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MODELING UNDERWATER VISUAL AND FILTER FEEDING BY
PLANKTIVOROUS SHEARWATERS IN UNUSUAL SEA CONDITIONS

JAMES R. LOVVORN,1,3 CHERYL L. BADUINI,2 AND GEORGE L. HUNT, JR.2

1Department of Zoology, University of Wyoming, Laramie, Wyoming 82071 USA
2Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697 USA

Abstract. Short-tailed Shearwaters (Puffinus tenuirostris) migrate between breeding
areas in Australia and wintering areas in the Bering Sea. These extreme movements allow
them to feed on swarms of euphausiids (krill) that occur seasonally in different regions,
but they occasionally experience die-offs when availability of euphausiids or other prey is
inadequate. During a coccolithophore bloom in the Bering Sea in 1997, hundreds of thou-
sands of Short-tailed Shearwaters starved to death. One proposed explanation was that the
calcareous shells of phytoplanktonic coccolithophores reduced light transmission, thus im-
pairing visual foraging underwater. This hypothesis assumes that shearwaters feed entirely
by vision (bite-feeding), but their unique bill and tongue morphology might allow nonvisual
filter-feeding within euphausiid swarms. To investigate these issues, we developed simu-
lation models of Short-tailed Shearwaters bite-feeding and filter-feeding underwater on the
euphausiid Thysanoessa raschii. The visual (bite-feeding) model considered profiles of
diffuse and beam attenuation of light in the Bering Sea among seasons, sites, and years
with varying influence by diatom and coccolithophore blooms. The visual model indicated
that over the huge range of densities in euphausiid swarms (tens to tens of thousands per
cubic meter), neither light level nor prey density had appreciable effects on intake rate;
instead, intake was severely limited by capture time and capture probability after prey were
detected. Thus, for shearwaters there are strong advantages of feeding on dense swarms
near the surface, where dive costs are low relative to fixed intake rate, and intake might
be increased by filter-feeding. With minimal effects of light conditions, starvation of shear-
waters during the coccolithophore bloom probably did not result from reduced visibility
underwater after prey patches were found. Alternatively, turbidity from coccolithophores
might have hindered detection of euphausiid swarms from the air.

Key words: coccolithophore blooms; diving birds; euphausiids; filter-feeding; foraging models;
krill; light attenuation; planktivores; Puffinus tenuirostris; Short-tailed Shearwater; underwater vision;
visual foraging.

INTRODUCTION

Short-tailed Shearwaters (Puffinus tenuirostris)
make extreme seasonal movements to deal with spatial
and temporal variation in foraging conditions. This spe-
cies breeds in southeast Australia and migrates to the
Bering Sea for the austral winter (Marshall and Ser-
venty 1956). Also, because of insufficient food near
breeding colonies, these birds make long trips just be-
fore and after breeding, and every 10–19 d during
chick-rearing, to feed in more productive Antarctic
frontal waters 1000 km to the south (Nicholls et al.
1998, Weimerskirch and Cherel 1998). These long trav-
els allow the birds to feed on swarms of euphausiids
(krill) that occur seasonally in different regions. How-
ever, despite migration shifts in response to long-term
oceanic changes (cf. Spear and Ainley 1999), die-offs
of these shearwaters occasionally occur when euphau-
siids or other prey fail to achieve local abundance (Oka
and Maruyama 1986, Baduini et al. 2001).
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During a coccolithophore bloom in the Bering Sea
in 1997, hundreds of thousands of Short-tailed Shear-
waters died, apparently from starvation (Sukhanova
and Flint 1998, Baduini et al. 2001). One explanation
was that the calcareous shells (coccoliths) of phyto-
planktonic coccolithophores decreased light transmis-
sion, thus impairing visual foraging underwater (Vance
et al. 1998). This hypothesis assumes that shearwaters
feed entirely by vision (bite-feeding), but their unique
tongue and bill morphology might allow nonvisual fil-
ter-feeding within euphausiid swarms (Morgan and
Ritz 1982).

We investigated the possibility that the coccolith-
ophore bloom impaired visual foraging underwater and
thus led to the die-off of shearwaters. To do this, we
developed simulation models of Short-tailed Shear-
waters bite-feeding and filter-feeding on euphausiids.
The visual (bite-feeding) model considered profiles of
diffuse and beam attenuation of light in the Bering Sea
among seasons, sites, and years with varying influence
by diatom and coccolithophore blooms (see Balch et
al. 1991, 1996, Garcia-Soto et al. 1995). We also ex-
plored the potential importance of filter-feeding to the
ability of shearwaters to balance their energy budgets.
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FIG. 1. Sampling stations (solid circles) for light analyses
at Slime Bank (SB) and Nunivak Island (NI) study sites in
the southeast Bering Sea. Coastal, Middle, and Outer hydro-
graphic domains of the Bering Sea shelf are separated by the
50- and 100-m isobaths, which coincide roughly with the
Inner and Middle fronts between these domains (see Kinder
and Schumacher 1981).

Methods of underwater foraging

In the eastern Bering Sea, Short-tailed Shearwaters
often eat exclusively the euphausiid Thysanoessa ras-
chii when these krill are concentrated either in surface
swarms or by bathymetric features that block their diel
movement to deeper water (Hunt et al. 1996, Baduini
et al. 2001). The shearwaters locate prey by flying with-
in a few meters of the water surface, and then dive
directly from the air or after alighting to pursue prey
as deep as at least 40 m (Ogi et al. 1980, Hunt et al.
1996). Shearwaters might exploit bioluminescent prey
at greater depths: dives up to 67 m have been measured
in the very similar Sooty Shearwater, Puffinus griseus
(Weimerskirch and Sagar 1996). However, Short-tailed
Shearwaters in the Bering Sea appear to forage mainly
within the photic zone, so their underwater vision dur-
ing the day probably depends on incident sunlight.
While dense coccolithophores might impair detection
of euphausiid swarms from the air (see Eriksson 1985,
Haney and Stone 1988), they probably also increase
beam scattering, decrease light penetration, and thereby
reduce visibility of prey underwater.

Effects of light and turbidity on capture rates have
been thoroughly investigated for predatory fish both
empirically and theoretically (Dunbrack and Dill 1984,
Aksnes and Giske 1993, Benfield and Minello 1996,
Aksnes and Utne 1997, and references therein), but
such effects have seldom been analyzed for birds (Er-
iksson 1985, Haney and Stone 1988, Wilson et al. 1993,
Cannell and Cullen 1998, Wanless et al. 1999). In par-
ticular, effects of light on foraging success might differ
between planktivorous and piscivorous birds. Many
planktivorous fish switch from biting at individual or-
ganisms to filter-feeding when the density of zooplank-
ton exceeds certain thresholds, which depend on both
light conditions and prey size (O’Connell and Zweifel
1972, Holanov and Tash 1978, James and Findlay 1989,
Batty et al. 1990, Gibson and Ezzi 1990). Filter-feeding
can continue in near or total darkness (Holanov and
Tash 1978, Batty et al. 1990). Planktivorous diving
birds such as some shearwaters and prions may exhibit
similar transitions in foraging mode (Prince 1980, Mor-
gan and Ritz 1982), and thus respond differently to
light conditions than do birds pursuing larger, more
dispersed, more evasive prey (e.g., murres, puffins, cor-
morants).

Morgan and Ritz (1982) proposed that Short-tailed
Shearwaters are capable of filter-feeding. They de-
scribed papillae on the palate and tongue that overlap
to form a filtering mesh, and lateral openings at the
rear of the bill that allow water to exit the buccal cavity.
The mechanism proposed, and supported by some ex-
periments, is that shearwaters alternately open and
close their bills while swimming through euphausiid
concentrations. When the bill is closed, water and krill
collected in the buccal cavity are pushed forward, and
the krill are retained by backwardly recurved, overlap-

ping papillae on the palate and tongue. Water passing
through this papillary mesh is expelled through lateral
gaps near the rear of the bill, thereby reducing the ‘‘bow
wave’’ in front of the bill that would otherwise deflect
water and krill from entering the mouth (Morgan and
Ritz 1982). There have been no underwater observa-
tions of shearwaters to confirm their use of this mech-
anism. Nevertheless, because euphausiid densities are
often high enough for filter-feeding, and because filter-
feeding would circumvent light limitations on food in-
take, it is an important option to consider in evaluating
effects of coccolithophores on underwater foraging.

