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ABSTRACT OF THE DISSERTATION

Safe Adaptive System Reconfiguration in Autonomous Machines

By

Saehanseul Yi

Doctor of Philosophy in Computer Science

University of California, Irvine, 2023

Distinguished Professor Nikil Dutt, Chair

An autonomous machine operates on its own by continuously sensing the environment, mak-

ing decisions, and executing actions. Due to this attribute, it is well-suited for managing

critical tasks that demand rapid responses without human intervention such as avionics, sur-

gical robots, and autonomous driving. Given that failures in such tasks can have catastrophic

consequences, these autonomous machines are meticulously designed with stringent timing

safety guarantees, which have been extensively studied and integrated into real-time systems.

As hardware and software complexities increase, the fundamental concepts in real-time sys-

tems, namely worst-case behaviors and determinism, are becoming extremely challenging to

analyze. The recent trend in autonomous driving exacerbates this challenge even further.

As tasks previously performed by humans are now delegated to real-time systems, the work-

loads are increasingly demanding in terms of performance, which in turn necessitates the use

of modern complex hardware. The widening gap between worst case scenarios and typical

operating conditions results in pessimistic resource planning and high energy consumption.

Furthermore, design-time analyses and static design struggle to address the dynamic nature

of the physical world, replete with ever-changing situations.

In this dissertation, I delve into the concept of operation modes as an approach to tackle
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the challenges in designing real-time systems that interact with the dynamic physical world.

First, I introduce the EASYR framework, which leverages adaptive system reconfiguration

to enhance energy efficiency. EASYR reacts to velocity changes and associated end-to-end

deadline changes, holistically adapting scheduling parameters such as task period and speed

factor while satisfying timing constraints. The possible deadline range is divided into several

discrete operation modes, each with its maximum end-to-end latency guarantees. EASYR

not only optimizes the energy efficiency within each mode but also provides a safe transition

between these modes. Consequently, in real-world driving scenario, simulation results show

that EASYR achieved 62% reduction in energy consumption compared to classical static

deadline optimization.

Next, I introduce the FRTS framework, which exploits adaptive system reconfiguration to

improve resilience of timing safety against WCET changes. Carefully designed real-time

systems are confronting diverse faults and aging effects resulting from their increased lifespan.

Safety critical systems must be safe when designed, and continue to be safe as conditions

change. In FRTS, faults are manifested by a statistical distribution changes in execution

times. Testing the assumption of independent & identical distribution (i.i.d) is well-suited

for proactively sensing these changes prior to actual violations. Once a fault is detected,

the system enters the emergency mode, during which system utilization is secured as a

buffer against WCET changes. With the buffer, the system is capable of assessing the fault

impact and performing reconfiguration to an optimized operating point. As a result, the

system exhibits greater resilience compared to a conventional fault-tolerance technique with

an improvement of 18% with a small energy overhead in simulation results.

These two frameworks demonstrate a great potential to improve autonomous operations

by facilitating adaptation to dynamic situations. This is a stepping stone toward a true

autonomous reconfiguration of safety-critical machines.
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Chapter 1

Introduction

Autonomous machines are designed to operate on its own with minimal user intervention.

These machines are required to operate continuously without arbitrary stops, making it

suitable for handling critical jobs: surgical robots, military drones, self-driving cars, and

so forth. The recent advancement in computing hardware shows a great potential of these

machines. However, safety is a major road block for these machines to spread.

The failure of safety-critical autonomous machines often results in catastrophic accidents.

To prevent such failures, it is necessary to remove potentially dangerous operation modes

at design time. In that sense, there are mainly two sets of constraints for safe design: (i)

timing and (ii) functional correctness. The former guarantees the system responses within a

given time. The latter guarantees the correct output of a functionality, which encompasses

the fault-tolerance of hardware modules.

As system complexity grows, ensuring timing correctness becomes more challenging. Tra-

ditionally, two key concepts are involved in ensuring timing correctness of a system. The

first key concept is worst-case behaviors. Given that failures generally occur outside regu-
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lar operation, it is imperative to identify possible worst-case scenarios and be prepared for

them. Particularly, it is crucial to determine the worst-case execution time (WCET) of tasks

as a prerequisite for subsequent timing analyses. The second key concept is determinism.

Once the worst-case behaviors are identified, the subsequent step involves identifying when

these behaviors could potentially occur. Consequently, determinism enhances predictability,

leading to a reduction in uncertainties in the system. The concept of determinism can be

implemented at low levels, such as cache policies, or extended to higher levels, such as task

schedulers. It is not uncommon to trade off performance in order to minimize uncertainty,

sometimes necessitating specialized hardware to mitigate this trade-off. As a result, safety-

critical systems becomes a rigid monolith that has tightly integrated structures constructed

upon stringent timing analyses and policies for deterministic behaviors, all aimed at enforc-

ing timing constraints with predictability. In avionics, timing correctness is provided by time

and spatial partitioning of resources as suggested in ARNIC 653 software specification. The

implementation from VxWorks [78] utilizes several guest operating systems on top of the

main real-time operating system. It is worth bearing such a huge overhead to ensure safety

as long as workloads are not computationally demanding.

However, the rigid monolith approach faces several challenges in light of the advancements

in hardware and software for autonomous systems. Notably, the recent development in com-

puter vision technology has prompted both academia and industry to pursue the realization

of autonomous driving (AD). AD serves as an excellent example to bring autonomous sys-

tems to the next level, especially considering the novel environment it must navigate through:

other vehicles, traffic lights, pedestrians, and more. Indeed, the foremost challenge in AD lies

in perception of the surrounding environment, which in itself poses significant hurdles to the

existing design methodologies for autonomous systems. The core component of perception

pipeline in AD relies on deep neural network (DNN), which are inherently data-intensive and

2



compute-intensive. These workloads demand cutting-edge, commercial-off-the-shelf (COTS)

hardware that previous timing analyses have not yet fully encompassed.

2008 2010 2014 2018 2020
Autonomous level 2 3 4

# Features 5 8 14 18 21

Key features
Lane Departure

Warning
Forward Collision

Warning
Animal Detection

Mapping,
Localization

Full Image
Detection

Perf. (TOPS)1 0.0044 0.026 0.256 2.5 24
Power (W) 2.5 2.5 2.5 3 10

Semiconductor 180 nm CMOS 90 nm CMOS 40 nm CMOS 28 nm FD-SOI 7 nm FinFET
1TOPS: Trillion operations per second

Table 1.1: The evolution of Mobileye’s ADAS

For example, Table 1.1 shows the evolution of Mobileye’s Advance Driver Assistance Sys-

tems (ADAS) the precursor of AD, over time. In the very beginning, it supported very basic

features with a low-spec processor made out of an old semiconductor technology (180 nm)

even at the time. The more advanced features are added, the more ADAS processor look

like COTS in terms of both power and performance. Still, ADAS hasn’t reached the full au-

tonomy (level 5), so this trend is expected to continue. Tesla, another leading AD company,

follows the same trend but more aggressively. Their vehicle is known to use vision-based

perception, which performs better on GPUs than multicore processors. An NVIDIA GPU

was added in their second generation of product (HW2) and they claimed that it is sufficient

for full self-driving. However, as more features are added, such as stop sign recognition, the

hardware upgrade was unavoidable. In HW2.5, a second GPU was added, consuming 57W of

power. Recently, they announced HW3 adding two custom-designed neural processing unit

(NPU) to support added cameras and even more features such as seeing traffic cones. With

NPU, Tesla claims that the frames-per-second (FPS) performance increased by 21x. Their

newest computer system reportedly consumes 72W of power, which is worrisome for battery-

operated systems. As can be seen, the computational demand for AD is ever-increasing with

new features constantly added. The adoption of the latest COTS hardware and software

3



makes the gap between typical operation and worst-case scenarios continues to grow. This

leads to a severe system underutilization or even impossible to meet performance require-

ments with target hardware[51]. To minimize the gap, there have been endeavors to enable

different operation modes, instead of the rigid monolith system approach.

Vestal et al.[77] proposed a pioneering approach wherein a mixed-criticality system (MCS)

was introduced, incorporating varying degrees of assurance. This approach was designed to

mitigate the increased development cost associated with extensive timing analyses arising

from increasing hardware complexity. In Vestal’s model, tasks are classified based on their

criticality. Low-criticality tasks require lower level of assurance, which cost less. In a danger-

ous situation, such systems elevate the criticality and drop low-criticality tasks to ensure the

timing correctness of high-criticality tasks. It is an early effort of enabling different operation

modes in the safety-critical system, i.e. system reconfiguration. Inspired by the MCS, this

dissertation introduces two system reconfiguration methods with AD as a primary example.

One method targets energy efficiency, while the other concentrates on enhancing reliability

of timing safety in the face of long lifespan of autonomous machines.
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Chapter 2

Background and Related Work

2.1 System and Task Model

2.1.1 Uniprocessor system model

This section describes the uniprocessor system model used in Chapter 3 and 4. Our model

assumes a computing system with a single CPU supporting DVFS with a speed factor s in

the range of

0 < smin ≤ s ≤ 1, (2.1)

where smin denotes the minimum speed factor used for the CPU idle time while 1 (i.e., 100%)

indicates the maximum processing speed. The uniprocessor model assumes that s can be any

continuous real value in that range such that general optimization techniques can be applied

to. The practical consideration with commercial off-the-shelf (COTS) CPUs supporting only

5
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Figure 2.1: A DAG from Bosch as a reference autonomous driving system in the WATERS
industrial challenge 2019 [47]

a number of discrete frequency levels will be discussed in multicore model in Section 2.1.2.

The system executes a set of n implicit-deadline periodic tasks

V = {τ1, τ2, · · · , τn}, (2.2)

where their read-write dependencies are represented by a DAG

G = (V,E ∈ V × V ) (2.3)

with its nodes V and directed edges E representing the task set and dependencies, respec-

tively. Then, each task τi is characterized by its period pi and worst-case execution time

(WCET) ei assuming s=1. Fig. 2.1 shows an example DAG with ten tasks with complex

dependencies beginning from sensors to actuators. Tasks communicate with each other with

asynchronous message passing. Due to the multi-rate nature, oversampling or undersam-

pling can happen to communication buffers, where newly arrived data always overwrite

existing ones. This task model has been commonly used in many studies for automotive

systems [40, 35].
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When dealing with speed factors, we use the inter-task DVFS method, where s can only

be changed at context switching between tasks [11]. Then, each task τi in the runtime is

characterized by

τi = (pi, ei, si), (2.4)

where si is the per-task speed factor at the moment. Among them, only ei is a given value,

whereas pi and si are design variables. Thus, a complete system configuration π can be

described by a vector of tuples

π = ((p1, s1), · · · , (pn, sn)). (2.5)

We assume the earliest deadline first (EDF) scheduling algorithm such that the L&L utiliza-

tion bound [61] can be used to test the system schedulability as

U(π) =
n∑

i=1

ei
pisi
≤ 100%, (2.6)

which has si in the denominator reflecting the effective WCET that is inverse-linearly propor-

tional to si. Based on the above schedulability test, we can guarantee every task’s periodicity.

2.1.2 Multicore System Model

This section outlines the multicore system used in Section 3, which is an extension of the

uniprocessor model incorporating gang scheduling. The multicore system is equipped with

m homogeneous cores and Voltage-Frequency Island (VFI) architecture. The CPU clock
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Figure 2.2: Example gangs and their read-write dependencies

frequency is shared across the cores, which is expressed as a speed factor S in the range of

0 < Smin ≤ S ≤ 1, (2.7)

similar to the uniprocessor model. The system executes a set of n implicit-deadline periodic

gangs of tasks

V = {w1, w2, · · · , wn}, (2.8)

where each gang wi contains m tasks, where m is at least one. Every gang has one or more

dedicated CPU cores to avoid scheduling inside gangs [7]. The read-write dependencies

between gangs are inherited from the gang members. For instance, Fig. 2.1 shows a DAG

with ten tasks from sensors to actuators, where its nodes and directed edges represent the

task set and dependencies, respectively. Then, Fig. 2.2 shows an example of five gangs and

their inherited dependencies.

