.

124

[17] M. R. Vieira, P. Bakalov, and V. Tsotras, “Querying trajectories using flexible pat-
terns,” in EDBT, 2010, pp. 406–417.

[18] M. Hadjieleftheriou, G. Kollios, P. Bakalov, and V. J. Tsotras, “Complex spatio-
temporal pattern queries,” in VLDB, 2005, pp. 877–888.

[19] Y. Bu, L. Chen, A. W.-C. Fu, and D. Liu, “Efficient anomaly monitoring over moving
object trajectory streams,” in KDD, 2009.

[20] M. Vlachos, G. Kollios, and D. Gunopulos, “Discovering similar multidimensional
trajectories,” in ICDE, 2002.

[21] Y. Cai and R. Ng, “Indexing spatio-temporal trajectories with chebyshev polynomi-
als,” in SIGMOD, 2004.

[22] P. Bakalov, M. Hadjieleftheriou, E. J. Keogh, and V. J. Tsotras, “Efficient trajectory
joins using symbolic representations,” in MDM, 2005.

[23] P. Bakalov, E. J. Keogh, and V. J. Tsotras, “Ts2-tree - an efficient similarity based
organization for trajectory data,” in GIS, 2007.

[24] D. Fortin, H. L. Beyer, M. S. Boyce, D. W. Smith, T. Duchesne, and J. S. Mao,
“Wolves influence elk movements: behavior shapes a trophic cascade in yellowstone
national park,” in Ecological Society of America, vol. 86, 2005, pp. 1320–1330.

[25] M. Buchin, A. Driemel, M. van Kreveldz, and V. Sacristn, “An algorithmic frame-
work for segmenting trajectories based on spatio-temporal criteria,” in SIGSPATIAL,
November 2010.

[26] M. R. Vieira, P. Bakalov, and V. Tsotras, “Querying trajectories using flexible pat-
terns,” in EDBT, 2010, pp. 406–417.

[27] J.-G. Lee, J. Han, and K.-Y. Whang, “Trajectory clustering: A partition-and-group
framework,” in ACM SIGMOD, 2007, pp. 593–604.

[28] X. Cao, G. Cong, and C. S. Jensen, “Mining significant semantic locations from gps
trajectory,” in VLDB, 2010, pp. 1009–1020.

[29] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma, “Mining interesting locations and travel
sequences from gps trajectories,” in WWW, 2009.

[30] M. R. Uddin, C. V. Ravishankar, and V. J. Tsotras, “Finding regions of interest from
trajectory data,” in MDM, 2011.

[31] M. R. Vieira, P. Bakalov, and V. Tsotras, “On-line discovery of flock patterns in
spatio-temporal data,” in ACM GIS, 2009, pp. 286–295.

[32] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen, “Discovery of convoys
in trajectory databases,” in PVLDB, vol. 1, no. 1, 2008, pp. 1068–1080.

125

[33] J. Ni and C. V. Ravishankar, “Pointwise-dense region queries in spatio-temporal
databases,” in IEEE ICDE, 2007, pp. 1066–1075.

[34] N. Megiddo, “Linear-time algorithms for linear programming in R3 and related prob-
lems,” in FOCS, Nov 1982, pp. 329 – 338.

[35] K. L. Clarkson, “Las vegas algorithms for linear and integer programming when the
dimension is small.” in JACM, vol. 42, no. 2, March 1995.

[36] M. E. Dyer and A. M. Frieze, “A randomized algorithm for fixed-dimensional linear
programming.” in Mathematical Programming, vol. 44, no. 1-3, May 1989.

[37] R. Seidel, “Linear programming and convex hulls made easy.” in sixth annual Sym-
posium on Computational Geometry, 1990.

[38] E. Welzl, “Smallest enclosing disks (balls and ellipsoids),” in New Results and New
Trends in Computer Science, Lecture Notes in Computer Science, vol. 555, 1991, pp.
359–370.

