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Original Investigation | Neurology
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Abstract

IMPORTANCE Neuropsychiatric symptoms are commonly encountered and are highly debilitating
in patients with Alzheimer disease. Understanding their underpinnings has implications for
identifying biomarkers and treatment for these symptoms.

OBJECTIVE To evaluate whether glial markers are associated with neuropsychiatric symptoms in
individuals across the Alzheimer disease continuum.

DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study was conducted from January to
June 2023, leveraging data from the Translational Biomarkers in Aging and Dementia cohort at McGill
University, Canada. Recruitment was based on referrals of individuals from the community or from
outpatient clinics. Exclusion criteria included active substance abuse, major surgery, recent head
trauma, safety contraindications for positron emission tomography (PET) or magnetic resonance
imaging, being currently enrolled in other studies, and having inadequately treated systemic
conditions.

MAIN OUTCOMES AND MEASURES All individuals underwent assessment for neuropsychiatric
symptoms (Neuropsychiatry Inventory Questionnaire [NPI-Q]), and imaging for microglial activation
([11C]PBR28 PET), amyloid-β ([18F]AZD4694 PET), and tau tangles ([18F]MK6240 PET).

RESULTS Of the 109 participants, 72 (66%) were women and 37 (34%) were men; the median age
was 71.8 years (range, 38.0-86.5 years). Overall, 70 had no cognitive impairment and 39 had
cognitive impairment (25 mild; 14 Alzheimer disease dementia). Amyloid-β PET positivity was
present in 21 cognitively unimpaired individuals (30%) and in 31 cognitively impaired individuals
(79%). The NPI-Q severity score was associated with microglial activation in the frontal, temporal,
and parietal cortices (β = 7.37; 95% CI, 1.34-13.41; P = .01). A leave-one-out approach revealed that
irritability was the NPI-Q domain most closely associated with the presence of brain microglial
activation (β = 6.86; 95% CI, 1.77-11.95; P = .008). Furthermore, we found that microglia-associated
irritability was associated with study partner burden measured by NPI-Q distress score (β = 5.72;
95% CI, 0.33-11.10; P = .03).

CONCLUSIONS AND RELEVANCE In this cross-sectional study of 109 individuals across the AD
continuum, microglial activation was associated with and a potential biomarker of neuropsychiatric
symptoms in Alzheimer disease. Moreover, our findings suggest that the combination of amyloid-β–
and microglia-targeted therapies could have an impact on relieving these symptoms.
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Key Points
Question Is microglial activation, a

proxy for neuroinflammation,

associated with neuropsychiatric

symptoms in patients with

Alzheimer disease?

Findings In this cross-sectional study

including 109 individuals, levels of

microglial activation were associated

with neuropsychiatric symptoms in

individuals across the Alzheimer disease

continuum. Among the neuropsychiatric

symptoms, irritability was the most

closely associated with the presence of

activated microglia.

Meaning In this study, the abnormality

of microglial activation biomarkers was

associated with neuropsychiatric

symptoms in patients with

Alzheimer disease.
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Introduction

Neuropsychiatric symptoms (NPSs) are highly prevalent in Alzheimer disease (AD) and related
dementias. It is estimated that more than 80% of patients with dementia develop at least 1 NPS with
severe clinical effects over the course of their illness.1 NPSs are associated with higher mortality and
hospitalization rates, earlier institutionalization, poorer quality of life, increased caregiver distress,
and higher health care expenditure in patients with Alzheimer dementia.2-4 Irritability, nighttime
disturbances, and agitation are among the most common NPS manifestations in AD, with a
prevalence greater than 60%.5 Although NPSs are clinically well characterized in living patients with
Alzheimer dementia, the neurobiological underpinnings of NPSs remain elusive.

Results from recent clinical studies showing an association between amyloid-β (Aβ) and tau
pathologies with NPSs have been used to support a key role of AD hallmark proteins in the
development of these symptoms.6-8 Besides Aβ and tau, neuroinflammation is a prominent feature
of AD, with increasing evidence suggesting that it is an early driver of disease progression.9 Astrocyte
and microglial cells are key elements in the brain’s immune milieu, and their aberrant activation may
trigger a cascade of inflammatory responses associated with the progression of cognitive decline in
individuals with mild cognitive impairment (MCI) and dementia due to AD.10,11 Beyond its impact on
AD pathogenesis, studies suggest that microglial activation is highly associated with psychosis,
mania, depression, and anxiety across a spectrum of psychiatric conditions.12 Despite compelling
evidence for a pivotal role of microglial activation in both AD physiopathology and psychiatric
symptoms, it is unclear whether microglial activation is associated with NPS in the AD continuum.