Depending on how tasks are grouped into gangs, so-called a gang formation, the end-to-end

latency may vary because the dependency between gangs also changes. Finding a gang for-

mation with the minimum end-to-end latency is known to be NP-hard and will be discussed
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in later sections.

Given a gang formation, each gang wi is characterized by its period Pi, per-gang speed factor

Si, and worst-case execution time (WCET) function Ei:

wi = (Pi, Si, Ei), (2.9)

where a gang of tasks shares the same Pi and maintains Si for Ei period of time. The speed

of processor can only be changed at context switching between gangs to avoid energy and

timing overhead of excessive frequency transitions [11]. This inter-task DVFS is typically

known to have negligible latency overhead due to the small number of switchings. Therefore,

we do not consider DVFS overhead in this work. For Ei, it takes an input Si and outputs

the maximum WCET among gang members at a given speed factor:

Ei(Si) = max

(
emem
x +

ecomp
x

Si

)
,∀x ∈ wi, (2.10)

where emem
x is a speed-independent portion of WCET of gang member x, and ecomp

x is the

portion that scales inverse-linearly with Si. Many studies assume the entire WCET to be

inverse-linearly proportional to Si [17] since it provides a safe upper bound. However, it can

be largely inaccurate[12] because memory and I/O operations are less affected by Si. Thus,

we use the task model from [9] which considers speed-independent components into account.

For notational convenience, we define speed-independent ratio ri as below for discussions in

later sections.

ri = emem/(ecomp + emem) (2.11)

Among gang parameters in Eq. (2.9), only Pi and Si are design variables of our optimization
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problem. Thus, we define multicore system configuration Π as

Π = ((P1, S1), · · · , (Pn, Sn)). (2.12)

which is a vector of tuples of each gang’s period and speed factor. There could exist multiple

system configurations under various deadline constraints, which will be further discussed in

the next section.

Finally, we use the EDF scheduling with the one-gang-at-a-time policy [7] such that the

scheduling unit is a gang instead of a task. That is, a DAG of tasks is transformed into

another graph where each node is a gang by using gang formation algorithm. Then each

gang is assigned its period and scheduled dynamically based on their implicit deadline with

a preemptive EDF scheduler, occupying the entire multicore processor at a time. The L&L

utilization bound [61] can be used to test the system schedulability whether all the gangs

can be scheduled without violating their respective implicit deadline (i.e., before the next

period starts). With the gang WCET model above, our L&L utilization bound is as follows:

U(Π) =
n∑

i=1

Ei(Si)

Pi

≤ 100%, (2.13)

where the sum of gang utilizations (the gang WCET over period) should not exceed the

upper bound 100%. The upper bound can vary depending on the scheduler used.

2.2 Gang Scheduling

In Chapter 3, we utilize gang scheduling to implement our uniprocessor approach for energy-

efficient system reconfiguration. Traditional gang scheduling was proposed to minimize the
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makespan of parallel tasks by reducing synchronization overheads through scheduling inter-

acting threads together as a gang [41]. Then, it was picked up by the real-time community

to support parallel tasks because of increasing computing demands and the need for parallel

processing [4, 76, 28, 38, 43]. These early works on real-time gang scheduling focus on

schedulability improvement such that more tasks can be accepted with minimal deadline

miss. In practice, however, predictability becomes an issue due to inter-core interference

between co-running tasks that is difficult to predict. Recently, to mitigate the interference

issue, RT-Gang scheduling was proposed [7] for periodic real-time tasks. RT-Gang is a

more restrictive form of gang scheduling because of its one-gang-at-a-time policy restricting

the co-scheduling of gangs to prevent interference. Thus, RT-Gang scheduling can make

the interference manageable which is suitable for real-time systems where predictability is

important. Even though RT-Gang considers task precedence and successfully minimizes

the end-to-end deadline, it does not consider energy consumption or system reconfiguration

such as DVFS. Our work combines gang scheduling and adaptive system reconfiguration for

energy efficiency.

2.3 Power Model

2.3.1 Uniprocessor Power Model

We use the following popular power model from [11, 16]:

P (s) = Ps + Pd(s) = β + αsγ, (2.14)
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where Ps is the static power and Pd(s) is the dynamic power parameterized by a speed factor

s. The static power is expressed as β independent of other parameters, whereas the dynamic

power depends on s while α and γ ∈ [2, 3] are CPU-dependent parameters. In this work,

we do not use CPU sleep states to reduce the static power, so our focus is to minimize

the average dynamic power by minimizing s as long as satisfying the dynamic deadlines,

although we also include and compare static power in the evaluation.

For that, the average dynamic power can be calculated as follows: For each task τi, its

instantaneous dynamic power αsγi is maintained during task’s effective execution time ei/si

affected by the speed factor. Since the power pattern repeats by its period pi, the average

power consumed in a unit time while executing τi can be calculated as

Pi(pi, si) =
αsγi × ei

si

pi
=

αsi
γ−1ei
pi

, (2.15)

which is a function of pi and si. Then, by summing up n such average powers with the static

power and the idle-time CPU power at smin, the total average power for the system is given

as a function of a system configuration π as

P (π) = β + α
n∑

i=1

sγ−1
i ei
pi

+ αsγmin

(
1−

n∑
i=1

ei
pisi

)
. (2.16)

2.3.2 Multicore Power Model

We use the uniprocessor power model Eq. (2.14) as a base for multicore power model. The

average dynamic power for multicore system with gang scheduling can be calculated as

follows: for each gang wi, its instantaneous dynamic power αSγ
i is maintained during gang

WCET (Eq. 2.10). Since the power pattern repeats by its period Pi, the average power
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consumed in a unit time while executing wi can be calculated as

Pi(Pi, Si) = αSγ
i ×

Ei(Si)

Pi

(2.17)

which is a function of Pi and Si. Then, by summing up n such average powers and the

idle-time CPU power at Smin, the average dynamic power of core k is given as a function of

a system configuration Π as

Pk(Π) = α

n∑
i=1

Sγ
i

Ei(Si)

Pi

+ αSγ
min

(
1−

n∑
i=1

Ei(Si)

Pi

)
. (2.18)

For the homogeneous multicore processors, the total average power consumption can be

described as the sum of individual core’s power consumption as in [15]

P(Π) =
m∑
k

Pk(Π), (2.19)

where m is the number of cores in the homogeneous multicore processor.

2.4 Dynamic Deadlines

Recent studies [59, 49] presented motivating examples of dynamic deadlines in autonomous

driving, where object detection systems are commonly proposed that adapt themselves to

varying deadlines, demonstrating the unique potential of autonomous driving systems. More

specifically, Lee and Nirjon [59] support dynamic deadlines with selective subgraph execu-

tions by considering varying time budgets. Heo et al. [49] support dynamic deadlines by

selectively executing multiple forward propagation paths of a neural network with different

execution times. Both studies trade dynamic deadlines (or slacks) for improving object de-
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tection accuracy. However, little work has been done with dynamic deadlines for the energy

optimization of autonomous driving.

In our system model, when referring to deadlines, they always mean the end-to-end deadlines

from sensors to actuators, not the implicit deadlines that are equal to periods. Thus, even

when the system is schedulable, satisfying every gang’s Pi, it does not mean deadlines will

be guaranteed. To formally define our notion of deadlines, let us assume ns sensor tasks (i.e.,

source nodes) and na actuator tasks (i.e., sink nodes) in G. Then we say there are ns × na

unique flows, each of which has at least one path that is a sequence of adjacent tasks fully

connecting a flow. The set of paths in G is denoted by

P = {δ1, δ2, · · · , δ|P|}, (2.20)

where each path δi denotes an ordered set of task (or gang) indices following the path. For

example, in Fig. 2.1, the original DAG has three (3 × 1) flows and eight paths. Similarly,

for the corresponding gang formation in Fig. 2.2, there exists a linear ordering of gangs

that preserves task dependency for each path δ from the original DAG. Then deadlines are

imposed upon the paths such that newly arrived sensor data at time t1 propagates through

the DAG until it first gets out of an actuator task at time t2 within a given deadline d (i.e.,

t2−t1 ≤ d). In the automotive industry, the above notion is commonly referred to as reaction

time constraints [1].

Fig. 2.3 shows continuous dynamic deadlines as the vehicle velocity changes, where vertical

dashed lines depict discrete sensor arrivals. At each k-th sensor data arrival at time t[k],

its dynamic deadline d[k] is decided as a red point by the vehicle velocity v[k] with a given

mapping function (e.g., d(v) in Eq. (3.1)). Thus, each sensor data arrival can be denoted

by (t[k], d[k]) for k ≥ 1. Although many variables representing other physical states can be
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considered, this study focuses on the velocity-dependent deadlines as an initial effort toward

a more general framework.

To efficiently manage dynamic deadlines, we employ a multi-mode approach, where a feasible

deadline range is partitioned intom discrete modes, where each mode guarantees the shortest

deadline within its deadline range. For notational convenience, the modes are denoted by

the per-mode shortest deadlines

{d1, d2, · · · , dm}. (2.21)

In Fig. 2.3, its deadline domain is partitioned into six equal-length modes, and at each

sensor data arrival, the system mode is decided, possibly triggering mode changes. While

the system is in a particular mode, the mode’s shortest deadline is guaranteed, as depicted

by the thick blue line.

The mode’s shortest deadline is the minimum end-to-end latency from sensors to actuators

and is formally defined as follows. We borrow a widely used model from [35], which expresses

the worst-case delay of a path δ as an accumulation of periods (Pis) and worst-case response

times (WCRTs) of every task in δ, like the rightmost part in

Dδ(Π) =
∑
i∈δ

2Pi ≈
∑
i∈δ

(Pi +WCRTi), (2.22)

where Dδ(Π) denotes the approximated worst-case delay of a path δ assuming a system

configuration Π. We approximate the original delay model to a linear form
∑

i∈δ 2Pi for

simplicity. Among the per-gang delay components 2Pi, one Pi is for the waiting time until

the task reads the sensor data (waiting delay), and the other is for processing the data

(processing delay). Then, given tasks and gang formation, the end-to-end latency is defined
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Figure 2.3: Dynamic deadlines with discrete mode changes

as the longest Dδ among paths in P.

2.5 Probabilistic WCET

pWCET is part of measurement-based probabilistic timing analysis (MBPTA)[31], which is

gaining widespread adoption due to the limited scalability of static analyses. pWCET is

commonly described as a Generalized Extreme Value (GEV) statistical distribution, which

is well-studied to capture worst-case behaviors. GEV has three parameters: shape, location

(mean), scale. These parameters can be estimated after the block-maxima (BM) method,

which filters the maximum value out of every n-sample window. Depending on shape value,

GEV can exhibit three types of distributions: Gumbel (light tail), Weibull (cut off), or

Frechet (heavy tail). Then, pWCET is obtained by extracting a value from the cumulative

density function (CDF) of these distributions at a certain probability. In the rest of the

dissertation we use the terms WCET and pWCET interchangeably.

2.6 Boosting

Boosting is a machine learning technique that combines the predictions of multiple weak clas-

sifiers with weights to create a strong predictive model. Iteratively, the boosting algorithm
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adjusts the weights, emphasizing misclassified samples to achieve improved accuracy. Ex-

tereme gradient boosting (XGBoost)[26] is a state-of-the-art boosting technique, renowned

for its unparalleled speed and performance. In Chapter 4, we aim to obtain a more accurate

detector by considering each i.i.d test as a weak classifier and combining them with XGBoost.

The classifiers are often evaluated using F1 score, a comprehensive metric that involves both

false positives (FP) and false negatives (FN):

F1 =
2TP

2TP + FP + FN
(2.23)

where TP represents true positives. The highest possible F1 score is 1.0, which cannot be

achieved in the presence of FP and FN.