METHODS

Profiles of PAR and beam attenuation

We measured depth profiles of photosynthetically ac-
tive radiation (PAR) and beam attenuation coefficient
(cz) along ship transects in the southeast Bering Sea
from 26 May to 13 June and 26–29 August in 1997
and 1998. Scalar (i.e., from all directions) PAR was
measured with a log quantum irradiance sensor (QSP-
200L, Biospherical Instruments, San Diego, Califor-
nia). Beam attenuation at 660 nm was measured with
a 25-cm transmissometer (Sea Tech, Corvallis,
Oregon).

Light measurements were made at stations along
transects roughly perpendicular to shore at two sites in
the Bering Sea, Alaska, USA: Slime Bank and Nunivak
Island (Fig. 1). As part of another study (see Stockwell
et al. 2001), these transects were intended to cross the
‘‘Inner’’ front between Coastal and Middle domains of
the southeast Bering Sea shelf; this front between well-
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mixed coastal and stratified offshore waters occurs at
about the 50-m isobath (Kinder and Schumacher 1981).
To standardize light angle and to avoid tidally induced
turbidity nearer shore, we restricted our analyses to
casts made between 1100 and 1345 Alaska Daylight
Time at outer (deeper) stations. The number of stations
meeting these criteria were 3 in June 1997 and 1 (2
casts averaged) in June 1998 at Slime Bank; and 1 in
August 1997, 3 (1 of these with 2 casts averaged) in
June 1998, and 3 in August 1998 at Nunivak Island.
Bottom depths at these stations ranged from 90 to 99
m at Slime Bank and from 53 to 61 m at Nunivak. Our
transmissometer was not working at Slime Bank in Au-
gust 1997, or at Nunivak in June or August 1997.

Among stations, there were variations in cloud cover
and resulting incident radiation, and in wave condi-
tions, which can alter the underwater light field (Stram-
ska and Dickey 1998). To minimize these effects for
averaging and comparing profiles among stations, sites,
and seasons, we back-calculated incident PAR just be-
low the sea surface from near-surface measurements.
Depending on variable depths of the first few mea-
surements in casts, we computed the light attenuation
coefficient k for scalar PAR measured at 4 to 4.7 m vs.
the shallowest depth sampled (1.7 to 3.7 m). By Beer’s
Law, k 5 2ln (Rz/ R0)/Dz, where Rz is PAR at the deeper
depth, R0 is PAR at the shallower depth, and Dz the
distance between these depths. PAR just below the wa-
ter surface (Rs) was estimated by substituting this value
of k in the same equation rearranged to Rs 5 Rz/e2kz,
where z is depth of the shallowest measurement. PAR
(diffuse visible light) measured at each 1-m depth in-
crement throughout the water column was expressed
as a percentage of this back-calculated surface value
for that cast. Beam attenuation coefficient cz was cal-
culated at 1-m depth increments by the equation cz 5
2ln Td / d, where Td is beam transmission over the path
length d in the transmissometer (25 cm). Values of cz

and percentage of surface PAR at each depth were av-
eraged among casts at the same station if more than
one cast was made there, and among stations within
the same site (Slime Bank vs. Nunivak) and season
(May–June vs. August).

Model of visual foraging

Visual range is a complex function of the charac-
teristics of prey (size, contrast with background, mo-
bility), predator (retinal sensitivity, eye size), and op-
tical environment (intensity, angle, absorption, and
scattering of light) (Lythgoe 1979). Visual ability to
detect prey is often considered limited by two different
criteria: visual acuity and contrast sensitivity (Snyder
et al. 1977, Lythgoe 1979, Breck 1993). Visual acuity
is determined by the minimum detectable size of an
image on the retina, often measured as the angle sub-
tended by the image. Visual acuity increases with eye
size owing to larger images on larger retinas (Snyder
et al. 1977, Lythgoe 1979), although this relation may

vary with densities of receptors (rods and cones) over
all or parts of the retina (Fite and Rosenfield-Wessels
1975, Hayes and Brooke 1990). Contrast is the differ-
ence in brightness between an object and its back-
ground over some range of visible wavelengths. Water
rapidly attenuates light into a narrow band of blue-
green wavelengths, and both fish and birds that pursue
prey underwater generally have a predominance of ret-
inal receptors for detecting contrast in that range
(Muntz 1972, Lythgoe 1979, Bowmaker and Martin
1985). For birds, visual acuity in air has been the main
criterion for assessing visual ability (e.g., Fox et al.
1976, Martin 1982), although contrast sensitivity has
been studied in a few cases (Reymond and Wolfe 1981,
Hirsch 1982). For visual acuity, the refractive power
of the lens in a variety of avian divers can accommodate
the loss of corneal refractive power that results from
differing refractive indices of air and water (Sivak et
al. 1987).

The relative importance of visual acuity and contrast
sensitivity varies with light intensity, turbidity, and
viewing angle relative to downwelling light; and with
prey size relative to predator size and resulting size of
the predator’s retina (Lythgoe 1979). Breck (1993) ar-
gued that zooplanktivores tend to be limited by visual
acuity, whereas piscivores are more limited by contrast
sensitivity. However, Thetmeyer and Kils (1995)
showed that the visibility of mostly translucent prey
such as mysids is strongly affected by brightness con-
trast, and the angles of attack of herring on both mysids
and copepods corresponded to optimal contrast.

We based our model of visual foraging (bite-feeding)
on that developed by Aksnes and Giske (1993), which
recognizes that visual acuity and contrast sensitivity
interact to determine thresholds of prey detection (Sny-
der et al. 1977). In their approach, the threshold for
detecting prey depends on a minimum change in the
number of photons striking the retina with and without
a prey image. Prey with either low or high inherent
contrast are more likely to alter the stimulus for a
threshold number of receptors if they project a larger
image on the retina. The model assumes that prey are
detected if the product of apparent contrast at the retina,
retinal background irradiance, and area of the prey im-
age on the retina exceeds a threshold. By that model,
the maximum vision-based intake rate (I, number of
prey per second) is given by

21C Nph
I 5 (1)

2 21[C p(r sin u) U] 1 Nph

(Aksnes and Giske 1993: Eq. 5), where Cph is capture
time (for pursuit and handling after detection) per prey
item (seconds), N is prey density (number of prey per
cubic meter), r is visual range (meters), u is the visual
field angle (Fig. 2), and U is swimming speed of the
bird (meters per second) (variables are defined in Table
1).
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FIG. 2. Visual search volume for diving
birds, which depends on visual range r, visual
field angle u, and bird swimming speed.

Eq. 1 corresponds to a Michaelis-Menten or Holling
type II functional response of the form I 5 Cph N/(s 1
N), in which Cph is the capture time or maximum value
of intake rate I regardless of prey density, and s is the
search time coefficient or half-saturation constant equal
to the prey density at 0.5 Cph (Aksnes and Giske 1993,
Lovvorn and Gillingham 1996). Eq. 1 does not account
for increased detectability of moving vs. stationary
prey (Wright and O’Brien 1982); thus, we multiply I
by a motion detectability factor M. Eq. 1 also does not
consider the fraction of prey that successfully evades
capture when attacked (1 2 capture probability G for
detected prey) (Wright and O’Brien 1984, O’Brien
1987, Link 1996). Including these effects yields an
expression for bite-feeding intake rate Ib (number of
prey per second) of

21MG(C N)ph
I 5 . (2)b 2 21[C p(r sin u) U] 1 Nph

Visual range r is given by Eq. 16a in Aksnes and
Giske (1993):

2 21r exp(c r 1 Kz) 5 R zC z A DSz s i p e (3)

where cz is the beam attenuation coefficient (per meter)
at depth z below the water surface, K is the coefficient
of attenuation (per meter) of diffuse visible irradiance
(PAR) over the entire water column, Rs is diffuse scalar
irradiance that has just penetrated the water surface
(mmol·m22·s21; expressed as moles of photons), Ci is
inherent contrast of the object, Ap is the plan area of
the object tangent to the line of sight (square meters),
and DSe is the threshold change in the rate of photons
striking the retina that is detectable by the eye
(mmol·m22·s21).