[39] M. A. Cheema, L. Brankovic, X. Lin, W. Zhang, and W. Wang, “Multi-guarded safe
zone: An effective technique to monitor moving circular range queries,” in ICDE,
March 2010, pp. 189 – 200.

[40] A. Guttman, “R-trees: A dynamic index structure for spatial searching,” in ACM
SIGMOD, 1984, pp. 47–57.

[41] http://research.microsoft.com/en-us/projects/geolife/.

[42] http://www.fs.fed.us/pnw/starkey/.

[43] J. Ni, C. V. Ravishankar, and B. Bhanu, “Probabilistic spatial database operations,”
in SSTD, 2003.

[44] G. Trajcevski, “Managing uncertainty in moving objects databases,” in TODS, 2004.

[45] ——, “The geometry of uncertainty in moving objects databases,” in EDBT, 2002.

[46] ——, “Probabilistic range queries in moving objects databases with uncertainty,” in
MobiDe, 2003.

[47] T. Emrich, H.-P. Kriegel, N. Mamoulis, M. Renz, and A. Zufle, “Querying uncertain
spatio-temporal data,” in ICDE, 2012.

[48] G. Trajcevski, “Continuous probabilistic nearest-neighbor queries for uncertain tra-
jectories,” in EDBT, 2009.

[49] J. S. Greenfeld, “Matching gps observations to locations on a digital map,” in Trans-
portation Research Board 81st Annual Meeting, 2002.

[50] K. Zheng, Y. Zheng, X. Xie, and X. Zhou, “Reducing uncertainty of low-sampling-rate
trajectories,” in ICDE, 2012.

126

[51] J. Yuan, Y. Zheng, C. Zhang, X. Xie, and G.-Z. Sun, “An interactive-voting based
map matching algorithm,” in MDM, 2010.

[52] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang, “Map-matching for
low-sampling-rate gps trajectories,” in ACM SIGSPATIAL GIS, 2009.

[53] E. W. Dijkstra, “A note on two problems in connexion with graphs,” in Numerische
Mathematik, vol. 1, no. 1, 1959, pp. 269–271.

[54] M. N. Rice and V. J. Tsotras, “Parameterized algorithms for generalized traveling
salesman problems in road networks,” in SIGSPATIAL, 2013.

[55] R. Geisberger, P. Sanders, D. Schultes, and D. Delling, “Contraction hierarchies:
Faster and simpler hierarchical routing in road networks,” in Workshop on Experi-
mental Algorithms, 2008, pp. 319–333.

[56] K. Xie, K. Deng, and X. Zhou, “From trajectories to activities: A spatio-temporal
join approach,” in LBSN’09: Proc. of the Int’l Workshop on Location Based Social
Networks, 2009, pp. 25–32.

[57] Q. Li, Y. Zheng, X. Xie, Y. Chen, W. Liu, and W.-Y. Ma, “Mining user similarity
based on location history,” in ACM GIS, 2008, pp. 1–10.

[58] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma, “Mining interesting locations and travel
sequences from gps trajectories,” in WWW, 2009, pp. 791–800.

[59] X. Cao, G. Cong, and C. S. Jensen, “Mining significant semantic locations from gps
trajectory,” in VLDB, 2010, pp. 1009–1020.

[60] M. Hadjieleftheriou, G. Kollios, D. Gunopulos, and V. J. Tsotras, “On-line discovery
of dense areas in spatio-temporal databases,” in SSTD, 2003.

[61] C. S. Jensen, D. Lin, B. C. Ooi, and R. Zhang, “Effective density queries on continu-
ously moving objects,” in ICDE, 2006.

[62] L. O. Alvares, V. Bogorny, B. Kuijpers, J. A. F. de Macedo, B. Moelans, and A. Vais-
man, “A model for enriching trajectories with semantic geographical information,” in
ACM GIS, 2007, pp. 1–8.

[63] A. T. Palma, V. Bogorny, B. Kuijpers, and L. O. Alvares, “A clustering-based ap-
proach for discovering interesting places in trajectories,” in ACM SAC, 2008, pp.
863–868.