2.7 Energy Efficient Real-time Systems

There have been many efforts to develop energy-efficient real-time systems, most of which,

however, assume only static deadlines. Broadly, there are two frequently used energy saving

approaches in hard real-time systems: DVFS and dynamic power management (DPM). In

DVFS approaches, there is a body of literature to find speed levels through offline optimiza-

tion [32, 11, 46, 72]. These approaches try to find critical speed factors under a static deadline

constraint, which is the lowest frequency satisfying the given static timing constraint. In

contrast, our method finds the critical speed for each deadline through multiple modes with

different timing constraints and employs a safe mode change protocol to freely go back and

forth between them. Another body of real-time DVFS approaches tries to reclaim dynamic

slacks [56, 13], which is not to be confused with our dynamic deadlines; instead, they define

dynamic slacks as the difference between the worst-case and the actual execution times.
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Note that dynamic slack reclaiming does not conflict with our approach and could be used

together for further energy reductions.

In DPM approaches, cores are switched off during idle periods to reduce energy consumption.

It is useful when the system is underutilized. However, each idle period should be large

enough to offset the energy overhead of frequent switching on and offs. Many scheduling

methods have been proposed to create large idle periods [82, 52, 8, 75]. Lee et al.[82]

proposed leakage control EDF scheduling, but it requires additional hardware to calculate

the sleep period. This impractical assumption was avoided in [8] by using a simpler sleep

period calculation method and the enhanced race-to-halt (ERTH) algorithm. With ERTH,

tasks run at full speed to secure longer sleep time. DPM and DVFS approaches are not

orthogonal and can be used in conjunction. However, satisfying the timing constraints

during mode changes with DPM approaches requires non-trivial considerations. Thus, we

leave integrating DPM for our future work.

2.8 Fault-Tolerant Real-time Systems

The realm of fault-tolerant systems encompasses a comprehensive body of literature focused

on software-implemented hardware fault tolerance (SIHFT) [2]. Fault tolerance typically

includes both fault detection and recovery. There exists an extensive range of literature

in the field of fault tolerance, which varies based on fault models and the level in which

fault has occurred. Traditionally in real-time systems, fault tolerance has been studied

from a functionality perspective. Recent research has attempted to include the effect of

timing as well. Especially, a specific type of fault is carefully analyzed and their effect on

execution times are assessed during the design phase. Nikiema et al. [67] propose a low-level

fault-tolerant hardware technique that recovers from various transient faults with near-zero
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overhead. Hardy et al. [48] incorporate fault detection and recovery together in the pWCET

estimation, focusing on faulty cache blocks. Chen et al. [25, 24] propose a static probabilistic

timing analysis (SPTA) approach to estimate an increased pWCET for random caches in the

presence of both transient and permanent faults. The same authors show that different online

fault detection technique can greatly affect pWCET estimations, over 200% [23]. Huang et

al. [51] emphasize that perfect fault detection with a 100% coverage incurs a significant

overhead and may not be a realistic design decision, under some reliability requirements.

While these approaches are effective in tolerating transient and permanent faults, they often

result in inefficiencies during normal operation due to their inherently pessimistic design.

Another branch of fault tolerance is control flow checking (CFC). Some fault injection studies

have shown that control flow errors can take up to 77% of computer system errors [73]. These

methods typically utilize a hardware unit to reduce the significant overhead associated with

monitoring instructions. Wolf et al. [79] devised a hardware-software hybrid CFC technique

with the latency of only 22.1 processor cycles, which can detect over 65% of injected faults

uncaught by processor exceptions. Zhang et al. [86] propose a low overhead CFC that begins

with the WCET with full CFC and gradually reduce the WCET by carefully selecting code

blocks to monitor, while achieving a sufficient fault detection coverage. However, these

methods lack the ability to capture the inherent statistical nature of execution times and

can only detect timing violations after they have already occurred.

In mixed-criticality systems, a key research focus is on efficiently allocating a budget within

the high-criticality (HC) mode, which may involve dropping or missing deadlines for low-

criticality (LC) tasks. Burns et al. [21] introduced a quantitative concept of robustness, a

job failure (JF) count, which establishes a threshold for transitioning between different fault

tolerance modes such as fail operational, fail robust, and so on. The JF count corresponds to

the number of HC jobs that overrun. In their study, they analyze the system schedulability
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under a fixed-priority scheduler for each fault-tolerance mode, while tasks have varying

levels of degradation. Baruah et al. [14] proposed an algorithm called EDF-Virtual Deadline

(EDF-VD), which is the state-of-the-art scheduler for mixed-criticality uniprocessor system.

EDF-VD employs the strategy of assigning shorter deadlines to HC tasks. This ensures that

these tasks have sufficient time to complete their execution before their original deadline in

the event of a change in operation mode. Gu and Easwaran [45] enhanced EDF-VD with

EDF-UVD (Universal VD), which extends the concept of assigning virtual deadlines even

to LC tasks. With EDF-UVD, the dynamic budget generated by LC tasks is collectively

managed for HC tasks. This approach minimizes the allocation of unnecessary budgets as

opposed to EDF-VD. As a result, EDF-UVD showcases increased fault tolerance capability

and prolonged postponement of mode-switches compared to fixed budget allocation methods.

Huang et al. [53] integrate EDF-VD with DVFS technique to achieve energy efficiency in

mixed-criticality systems. During the design phase, they determine the optimal combination

of the normal CPU frequency and a deadline shortening factor x. In situations of task

overruns, the system operates at the maximum CPU frequency. These approaches primarily

address fault tolerance related to implicit deadline violations rather than considering the

comprehensive end-to-end deadline of the entire system, which involves the sensor-decision-

actuation loop.
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Chapter 3

Safe Adaptive System

Reconfiguration for Energy Efficiency

3.1 Motivation and Challenge

Due to the enormous amount of computing required for autonomous vehicles, their inherent

high energy consumption has become one of the major hurdles when designing such comput-

ing systems. For example, Gawron et al. [42] transformed a commercial electric vehicle (EV)

into a connected and automated vehicle (CAV) by installing sensors such as camera, radar,

and LiDAR in addition to computers and a short-range communication device to evaluate

the energy consumption and greenhouse gas emission of the future CAVs. According to their

report, the computer system is taking 80% of the added power consumption. The computer

system of CAV composed of multiple central processing units (CPUs) and graphics process-

ing units (GPUs) reportedly consumes more than 2 kW of energy, reducing an EV’s driving

range up to 12% [60]. The current energy consumption of EVs is around 200 Wh/km on
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average of total 245 cars [34]. That is 10kW energy consumption at the speed of 50 km/hour

(about 30 mph). Therefore, even though the current CAV has not reached full automa-

tion, its computer system can consume up to 20 % of the vehicle’s power consumption. As

autonomous driving technologies evolve, more sensors will be added, requiring more process-

ing and computing power, so the portion of computing systems in energy consumption is

expected to increase. In addition to that, according to a recent article regarding vehicle com-

puting [63], the United States national energy consumption of EVs is approximately equal

to the total energy consumption of 15 representative technology companies’ data centers,

each of which can consume 12 terawatt-hours, taking the significant portion of the overall

energy consumption. Since the volume of EV energy consumption is huge, even a small

improvement would be meaningful in terms of global carbon emission reduction. With this

challenge, some energy optimization methods have been proposed that simultaneously try to

satisfy the stringent real-time requirements of automotive systems [57, 81]. However, since

they commonly assume just (fixed) static deadlines, they do not reflect recent autonomous

driving applications with time-varying dynamic deadlines. Such applications include the lo-

calization system with its dynamic latency constraint as a function of velocity [71] and the

truck platooning system where its control response times are adjustable to varying driving

conditions [37].

With the above motivation, we aim to develop an energy-efficient software optimization

method and a runtime framework that can specifically exploit the dynamic nature of dead-

lines found in many autonomous driving applications. This study focuses on minimizing

CPU energy consumption using dynamic voltage and frequency scaling (DVFS). Although

conventional automotive microcontrollers often lack such features, recent application proces-

sors for autonomous driving mostly support DVFS.

To demonstrate our basic idea, Fig. 3.1 shows an example time history of a vehicle’s velocity
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and its corresponding dynamic deadline, assuming a velocity-deadline mapping function

d(v) =
−v +

√
v2 + 2λamax

amax
, (3.1)

which represents the minimum time for a vehicle at its initial velocity v to advance a fixed

distance λ assuming its maximum acceleration amax. It is especially useful in truck pla-

tooning where trucks maintain a fixed longitudinal gap between them across various driving

velocities [36] such that safe control decisions can be made more efficiently in terms of a

maximum travel distance (i.e., λ) between sensing and actuation rather than by a rigid tim-

ing constraint. Hence, in the figure, the faster the vehicle runs, the shorter the deadline

gets. The minimum deadline depicted by a red line is determined by the maximum veloc-

ity enforced by traffic regulations. Here, our basic idea is to trade the area between the

time-varying dynamic deadline and the minimum deadline to reduce energy consumption

by adaptively slowing down the CPU to the extent that guarantees the dynamic deadline,

rather than adhering to the static deadline [57, 81] as in the traditional energy optimization

methods.

In the automotive industry, complex control applications composed of multiple independent

real-time tasks are commonly modeled with directed acyclic graphs (DAGs) whose nodes

are periodic tasks, and edges are read-write dependencies between tasks. Fig. 2.1 shows an

example DAG from Bosch [47] for their reference autonomous driving system from sensors to

actuators. Upon such a DAG, its dynamic deadlines are imposed by its worst-case end-to-end

latency from sources to sinks, which is collectively decided by the periods of individual tasks.

Then, our objective is to minimize the average power consumption while guaranteeing such

dynamic deadlines. When doing that, we must satisfy (i) the system schedulability constraint

(i.e., task periods) as well as (ii) the end-to-end deadline constraint. At first, we solve the

problem by assuming a static deadline constraint. For that, we formulate it as a geometric
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Figure 3.1: Example dynamic deadlines

programming (GP) problem [19], which is a special form of non-convex optimization that

can be efficiently solved by a transformation into a convex problem.

To extend the above optimization method to time-varying dynamic deadlines, we partition

the feasible deadline range into a number of discrete modes, where the system is separately

optimized for each mode, assuming each mode’s shortest deadline, respectively. Then, our

runtime framework provides a safe mode change protocol that changes each task’s period

when the vehicle slows down or speeds up crossing across different modes. Our mode change

protocol is designed not to miss any deadline if the mode change is from a shorter deadline to

a longer one. However, we found that extra delays are unavoidable in the opposite direction

(i.e., longer to shorter deadlines). Even in that case, however, we provide a mode change

delay analysis method from which we can reserve enough safety margins to hide away the

extra delays while guaranteeing safety.
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The basic formulation for uniprocessors was done in our previous work [83] and will be

introduced in Section 3.3.1. In Section 3.3.2, we achieve the same goal in multicore processors

with VFI architecture, where all the CPU cores in the same island share the same voltage-

frequency level. VFI is most common in commercial processors because the complex design

for supporting per-core DVFS cannot justify the potential energy gain [50].

Transitioning from uniprocessor to multicore introduces several challenges: inter-core in-

terference and multicore real-time schedulability. In addition to the NP-hard task-to-core

assignment, the inter-core inferences and complex architecture of multicore processors make

timing analysis notoriously difficult. Because of that, it led to strict timing constraints

based on a highly pessimistic estimation of worst-case execution time (WCET) resulting

in less number of schedulable tasks and low system utilization. Recently, Real-time Gang

(RT-Gang) scheduling was proposed to address the inter-core interference and schedulabil-

ity issues. In RT-Gang, the tasks are grouped into a gang, enforcing a one-gang-at-a-time

policy, which makes the interference smaller and manageable since only a predefined set (i.e.

a gang) of tasks can occupy the processor at a time.

Moreover, it enables the use of well-studied unicore timing analysis and real-time schedulers

to increase system schedulability. Even though RT-Gang’s strict policies hinder exploiting

the full capacity of hardware, we choose RT-Gang as it improves predictability and schedu-

lability which are crucial in a real-time systems context.