Eq. 3 can be rearranged to

2 2Kz 21r 5 R e exp(2c r)zC zA DS .s z i p e (4)

If scalar PAR (Rz) at the depth of interest z is known,
Eq. 4 simplifies to

2 21r 5 R exp(2c r)zC zA DS .z z i p e (5)

The above model was developed for low irradiance
levels where the neural response to retinal stimulation
is directly proportional to the intensity of incoming
light. However, as irradiance increases above a thresh-
old level, the neural response reaches an asymptote
(saturation) and changes little with further increase in
irradiance (Cornsweet 1970). Consequently, Aksnes
and Utne (1997) modified the earlier model to include
the term Rmax/(ks 1 Rz), where Rmax is the maximum
retinal irradiance that can be processed, and ks is a
saturation parameter for adaptation of the neural re-
sponse to increasing light levels. Thus, Eq. 5 becomes

2 21r 5 [R /(k 1 R )] R exp(2c r)zC zA DS .max s z z z i p e (6)

The expression (RmaxRz)/(ks 1 Rz) is a Michaelis-Menten
equation where Rmax is the asymptotic value of light
processed by the retina above saturation, and ks is the
half-saturation coefficient or the irradiance at which
retinal processing is at half its maximum value.

By comparing predictions of this model with data
for various fish species, Aksnes and Utne (1997) con-
cluded that the empirically determined parameters Rmax

and ks yielded realistic predictions over a wide range
of light intensities. However, values of Rmax in partic-
ular will vary with eye size of the predator. The lens
diameter of Short-tailed Shearwaters (;6.66 mm, see
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TABLE 1. Parameters for the foraging models, and ranges used in uncertainty analyses of selected variables.

Symbol Definition Value Range

Ap

Ag

B
cz

Ci

Plan area of prey tangent to line of vision (m2)
Mouth gape area (m2)
Buccal flow fraction of forward swimming speed
Beam attenuation coefficient at depth z (m21)
Inherent contrast of prey

6.7 3 1025

2.8 3 1024

0.8

0.42

3–10 3 1025

1.7–2.9 3 1024

0.6–1.0
0.724–3.220
0.35–0.55

Cph

Ef

Fc

Fs

G

Capture time (pursuit and handling after detection) per prey item (s)
Filtration efficiency
Fraction of total plan area (Ap) that is visible core area
Fraction of feeding time spent swallowing vs. filtering
Capture probability of prey that are attacked

2
0.8
0.6
0.1
0.5

1–4
0.6–1.0
0.4–0.9
0.05–0.20
0.3–0.7

Ib

If

Ka

ks

Intake rate by bite-feeding (number of prey/s)
Intake rate by filter-feeding (number of prey/s)
Vertical attenuation coefficient for diffuse irradiance (PAR) (m21)
Saturation parameter for response of retina to light (mmol·m22·s21) 5 4–6

M
N
r
rsinu
Rs

Motion detectability factor
Prey density (number of prey/m3)
Visual range (maximum distance a prey type can be recognized) (m)
Radius of cylindrical volume searched by swimming bird (m)
Scalar PAR just below the water surface (mmol·m22·s21)

1

Rz

Rmax

DSe

U
z
u

Scalar PAR at depth z below the water surface (mmol·m22·s21)
Maximum retinal irradiance that can be processed (mmol·m22·s21)
Eye sensitivity threshold for detecting change in rate

of photons striking the retina (mmol·m22·s21)
Swimming speed of bird (m/s)
Depth below water surface (m)
Visual field angle (degrees)

8.81
1.71 3 1024

1.0

308

1–1455
7–11
0.5–3.5 3 1024

0.8–2.6

208–608

next section) is ;3.54 times that of the fish (Gobius-
culus flavescens 40–45 mm long) studied by Aksnes
and Utne (1997) (;1.88 mm, cf. Hester 1968, Utne
1997). Assuming that light-processing capacity of the
retina is proportional to its area, and that retinal area
varies as the square of lens diameter, we increased Aks-
nes and Utne’s (1997) coefficient T1 for calculating Rmax

by 3.542 5 12.5 times. For our values of DSe, Ap, and
Ci in Table 1, and their value for T1 of 0.116, we cal-
culate Rmax 5 T1 DSe/Ap zCiz 5 8.81 mmol·m22·s21. This
value agrees well with the irradiance level above which
there was no increase in the frequency of pursuing fish
by Little Penguins (Eudyptula minor) in controlled ex-
periments (Cannell and Cullen 1998). Visual range is
usually measured as the maximum distance at which
predators respond to prey, so lack of change in the
reaction of Little Penguins to prey above this light level
supports our assumption that effective visual range is
relatively constant above this irradiance. For the pa-
rameter ks, which accounts for neural adaptation of ret-
inal receptors to incident light, we used Aksnes and
Utne’s (1997) value of 5 mmol·m22·s21.

Eq. 6 is solved iteratively for the value of r that
corresponds to measured values of PAR and cz at each
depth z. One can then substitute r into Eq. 2 to calculate
intake rate for a given prey density and light conditions,
or prey density needed under given light conditions to
allow a certain intake rate.

We applied this visual model to Short-tailed Shear-
waters feeding on the euphausiid Thysanoessa raschii.
We prefer ‘‘bite-feeding’’ to the term ‘‘particle-feed-
ing’’ used by many authors, because the food of filter-
feeders is also particulate. For some parameters, there

were no data available for birds but only for fish pred-
ators. In such cases, we have explored the consequenc-
es of error in those parameters with uncertainty anal-
yses to identify variables in most critical need of study
for birds.

Prey visibility and density, handling time, and search
volume

For the area of prey tangent to the line of vision (Ap,
Table 1), measurements for T. raschii yielded a value
of ;6.7 3 1025 m2. The opaque ‘‘core area’’ of mostly
translucent prey that is actually visible to the predator
is usually smaller than the total area (Kettle and
O’Brien 1978, Thetmeyer and Kils 1995). We assumed
the core area fraction Fc of the plan area of T. raschii
to be 0.6, and used a range from 0.4 to 0.9 in uncertainty
analyses (Table 1).

Inherent contrast is defined as Ci 5 (Robj 2 Rb)/Rb,
where Robj is object radiance and Rb is background ra-
diance (Hester 1968, Anthony 1981). For inherent con-
trast of prey Ci, we used a value of 0.42 measured for
mysids at an angle of 608 above horizontal (Thetmeyer
and Kils 1995). (Giske and Aksnes (1992) used a value
of 0.5 for copepods.) The value of 0.42 assumes that
shearwaters attack euphausiids from below at the angle
that maximizes the krills’ inherent contrast (Thetmeyer
and Kils 1995); thus, the search path depicted in Fig.
2 would be angled upward. In Eqs. 3 to 6, DSe is the
sensitivity threshold of the retina for detecting changes
in irradiance with and without an image of prey. Lack-
ing direct measurements of DSe, for initial modeling
we assumed close correspondence to contrast threshold
in fish. According to Hester (1968: Fig. 4), contrast



August 2001 2347FEEDING MODELS FOR SHEARWATERS

threshold of goldfish (Carassius auratus) was related
to lens diameter dL (in millimeters) as antilog (20.60
dL 1 0.230). Equatorial lens diameter of Manx Shear-
waters (Puffinus puffinus) was measured as 5.842 mm
(Martin and Brooke 1991: Table 1). Short-tailed Shear-
waters are ;14% larger than Manx Shearwaters, yield-
ing a lens diameter of ;6.660 mm. This value of dL

gives an estimate of DSe for Short-tailed Shearwaters
of 1.71 3 1024 mmol·m22·s21 (Table 1).

The motion detectability factor M is important for
some fish predators on zooplankton (Wright and
O’Brien 1982, 1984), reflecting an increase in retinal
area stimulated by moving prey. We expect that eu-
phausiids are essentially always moving (see Hanamura
et al. 1984, O’Brien 1988, Price 1989), but had no data
on how movement affects their detectability; thus, we
set M 5 1. We assumed the probability G that attacked
krill are successfully captured to be 0.5 (see Drenner
et al. 1978, Link 1996) (Table 1).