[64] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for dis-
covering clusters in large spatial databases with noise,” in ACM SIGKDD, 1996, pp.
226–231.

[65] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R∗-tree: An efficient
and robust access method for points and rectangles,” in ACM SIGMOD, 1990, pp.
322–331.

127

[66] “Spatial Index Library,” http://dblab.cs.ucr.edu/spatialindexlib.html.

[67] crawdad.cs.dartmouth.edu.

[68] C. S. Jensen, D. Lin, and B. C. Ooi, “Query and update efficient b+-tree based
indexing of moving objects,” in VLDB, 2004.

[69] S. Chen, B. C. Ooi, K.-L. Tan, and M. A. Nascimento, “St2b-tree: A self-tunable
spatio-temporal b+-tree index for moving objects,” in SIGMOD, June 2008.

[70] D. Lin, C. S. Jensen, B. C. Ooi, and S. Saltenis, “Efficient indexing of the historical,
present, and future positions of moving objects,” in MDM, 2005.

[71] I. Kamel and C. Faloutsos, “Hilbert r-tree: An improved r-tree using fractals,” in
VLDB, 1994, pp. 500–509.

[72] D. Pfoser and C. S. Jensen, “Indexing of network constrained moving objects,” in
GIS, November 2003.

[73] J. Orenstein, “A class of data structures for associative searching,” in SIGACT, 1984.

[74] J. A. Orenstein, “Spatial query processing in an object-oriented database system,” in
SIGMOD, 1986.

[75] P. Xu and Tirthapura, “A lower bound on proximity preservation by space filling
curves,” in IPDPS, 2012.

[76] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz, “Analysis of the clustering
properties of the hilbert space-filling curve,” in TKDE, 2001.

[77] P. Xu and S. Tirthapura, “On optimality of clustering through a space filling curve,”
in PODS, 2012.

[78] H. V. Jagadish, “Analysis of the hilbert curve for representing two-dimensional space.”
in Information Processing Letters ELSEVIER, 1997.

[79] D. Pfoser, C. S. Jensen, and Y. Theodoridis, “Novel approaches to the indexing of
moving object trajectories,” in VLDB, 2000.

[80] P. Cudre-Mauroux, E. Wu, and S. Madden, “Trajstore: An adaptive storage system
for very large trajectory data sets,” in ICDE, 2010.

[81] H. Edelsbrunner, “A new approach to rectangle intersections,” in Institute for Infor-
mation Processing, Technical University of Graz, September 1982.

[82] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer, “An asymptotically
optimal multiversion b-tree,” in VLDB Journal, vol. 5, no. 4, December 1996, pp.
264–275.

[83] K.Fukunaga, “Introductionto statistical pattern recognition,” in Academic Press, vol.
2nd Edition, 1990.

128

[84] E. Frentzos, N. Pelekis, I. Ntoutsi, and Y. Theodoridis, “Trajectory database sys-
tems,” in Mobility, Data Mining and Privacy, ser. Geographic Knowledge Discovery,
F. Giannotti and D. Pedreschi, Eds. Springer, 2008, ch. 6, pp. 151–187.

[85] Y. Theodoridis and T. Sellis, “A model for the prediction of r-tree performance,” in
PODS, 1996.

[86] B. Salzberg and V. J. Tsotras, “Comparison of access methods for time-evolving
data,” in ACM Computating Survey, vol. 31, no. 2, 1999, pp. 158–221.

[87] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan, “Making data structures
persistent,” in Journal of Computer and System Sciences, vol. 38, no. 1, 1989, pp.
85–124.

[88] Y. Tao and D. Papadias, “The mv3r-tree : A spatio-temporal access method for
timestamp and interval queries,” in VLDB, 2001.

[89] E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodoridis, “Nearest neighbor search
on moving object trajectories,” in SSTD, 2005.