However, it entails another problem: gang formation. It can be described as partitioning a

DAG of tasks into multiple gangs, which decides the minimum end-to-end delay of a given

DAG. Minimizing end-to-end delay is important because the shorter the delay, the more

room we have for slowing down the processor until the end-to-end delay meets the deadline.

Gang formation is NP-hard combinatorial problem, and thus we developed a greedy heuristic
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to handle it.

3.2 EASYR Framework Overview

Given a DAG G of n periodic tasks and m discrete deadline constraints, our problem is

decomposed into three parts: (i) gang formation, (ii) period and speed factor optimization,

and (iii) safe mode change protocol. First, we obtain a gang formation W = {w1, w2, ..., wk}

that can minimize the end-to-end latency of the given DAG considering task WCET and

dependency. Second, given a gang formation, we find the gang periods and speed factors that

minimize average power consumption while satisfying the end-to-end deadline constraint for

each mode. The solution can be described by following two matrices:


P 1
1 P 1

2 · · · P 1
k

...
...

. . .
...

Pm
1 Pm

2 · · · Pm
k

 and


S1
1 S1

2 · · · S1
k

...
...

. . .
...

Sm
1 Sm

2 · · · Sm
k

 , (3.2)

where P j
i and Sj

i represent gang i’s optimal period and speed factor at the j-th mode,

respectively. In other words, each row represents mode j with system configuration Πj that

guarantees the end-to-end latency shorter than dj in Eq. (2.21). For uniprocessor solution,

it is as straightforward as replacing P j
i and Sj

i with pji and sji from the above two matrices.

Finally, the solution should satisfy safe mode changes such that the system can freely go

back and forth between modes without violating the dynamic deadline requirements. For

that, a safe runtime mode change protocol is proposed in Section 3.5.

26



3.3 Period and Speed Factor Optimization

This section formulates and solves the offline multi-mode system optimization problem for

both uniprocessors and multicore processors (assuming gang formation is given and fixed).

We begin by finding the optimal configuration for a single mode for a uniprocessor without

considering safety constraints in the transient phase between the modes. Then, we extend

the optimization method such that it can go back and forth between the modes without

violating safety constraints (Section 3.3.1). Next, multicore formulation is introduced in a

similar way, followed by the optimization solver we used (Section 3.3.3). Finally, a realistic

condition of discrete CPU frequencies is discussed (Section 3.3.4).

3.3.1 Uniprocessor Formulation

This section explains how we can formulate a single-mode optimization for a uniprocessor as

a baseline for the multi-mode system optimization. As the objective function, the average

power in Eq. (2.16) is used, without the constants α and β, where π denotes two sets of

decision variables pis and sis with constrained domains as pi > 0 and smin ≤ si ≤ 1,

respectively.

Then, we have two explicit constraints: (i) schedulability constraint as already discussed

in Eq. (2.6) and (ii) deadline constraint, for which we need to devise an end-to-end delay

analysis model. We borrow a widely used model from [35], which expresses the worst-case

delay of a path δ as an accumulation of periods (pis) and worst-case response times (WCRTs)

(ris) of every task in δ, like the rightmost part in

Dδ(π) =
∑
i∈δ

2pi ≈
∑
i∈δ

(pi + ri), (3.3)
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where Dδ(π) denotes the approximated worst-case delay of a path δ assuming a system

configuration π. We approximate the original delay model to a linear form
∑

i∈δ 2pi as cal-

culating the exact ri involves complex non-convex operations. Then, the deadline constraint

d is considered for every path δ in P (i.e., the set of paths in G). Among the per-task delay

components 2pi, one pi is for the waiting time until the task reads the sensor data (waiting

delay), and the other is for processing the data (processing delay).

Then our single-mode formulation is given as follows:

minimize
π

P(π) =
n∑

i=1

sγ−1
i ei
pi

+ sγmin(1−
n∑

i=1

ei
pisi

) (3.4)

subject to U(π) =
n∑

i=1

ei
pisi
≤ 1 (3.5)

Dδ(π) =
∑
i∈δ

2pi ≤ d (∀δ ∈ P). (3.6)

For a multi-mode formulation, naively, the single-mode one can be repeatedly used to find

every row of the multi-mode solution matrices in Eq. (3.2). However, we cannot directly

use this approach for a multi-mode system since it does not guarantee a safe transition

between modes. Specifically, when old- and new-mode tasks coexist during a mode change,

schedulability violations can occur even if each mode is schedulable in isolation [27]. Thus, we

add a new constraint called per-task utilization invariability, meaning every task’s utilization

ui = ei/(pisi) is invariant across modes as

ei
p1i s

1
i

=
ei

p2i s
2
i

= · · · = ei
pmi s

m
i

= u∗
i (∀i = 1, 2, ..., n), (3.7)

where u∗
i denotes identical utilization for τi across modes. In that manner, even in the tran-
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sient interval, the system’s instantaneous utilization is maintained unchanged, which in turn

guarantees the system schedulability [3]. Now, we use u∗
i s as our decision variables, replacing

sji s, which can be decided later by sji = ei/(p
j
iu

∗
i ). Then our multi-mode optimization can

be formulated as follows:

minimize
π̂

P(π̂) =
m∑
j=1

n∑
i=1

eγi
(pji )

γ(u∗
i )

γ−1
+ sγmin(1−

n∑
i=1

u∗
i ) (3.8)

subject to U(π̂) =
n∑

i=1

u∗
i ≤ 1, (3.9)

Dj
δ(π̂) =

∑
i∈δ

2pji ≤ dj (∀j ∈ [1,m],∀δ ∈ P), (3.10)

where π̂ denotes the newly defined multi-mode system configuration with pji s and u∗
i s. The

objective function is the sum of average power in each mode, after eliminating the α and β

from Eq. (2.16) for the notational simplicity. The first constraint is the system schedulability

now expressed by u∗
i s. The second constraint is for the dynamic deadlines across m modes.

3.3.2 Multicore Formulation

Thanks to gang scheduling, transitioning from uniprocessor formulation to multicore one is

as straightforward as substituting variables ei, pi, and si with Ei(Si), Pi, and Si, respectively.

Our single-mode formulation for multicore processors is given as follows:

minimize
Π

P(Π) =
n∑

i=1

Sγ
i Ei(Si)

Pi

+ Sγ
min(1−

n∑
i=1

Ei(Si)

Pi

)

subject to U(Π) =
n∑

i=1

Ei(Si)

Pi

≤ 1

Dδ(Π) =
∑
i∈δ

2Pi ≤ d (∀δ ∈ P).

(3.11)
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Then, the utilization invariability, meaning every gang’s utilization (i.e., uj
i = Ei(S

j
i )/p

j
i ) is

invariant across modes as

Ei(S
1
i )

P 1
i

=
Ei(S

2
i )

P 2
i

= · · · = Ei(S
m
i )

Pm
i

= u∗
i (∀i = 1, 2, ..., k), (3.12)

where u∗
i denotes identical utilization for each gang wi across modes. In that manner, even in

the transient interval, the system’s instantaneous utilization is maintained unchanged, which

in turn guarantees the system schedulability [3]. Now, we use u∗
i s as our decision variable

replacing P j
i s with Ei(S

j
i )/u

∗
i . Then our multi-mode optimization can be formulated as

follows:

minimize
Π̂

P(Π̂) =
m∑
j=1

n∑
i=1

(Sj
i )

γu∗
i + Sγ

min(m−
m∑
j=1

n∑
i=1

u∗
i ) (3.13)

subject to U(Π̂) =
n∑

i=1

u∗
i ≤ 1, (3.14)

Dj
δ(Π̂) =

∑
i∈δ′

2Ei(S
j
i )

u∗
i

≤ dj (∀j ∈ [1,m], ∀δ′ ∈ P′), (3.15)

where Π̂ denotes the newly defined multi-mode system configuration with P j
i s and u∗

i s. The

objective function is the sum of average power in each mode, after eliminating the α and β

from Eq. (2.18) for the notational simplicity. The first constraint is the system schedulability

now expressed by u∗
i s. The second constraint is for the dynamic deadlines across m modes.

Note that the average power of a mode from multi-mode solution could be worse than the

one from single-mode solution. In order to achieve a mode’s optimal average power, each

gang should freely choose its period and speed factor. However, if we fix the utilization value

across modes, the period and speed factor are not independent anymore but constrained by

the relationship u∗
i = Ei(S

j
i )/p

j
i . This adverse effect of utilization invariability is further
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discussed in the experiment section.

3.3.3 Geometric Programming (GP)

Our multi-mode optimization problem can be efficiently solved by GP, which is a math-

ematical optimization method for solving specially formed optimization problems through

logarithmic transformations into convex ones. As a result, GP always finds the (true, glob-

ally) optimal solution when the problem is feasible [19]. To use GP, the objective func-

tion and inequality constraints should be constructed by the special form posynomial, as

in f(x) =
∑K

k=1 ckx
a1k
1 xa2k

2 · · ·xank
n , with decision variables xis, non-negative coefficients cks,

and real-valued exponents {a11, · · · , anK}. Our objective functions and constraints are in

posynomial forms except for the idle-time CPU power terms in the rightmost part of P(Π)

in Eq. (3.11) and P(Π̂) in Eq. (3.15) (for uniprocessors, P(π) in Eq. (3.3.1) and P(π̂) in

(3.8)).

However, the idle power terms can be removed without affecting optimality as long as ∃Si ̸=

Smin. The optimal solutions in such cases always have 100% system utilization without

any idle time. To prove it intuitively, assume the system utilization U < 100%, if we pick

a certain gang wi and decrease Si, thus increasing Ei, until U reaches 100%, the average

power of wi will decrease and the idle power term will disappear, eventually saving more

energy than the original configuration. However, when we cannot reduce processor speeds

(∀i : Si = Smin), the optimal case would have U < 100% as Pi increases. Such cases only

occur when the deadline is extremely long after all Sis are bounded by Smin. We are not

considering such extreme cases in this work.
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3.3.4 Extension to Discrete CPU Frequency Levels

Our optimization method yields speed factors in the continuous range between Smin and 1.

However, because most CPUs in practice support only a predefined set of discrete frequency

levels, we need to adapt the resulting speed factors to the discrete domain. One possible

approach is to emulate the exact speed factors by modulating between two neighboring

discrete frequency levels [55, 18] to obtain the near-optimal energy reduction similar to

the continuous frequency solution. However, using such intra-task DVFS entangles other

practical considerations such as extra time and energy overhead associated with excessive

frequency transitions [80] and possible transient faults [85, 33].

In light of this, we propose a more conservative but safer method that uses the closest

frequency level that is higher than the corresponding optimal speed factor. Then every

task’s actual utilization is less than or equal to the ideal utilization in accordance with the

utilization invariability constraint. Thus, even though the approximated system will consume

more energy than the continuous one, it safely ensures schedulability and end-to-end latency

constraints during mode changes.

3.4 Gang Formation Heuristic for Multicore Proces-

sors

Gang scheduling in real-time systems brings many benefits such as mitigating inter-core

interference, tighter WCET estimation, and increased system utilization so that the system

can accept more tasks given end-to-end deadlines. However, it entails another NP-hard

integer programming problem: the gang formation. It can be described as grouping tasks
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Figure 3.2: Gang formation problem space. A shorter end-to-end latency results in a lower
power consumption.

into multiple gangs while minimizing the end-to-end latency in Eq. (2.22). We employ the

state of the art gang scheduling [7] that enforces one-gang-at-a-time policy and restricts

co-scheduling inside a gang (i.e. the number of tasks in a gang does not exceed the number

of cores) for minimizing inter-core interference. Depending on how gangs are formed, they

may not fully utilize the multicore processor (e.g. the shorter task creates a core idle period

until the longer task finishes), which leads to an increased delay and failure to meet end-to-

end deadline. More importantly, in our dynamic deadline context, the minimum end-to-end

latency decided by a gang formation is closely related to power saving as the gap between

the delay and the deadline provides opportunities to slow down the CPU. Therefore, it is

important to create a gang formation that minimizes the makespan and a couple of heuristics

have been proposed [5, 6].