In this study, we investigated the association between NPS and glial markers (microglial
activation and astrocyte reactivity), in living individuals across the aging and AD continuum using the
Neuropsychiatric Inventory Questionnaire (NPI-Q); positron emission tomography (PET) biomarkers
of Aβ, tau, and microglial activation; and plasma glial fibrillary acidic protein (GFAP) as measures of
astrocyte reactivity. Furthermore, we investigated whether the presence of glial changes is also
associated with study partner and caregiver burden. By investigating the role of glial markers in NPSs,
our study has potential implications for identifying predictive biomarkers and shedding light on this
debilitating comorbidity. We hypothesized that glial changes would be associated with NPSs in
individuals across the AD spectrum.

Methods

Participants
Participants were selected from the Translational Biomarkers in Aging and Dementia (TRIAD) cohort
at McGill University, Canada.13 Recruitment was based on printed materials, word of mouth, and
referrals of individuals from the community or from the McGill University Research Center for Studies
in Aging outpatient clinics. Exclusion criteria included active substance abuse, major surgery, recent
head trauma, safety contraindications for PET or magnetic resonance imaging (MRI), currently
enrolled in other studies, and inadequately treated systemic conditions. Research participants were
genotyped for the Ala147Thr variant of the TSPO gene (rs6971), which predicts high-, mixed-, and
low-affinity binding of the [11C]PBR28 tracer to the 18-kDa translocator protein (TSPO).14 The
[11C]PBR28 signal is negligible in individuals with low-affinity binding, while those with mixed affinity
show a heterogeneous tracer signal.9,15 Thus, mixed- and low-affinity binders were excluded from
the study to decrease the noise associated with artificial uptake variations.16,17 Importantly, previous
studies have found no difference in AD biomarkers across different affinity groups.18 Individuals
included in the study had PET measures for Aβ plaques ([18F]AZD4694), tau tangles ([18F]MK6240),
microglial activation ([11C]PBR28), and a single molecule array (Simoa) plasma measure of astrocyte
reactivity (plasma GFAP) at the same time point. For a detailed description of the selection of study
participants, see eFigure 1 in Supplement 1. The study was approved by the Douglas Mental Health
University Institute Research Ethics Board and the Montreal Neurological Institute PET Working
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Committee; all participants provided written informed consent. This report follows the
Strengthening the Reporting of Observational Studies in Epidemiology (STROBE)19 reporting
guideline for cross-sectional studies.

We evaluated data from 70 cognitively unimpaired (CU) and 39 cognitively impaired (CI; 25
patients with MCI, and 14 patients with Alzheimer dementia) individuals from January to June 2023.
All participants underwent neuropsychological assessment, including Mini-Mental State Examination
(MMSE), Neuropsychiatric Inventory Questionnaire (NPI-Q), and Clinical Dementia Rating (CDR). CU
participants had a CDR of 0 and no subjective cognitive complaint. Patients with MCI had a CDR of
0.5, objective cognitive impairment, and preserved activities of daily living.20 Patients with
Alzheimer dementia were in the mild-to-moderate dementia stage with a CDR between 0.5 and 2.0
and met the National Institute on Aging and the Alzheimer Association (NIA-AA) criteria for probable
AD.21 All patients with Alzheimer dementia were required to have a positive Aβ-PET.

Neuropsychiatric Assessment
All participants had an NPI-Q assessment completed by a study partner, who was either a caregiver,
family member, or close friend who knew the participant well. The questionnaire provides an
informant-based assessment of 12 neuropsychiatric symptoms or domains (agitation or aggression,
aberrant motor behavior, irritability or lability, elation or euphoria, disinhibition, appetite or eating
disturbances, apathy or indifference, delusions, hallucinations, nighttime disturbances, depression or
dysphoria, and anxiety) and associated caregiver distress in research and routine clinical practice
settings.22 The severity score is a 3-point scale of the symptom present in the patient within the last
month. A score of 0 indicates no symptoms; if the symptom is present, the informant is asked to
classify its severity as mild (1), moderate (2), or severe (3). The distress score is a 5-point scale
associated with the impact of the patient’s symptoms on the caregiver in the past month. A score of
0 indicates no distress, while scores from 1 to 5 indicate the presence of distress with increasing
severity. The NPI-Q severity score and NPI-Q distress score are the sums of individual scores from the
12 domains.