Euphausiids, including Thysanoessa raschii, often
occur in swarms a few meters to tens of meters wide.
Dip-net, visual, and photographic estimates of density
range from thousands to hundreds of thousands per
cubic meter for swarming euphausiids of various spe-
cies (Hanamura et al. 1984, Nicol 1986; review in
O’Brien 1988). In contrast, acoustic and tow-net sur-
veys of more dispersed layers yield densities integrated
over hundreds of meters of less than a few hundred
krill per cubic meter, and usually far lower (Sameoto
1983, Nicol 1986, Simard et al. 1986, Watkins and
Murray 1998). No data on relative densities in surface
swarms vs. deeper layers are available for Thysanoessa
spp., so we based our simulations on ranges of density
N for other krill species.

For the capture time Cph (for pursuit and handling
after detection) of fish predators biting at individual
prey, various authors have measured or assumed values
ranging from 1.2 to 2 s (Werner and Hall 1974, Eggers
1976, Clark and Levy 1988, Giske and Aksnes 1992).
When 15 live krill (Nyctiphanes australis) were placed
in a 2.6-L aquarium, Australian salmon (Arripis trutta)
averaging 5 cm long pursued individual krill for 4–5
s each until captured (Morgan and Ritz 1983). Lacking
data for diving birds, we varied Cph from 1 to 4 s (Table
1).

During a given time, a bird searches a cylindrical
volume of water of radius r sinu, as determined by the
visual range r (meters), the visual field angle u, and
the speed U of the bird (meters per second) (Fig. 2).
We reasoned that shearwaters swimming through a eu-
phausiid concentration would not reverse their course
to capture a krill beside or behind them, and effectively
search only in front of them (see Morgan and Ritz 1983,
Hall et al. 1986). For initial modeling, we assumed a
visual field angle of 308 based on studies of predatory
fish (Giske and Aksnes 1992). We varied this parameter
in uncertainty analyses from 208 to 608 (Table 1), the
latter value being the nasal hemifield angle reported

for Manx Shearwaters (Martin and Brooke 1991). For
shearwaters swimming through a euphausiid concen-
tration after diving to that depth, we assumed speed U
to be 1 m/s (see Brown et al. 1978). In uncertainty
analyses, we varied swimming speed from 0.8 to 2.6
m/s, the latter value being the maximum burst speed
reported for Common Murres (Uria aalge) swimming
horizontally in tanks (Swennen and Duiven 1991, Lov-
vorn et al. 1999).

Model of filter-feeding

Our model of filter-feeding in Short-tailed Shear-
waters was motivated by mechanisms proposed by
Morgan and Ritz (1982). The filter-feeding intake rate
If (number of prey per second) is given by

I 5 A UBE N(1 2 F ),f g f s (6)

where Ag 5 mouth gape area (m2), U 5 swimming
speed of the bird (m/s), B 5 fraction of the bird’s swim-
ming speed at which water flows through the buccal
cavity, Ef 5 fraction of incoming prey retained by the
rakers, N 5 prey density (number of krill per cubic
meter), and Fs 5 fraction of total feeding time spent
swallowing rather than filtering. With calipers, we mea-
sured the height and width of the roughly rectangular
gape area at the rear of the bill (Ag) of five Short-tailed
Shearwater carcasses. With the bill opened maximally,
Ag (mean 61 SD) was 2.944 3 1024 6 0.171 3 1024

m2; with the bill about two-thirds open the value was
1.722 3 1024 6 0.217 3 1024 m2. In the model we
used a value of 2.8 3 1024 m2, and varied Ag in un-
certainty analyses from 1.7 to 2.9 3 1024. Various stud-
ies of fish have reported that swimming speed U is
either higher (James and Findlay 1989, Batty et al.
1990) or lower (Gibson and Ezzi 1985, 1990, Pepin et
al. 1988) during bite-feeding than filter-feeding; for
shearwaters we assumed no change from the mean
speed of 1 m/s used for bite-feeding. Lacking data for
birds, we assumed the buccal flow fraction B to be 80%
of swimming speed, filtration efficiency Ef to be 0.8,
and swallowing time fraction Fs to be 0.1 (Gerking
1994, Sanderson et al. 1994, Sims 1999) (Table 1).

Prey size, digestibility, and maximum loading

Mean mass of individual Thysanoessa raschii can
vary among years and seasons, depending on age struc-
ture of the population, and on differing age and sex
ratios among swarms and between layers at different
depths (Berkes 1976, Falk-Petersen 1981, O’Brien
1988, Dalpadado and Skjoldal 1996, Watkins and Mur-
ray 1998). These differences influence krill sizes con-
sumed by birds (Hill et al. 1996). Dry mass per indi-
vidual T. raschii averaged 7.51–14.88 mg in different
months and years in the Bering Sea (Smith 1991), 7.60
and 20.81 mg for two overlapping generations in Nor-
way (Falk-Petersen 1981), and 9.3 mg in the St.
Lawrence estuary, Canada (Simard et al. 1986). For
initial modeling, we used 9 mg.
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FIG. 3. Percentage of surface irradiance (scalar PAR; top
panel) and beam attenuation coefficient (cz, 960 nm; bottom
panel) at different depths at Slime Bank (SB) and Nunivak
Island (NI), averaged over stations for each site and season.
Different curves stop at the shallowest depth of zero PAR
among stations for each site and season.

For energy content, Nishiyama (1974) reported 23.0
6 2.2 kJ/g dry mass for euphausiids (mainly Thysan-
oessa spp.) in the Bering Sea. For a 9-mg T. raschii,
this value yields 207 J/individual. We used an assim-
ilation efficiency of 68% (Jackson 1986, Kirkwood and
Robertson 1997). We assumed maximum prey loading
to be the highest number of T. raschii found in a single
esophagus among 98 Short-tailed Shearwaters collect-
ed in 1997: 2560 individual krill (C. L. Baduini, un-
published data).

Uncertainty analyses

We evaluated effects of variation in selected param-
eters (Table 1) on model estimates of intake rate I.
Results of uncertainty analyses can depend strongly on
the ranges over which parameters are varied. Thus, we
did not vary parameters by a constant percentage, be-
cause such an arbitrary range might be greater or less
than variation observed in nature. All parameters were
considered uniformly distributed within ranges consid-
ered likely to occur.

In a Latin hypercube design (see Lovvorn and Gil-
lingham 1996), the uniform distributions (Table 1) were
divided into 150 equal intervals. For each foraging
event, values for each parameter were randomly se-
lected from intervals chosen randomly without replace-
ment. After simulations, the dependent variable (intake
rate) was regressed against the independent variables
(randomly chosen parameter values) for each feeding
event (n 5 150). Relative partial sums of squares
(RPSS) indicated the amount of variance in intake rate
explained by variation of individual parameters, with
effects of other parameters statistically removed. We
also report partial coefficients of determination (partial
r2), because parameters can have high partial r2 but
account for small residual variances in RPSS.

RESULTS

Profiles of PAR and beam attenuation

At sites and seasons for which both PAR and beam
transmission were measured, the main difference in
PAR profiles was between Slime Bank in June 1997
and other sites and times (Fig. 3). This difference might
represent conditions before and after the initial coc-
colithophore bloom in late summer 1997, which lin-
gered overwinter and through summer 1998. However,
Slime Bank was outside the main coccolithophore
bloom, so light conditions there in June 1998 might
also reflect higher diatom concentrations. Beam atten-
uation in the upper 25 m was also lower at Slime Bank
in June 1997 than at other sites and seasons (Fig. 3).
However, unlike PAR (diffuse visible light), beam at-
tenuation varied substantially among the other sites,
being especially high at Nunivak in August 1998. Be-
cause the transmissometer malfunctioned, beam atten-
uation was not measured at Slime Bank or Nunivak in
August 1997 when the die-off of shearwaters occurred.
Interestingly, although beam attenuation was especially
high at Nunivak in August 1998, and PAR transmission
was low during that time (Fig. 3), the PAR profile at
Nunivak in August 1997 (presumed peak of the coc-
colithophore bloom) instead resembled the pre-bloom
profile at Slime Bank in June 1997 (cf. Figs. 3 and 4).
Only one station met our criteria for PAR analysis at
Nunivak in August 1997 (see Methods); the bloom was
patchy, so this station might not have represented the
densest part of the bloom.
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FIG. 4. Depth profiles of the percentage of surface irra-
diance (scalar PAR) at Nunivak Island (NI) in August 1997
and 1998. These data are not included in Fig. 3 because cor-
responding beam attenuation coefficients were not measured.