Given a DAG of n tasks, their WCETs, and homogeneous m cores, we want to group

tasks into an arbitrary number of gangs while minimizing the end-to-end latency defined in

Eq. (2.22). The reason for minimizing end-to-end latency here is that it is closely related

to minimizing power. In Fig. 3.2, we exhaustively searched gang formation space for an

example 5-task DAG. All possible gang formations are sorted by their minimum end-to-end
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latency and numbered sequentially over the x-axis. The average power consumption on the

right y-axis is calculated using the period optimization in the next section under the same

end-to-end deadline for all the gang formations. We discovered that the power consumption

increases monotonically as the minimum end-to-end latency increases. This is because the

bigger the gap between the minimum end-to-end latency and the deadline, the more room

for CPU to slow down, resulting in smaller power consumption.

Intuitively, to get better gang formation, it is desirable to pack gangs as dense as possible

to fully utilize m cores, while trying to avoid grouping dependent tasks to the same gang.

If tasks in dependency constraints are in the same gang, the gang has to be repeated to

propagate data to the consumer task which was not possible in the previous execution

because it is synchronized to start with the provider task by gang scheduling. This adds an

additional delay to the overall end-to-end latency.

The gang formation proves NP-hard integer programming problem[5] like bin packing. There-

fore, the authors from [6] proposed the Virtual Gang Heuristic (VGH). In VGH, a DAG

consists of tasks on m homogeneous cores and is partitioned into multiple gangs minimizing

the completion time of all the gangs. It introduces the notion of family to avoid grouping

dependent tasks. A family of tasks τi consists of all tasks that are connected with τi’s ances-

tor or descendant. VGH strongly restricts grouping tasks in a family relationship to avoid

the repetition of gang execution.

However, VGH does not fit well for our problem because it has a different objective. It

minimizes the total completion time of gangs which is equal to the sum of gang WCETs along

the paths. On the other hand, our objective is to minimize end-to-end latency considering

the worst data propagation pattern which is analyzed in Eq. (2.22). A simple 2-task example

is depicted in Fig. 3.3. In the example, tasks A and B are in a dependency constraint. For
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Figure 3.3: Gang formation example with different objectives (total completion time vs.
minimum end-to-end latency)

VGH, it makes sense to avoid packing A and B together in the same gang because it would

increase the total completion time. On the other hand, the gang periods tend to increase

significantly as we add more gangs because of the utilization bound in Eq. (2.13). Basically,

the utilization bound implies that the period should be large enough to have time for the

execution of other gangs. In this case, A’s period (34.1 ms) is significantly greater than its

WCET (20 ms) to give task B (10 ms) a chance to execute. Therefore, for the minimum

end-to-end latency which is based on gang periods, it is beneficial to pack A and B together

despite the dependency relationship.

Moreover, VGH does not consider WCET changes over processor speed, especially with the

speed-independent ratio ri defined in Eq. (2.11). Specifically, the gang WCET is defined as

the longest task’s WCET in the gang and if its ri is high the dominant task can be changed

to another one as depicted in Fig. 3.4. As the speed factor increases, task 1’s WCET shrinks

slower than task 2’s and task 1 becomes the dominant task in the gang. In worse cases,

the gap between the grouped tasks’ WCETs becomes big enough to significantly decrease

the multicore utilization, which can be deemed as the quality degradation of gang formation

over Si changes. This would not happen without ri as the tasks will scale at the same

ratio. At certain Si, the gang WCET might change significantly and the gang formation

obtained at Si = 1 may not perform well. To address this issue, we try to find the base speed
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Figure 3.4: An example gang WCET curve with ri = emem
i /ei. Solid lines represent the

dominant task at the time.

factor (Sbase) and obtain a gang formation from the scaled task WCETs that minimizes the

degradation of the gang formation quality over Si changes. For example, the gang formation

with Sbase = 0.5 might degrade less than the one with Sbase = 1.0 as the possible Si change

is smaller (0.5-smin vs. 1.0-smin).

As a result, VGH can be improved in three ways for our problem. (i) The strict family

concept should be alleviated as there are advantageous cases when tasks in dependency

constraints are in the same gang as we have seen in the previous example. (ii) An estimation

of gang periods must be taken into account as our objective is calculated based on periods,

not WCETs. (iii) The gang WCET changes over Si should be considered as the heuristic

solution may perform significantly worse at different Si.

We developed a greedy heuristic, Dynamic Deadline Gang Heuristic (DDGH), as shown in

Algorithm 1. Line 1 scales the task WCETs with the base speed factor (Sbase). Line

2 sorts tasks by its WCET in descending order. Sorting tasks helps to group tasks with

similar WCETs, trying to fully utilize all the cores during gang execution. Line 3 initializes

an empty gang formation. As a greedy approach, a single task is picked (Line 6) and then

assigned to a gang (Line 12) at a time. Lines 7-10 create a temporary gang formation

(new gangs) to add the current task to an existing gang for evaluation. The iteration with
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Algorithm 1 Dynamic Deadline Gang Heuristic (DDGH)

Require: Task WCETs(e), speed-independent ratio(r), base speed factor(Sbase), paths in
the DAG(P)

Ensure: Gang formation (gangs)
1: new wcet = scale wcet at sf(e, r, Sbase)
2: q = sort task by wcet(new wcet)
3: gangs = ()
4: while not q.empty() do
5: candidates = ()
6: task = q.pop()
7: for g ∈ {gangs+ ∅} do
8: new gangs = add gang member(gangs, g, task)
9: delay = calc delay proxy(new gang, e,P)
10: candidates.push(delay)
11: end for
12: best g = min(candidates)
13: gangs = add gang member(gangs, best g, task)
14: end while
15: return gangs

g = ∅ means creating a new gang with the current task. Finally, Line 13 decides the best

gang (best g) for the current task and updates the gang formation (gangs). The process is

repeated until the queue (q) is empty.

For evaluating temporary gang formations, calc delay proxy function in Algorithm 2 is used

to provide a proxy of end-to-end latency. It is a proxy because it is difficult to estimate the

exact end-to-end latency which is the optimization result in the next section. Instead, we

exploit the knowledge of optimization solution form to just estimate the relative end-to-end

latencies between different gang formations. Lines 2-3 calculate gang WCETs (E) for a

given gang formation. Lines 5-9 iterate over each path in the DAG and sum up our metric

in Line 8. The metric is the core part of the heuristic and consists of gang WCET and

the sum of gang WCETs. With both terms multiplied, it acts as a proxy for gang period

which is a basic component in end-to-end latency. The first term, gang WCET, contributes

to minimizing the individual gang’s WCET. The period is typically proportional to WCET,

37



Algorithm 2 Evaluate temporary gang formations

Require: Gang formation(gangs), task WCETs(e), paths in the DAG(P)
Ensure: Proxy of end-to-end latency
1: function calc delay proxy(gangs, e, P)
2: for gang ∈ gangs do
3: E(gang) = get gang wcet(gangs)
4: end for
5: max delay = 0
6: for δ ∈ P do
7: max delay = 0
8: for task ∈ δ do
9: delay+ = E(task to gang(task)) ∗ sum(E)
10: end for
11: if max delay < delay then
12: max delay = delay
13: end if
14: end for
15: return max delay
16: end function

so the smaller the gang WCET, the smaller the period. The second term, the sum of gang

WCETs, is another critical part to estimate the period. When a new gang is added, one of

the gang periods must be greater than the sum of gang WCETs as there should exist enough

time for other gangs to execute. This is implied in the utilization bound in Eq. (2.13)

(U =
∑

Ei/Pi < 1). It also increases other gang’s period as we have seen with the example

in Fig. 3.3, so the heuristic is discouraged to create a new gang by this term. Therefore,

DDGH does not strictly prohibit the grouping of tasks in precedence relationships. Instead,

it uses a proxy delay to assign tasks flexibly and discourages creating a new gang, so gangs

are packed as densely as possible.
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3.5 Safe Mode-change Protocol

For safe system reconfigurations with dynamic deadlines, the followings should be respected

even during mode changes:

• Periodicities. Every gang period before and after the mode change should be guar-

anteed, which can be satisfied by the utilization invariability constraint introduced in

Section 3.3.

• Deadlines. Unfortunately, however, the above periodicities do not guarantee dynamic

deadlines, which span across multiple gangs possibly with different modes during a

mode change.

Thus, this section focuses on developing a safe mode change protocol in terms of end-to-end

dynamic deadlines based on already guaranteed per-gang periodicity. Even though variables

from the multicore formulation are used in this section, the same protocol can be readily

applied to uniprocessors by replacing gang variables with task variables.

Assume the system is switching from an old mode to a new mode, represented by each mode’s

shortest deadlines, respectively, by

dold → dnew. (3.16)

When dold < dnew, it is termed as relaxing deadlines and in the opposite as shrinking dead-

lines. System configurations for each mode are denoted by Πold → Πnew, that is,

((P old
1 , S old

1 ), · · · , (P old
n , S old

n ))→ ((P new
1 , S new

1 ), · · · , (P new
n , S new

n )) (3.17)
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(a) As Late As Possible (ALAP)

(b) As Early As Possible (AEAP)

Figure 3.5: ALAP: tasks gradually change modes (white → blue) as the new data progress
along paths (curved red arrows) possibly at different speeds. AEAP: the new sensor data
arrival immediately triggers (straight red arrows) every task’s mode change.

in its expansion form. The system mode change is triggered by a sensor data arrival at time

t0 with its dynamic deadline falling above or below the old range. In terms of individual

gangs, their mode changes only happen at period boundaries. That is, when a gang period

has ended and the new one is about to start, the scheduler adjusts its internal structure to the

new mode’s period and speed factor for that gang. This is because, if we change the mode for

a gang when its period has not finished yet, the instantaneous utilization (Ei(Si)/Pi) for the

gang disturbs the overall schedulabilty (Eq. (2.13)), which defeats the purpose of utilization

invariability in our optimization constraints and may lead to a deadline violation. Then, we

consider the following mode change methods, as depicted in Fig. 3.5:

• ALAP (As Late As Possible) individually triggers per-gang mode changes after

the new data make progress to every incoming edge of it. The actual mode changes

will happen at the nearest period boundary after the trigger.

• AEAP (As Early As Possible) immediately triggers every task regardless of the
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new data’s progress. The mode change completes by t0+maxi(P
old

i ) in the worst case

when the longest period of Πold began right before t0.

We deal with the following two cases: (i) relaxing and (ii) shrinking deadlines with the above

methods, respectively.

(i) Relaxing deadline. In this case, we use ALAP such that the mode changes do

not adversely affect the already ongoing progress of old sensor data. Besides, we need to

ensure that the new sensor data do not violate dnew. Note that the new sensor data may

progress through tasks possibly with different modes, which happens due to different speeds

of different paths. For example, in Fig. 3.5(a), τ4 has two incoming edges, where the upper

path requests the mode change while the slower lower path still retains the old mode. Then

the upper path w1 → w2 → w4 → w5 can have a mixture of both modes while handling the

new sensor data. Thus, the worst-case delay for the new sensor data during ALAP mode

changes can be calculated as in the following:

Dnew(Πold → Πnew) =max
∀δ∈P′

(∑
i∈δ

2 ·max(P old
i , P new

i )

)
≤ max

∀δ∈P′

(∑
i∈δ

2P new
i

)
= dnew,

(3.18)

which is less than dnew since ∀i : P old
i ≤ P new

i that is true when relaxing deadlines. This

is because, when the gang utilization(u∗
i ) is fixed across modes, if Si decreases in Eq. (2.13),

Pi should increase to offset the change. Therefore, Pi increases monotonically to decrease

Sγ
i in Eq. (3.8), reducing the average power in the next longer deadline mode.