Imaging
All 109 participants had a 3T MRI (Siemens), as well as Aβ-PET ([18F]AZD4694), tau-PET
([18F]MK6240), and microglial activation TSPO-PET ([11C]PBR28) imaging in the same brain-
dedicated scanner (Siemens High-Resolution Research Tomograph). Detailed imaging methods are
described in the eAppendix in Supplement 1. A global Aβ-PET standardized uptake value ratio (SUVR)
was estimated from an average of SUVR in the orbitofrontal, prefrontal, anterior and posterior
cingulate, temporal, precuneus, and parietal cortices.23 We defined Aβ-positive individuals as those
with a global Aβ-PET SUVR of 1.55 or greater.24 Tau-PET SUVR was estimated from a temporal meta–
region of interest (meta-ROI) comprising the entorhinal, hippocampus, fusiform, parahippocampal,
inferior temporal, and middle temporal cortices. We considered tau-positive individuals with a
temporal meta-ROI tau-PET SUVR of 1.24 or greater.25 Finally, for the TSPO-PET, since the
topographic inflammatory response in the brain is rather unspecific, we estimated the SUVR from a
composite mask of the region-wise associations between [11C]PBR28 and NPI-Q severity score.
Microglial activation positivity was defined as the TSPO-PET SUVR values 2.5 SDs greater than the
mean TSPO-PET SUVR from a separate CU young population (individuals <25 years of age), similar to
what has previously been proposed.26 We used the whole cerebellum gray matter as the reference
region for [18F]AZD4694 SUVRs and [11C]PBR28 SUVRs27,28 and the crus I gray matter, located in the
inferior cerebellum, for [18F]MK6240 SUVRs.29 We used the Desikan-Killiany-Tourville atlas to define
the ROIs.30

Plasma Biomarker
Plasma GFAP concentrations were measured by Simoa using a commercial single-plex assay (No.
102336 [Quanterix]). The measurements were performed in 1 round of experiments using 1 batch of
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reagents by clinical scientists who were blinded to clinical data. Intra-assay coefficients of variation
were less than 10%.

Statistical Analysis
We conducted statistical models and region-wise analysis with R software version 4.2.2 (R Project for
Statistical Computing). Student t test and contingency χ2 test assessed demographic differences
between clinical groups for continuous and categorical variables, respectively. We used multivariable
linear regression models to assess the association between TSPO-PET or GFAP and NPI-Q scores.
The region-wise analysis was adjusted for age, sex, and multiple comparisons using false-discovery
rate–correction at a threshold of P < .05. The association between TSPO-PET SUVR and NPI-Q scores
was adjusted for age, sex, and cognitive status. To test the magnitude of association between
biomarkers and NPSs, we transformed the PET SUVR values into z scores and included them as
covariates. To measure the contribution of each NPI-Q severity domain to the association, we used a
leave-one-out approach31 by iteratively removing each individual NPI-Q domain score from the total
score and then compared the TSPO-PET SUVR β estimate magnitude of change. We further
conducted sensitivity analyses testing the association between microglial activation and NPI-Q
subscales (eFigure 3 in Supplement 1). We used the same method to assess which domains were
statistically driving the association between TSPO-PET and NPS. We used the same approach to
verify which NPI-Q distress domain had the greatest contribution to the model. The level of
significance was set at P < .05 (2-tailed). Finally, we reproduced our findings using censored
regression models32 (eTable 3 in Supplement 1) that account for the NPI-Q score floor effect.