FIG. 5. Modeled visual range for Short-tailed Shearwaters
to detect individual euphausiids at different depths at Slime
Bank (SB) in June 1997 and 1998, and at Nunivak Island
(NI) in June and August 1998, based on light conditions mea-
sured at those sites (Fig. 3).

Limiting influences on bite-feeding and filter-feeding

Depth profiles of the visual range of shearwaters to
detect individual euphausiids varied among sites and
seasons (Fig. 5). As profiles of PAR were smooth and
often the same, varying magnitudes and fluctuations of
visual range often corresponded to patterns of beam
attenuation (cf. Figs. 3 and 5). As influenced by the
saturation function (Eq. 6), visual range changed little
from the surface to depths of 15–25 m, depending on
light conditions. Below the depth at which retinal pro-
cessing was saturated, visual range decreased rapidly,
especially in the bottom meter of the photic zone.

Capture time (for pursuit and handling after de-
tection) and capture probability (capture rate for prey
that are attacked) limited intake rates at all euphau-
siid densities . 5–10 krill/m3 (Figs. 6 and 7). This
limitation by capture time and capture probability
meant that variations in light conditions among
depths, sites, and seasons had negligible effects on
intake rates (Fig. 6). Although incorrect model as-
sumptions might cause inaccuracies, varying other
parameters over realistic ranges had no appreciable
effects relative to those of capture time and capture
probability (Table 2). This result is so dramatic as
to be generally reliable. Because of severe limitation
by capture time and capture probability at all prey
densities and light levels, the only way shearwaters
can increase intake rate is to circumvent these limits,
as by filter-feeding. Our models suggest that intake
rates by bite-feeding are greater than by filter-feeding
at euphausiid densities lower than 900–2200 krill/

m3, while above that level intake from filter-feeding
is greater (Figs. 6 and 7).

The potential importance of filter-feeding to shear-
waters eating euphausiids is shown by its dramatic ef-
fects on the time they must spend foraging underwater.
As measured with doubly labeled water, daily energy
expenditure (DEE) of the similar Wedge-tailed Shear-
water (Puffinus pacificus) was 614 kJ/d (Ellis et al.
1983). If we assume the same value for Short-tailed
Shearwaters, they would require on average at least 3 h
18 min bite-feeding underwater each day to maintain
energy balance (Table 3, assuming 9 mg dry mass per
euphausiid). If the euphausiids were much larger than
often occurs (15 mg dry mass, 345 J), the average time
needed to meet DEE through bite-feeding would still be
.2 h underwater (handling time would also increase
somewhat). Our field observations indicate that single
surface swarms of euphausiids (or multiple swarms that
occur in a small area) typically disperse after 30–60 min
of intensive feeding by shearwaters. During such for-
aging periods, individual birds spend far less than these
times actually underwater, and the duration of swarming
events would be much less than the time required to fill
their esophagi via bite-feeding (Table 3).

Thus, we expect that even if low-density (nonswarm-
ing) euphausiid concentrations (,1550 krill/m3) oc-
curred near the surface where shearwaters could locate
them, neither bite-feeding nor filter-feeding would yield
adequate intake to meet the birds’ energy needs. Because
of limitation by capture time and capture probability,
bite-feeding shearwaters could not increase their intake
rate by finding higher density swarms. In contrast, shear-
waters filter-feeding on swarms, with typical densities
far greater than 1550 krill/m3, could probably balance
their DEE in 3 h or less underwater (Table 3). At swarm
densities .10 000 krill/m3, the birds might fill their
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FIG. 6. Modeled intake rates of Short-tailed Shearwaters bite-feeding (lines) and filter-feeding (circles) on the euphausiid
Thysanoessa raschii for different light conditions (different sites and times; cf. Figs. 3 and 5), feeding depths, capture times
Cph (1.5, 2.0, and 2.5 s), and krill densities. Curves for 39 m at Slime Bank, and 20 m at Nunivak, are for light conditions
1 m above zero PAR (Figs. 3 and 5). Capture probability G 5 0.5.

esophagi on a single swarm and need to find only one
or two swarms during a day. We have no data on how
long it takes shearwaters to locate swarms. However,
based on the frequency with which we encountered
swarms along ship transects, it appears that it might take
the birds at least several hours to find new swarms. Our
models suggest that filter-feeding would greatly increase

the ability of shearwaters to take advantage of high eu-
phausiid concentrations in surface swarms or in dense
layers, and thereby meet their energy needs.

Uncertainty analysis

In accordance with other analyses (Figs. 6 and 7),
variations in capture time and capture probability after
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FIG. 7. Modeled intake rates of Short-tailed Shearwaters
bite-feeding (lines) and filter-feeding (circles) on the euphau-
siid Thysanoessa raschii for capture probabilities G of 0.3,
0.5, and 0.7. Water depth 5 5 m for light conditions at Slime
Bank in June 1997 (Fig. 3), and capture time Cph 5 2 s.

TABLE 3. Model estimates of intake rates, and time under-
water needed to achieve maximum prey loading (2560 T.
raschii 5 529.92 kJ) and to offset daily energy expenditure
(DEE 5 614 kJ), for filter-feeding Short-tailed Shearwaters.

Prey
density

(krill/m3)
Intake

rate (J/s)

Time
underwater

to fill esophagus
(hours:minutes)

Time
underwater

to meet DEE
(hours:minutes)

10
50

500
1 550
3 000
7 000

10 000
15 000

0.33
1.67

16.69
51.75

100.15
233.69
338.85
500.77

446:04
88:09

8:49
2:51
1:28
0:38
0:26
0:18

510:53
102:51

10:13
3:18
1:42
0:44
0:31
0:20

Note: Owing to limitation by capture time and capture prob-
ability, time bite-feeding needed to meet DEE (3:18 5 3 h
18 min) is constant at all euphausiid densities and equal to
intake via filter-feeding at 1550 krill/m3 (Cph 5 2 s, G 5 0.5;
Figs. 6 and 7).

TABLE 2. Relative partial sums of squares (RPSS) and par-
tial coefficients of determination (partial r2) from uncer-
tainty analyses of the visual foraging (bite-feeding) model
for Short-tailed Shearwaters eating the euphausiid Thysan-
oessa raschii.

Parameter RPSS (%) Partial r2

Capture time, Cph

Capture probability, G
Swimming speed of bird, U
Beam attenuation coefficient, cz

PAR, Rz

68.70
29.60

0.27
0.26
0.25

0.601
0.240
0.002
0.002
0.002

Visual field angle, u
Eye sensitivity threshold, DSe

Core fraction, Fc

Inherent contrast, Ci

Plan area of prey, Ap

0.24
0.22
0.13
0.12
0.06

0.002
0.001

,0.001
,0.001
,0.001

Notes: The simulation included 150 runs, each run with
parameter values randomly selected from ranges in Table 1
by the Latin hypercube method. RPSS values indicate the
relative variance in intake rate (number of krill per second)
explained by variation in each parameter, with effects of the
other parameters statistically removed. Visual range r is not
included because it is calculated from several of the other
variables (see Methods: Eq. 6). Prey density was set at 500
krill/m3, within the range where visual bite-feeding should
be more profitable than filter-feeding (cf. Figs. 6 and 7). Par-
tial r2 values are sequential values from stepwise multiple
regression (multiple R2 5 0.854, P , 0.001).

TABLE 4. Relative partial sums of squares (RPSS) and par-
tial coefficients of determination (partial r2) from uncer-
tainty analyses of the filter-feeding model for Short-tailed
Shearwaters eating the euphausiid Thysanoessa raschii.