(ii) Shrinking deadlines. In this case, which basically makes the situation more challeng-

ing, we use AEAP to quickly finish mode changes, minimizing possible extra delays. Delays

for the old sensor data are naturally kept less than dold by the same rationale in Eq. (3.5)
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since ∀i : P old
i ≥ P new

i when shrinking deadlines. However, regarding the new sensor data,

it can suffer extra delays if any gang’s old period instance that began before the new sensor

data arrival persists long enough such that the new data’s progress is unexpectedly delayed

by that persisting old gang instance. Algorithm 3 calculates the worst-case delay considering

such negative effects for each path δ, which is an ordered set of gang indices in each path.

Among the calculated delays, we can find the longest. The algorithm gradually accumulates

delays by gangs in δ. Line 1 indicates that it is unavoidable for the new sensor data to be

waited by the old period at the first gang. Then we have two cases for the remaining gangs:

(i) its mode is already changed before the data progress arrives (Line 4) and (ii) an old

instance persists (Line 6). In the former, we simply accumulate the new delay component

2P new
i . In the latter, the persisting old (long) period P old

i hides away the accumulated

delay up to then, resetting it to P old
i + P new

i .

Algorithm 3 Finding the worst-case delay for AEAP

Require: {(pold1 , · · · , P old
n ), (P new

1 , · · · , P new
n ), δ}

Ensure: The worst-case delay of new sensor data for δ
1: D ← P old

δ[1] + P new
δ[1] ▷ δ[1] denotes its first element

2:

3: for i ∈ δ \ {δ[1]} do
4: if D + 2P new

i > P old
i + P new

i then
5: D ← D + 2P new

i

6: else
7: D ← P old

i + P new
i

8: end if
9: end for
10: return D

By the above analyses, we claim that when relaxing deadlines with ALAP, there is no end-

to-end deadline miss for both the already ongoing progress and new ones. When shrinking

deadlines with AEAP, the already ongoing progress rather benefits from it, whereas new

sensor data can suffer extra delays. However, we can analyze the worst-case extra delays,

which can be used when planning appropriate safety margins in design time. For example,
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instead of using direct mapping from velocities to modes, the system can change its mode a

little earlier at a lower velocity to offset the extra delays.

3.6 Evaluation

3.6.1 Experimental Setup

Table 3.1: Workload information at maximum speed (si = 1)

Task
Camera
Grabber

Lidar
Grabber

CAN SFM∗ Lane
Detection∗

Object
Detection∗

Loc.∗ EKF∗ Planner DASM

WCET(ms) 0.25 25.7 0.6 30.6 27.1 294.8 175.5 1.6 21.0 1.9
ri 0.5 0.5 0.5 0.15 0.45 0.29 0.20 4e-9 1e-15 1e-15
∗ from Chauffeur benchmark suite [64]. WCETs of unmarked applications are derived from [58]

Table 3.2: Gang formation of WATERS workloads on quad-core CPU using the heuristic
from [6]

Gang 1 2 3 4 5

Tasks
SFM,Lane Det.,
Obj Det., Loc.

Cam. Grabber,
Lidar Grabber, CAN

Planner DASM EKF

WCET at ∀Si = 1 294.8 25.7 21.0 1.9 1.6
ri at ∀Si = 1 0.29 0.5 1e-15 1e-15 4e-9

Workload. When we need an exemplar DAG, we use the one in Fig. 2.1 with ten tasks,

where their WCETs and the speed-independent ratio ris are listed in Table. 3.1 [58]. Unfor-

tunately, WATERS industrial challenge applications are IP protected, so we were not able

to run them and obtain ris. We borrowed available applications from Chauffeur autonomous

driving benchmark [64] and measured their WCETs and ris on Nvidia Jetson TX2 platform

(A57 cores). We did a frequency sweep to get ri and applied curve fitting. All the ris have

R-squared greater than 0.99 in their curve fitting. The WCETs of unmarked applications in

Tab. 3.1 are derived from actual measurements on the same Jetson platform from [58] and
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we made an educated guess about their ris.

DAG generation. We use GGen random graph generator [30] to generate multi-source and

-sink graphs in layer-by-layer method: 500 DAGs for each input size n=5, 10, 20 and edge

probability p=0.5, 0.25, 0.125. All the generated DAGs are non-isomorphic to each other

(i.e., structurally different). WCETs are generated with a uniform distribution and, for each

WCET, three sets of ris are generated from different ranges: low [0.0, 0.5], high [0.5, 1.0],

and mixed [0.0, 1.0].

Power Model. We empirically found the power parameters for Eq. (2.14), as α=842.04,

β=232.81, and γ=2.64, on the same hardware platform in [58].

Discrete frequency levels. We use 12 evenly spaced frequencies between 345 MHz and

2 GHz from the same hardware platform [58] for real-world driving data simulation.

Driving Scenarios. We use real-world driving scenarios from the comma.ai driving dataset [29],

where we picked ten 60-second driving logs with their velocity from 0 km/h to 114 km/h as

depicted in Fig. 3.15.

Dynamic Deadlines. Each DAG has its shortest and longest end-to-end latency on the

target platform when ∀Si = 1 and ∀Si = smin, respectively. For the fair comparison between

DAGs, we converted velocities into deadlines for each DAG using Eq. (3.1) by picking values

for λ when amax=2.5 ms-2 such that the shortest latency of the DAG becomes the shortest

deadline at the highest velocity (114 km/h) in our scenarios, whereas the longest latency of

the DAG which is bounded by smin = 0.17 becomes the longest deadline. Then, the number

of modes is chosen arbitrarily to 10, partitioning the range with equal length.

Optimization. For the GP solver, we use MATLAB CVX [44] convex programming pack-

age. On a laptop with a quad-core Intel Core i7@2.6 GHz CPU, it took 3.07, 7.97, and 23.11

seconds for {n=5,p=0.5}, {n=10,p=0.25}, and {n=20,p=0.125} taskset, respectively.

Simulation. We implemented a simulator supporting the EDF scheduling and our mode

change protocol, by which we can precisely estimate the exact task schedules, end-to-end

44



 0

 20

 40

 60

 80

100

N
o

rm
a

liz
e

d
 d

y
n

a
m

ic
 p

o
w

e
r 

[%
]

Dynamic deadlines for each mode [sec]

0.5  1  1.5  2  2.5  3

Baseline
Static 
Single mode
Multi mode (OURS)

Figure 3.6: Dynamic power optimization results

latencies, and energy consumption. Our simulator takes 0.1ms time step in each iteration

and in each step the EDF scheduler routine is invoked. Gangs are submitted to the sched-

uler queue at the start of the simulation and they resubmit themselves at the end of their

period. The EDF scheduler (1) decreases the current gang’s remaining WCET, (2) check if

the current gang’s WCET is equal to or below 0 and schedule a new task from the queue

if needed, (3) set the speed factor and period for the new task, and finally (4) maintain a

queue in the earliest first deadline order.

3.6.2 Uniprocessor Results

The goal of our uniprocessor evaluation is twofold: (i) illustrate the benefit of using multiple

frequency levels in dynamic deadline situation over conventional methods that utilize only

one or two frequencies (ii) evaluate the effectiveness of our mode change protocol. It is of no

use if it compromises safety. The following three methods are compared in the evaluation:

• Baseline: ∀i : si = 1;

• Static: optimized for the minimum deadline (617 ms);
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Figure 3.7: Simulation results with a real-world driving scenario

• Multi mode (OURS): method in Section 3.3.1.

Fig. 3.6 shows the dynamic power optimization results of each method. For Single mode,

we solved the problem in Section 3.3.1 repeatedly for each deadline. In the leftmost mode

with the shortest deadline, the three methods except the baseline method show an equal

result (58.9%). However, as the deadline increases, the dynamic power plunges to 1.0%

in the rightmost mode with the longest deadline. Another interesting observation is that

our multi-mode results do not reveal visible performance degradation compared with the

single-mode results, meaning that the per-task utilization invariability constraint does not

critically affect the optimization results. On top of that, there is a 75% reduction in overall

optimization time when using multi-mode formulation thanks to fewer decision variables.

Fig. 3.7 shows the simulation results with one of our driving scenarios. Only in this exper-

iment, we partition the deadline range into six equal length modes for better visualization.

As the deadline changes, as depicted by the green dashed line, mode changes are sporadically

triggered, depicted by the rising and falling edges of the blue line that roughly follows the

dynamic deadline. Note the small red staircase shapes at each falling edge, which depicts

the extra delays when shrinking deadlines analyzed by Algorithm 3. More specifically, their

height represents the extra delay, while their width represents the transient interval for each
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Figure 3.8: Energy consumption with varying driving scenarios (continuous frequency)
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Figure 3.9: Energy consumption with varying driving scenarios (discrete frequencies)

mode change. As shown in the figure, we do not have any deadline miss in this scenario even

after considering the extra mode change delays. Additionally, the bottom plot shows how

the normalized dynamic power varies (between 1.0% and 13.3%) depending on the mode

changes.

Fig. 3.8 shows the energy consumption, including static and dynamic power, in driving

scenarios using continuous frequency. Though Static achieves a significant energy reduction

of 32% from baseline, Multi mode reduces further by timely utilizing lower frequencies.

Scenarios #3, #4, and #6 show relatively low energy reductions since they maintain the

vehicle within a high-velocity range most of the time, making the system remain in the short

deadline modes. In the others, more than half of the total energy was saved. On average,

our method achieved 69.3% and 54.8% energy reductions compared with the baseline and

the static methods, respectively.
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Fig. 3.9 shows the energy consumption using discrete frequencies as discussed in Section 3.3.4.

A discrete frequency that is greater than or equal to the optimal one is assigned to each

task. Therefore, we expect the energy consumption will increase in both methods. Static

achieves 24% of energy reduction, which is smaller than the previous case. Multi mode still

shows a significant reduction from Static, however, the energy gap between them becomes

smaller. In scenarios #3, #4, and #6, the reduced gap is very notable. This is caused by

the nonlinearity in the power model in terms of speed factor. The difference between the

optimal and mapped discrete frequency yields bigger difference in power consumption in the

higher frequency range. On average, there was a 31.8% increase in energy consumption when

mapped to discrete frequencies. Our method achieved 59.3% and 46.4% energy reductions

on average compared with the baseline and the static methods, respectively.

Throughout the experiments with the industry-level applications and real-life driving sce-

narios, we could not find any deadline violation with our mode change protocols. However,

as we discussed in Section 3.5, the extra delays when shrinking deadlines are unavoidable

and they could be an issue depending on vehicle’s maximum acceleration and mode lengths.

In such cases, the violations can be avoided by selecting a shorter deadline mode consid-

ering possible mode change delays analyzed in Section 3.5 (i.e. a safety margin) in design

time analysis. We leave the choice of optimal margin for our future work since it requires a

thorough analysis.

3.6.3 Multicore Results

We first present gang formation results, by which we decide gang formations for each DAG

for the rest of the evaluation. For the period and speed factor optimization, we compare

power savings in individual modes with our multi-mode optimization method. Then, we
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vary the parameters, such as the number of tasks, the number of edges, and the speed-

independent ratio ri, to evaluate their effect on our power optimization. Our multi-mode

solution is then evaluated with real-world driving scenarios in a simulator with our safe mode

change protocol. Finally, the efficacy of our safe mode change protocol is evaluated with an

end-to-end deadline violation example. The following three methods are compared in the

evaluation:

• Baseline: ∀i : Si = 1;

• DPM (conventional): ∀i : Si = 1 while executing a gang, otherwise CPU is in sleep

state;

• Multi mode (OURS): The method in Subsection 3.3.2.

One of the traditional methods of DVFS-based power optimization in real-time systems is

to set a static deadline, assumed to be the shortest deadline that could possibly occur, and

find the critical speed to save dynamic power consumption. The power saving of such a

method largely depends on how far away the static deadline is from the minimum deadline

that the given system is able to handle and thus the result could be subjective. Therefore,

we set the minimum deadline as the static deadline, labeled as Baseline, representing the

maximum possible power saving from the traditional static deadline optimization methods.