Results

Participants
Our study included 109 individuals (70 CU, 25 patients with MCI, and 14 patients with Alzheimer
dementia), with a median age of 71.8 years (range, 38.0-86.5 years); 72 of whom (66%) were female
and 37 (34%) were male. As expected, CI individuals had significantly higher NPI-Q severity and
NPI-Q distress scores, global Aβ-PET SUVR, temporal meta-ROI tau-PET SUVR, and composite
TSPO-PET SUVR than CU individuals. Aβ-PET positivity was present in 21 CU individuals (30%) and
in 31 CI individuals (79%). Regarding the NPI-Q severity domains, nighttime disturbances were the
most prevalent (30 [28%]), followed by irritability (26 [24%]) and appetite or eating disturbances
(22 [20%]). Regarding the NPI-Q distress domains, irritability was the most prevalent (18 [17%]),
followed by depression (17 [16%]) and appetite or eating disturbances (14 [13%]). NPI-Q severity and
distress scores for the delusion domain were 0 for all individuals. The Table presents the
demographic characteristics of the study population, and eFigure 2 in Supplement 1 shows the
frequency of NPI-Q severity and distress scores across the AD continuum.

Regional Microglial Activation and NPS
Region-wise linear regression analysis revealed significant positive associations between microglial
activation and NPI-Q severity score in the inferior temporal, posterior cingulate, fusiform,
paracentral, caudal anterior cingulate, entorhinal, middle temporal, pars triangularis, precuneus,
lateral orbitofrontal, pars opercularis, pars orbitalis, and rostral middle frontal cortices (Figure 1A;
eTable 1 in Supplement 1). These associations survived correction for Aβ, tau, and cognitive status
across the entire population (β = 7.37; 95% CI, 1.34-13.41; P = .01; R2 = 0.26) (eTable 2 in
Supplement 1) and when excluding individuals presenting NPI-Q severity scores of 0 (β = 10.21; 95%
CI, 1.38-19.04; P = .02; R2 = 0.15) (Figure 1B). These associations remained significant when
restricting the analysis to the Aβ-positive group across the entire population (β = 10.94; 95% CI,
0.55-21.33; P = .03; R2 = 0.17) and in the individuals presenting Aβ-positive and with NPI-Q severity
scores of at least 1 (β = 13.08; 95% CI, 0.15-26.02; P = .04; R2 = 0.10) but not when restricting the
analysis in the Aβ-negative group (Figure 2A-B). These associations were not significant when
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applying an interaction of TSPO-PET with cognitive status (model: NPI severity score as a function of
TSPO-PET × cognitive status + age + sex; β = 5.10; 95% CI, −6.93 to 17.14; P = .40, R2 = 0.24), which
suggests that these results were not driven by any clinical group. Alternatively, these results may also
be due to small differences in TSPO SUVR between groups. Interestingly, we did not find significant
associations between NPI-Q severity score and astrocyte reactivity measured by plasma GFAP (83
participants; β = 0.004; 95% CI, −0.0007 to 0.009; P = .09, R2 = 0.21).

Microglial Activation and Specific NPSs
Leave-one-out analysis revealed that irritability had the greatest contribution (22.8%), followed by
nighttime disturbance (19.3%), agitation (14.1%), and appetite or eating disturbances (12.4%) to the
association between NPSs and microglial activation (Figure 3A-B; eTable 4 in Supplement 1).

Table. Demographic and Key Characteristics of the Study Population

Characteristic

Participants, mean (SD)

CU (n = 70) MCI (n = 25) AD dementia (n = 14)
Age, y 72 (7) 73 (5) 70 (9)

Sex, No. (%)

Female 57 (81) 9 (36)a 6 (43)a

Male 13 (19) 16 (64)a 8 (57)a

Years of education 15 (3.7) 16 (3.1) 14 (3.6)

MMSE score 29 (0.92) 28 (1.6) 22 (6.0)a,b,c

CDR-SB score 0.059 (016) 1.5 (0.88)a,c 5.7 (2.5)a,b,c

APOE ε4 carriership 19 (27) 14 (56)a,d 7 (50)

NPI-Q severity score 0.91 (1.8) 2.4 (2.2)a,d 6.1 (4.7)a,b,c

NPI-Q distress score 0.43 (1.0) 2.3 (2.7)a,d 5.2 (4.8)a,b,c

Plasma GFAPe 230 (130) 230 (82) 430 (140)a,b,c

[11C]PBR28 (composite MA-PET SUVR) 1.1 (0.081) 1.1 (0.077) 1.2 (0.11)a,b,c

[18F]AZD4694 global SUVR 1.5 (0.44) 2.1 (0.62)a,c 2.4 (0.42)a,c

[18F]MK6240 temporal meta-ROI SUVR 0.88 (0.12) 1.2 (0.51)a,d 2.1 (0.98)a,b,c

Biomarker status, No. (%)