Parameter
RPSS
(%)

Partial
r2

Swimming speed of bird, U
Mouth gape area, Ag

Filtration efficiency, Ef

50.24
34.92

8.08

0.454
0.358
0.063

Buccal flow fraction of swimming speed,
B

6.37 0.056

Fraction of feeding time spent swallowing,
Fs

0.39 0.003

Notes: Procedures were the same as described in Table 2.
Partial r2 values are sequential values from stepwise multiple
regression. Prey density was set at 3000 krill/m3 (cf. Fig. 6).
Multiple R2 5 0.934, P , 0.001.

detecting prey accounted for .98% of RPSS for intake
rate (Table 2). To ensure these results did not depend
on ranges of variation used, we did a second set of
uncertainty analyses in which capture time Cph and cap-
ture probability G were varied over smaller ranges (1–
2 s vs. 1–4 s, and 0.4–0.6 vs. 0.3–0.7). Comparing five
sets of 150 simulations each for broad and narrow rang-
es, RPSS values (%) for these variables (mean 6 1 SD)
did not differ (68.70 6 3.00 vs. 67.16 6 5.97 for Cph,

29.60 6 3.16 vs. 29.39 6 5.26 for G). For filter-feeding,
bird swimming speed and mouth gape area were most
influential, explaining .85% of RPSS (Table 4).

DISCUSSION

During both breeding and migration, Short-tailed
Shearwaters move between widely separated foraging
areas. They are thought to feed little while migrating
between Australia and the Bering Sea, perhaps ex-
plaining occasional mass mortalities toward the end of
both northward and southward migrations (Serventy
1967, Oka and Maruyama 1986). These extreme move-
ments and periodic die-offs at different places and
times (Oka et al. 1987, Baduini et al. 2001) suggest
that these shearwaters depend on particular foraging
conditions that sometimes fail to occur. Similar move-
ments are made by Sooty Shearwaters (Puffinus gri-
seus), which appear to track oceanographic variations
among the Peru Current, California Current, and north-
central Pacific Ocean (Spear and Ainley 1999). Because
or in spite of this foraging strategy, both species are
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very abundant: with past estimates of at least 3–10 3
106 Short-tailed Shearwaters in the eastern Bering Sea,
they are the most numerous bird species there from
June through September (Hunt et al. 1981).

Thus, shearwaters are not only important top pred-
ators in terms of population numbers and biomass con-
sumed (Schneider and Shuntov 1993), but are also sen-
sitive indicators of oceanographic and food web change
over large areas of the globe (Oka et al. 1987, Veit et
al. 1997, Baduini et al. 2001, Stockwell et al. 2001).
Climate shifts and eutrophication can strongly affect
the productivity and optical properties of coastal waters
(Zaitsev 1992, Sugimoto and Tadokoro 1997), which
in turn may affect the relative abundance and impacts
of predators with different foraging modes (e.g., bite-
feeding vs. filter-feeding) (Nonacs et al. 1994, Eiane
et al. 1997, Jansen et al. 1998, Willette et al. 1999).
The ability of shearwaters to feed efficiently on eu-
phausiids, perhaps by filter-feeding, may be a key fac-
tor in their seasonal dominance of the local seabird
fauna and their impacts on this important food web
component (Frost and Lowry 1984, Schneider and
Shuntov 1993).

Light attenuation and bloom effects on foraging

Given that beam transmission varied substantially
regardless of similar PAR profiles (Fig. 3), it appears
that diffuse and beam attenuation can respond differ-
ently to bloom or other conditions affecting underwater
light. PAR (diffuse light) affects vision mainly by de-
termining the number of photons available to be re-
flected from an object. Beam attenuation, by altering
reflected beams on their path between object and retina,
affects clarity of contrast between the object’s image
and its surroundings (resolution of its silhouette). If the
relative patterns of PAR, beam transmission, and visual
range in Figs. 3–5 result from the coccolithophore
bloom, coccolithophores might have affected under-
water vision more by scattering beams than by ab-
sorbing diffuse light. During blooms in other areas,
density of detached coccoliths was strongly correlated
with both beam and diffuse attenuation, but these ef-
fects resulted mostly from scattering rather than ab-
sorption of light (Balch et al. 1991, Garcia-Soto et al.
1995).

Regardless of optical effects, uncertainty analyses
indicated that variation in both beam and diffuse at-
tenuation of light had negligible influence on bite-feed-
ing relative to effects of capture time and capture prob-
ability (Table 2, Fig. 6). Thus, any effects of the 1997
coccolithophore bloom on shearwaters probably did
not result from decreased visibility underwater.

Feeding modes, energetics, and foraging strategies

For birds feeding on small prey in dense concentra-
tions that may be hard to find or sporadically accessible
(e.g., in surface swarms), there appear to be strong
advantages to filter-feeding. In our model, intake rates

by bite-feeding were determined almost entirely by
capture time and capture probability at all prey den-
sities, and the only way to increase intake rate regard-
less of prey density is to circumvent these limiting
factors. Facing similar constraints, many fish have
evolved the ability to bite-feed or filter-feed faculta-
tively depending on prey size, prey density, and light
conditions (O’Connell and Zweifel 1972, Holanov and
Tash 1978, James and Findlay 1989, Batty et al. 1990,
Gibson and Ezzi 1990). Prey densities at which shifts
to filter-feeding occur are lower for smaller prey, which
are less cost effective to attack individually. Our results
suggest that T. raschii is small enough relative to shear-
waters that bite-feeding is seldom cost effective (cf.
Fig. 6, Table 3). Short-tailed Shearwaters feed on fish
and squid elsewhere (Baltz and Morejohn 1977, Ogi et
al. 1980, Gould et al. 2000), and since 1997 have ex-
panded their diet in the southeastern Bering Sea to
include more fish in the spring and predominantly fish
in the fall (C. L. Baduini and G. L. Hunt, unpublished
data). The much higher energy density of fish and squid
probably makes bite-feeding more profitable than is
possible with euphausiids (Brown et al. 1981, Chu
1984).

Besides filter-feeding, shearwaters can also improve
foraging profitability by finding euphausiids near the
water surface, thereby minimizing dive costs relative
to intake rate. By this argument, shearwaters should
generally ignore even dense euphausiid layers at deeper
depths, and search out intermittent surface swarms. Al-
though Short-tailed Shearwaters at times feed on eu-
phausiid concentrations at depths up to 40 m or more
(Hunt et al. 1996), they typically feed on swarms near
the surface and apparently cannot feed profitably on
more dispersed layers at depth (Brown et al. 1981,
Weimerskirch and Cherel 1998). Based on continuous
observations from our ship over thousands of kilo-
meters, it appears that shearwaters find swarms by fly-
ing individually or in groups of 2–5 birds, which stay
in loose visual range of other such groups spread out
over large areas (cf. Haney et al. 1992). When a swarm
is located by vision or perhaps olfaction (Nevitt 1999),
hundreds to thousands of shearwaters quickly converge
on the area, arriving in small groups from multiple
directions. Cost of flight for these dynamic soarers is
probably less than costs of diving by wing propulsion
(cf. Lovvorn and Jones 1994), and this strategy of co-
operative aerial search with minimal dive depths is
probably more efficient energetically than searching for
euphausiid layers at greater depths by diving. However,
if euphausiids stay in deeper layers and do not form
surface swarms, what is usually a very profitable strat-
egy can be disastrous, as indicated by the high popu-
lation numbers of shearwaters punctuated by occa-
sional massive die-offs (Oka and Maruyama 1986, Bad-
uini et al. 2001).
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Alternative explanations for shearwater starvation

If foraging by shearwaters underwater was not im-
paired by coccolithophore effects on light conditions,
then why did they starve during the bloom of August
1997? The overall density of euphausiids (adults 1
juveniles) in 1997 did not differ significantly from den-
sities during studies in 1980 and 1981 when no shear-
water die-offs were reported (Stockwell et al. 2001).
However, greater turbidity and backscattering of light
might have impaired the ability of shearwaters to locate
swarms from the air (cf. Eriksson 1985, Haney and
Stone 1988). It would be useful to develop another
model of visual searching for prey patches by seabirds
in flight, to complement our models of foraging un-
derwater. However, that problem is quite different, in-
volving aspects of how flight speed and altitude affect
visual discrimination (Land 1999), and how irradiance,
sun angle, and reflection interact with surface waves
and viewing angle to affect the visibility of objects at
varying depths underwater. To our knowledge there is
no integrated theory or existing body of work on these
topics from an ecological perspective. Consequently,
we have limited our analysis to effects of light con-
ditions on foraging underwater.