DPM [74] is another conventional method that we are comparing to, which could reduce

both dynamic and static power consumption. In general, it is believed to have a better

power efficiency than DVFS in periodic real-time systems[10]. Although there are many

power-efficient scheduling algorithms for DPM, they do not consider safe mode change and

thus cannot be used directly in our setting. Therefore, we use our safety-guaranteed solution

and mode change for DPM experiments. Specifically, they have the same gang periods as

our multi-mode solution such that end-to-end deadlines are guaranteed. In each mode, a
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(a) Minimum end-to-end latency (b) Average mode dynamic power

(c) Gang WCET curve smoothness

Figure 3.10: Gang formation heuristic comparison and base speed factor variation experi-
ments

gang will be given the time for execution based on Eq. (2.10). However, the gang will be

executed at the full speed and the remaining slack is used for sleeping to cut off the static

power consumption. For simplicity, we do not consider the overhead of changing CPU sleep

states.

3.6.4 Gang Formation Heuristics Evaluation

In Fig. 3.10a, we evaluate three gang formation heuristics: random, VGH, and our DDGH

with 500 DAGs for each taskset (n=5, 10, 20) and mixed values of ris. The results are

normalized to random formation results for each DAG and then averaged. The random

method randomly picks a task and assigns it to a gang, including both existing and new
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gangs, with an equal probability. VGH is the current state-of-the-art method but it aims

to minimize the total completion time, exhibiting slight improvement for end-to-end latency

compared to the random formation. It is worse than random when a DAG is small and simple

as in n=5 taskset. When the length of paths in a DAG is not too long, it is advantageous to

pack dependent tasks together as we have seen in the example (Fig. 3.3), which is not possible

with VGH because of the family policy. However, as the paths get longer as the number of

tasks increases in n=10 taskset, VGH’s family policy takes a positive effect and performs

better than the random method. With n=20 taskset, even though the gang formation

problem gets significantly difficult due to combinatorial explosion, our DDGH still performs

better than VGH because of its flexibility in grouping dependent tasks and better end-to-end

latency estimation. Overall, DDGH performs 32% better on average compared to VGH in

all tasksets.

Next, we evaluated the effect of the base speed factor (Sbase) in Algorithm 2. In Fig. 3.10b,

we sampled four values of Sbase from 0.25 to 1.0 to see the trend. For each Sbase, we apply

multi-mode optimization to the gang formation to obtain power consumption in each mode.

The number of modes was set to 10 each of which has a corresponding end-to-end deadline

for which all the Sbase gang formations were optimized equally. Since it requires a holistic

evaluation across modes, the average mode power consumption is used for evaluation. Our

initial hypothesis was that the sweet spot would exist around Sbase = 0.5 so that the gang

WCET curve change is minimized towards both ends of the mode range: the shortest and

the longest modes where Si changes are maximum. However, we discovered that the lower

Sbase is, the less degradation it gets by Si changes, resulting in a smaller average mode power.

The reason is that, when task WCETs are scaled to a lower Sbase value, DDGH identifies

the tasks whose WCETs are significantly scaled up and tends to group them together. In

this way, even if there is a change in Si, the overtaking of a dominant task happens less
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frequently and the quality of gang formation is maintained stable over Si changes. We

measured the smoothness of gang WCET curve in Sbase solutions for each taskset. The

smoothness is defined as the ecomp differences between the two tasks when dominant task

switching happens as ecomp is the only component affected by Si. The larger the difference

is, the greater the impact on gang formation quality and the resulting end-to-end latency,

so a smaller value is desired for smoothness. For n=5 taskset, because the DAGs are simple,

gang WCET changes rarely occur so the smoothness did not change much and our Sbase

method did not have a major impact. However, for larger tasksets, smoothness declines

steeply, exhibiting a similar trend with the average mode power consumption. As a result,

for n=10 and n=20 with Sbase = 0.25, the power consumption is reduced by 21.8% and

36.1%, respectively, compared to Sbase = 1.0 gang formation. Following this trend, Sbase is

set to Smin for the rest of the experiments that involve DDGH.

3.6.5 Multi-mode Average Power Optimization

Fig. 3.11a shows normalized average power in each mode, averaged across 500 randomly

generated 10-task DAGs with mixed values of ris. The modes are numbered in order from the

shortest to the longest deadline, equally partitioning the range from minimum to maximum

end-to-end latency of each DAG. For the comparison between single-mode and multi-mode

optimization, the only difference is the utilization invariability constraint. However, as it

can be seen in the figure that the two curves are almost perfectly overlapped, showing its

effect on power consumption is negligible. Even if the freedom of gang utilization variable

is limited in multi-mode optimization, the other decision variable Pi is flexibly adjusted to

lower Si as much as possible, still reaching the near-optimal power consumption. In the

first mode with the shortest deadline, both DPM and our multi-mode approach show the

maximum power consumption as there is no slack for slowing down nor shutting off the CPU
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(a) Total power consumption

(b) Dynamic and static power consumption

Figure 3.11: Power optimization results including both dynamic and static power. Mode 1
has the shortest deadline

cores. As the deadline gets longer, the slacks also become longer. To exploit them, DPM

inactivates the CPU cores to save static power as can be seen in Fig. 3.11b. Since the ratio

of execution burst at full speed to the size of slack gets smaller, the average dynamic power

of DPM also decreases but not as fast as our multi-mode method. Even though the CPU

cores are always on consuming static power, the dynamic power reduction is much greater

than DPM resulting in overall smaller average power of 22.4% against the maximum power

consumption compared to 30.8% of DPM in the longest deadline mode.
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(a) Gang period (b) Gang WCET

(c) Gang speed factor (d) Gang utilization

Figure 3.12: Gang parameters in each mode: gang period, WCET, speed factor, and utiliza-
tion

(a) Varying number of edges (b) Varying number of tasks

Figure 3.13: Power optimization results with varying number of tasks and edges. Mixed
values of ris are used. The dashed lines are DPM counterparts
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3.6.6 Gang Parameter Details in Each Mode

Fig. 3.12 depicts the exemplar DAG’s gang parameters in each mode after applying our multi-

mode optimization. Only the first and the last mode are marked for readability. Basically,

each of these parameters tends to scale linearly from the shortest mode. The gang period

(Fig. 3.12a) and WCET (Fig. 3.12b) are positively correlated as it can be seen starting from

the bottom of the figures that they increase similarly as the mode goes higher. Note that

for gangs 2 and 3, their WCETs are similar but gang 3 is more sensitive to speed factor due

to its low speed-independent ratio ri. Eventually, in the longest deadline mode, gang 3 has

a longer WCET and period than gang 2. For speed factors (Fig. 3.12c), all the gangs try

to maintain a similar value. This is because the exponent(γ) of the speed factor in power

Equation (2.18) is typically greater than 2, so the power is more sensitive to an increase in

speed factor than a decrease. Therefore, if all the WCETs scale at the same rate with Si,

i.e., all ris are the same across tasks, the solver cannot favor a specific Si which may lead

to an increase in another gang’s Si and worse overall power saving. In result, it tries to find

a uniform value for all Sis. In Fig. 3.12c, however, the speed factors of gangs 1 and 2 are

lower than others. Given utilization and period, these gangs with higher ri can afford lower

Si due to the low sensitivity of WCET to Si. Finally, the gang utilization (Fig. 3.12d) is

maintained the same across modes in the multi-mode solution. Note that even though the

optimal gang utilization from single-mode solutions depicted in dashed lines does not deviate

too far from the multi-mode solution, they could possibly violate the utilization bound during

mode change. However, the effect of the deviation on power saving is negligible as can be

seen in Fig. 3.11.
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Figure 3.14: Power optimization results with varying speed-independent ratio ris. The
dashed lines are DPM counterparts

3.6.7 Effect of the number of Edges and Tasks

When generating random DAGs, we tried to have a similar shape to the exemplar DAG

meaning that the ratio of the number of edges to the number of nodes should be similar.

This can be controlled by the edge probability parameter provided by GGen which resulted

in different values for each taskset (n=5, 10, 20) as specified in Section 3.6.1. In Fig. 3.13a,

we first fix the number of tasks and only vary the edge parameter to see the effect on our

multi-mode optimization compared to the DPM method in dashed lines. Each taskset’s

result is averaged across 100 randomly generated DAGs with mixed values of ris. As can be

seen in the figure, the number of edges does not affect the amount of power saving in our

multi-mode approach meaning that it is not an important parameter of our optimization.

Likewise, in Fig. 3.13b, we vary the number of tasks with selected edge probabilities and they

result in the same power saving as in Fig. 3.13a. In both experiments above, our multi-mode

optimization achieves strictly better power saving than the DPM method.
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Figure 3.15: Real-world driving scenarios from comma.ai dataset

3.6.8 Effect of Speed-independent Ratio ri

So far, we have been using mixed values of speed-independent ratio ris in our experiments.

This experiment investigates the effect of ris on our multi-mode optimization by comparing

four different sets of ris. In addition to low, high, and mixed set specified in Section 3.6.1,

we added the ideal set where all ris are set to zero. In Fig. 3.14, the DPM counterparts

in dashed lines vary significantly with ris while our multi-mode method shows stable power

saving result. The power consumption of DPM increases as ri gets higher because when ri

is high the WCET does not scale well, resulting in longer execution time hence more static

power consumption. On the other hand, our multi-mode method can flexibly adjust the

speed of the processor to save dynamic power regardless of the ris. It is interesting to note

that DPM outperforms our multi-mode optimization in long deadline modes with the ideal

ri set. In reality, however, it is unrealistic to have the ideal set of ris. The exemplar DAG’s

ris are close to the low ri set in the figure which could perform equal to or better than DPM

in every mode.
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Figure 3.16: Energy consumption with various driving scenarios

3.6.9 Energy Optimization with Real-world Driving Scenarios

Fig. 3.16 shows the energy consumption, including static and dynamic power, in driving

scenarios using continuous and discrete frequencies. The exemplar DAG with its ris and

our multi-mode optimization were used in this experiment. For each driving scenario, the

first three bars are the energy consumption of DPM and multi-mode methods using VGH

while the latter three bars are using our DDGH. We start our analysis with VGH solutions

first and then discuss DDGH ones later. With continuous frequency, though DPM VGH

achieves a significant energy reduction of 40.6% on average from baseline, the multi-mode

VGH reduces further by timely utilizing lower frequencies. For discrete frequencies, we

use the frequency that is greater than or equal to the optimal one assigned to each gang

as discussed in Section 3.3.4. Therefore, we expect the energy consumption will increase

slightly in our multi-mode method while the DPM method is not affected because it uses

only the maximum frequency. As a result, the energy consumption is increased by 6.2% on

average for the multi-mode solution with discrete frequencies but it still shows a significant

reduction of 20.4% from DPM VGH. Scenarios #3, #4, and #6 show relatively low energy

reductions since they maintain the vehicle within a high-velocity range most of the time,

making the system remain in the short deadline modes. On average, our multi-mode VGH
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method achieved 52.9% and 30.7% energy reductions compared with the baseline and the

DPM VGH method, respectively. In the others, more than half of the total energy was saved.

On top of that, our DDGH can minimize energy consumption further by providing shorter

end-to-end latency gang formation for both DPM and multi-mode optimization. The shorter

end-to-end latency means there is more slack from the end-to-end deadline, and thus a

lower CPU frequency can be used in case of multi-mode optimization, or for the longer

period the core is turned off for the DPM method. As a result, DDGH enables 27.8%

and 25.5% improvement from VGH solutions for the DPM and the multi-mode method,

respectively. For high-velocity scenarios #3, #4, and #6, the improvement by DDGH is

significant because it enables the lower CPU frequencies for the same deadline. For other

scenarios, the improvement is relatively small because they are already exploiting low CPU

frequencies and the power consumption difference between these modes is small as depicted

in Fig. 3.11a. For discrete frequencies, the energy consumption is increased by 0.9% on

average. However, we noticed that for scenario #4, the energy consumption is actually

decreased from its continuous frequency counterpart. The high-velocity scenario #4 has

small changes in velocity and the continuous solution utilizes total of two modes for the

entire 60 seconds. With discrete frequencies, slightly higher frequencies are mapped which

in result adds one more available mode whose deadline falls into scenario #4’s deadline range.