[90] E. Frentzos, K. Gratsias, N. Pelekis, and Theodoridis, “Algorithms for nearest neigh-
bor search on moving object trajectoriess,” in GeoInformatica, 2007.

[91] Y.-J. Gao, C. Li, G.-C. Chen, L. Chen, X.-T. Jiang, and C. Chen, “Efficient k-nearest-
neighbor search algorithms for historical moving object trajectories,” in Journal of
Computer Science and Technology, vol. 22, no. 2, 2007.

[92] Y. Gao, C. Li, G. Chen, Q. Li, and C. Chen, “Efficient algorithms for historical
continuous k nn query processing over moving object trajectories,” in APWeb/WAIM,
2007.

[93] Y. Tao, D. Papadias, and Q. Shen, “Continuous nearest neighbor search,” in VLDB,
2002, pp. 287–298.

[94] R. H. Guting, T. Behr, and J. Xu, “Efficient k-nearest neighbor search on moving
object trajectories,” in The VLDB Journal, vol. 19, no. 5, 2010.

[95] X. Xiong, M. F. Mokbel, and W. G. Aref, “Sea-cnn: scalable processing of continuous
k-nearest neighbor queries in spatio-temporal databases,” in ICDE, 2005.

[96] X. Yu, K. Q. Pu, and N. Koudas, “Monitoring k-nearest neighbor queries over moving
objects,” in ICDE, 2005.

[97] G. S. Iwerks, H. Samet, and K. Smith, “Continuous k-nearest neighbor queries for
continuously moving points with updates,” in VLDB, vol. 29, 2003, pp. 512–523.

[98] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest neighbor queries,” in SIGMOD,
1995.

129

[99] K. L. Cheung and A. W.-C. Fu, “Enhanced nearest neighbour search on the r-tree,”
in SIGMOD, 1998.

[100] G. R. Hjaltason and H. Samet, “Distance browsing in spatial databases,” in TODS,
vol. 24, no. 2, 1999.

[101] D. Hilbert, “ber die stetige abbildung einer linie auf ein flchenstck.” in Mathematische
Annalen, vol. 38, 1891, pp. 459–460.

[102] H.-P. Kriegel, M. Ptke, and T. Seidl, “Managing intervals efficiently in object-
relational databases,” in VLDB, 2000.

[103] V. J. Tsotras and N. Kangelaris, “The snapshot index: An i/o-optimal access method
for timeslice queries,” in Information Systems, vol. 20, no. 3, 1995, pp. 237–260.

[104] L. Gomez, B. Kuijpers, and A. Vaisman, “Querying and mining trajectory databases
using places of interest,” AIS, vol. 3, pp. 1–26, 2009.

[105] S.-Y. Hwang, Y.-H. Liu, J.-K. Chiu, and E.-P. Lim, “Mining mobile group patterns:
A trajectory-based approach,” in PAKDD, 2005, pp. 713–718.

[106] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma, “Mining interesting locations and travel
sequences from gps trajectories,” in WWW, 2009.

[107] T. Brinkhoff, H.-P. Kriegel, and B. Seeger, “Efficient processing of spatial joins using
r-trees,” in ACM SIGMOD Rec., vol. 22, no. 2, 1993, pp. 237–246.

[108] M. R. Vieira, P. Bakalov, and V. Tsotras, “On-line discovery of flock patterns in
spatio-temporal data,” in ACM GIS, 2009, pp. 286–295.

[109] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen, “Discovery of convoys
in trajectory databases,” PVLDB, vol. 1, no. 1, pp. 1068–1080, 2008.

[110] M. Benkert, J. Gudmundsson, F. Hübner, and T. Wolle, “Reporting flock patterns,”
Comput. Geom., vol. 41, no. 3, pp. 111–125, 2008.

[111] D. Pfoser, C. S. Jensen, and Y. Theodoridis, “Novel approaches in query processing
for moving object trajectories,” in VLDB, 2000, pp. 395–406.