MA positive 34 (49) 15 (60) 12 (86)a,d

Aβ positive 21 (30) 17 (68)a,d 14 (100)a,b,c

Tau positive 2 (3) 7 (28)a,d 10 (71)a,b,c

Abbreviations: Aβ, amyloid-β; AD, Alzheimer disease;
CDR-SB, Clinical Dementia Rating–Sum of Boxes; CU,
cognitively unimpaired; GFAP, glial fibrillary acidic
protein; MA, microglial activation; MCI, mild cognitive
impairment; MMSE, Mini Mental State Examination;
NPI-Q, Neuropsychiatry Inventory Questionnaire; PET,
positron emission tomography; ROI, region of interest;
SUVR, standardized uptake value ratio.
a Tukey correction for multiple comparisons tested

significant differences from CU.
b Tukey correction for multiple comparisons tested

significant differences from MCI.
c P < .001. P values indicate the analysis of variance

results on the differences between groups. A
contingency χ2 test was performed for sex, APOE e4
status, and CDR.

d P < .05. P values indicate the analysis of variance
results on the differences between groups. A
contingency χ2 test was performed for sex, APOE e4
status, and CDR.

e Data were available for 52 participants in the CU
group; 19, MCI group; and 12, AD group.

Figure 1. Microglial Activation and Neuropsychiatric Symptoms Across the Alzheimer Disease Continuum
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A, Region-wise linear regression T-map shows an association of [11C]PBR28 standardized
uptake value ratio (SUVR) and Neuropsychiatry Inventory Questionnaire (NPI-Q) severity
score in the inferior temporal, posterior cingulate, fusiform, paracentral, caudal anterior
cingulate, entorhinal, middle temporal, pars triangularis, precuneus, lateral orbitofrontal,

pars opercularis, pars orbitalis, and rostral middle frontal cortex. B, Linear regression
scatterplot shows the association of 18-kDa translocator protein (TSPO) positron
emission tomography (PET) SUVR and NPI-Q severity score in the entire population, and
in individuals presenting with NPI-Q severity score of at least 1.
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Microglial Activation, Irritability, and Study Partner Distress
Microglial activation showed a significant association with NPI-Q distress score (β = 5.72; 95% CI, 0.33-
11.10; P = .03; R2 = 0.26) (Figure 4A). Using the leave-one-out technique, we found that microglial-
associated irritability had the greatest contribution (33.95%) to the study partner or caregiver distress
compared with other NPI-Q distress domains (Figure 4B-C) (eTable 5 in Supplement 1).

Figure 2. Microglial Activation, Neuropsychiatric Symptoms, and Amyloid-β (Aβ)
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Figure 3. Contribution of Neuropsychiatry Inventory Questionnaire (NPI-Q) Domains to Microglial Activation (MA) Across the Alzheimer Disease Continuum
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A, Bars show NPI-Q domains’ contributions to the association between microglial activation and NPI-Q severity score. B, Heat map shows contributions of NPI-Q domains compared
with every other domain. PET indicates positron emission tomography.
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Discussion

We found that microglial activation is associated with NPSs in individuals across the AD spectrum.
Furthermore, we found that irritability, nighttime disturbances, and agitation are the NPS domains
most likely to be associated with microglial activation in the human brain.

We found that microglial activation is associated with NPS in individuals across the AD
continuum. Interestingly, NPS did not significantly correlate with astrocyte reactivity measured by
GFAP, suggesting possible specificity to a microglia immune cell type. These results support previous
studies suggesting that microglial activation plays an important role in the development of
psychiatric symptoms such as mania, depression, psychosis, and anxiety in a range of psychiatric
disorders.33,34 Recent studies have linked Aβ and tau with NPSs across the AD spectrum,6,7,35 and we
also found a direct association between Aβ or tau with NPS. However, when we added microglial
activation to the models, this measure showed an independent contribution to NPS dysfunction.
These findings suggest microglial activation as a potential biomarker, complementary to Aβ or tau,
capable of identifying individuals across the AD spectrum who are most likely to exhibit NPSs.