Relevance to other diving birds

Another group of diving birds that are very abundant
in northern seas, auklets of the family Alcidae, also
feed mainly or entirely on zooplankton (copepods, am-
phipods, euphausiids, jellyfish) (Hunt et al. 1993,
1998). Auklets generally lack the long overlapping pa-
pillae on the palate and tongue, and openings near the
rear of the bill for exit of water, that suggest filter-
feeding in Short-tailed Shearwaters (cf. Bédard 1969,
Morgan and Ritz 1982). Of planktivorous auklets we
examined, including Parakeet Auklet (Cyclorhynchus
psittacula), Cassin’s Auklet (Ptychoramphus aleuti-
cus), Crested Auklet (Aethia cristatella), Whiskered
Auklet (A. pygmaea), and Least Auklet (A. pusilla), all
had smooth tongues and mostly short palatal papillae;
only the Cassin’s Auklet showed a tendency for longer,
recurved palatal papillae and openings near the rear of
the bill. Auklets may depend on bite-feeding in dense
prey concentrations, with high capture rates that are
nevertheless lower than possible by filter-feeding (Fig.
6). However, as for shearwaters, no detailed observa-
tions have been made of underwater feeding by plank-
tivorous auklets.

Our results for planktivorous shearwaters are likely
quite different than for piscivorous diving birds that
pursue much larger, more evasive prey. Although el-
ements of the bite-feeding model will be similar, the
fraction of detected prey that are pursued, the fraction
of pursued prey that are caught, and handling times to
subdue, manipulate, and swallow prey will differ. For
example, rather than values of a few seconds used for
capture rate (including pursuit and handling) in our

planktivore model (Cph, Table 1), Common Mergansers
(Merganser merganser) required on average 2.7 s to
pursue and capture salmon smolts in enclosed stream
sections, and 9.2 s to subdue and eat the smolts (Wood
and Hand 1985). Great Crested Grebes (Podiceps cris-
tatus) spent 2–267 s (mean 29.6 s) just manipulating
2–20 cm fish at the surface before swallowing them
(Ulenaers et al. 1992). Studies are needed on pursuit
and capture rates of piscivorous diving birds in regard
to light levels, fish density, and fish size (e.g., Cannell
and Cullen 1998).

In summary, our models indicate that mass starvation
of Short-tailed Shearwaters during the 1997 coccolith-
ophore bloom in the Bering Sea probably did not result
from reduced visibility underwater. A more likely ex-
planation is that greater turbidity affected the birds’
ability to locate euphausiid swarms from the air. Intake
rates of bite-feeding shearwaters are strongly limited
by capture time and capture probability, and effective
filter-feeding requires very high prey densities. As a
result, there are strong advantages to feeding on surface
swarms where dive costs are low relative to fixed intake
rate, and where intake might be increased by filter-
feeding. Thus, changes in water column structure, prey
density and dispersion, and bloom or other effects on
light conditions will impact marine top predators dif-
ferently depending on prey size and foraging mode of
the predator (bite-feeding vs. filter-feeding) (Eiane et
al. 1997). Investigation of mechanisms via field ob-
servations, experimental measurements, and integra-
tive modeling should yield better understanding and
prediction of how top predators are affected by ocean-
ographic changes.

ACKNOWLEDGMENTS

We thank the Captain and crew of the R/V Alpha Helix for
their assistance during cruises, Sigrid Salo and Nancy Kachel
for coordinating instrument casts, and Steve Zeeman for help
with light data. We are especially grateful to Jeff Williams
of the Alaska Maritime National Wildlife Refuge for col-
lecting auklets. This research was supported by National Sci-
ence Foundation grants OPP-9813979 to J. R. Lovvorn and
OPP-9617287 to G. L. Hunt.

LITERATURE CITED

Aksnes, D. L., and J. Giske. 1993. A theoretical model of
aquatic visual feeding. Ecological Modelling 67:233–250.

Aksnes, D. L., and A. C. W. Utne. 1997. A revised model
of visual range in fish. Sarsia 82:137–147.

Anthony, P. D. 1981. Visual contrast thresholds in the cod
Gadus morhua L. Journal of Fish Biology 19:87–103.

Baduini, C. L., K. D. Hyrenbach, K. O. Coyle, A. Pinchuk,
V. Mendenhall, and G. L. Hunt. 2001. Mass mortality of
Short-tailed Shearwaters in the south-eastern Bering Sea
during summer 1997. Fisheries Oceanography 10:117–130.

Balch, W. M., P. M. Holligan, S. G. Ackleson, and K. J. Voss.
1991. Biological and optical properties of mesoscale coc-
colithophore blooms in the Gulf of Maine. Limnology and
Oceanography 36:629–643.

Balch, W. M., K. A. Kilpatrick, and C. C. Trees. 1996. The
1991 coccolithophore bloom in the central North Atlantic.
I. Optical properties and factors affecting their distribution.
Limnology and Oceanography 41:1669–1683.



2354 JAMES R. LOVVORN ET AL. Ecology, Vol. 82, No. 8

Baltz, D. M., and G. V. Morejohn. 1977. Food habits and
niche overlap of seabirds wintering on Monterey Bay, Cal-
ifornia. Auk 94:526–543.

Batty, R. S., J. H. S. Blaxter, and J. M. Richard. 1990. Light
intensity and the feeding behaviour of herring, Clupea har-
engus. Marine Biology 107:383–388.

Bédard, J. 1969. Adaptive radiation in Alcidae. Ibis 111:189–
198.

Benfield, M. C., and T. J. Minello. 1996. Relative effects of
turbidity and light intensity on reactive distance and feed-
ing of an estuarine fish. Environmental Biology of Fishes
46:211–216.

Berkes, F. 1976. Ecology of euphausiids in the Gulf of St.
Lawrence. Journal of the Fisheries Research Board of Can-
ada 33:1894–1905.

Bowmaker, J. K., and G. R. Martin. 1985. Visual pigments
and oil droplets in the penguin, Spheniscus humboldti. Jour-
nal of Comparative Physiology A156:71–77.

Breck, J. E. 1993. Foraging theory and piscivorous fish: are
forage fish just big zooplankton? Transactions of the Amer-
ican Fisheries Society 122:902–911.

Brown, R. G. B., S. P. Barker, D. E. Gaskin, and M. R.
Sandeman. 1981. The foods of Great and Sooty Shear-
waters Puffinus gravis and P. griseus in eastern Canadian
waters. Ibis 123:19–30.

Brown, R. G. B., W. R. P. Bourne, and T. R. Wahl. 1978.
Diving by shearwaters. Condor 80:123–125.

Cannell, B. L., and J. M. Cullen. 1998. The foraging behav-
iour of Little Penguins Eudyptula minor at different light
levels. Ibis 140:467–471.

Chu, E. W. 1984. Sooty Shearwaters off California: diet and
energy gain. Pages 64–71 in D. N. Nettleship, G. A. Sanger,
and P. F. Springer, editors. Marine birds: their feeding ecol-
ogy and commercial fisheries relationships. Canadian Wild-
life Service Special Publication, Ottawa, Ontario, Canada.

Clark, C. W., and D. A. Levy. 1988. Diel vertical migrations
by juvenile sockeye salmon and the antipredation window.
American Naturalist 131:271–290.

Cornsweet, T. N. 1970. Visual perception. Academic Press,
London, UK.

Dalpadado, P., and H. R. Skjoldal. 1996. Abundance, ma-
turity and growth of the krill species Thysanoessa inermis
and T. longicaudata in the Barents Sea. Marine Ecology
Progress Series 144:175–183.

Drenner, R. W., J. R. Strickler, and W. J. O’Brien. 1978.
Capture probability: the role of zooplankter escape in the
selective feeding of planktivorous fish. Journal of the Fish-
eries Research Board of Canada 35:1370–1373.

Dunbrack, R. L., and L. M. Dill. 1984. Three-dimensional
prey reaction field of the juvenile coho salmon (Oncor-
hynchus kisutch). Canadian Journal of Fisheries and Aquat-
ic Sciences 41:1176–1182.