[112] M. Hadjieleftheriou, G. Kollios, V. J. Tsotras, and D. Gunopulos, “Indexing spa-
tiotemporal archives,” in VLDB, vol. 15, no. 2, 2006, pp. 143–164.

[113] Y. Tao, D. Papadias, and Q. Shen, “Continuous nearest neighbor search,” in VLDB,
2002, pp. 287–298.

[114] Y. Cai and R. T. Ng, “Indexing spatio-temporal trajectories with chebyshev polyno-
mials,” in ACM SIGMOD, 2004, pp. 599–610.

[115] S.-L. Lee, S.-J. Chun, D.-H. Kim, J.-H. Lee, and C.-W. Chung, “Similarity search for
multidimensional data sequences,” in IEEE ICDE, 2000, pp. 599–608.

130

[116] M. Vlachos, D. Gunopulos, and G. Kollios, “Discovering similar multidimensional
trajectories,” in IEEE ICDE, 2002, pp. 673–684.

[117] A. Anagnostopoulos, M. Vlachos, M. Hadjieleftheriou, E. J. Keogh, and P. S. Yu,
“Global distance-based segmentation of trajectories,” in KDD, 2006, pp. 34–43.

[118] D. Pfoser, C. S. Jensen, and Y. Theodoridis, “Novel approaches in query processing
for moving object trajectories,” in VLDB, 2000, pp. 395–406.

[119] S. Arumugam and C. Jermaine, “Closest-point-of-approach join for moving object
histories,” in IEEE ICDE, 2006, p. 86.

[120] P. Bakalov, M. Hadjieleftheriou, and V. J. Tsotras, “Time relaxed spatiotemporal
trajectory joins,” in ACM GIS, 2005, pp. 182–191.

[121] J. K. Lawder and P. J. H. King, “Querying multi-dimensional data indexed using the
hilbert space-filling curve,” in SIGMOD, 2001.

[122] A. R. Butz, “Alternative algorithm for hilbert’s space-filling curve,” in IEEE Trans-
actions on Computers, 1971.

[123] G. Peano, “Sur une coubre qui remplit toute une aire plane,” in Mathematische An-
nalen, vol. 36, no. 1, 1890, pp. 157–160.

[124] Y. Ohno and K. Ohyama, “A catalog of symmetric self-similar space-filling curves,”
in Institute of Information Science, Keio, 1991.

[125] H. Sagan, “On the geometrization of the peano curve and the arithmetization of the
hilbert curve.” in International Journal of Mathematical Education, 1992.

[126] J. Zhu, A. Hoorfar, and N. Engheta, “Bandwidth, cross-polarization, and feed-point
characteristics of matched hilbert antennas,” in Antennas and Wireless Propagation
Letters, IEEE, vol. 2, no. 1, 2003, pp. 2–5.

[127] M. F. Mokbel, W. G. Aref, and I. Kamel, “Analysis of multi-dimensional space-filling
curves,” in GeoInformatica, vol. 3, no. 7, 2003, pp. 179–209.

[128] Y. Tao, D. Papadias, and J. Sun, “The tpr∗-tree: An optimized spatio-temporal access
method for predictive queries,” in VLDB, 2003.

[129] M. Griebel and G. Zumbusch, “Parallel multigrid in an adaptive pde solver based on
hashing and space-filling curves,” in Parallel Computing Systems and Applications,
vol. 25, no. 7, July 1999, pp. 827–843.

[130] http://www.donrelyea.com/hilbert algorithmic art menu.htm.

[131] Y.-J. Gao, B. Zheng, G. Chen, Q. Li, C. Chen, and G. Chen, “Efficient mutual nearest
neighbor query processing for moving object trajectories,” in Information Sciences -
Elsevier, vol. 180, no. 11, 2010.

[132] Y.-J. Gao, B. Zheng, G. Chen, and Q. Li, “Algorithms for constrained k-nearest
neighbor queries over moving object trajectories,” in GeoInformatica, vol. 14, 2010.

131