Our results suggest that microglial activation predominantly exacerbates irritability, nighttime
disturbances, and agitation. Conversely, microglial activation exerts less influence on the
development of motor disturbances and hallucinations. These results are part of growing evidence
suggesting a detrimental effect of microglial activation in the early stages of disease progression (ie,
the transition from MCI to early AD dementia),9 which has also been shown to be the stage when
irritability, nighttime disturbances, and agitation tend to appear.36 Conversely, motor disturbances
and hallucinations appear in more severe dementia stages and may be driven by other pathologies.
Our data also suggest that mood symptoms (depression and anxiety) could potentially be associated
with factors other than microglial activation in the AD clinical spectrum. However, animal studies
support a deleterious effect of microglial activation on NPS, such as anxiety and depression
symptoms.37,38 Altogether, these results support the notion that AD clinical trials testing drugs
targeting microglial activation could use NPS, such as irritability and agitation, as secondary
outcomes.

Figure 4. Microglial Activation-Associated Irritability and Study Partner or Caregiver Distress

Microglial activation and caregiver
distress

A Contribution of each domain to the results
compared with NPI-Q distress total score 
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The association between microglial activation and NPS was identified predominantly in the
posterior cingulate, precuneus, inferior temporal, and anterior cingulate cortices. The posterior
cingulate and precuneus, and to a lesser extent, the middle lateral temporal cortices, are described
as seed regions of the default mode network (DMN), which is implicated in self-referential mental
activity. This network is disrupted in patients with AD.39-41 Dysfunction in the DMN is associated with
early accumulation of Aβ in the brain and with the appearance of agitation, depression, and
anxiety.42,43 In addition, microglial activation in the inferior temporal, fusiform, and entorhinal
cortices (key regions for tau accumulation in early Braak stages) is associated with NPS. Recent
studies show that tau deposition in the temporal lobe is associated with depression, apathy, and
nighttime disturbances.8,44 Finally, we found that microglial activation was associated with NPS in
the anterior cingulate cortex, which is postulated as a central node of the salience network and has
been associated with agitation and irritability in AD.45,46 Notably, the topographic localization of our
results overlapped with brain circuits typically impaired in AD and associated with NPS development.

Also, the presence of brain microglial activation in the participants was associated with the
study partner and caregiver distress. It is established that NPSs have a profound negative effect on
caregivers’ quality of life, thus contributing to the overall burden.47 We found that microglia-
associated irritability was associated with the study partners or caregivers’ distress, alongside
cognitive impairment. The fact that previous studies have shown that irritability is a major cause of
caregivers’ distress,48 early placement in long-term health facilities, morbidity, and mortality in
patients support a clinical relevance for our findings.49 Another interesting finding was that
microglia-associated apathy exerted a lower influence on patients’ NPS severity than on partner or
caregiver distress. This dissociation is in line with studies showing that apathy leads to
disproportionally elevated levels of distress in caregivers, mediated by the challenge of
disengagement coping strategies.50,51 Altogether, these results suggest that the impact of microglial
activation across the AD continuum extends beyond the development of NPSs and indirectly
heightens study partner or caregiver burden.

Limitations
Our study has some limitations. The NPI-Q is a shorter and simpler version of NPI that may not
capture NPS frequency and subtle changes in the patient’s behavior. The low prevalence of motor
disturbances and hallucinations and absence of delusions in our cohort reflect relatively mild to
moderate disease stages. Studies using larger population-based cohorts across the AD spectrum,
encompassing the full range of AD stages from preclinical to severe dementia, are desirable to
increase the generalizability of our findings. Furthermore, research designed to identify specific
inflammation-related proteins linked to our findings could potentially lead to cerebral spinal fluid and
possibly blood biomarkers that could have a greater clinical utility to track NPSs in the future.

Conclusions

In conclusion, our results support that microglial activation plays a key role in the development of
NPSs for individuals on the AD continuum. These results suggest that microglial activation
biomarkers can be useful in identifying NPSs and that developing drugs targeting microglial
activation could potentially alleviate NPSs in patients with AD.
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