Eggers, D. M. 1976. Theoretical effect of schooling by plank-
tivorous fish predators on rate of prey consumption. Journal
of the Fisheries Research Board of Canada 33:1964–1971.

Eiane, K., D. L. Aksnes, and J. Giske. 1997. The significance
of optical properties in competition among visual and tac-
tile planktivores: a theoretical study. Ecological Modelling
98:123–136.

Ellis, H. I., T. N. Pettit, and G. C. Whittow. 1983. Field
metabolic rates and water turnover in two Hawaiian sea-
birds. American Zoologist 23:980.

Eriksson, M. O. G. 1985. Prey detectability for fish-eating
birds in relation to fish density and water transparency.
Ornis Scandinavica 16:1–7.

Falk-Petersen, S. 1981. Ecological investigations on the zoo-
plankton community of Balsfjorden, northern Norway: sea-
sonal changes in body weight and the main biochemical
composition of Thysanoessa inermis (Kroyer), T. raschii
(M. Sars), and Meganyctiphanes norvegica (M. Sars) in

relation to environmental factors. Journal of Experimental
Marine Biology and Ecology 49:103–120.

Fite, K. V., and S. Rosenfield-Wessels. 1975. A comparative
study of deep avian foveas. Brain, Behavior and Evolution
12:97–115.

Fox, R., S. W. Lehmkuhle, and D. H. Westendorf. 1976. Fal-
con visual acuity. Science 192:263–265.

Frost, K. J., and L. F. Lowry. 1984. Trophic relationships of
vertebrate consumers in the Alaskan Beaufort Sea. Pages
381–401 in P. W. Barnes, D. M. Schell, and E. Reimnitz,
editors. The Alaskan Beaufort Sea: ecosystems and envi-
ronments. Academic Press, New York, New York, USA.

Garcia-Soto, C., E. Fernandez, R. D. Pingree, and D. S. Har-
bour. 1995. Evolution and structure of a shelf coccolith-
ophore bloom in the western English Channel. Journal of
Plankton Research 17:2011–2036.

Gerking, S. D. 1994. Feeding ecology of fish. Academic
Press, San Diego, California, USA.

Gibson, R. N., and I. A. Ezzi. 1985. Effect of particle con-
centration on filter- and particulate-feeding in the herring
Clupea harengus. Marine Biology 88:109–119.

Gibson, R. N., and I. A. Ezzi. 1990. Relative importance of
prey size and concentration in determining the feeding be-
haviour of the herring Clupea harengus. Marine Biology
107:357–362.

Giske, J., and D. L. Aksnes. 1992. Ontogeny, season and
trade-offs: vertical distribution of the mesopelagic fish
Maurolicus muelleri. Sarsia 77:253–261.

Gould, P., P. Ostrom, and W. Walker. 2000. Foods, trophic
relationships, and migration of Sooty and Short-tailed
Shearwaters associated with squid and large-mesh driftnet
fisheries in the North Pacific Ocean. Waterbirds 23:165–
186.

Hall, S. J., C. S. Wardle, and D. N. MacLennan. 1986. Pred-
ator evasion in a fish school: test of a model for the fountain
effect. Marine Biology 91:143–148.

Hanamura, Y., Y. Endo, and A. Taniguchi. 1984. Underwater
observations on the surface swarm of a euphausiid, Eu-
phausia pacifica in Sendai Bay, northeastern Japan. La Mer
22:63–68.

Haney, J. C., K. M. Fristrup, and D. S. Lee. 1992. Geometry
of visual recruitment by seabirds to ephemeral foraging
flocks. Ornis Scandinavica 23:49–62.

Haney, J. C., and A. E. Stone. 1988. Seabird foraging tactics
and water clarity: are plunge divers really in the clear?
Marine Ecology Progress Series 49:1–9.

Hayes, B. P., and M. de L. Brooke. 1990. Retinal ganglion
cell distribution and behaviour in Procellariiform seabirds.
Vision Research 30:1277–1289.

Hester, F. J. 1968. Visual contrast thresholds of the goldfish
(Carassius auratus). Vision Research 8:1315–1335.

Hill, H. J., P. N. Trathan, J. P. Croxall, and J. L. Watkins.
1996. A comparison of Antarctic krill Euphausia superba
caught by nets and taken by Macaroni Penguins Eudyptes
chrysolophus: evidence for selection? Marine Ecology Pro-
gress Series 140:1–11.

Hirsch, J. 1982. Falcon visual sensitivity to grating contrast.
Nature 300:57–58.

Holanov, S. H., and J. C. Tash. 1978. Particulate and filter
feeding in threadfin shad, Dorosoma petenense, at different
light intensities. Journal of Fish Biology 13:619–625.

Hunt, G. L., K. O. Coyle, S. Hoffman, M. B. Decker, and E.
N. Flint. 1996. Foraging ecology of Short-tailed Shear-
waters near the Pribilof Islands, Bering Sea. Marine Ecol-
ogy Progress Series 141:1–11.

Hunt, G. L., P. J. Gould, D. J. Forsell, and H. Peterson. 1981.
Pelagic distribution of marine birds in the eastern Bering
Sea. Pages 689–718 in D. W. Hood and J. A. Calder, editors.
The eastern Bering Sea shelf: oceanography and resources.
Volume 2. Office of Marine Pollution Assessment, National



August 2001 2355FEEDING MODELS FOR SHEARWATERS

Oceanic and Atmospheric Administration. University of
Washington Press, Seattle, Washington, USA.

Hunt, G. L., N. M. Harrison, and J. F. Piatt. 1993. Foraging
ecology as related to the distribution of planktivorous auk-
lets in the Bering Sea. Pages 18–26 in K. Vermeer, K. T.
Briggs, K. H. Morgan, and D. Siegel-Causey, editors. The
status, ecology, and conservation of marine birds of the
North Pacific. Canadian Wildlife Service Special Publi-
cation, Ottawa, Ontario, Canada.

Hunt, G. L., R. W. Russell, K. O. Coyle, and T. Weingartner.
1998. Comparative foraging ecology of planktivorous auk-
lets in relation to ocean physics and prey availability. Ma-
rine Ecology Progress Series 167:241–259.

Jackson, S. 1986. Assimilation efficiencies of White-chinned
Petrels (Procellaria aequinoctalis) fed different prey. Com-
parative Biochemistry and Physiology A 85:301–303.

James, A. G., and K. P. Findlay. 1989. Effect of particle size
and concentration on feeding behaviour, selectivity and
rates of food ingestion by the Cape anchovy Engraulis ca-
pensis. Marine Ecology Progress Series 50:275–294.

Jansen, J. K., P. L. Boveng, and J. L. Bengtson. 1998. For-
aging modes of Chinstrap Penguins: contrasts between day
and night. Marine Ecology Progress Series 165:161–172.

Kettle, D., and W. J. O’Brien. 1978. Vulnerability of arctic
zooplankton species to predation by small lake trout (Sal-
velinus namaycush). Journal of the Fisheries Research
Board of Canada 35:1495–1500.

Kinder, T. H., and J. D. Schumacher. 1981. Hydrographic
structure over the continental shelf of the southeastern Be-
ring Sea. Pages 31–52 in D. W. Hood and J. A. Calder,
editors. The eastern Bering Sea shelf: oceanography and
resources. Volume 1. Office of Marine Pollution Assess-
ment, National Oceanic and Atmospheric Administration.
University of Washington Press, Seattle, Washington, USA.

Kirkwood, R., and G. Robertson. 1997. The energy assimi-
lation efficiency of Emperor Penguins, Aptenodytes forsteri,
fed a diet of Antarctic krill, Euphausia superba. Physio-
logical Zoology 70:27–32.

Land, M. F. 1999. Motion and vision: why animals move
their eyes. Journal of Comparative Physiology A185:341–
352.

Link, J. 1996. Capture probabilities of Lake Superior zoo-
plankton by an obligate planktivorous fish—the lake her-
ring. Transactions of the American Fisheries Society 125:
139–142.

Lovvorn, J. R., D. A. Croll, and G. A. Liggins. 1999. Me-
chanical vs. physiological determinants of swimming
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