This is an exceptional case related to the mode granularity and if we increase the number of

modes the discrete frequency solution will consume more energy as expected. On average,

our method achieves 54.9% and 30.3% total energy reductions compared with the baseline

and the traditional optimization with the current state-of-the-art gang formation heuristic

(DPM VGH), respectively.
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3.6.10 Safe Mode Change Evaluation

In Section 3.5, we analyzed that the end-to-end deadline violation could only occur when the

deadline gets shorter in shrinking deadline situations. The old instances in longer periods

can cause extra delays in response time and we provided an algorithm to predict the worst-

case delay. To evaluate our algorithm and mode change safety, because we couldn’t find any

violation throughout the driving scenario experiments, we generated an artificial deadline

graph with a sharp slope as in Fig. 3.17 in addition to worst-case EDF scheduling. It is

possible to happen in the real driving scenario but it is not included in the dataset we used.

The artificial driving scenario is basically a strong acceleration for continuous 10 seconds

with the worst data propagation patterns. The same exemplar DAG and its multi-mode

solution were used for this experiment. As the deadline changes, as depicted by the blue

line, mode changes are sporadically triggered, depicted by the rising and falling edges of the

orange line that roughly follows the dynamic deadline. Note the small red staircase shapes

at each falling edge, which depicts the extra delays when shrinking deadlines analyzed by

Algorithm 3. More specifically, their height represents the extra delay, while their width

represents the transient interval for each mode change. Not only the mode deadline curve

(orange) should not go above the dynamic deadline (blue), but also the extra delay curve

should not (red staircase). In Fig. 3.17a, an end-to-end violation occurred at the end of the

staircase at t = 52.1 marked with a circle. In Fig. 3.17b, we shifted the mode deadline curve

to the left by applying a small safety margin which triggers mode change a little earlier such

that the red staircase shape is not overlapped with the deadline curve. As a result, the

end-to-end deadline violation was avoided.
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(a) (b)

Figure 3.17: An example of end-to-end deadline violation with AEAP method

3.7 Summary

We presented EASYR: Energy-Efficient Adaptive System Reconfiguration for Dynamic Dead-

lines in Autonomous Driving on Multicore Processors. Our work is motivated by emerging

autonomous driving applications with time-varying dynamic deadlines, where the comput-

ing system’s excessive energy consumption is a major concern. Unlike traditional energy

optimization methods assuming rigid static deadlines, our EASYR approach utilizes the

dynamic slack obtained by adaptively relaxing deadlines considering the vehicle’s physical

state. Towards that end, EASYR’s GP-based optimization method proactively exploits the

dynamic deadlines to find energy-efficient multi-mode system configurations. To enable our

framework on multicore processors, we use RT-Gang scheduling to eliminate the challenges

introduced by multicore processors: predictability and schedulability which are important

in the context of real-time systems. Our experimental results show that our gang formation

heuristic performs 32% better on average than the state-of-the-art heuristic. Our multi-

mode optimization reduces the average total energy consumption by up to 54.9% in various

real-world driving scenarios compared with the maximum energy consumption configura-

tion and 30.3% compared with the conventional method using dynamic power management

(DPM). Moreover, our extensive simulation experienced no deadline miss due to our safe
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mode change protocol and delay analysis method. To the best of our knowledge, our work

is one of the first attempts to optimize the energy consumption in multicore systems for

autonomous driving, explicitly focusing on dynamic deadlines.

This study’s contributions can be summarized as follows:

• We developed a greedy heuristic to obtain gang formations which could lead to better

energy savings.

• We formulate an optimization problem for energy-efficient multicore computing sys-

tems for autonomous driving with time-varying dynamic deadlines and provide a GP-

based optimal solution.

• We provide a safe mode change protocol that guarantees analyzable (if any) overheads,

which can be safely manipulated in the design time.

• Our experiments use a realistic autonomous driving taskset from industry and actual

measurements from the target computing system in addition to randomly generated

tasksets for extensive analysis for comparison with conventional real-time energy opti-

mization methods.

Based on the theoretical foundation presented with EASYR, in the future, we plan to extend

EASYR’s system model considering heterogeneous CPU clusters and other accelerators such

as GPUs. Also, instead of just velocity, we plan to consider other factors that can dynamically

affect end-to-end deadlines such as adaptive redundant execution for fault tolerance. Other

future extensions would be to jointly support both real-time and non-real-time tasks, in

addition to supporting other popular schedulers such as the rate-monotonic fixed-priority

scheduler with a different schedulability test and a utilization bound.
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Chapter 4

Safe Adaptive System Reconfiguration

for Resilient Timing Safety

4.1 Motivation and Challenges

Autonomous driving is anticipated to deliver a promising green future characterized by low

fatalities and enhanced traffic flow. Electric vehicles (EVs) have emerged as a fundamental

platform for autonomous driving, and are expected to have longer lifespans due to the absence

of failure-prone mechanical combustion engines and transmissions. Indeed, a US Bureau of

Transportation Statistics report [20] cites an increase in the average lifespan of US vehicles

from 8.4 years in 1995 to 12.2 years in 2022, with this vehicle longevity trend expected to

grow, given the rapid growth in EV sales. As EV lifespans increase, and with scaling of

circuit technology, the electronic components in these vehicles become more susceptible to

various permanent faults and aging effects, posing safety risks regardless of the quality of

initial design. For example, Pfail that affects SRAM cells is increased to 10−4 at 12nm from
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10−13 at 45nm [66]. Aged NVMe SSDs in Alibaba datacenter are experiencing fail-stop and

fail-slow failures [62].

Accordingly, the Worst-case Execution Time (WCET) of safety-critical tasks may be affected

during vehicle operation, which in turn may compromise overall vehicle safety. Classical

approaches estimate WCET at design time, and build stringent timing guarantees via design-

time schedulability analysis, which are difficult to modify after the product is released,

particularly in the face of run-time faults that affect WCET. Once the system utilization

exceeds the upper bound by faults, i.e., overloaded, tasks begin to miss their deadlines, and

this situation tends to only deteriorate over time due to the domino effect. To avoid such

scheduling failures, traditional recovery methods often involve the use of safety margins or

the deprioritization of less critical tasks.

Even if an appropriate recovery measure was triggered, there is no assurance that the WCET

will remain unchanged, especially in cases of permanent faults. A highly optimized real-time

system design implies a tight margin in system utilization, rendering the system vulnerable

to such faults. Indeed, permanent faults have the potential to invalidate initial rigorous

design effort of these long-life EVs. To address this issue, a system reconfiguration approach

similar to graceful degradation could be a viable solution.

A run-time system reconfiguration entails the transition of operation modes at run-time.

For example, in mixed-criticality system [77], LO- and HI-criticality modes are predefined

during design phase, switching back and forth as needed. In the work of Yi et al. [84], the

system can adapt to dynamically changing deadlines by also making use of predefined modes.

While these predefined modes can be as fine-grained as designers intend to, they may not

encompass all possible scenarios as the design space scales.

We present FRTS, a fault-tolerant Framework for Resilient Timing Safety that enables a
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Figure 4.1: Overview of FRTS framework

proactive fault detection and a transition back to a safe, optimized system configuration. The

objective of FRTS is to increase the survivability of the system, recognizing that no system

is immune to faults, and there is no perfect fault-tolerance technique with zero latency and

complete coverage. FRTS itself does not incorporate a fault recovery technique, but it can

be employed in conjunction with other fault recovery techniques. Rather than focusing on

specific type of faults, however, FRTS focuses on finding new safe yet optimized scheduling

parameters following the persisting or recovered faults.

The rest of this chapter is organized as follows. The next section presents a brief overview

of the framework, and Section 4.3 describes our proactive BoostIID approach for fault-

agnostic detection of WCET changes. Section 4.4 describes identifying new safe, energy

efficient configuration. The overhead of framework is analyzed in Section 4.5 followed by

experimental results in Section 4.6

4.2 FRTS Overview

FRTS consists of four states: (i) detection of change in WCET, (ii) transitioning to emer-

gency mode, (iii) seeking a new safe, optimized state, and (iv) system reconfiguration.

Fig. 4.1 depicts the process. Initially, a system operates within a designated safe region,

which is predetermined during the design phase. When a permanent fault occurs, the safe
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region shrinks, rendering the current operating point unsafe. In response, the system enters

an emergency mode, transitioning to a new operating point that potentially falls within a

new safe region since the impact of fault is unknown. While in emergency mode, the system

identifies the impact of fault in terms of pWCET (probabilistic WCET) by collecting execu-

tion time samples, and subsequently determines an optimized operating point. Finally, the

system triggers a system reconfiguration to the new operating point.

Along this process, FRTS tasks must be running in addition to, and concurrently with

the original workloads. The detection employs multiple i.i.d tests, which also serve as a

prerequisite for finding a new operating point. Then, when a sufficient number of samples

are amassed, parameter estimation of the statistical distribution is conducted for the tasks

affected by fault. Once the parameters are verified through a Goodness-of-Fit (GoF) test,

system scheduling parameters are optimized using the new WCETs obtained. These tasks

operate in the background with lower frequency, yet they remain an integral part of the

design process to ensure timely reconfiguration.

4.3 BoostIID: Proactive Fault-agnostic Detection of

Change in WCET

In the detection phase of FRTS, we view faults in the system as statistical distribution

changes of execution times in a time series. Fig. 4.2 illustrates a motivational example that

lists execution time measurements (samples) over time. A fault occurred at 500th sample,

resulting in a slight change in both the distribution and pWCET estimation. However,

changes in distribution often result in subtle variations in individual data points, making it

challenging to distinguish. With conventional monitoring approaches, the detection would
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Figure 4.2: Example fault detection scenario

occur at the 858th sample after the original WCET has been violated. Our objective is to

proactively detect potential violations by monitoring execution times and sensing statistical

distribution change. This allows time for triggering recovery procedures. Furthermore, using

less pessimistic WCETs without incorporating fault impacts would lead to increased system

utilization and energy efficiency.

We discovered that i.i.d tests perform reasonably well for this problem. Our WCET detector

periodically performs i.i.d tests on the dataset of execution times, and promptly detects

changes as soon as a sufficient number of affected samples due to faults are added to the

dataset.

4.3.1 Independent and identically distributed (i.i.d) tests

The i.i.d tests are commonly used to verify whether the samples originate from the same dis-

tribution or not. They serve as a prerequisite for MBPTA (Measurement-based Probabilistic

Timing Analysis) , ensuring the dataset’s integrity. Additionally, most i.i.d tests run very

efficiently, making them suitable for online monitoring. In this dissertation, i.i.d tests will

be applied on a dataset with more than one distribution. Depending on the ratio of samples

from one distribution to another, different characteristics may emerge in the dataset, leading

to the utilization of various i.i.d tests. In this study, we emlpoyed three exemplar i.i.d tests:
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• Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests if a time series is stationary around

a unit root

• Rescaled Range (RS) tests for the presence of long-term correlations or trends in a time

series

• Ljung-box tests for autocorrelation at various lags
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Figure 4.3: Example detection accuracy and latency using KPSS test

4.3.2 Detection latency & Safety margin

The proposed fault-agnostic WCET detector considers a scenario where permanent faults

occur, leading to an impact on the GEV distribution of tasks. Prior to the fault occurrence,

the detector maintains a history of execution time samples. Then, samples from the modified

GEV distribution will be added to the dataset. Fig. 4.3 displays the example detection result

using KPSS i.i.d test, where each data point is associated with a single GEV distribution,

randomly modified from the original one shown in Table 4.1. For each data point, 500

samples are consistently retained in a first-in-first-out manner to serve as input for the

KPSS test. The x-axis displays the increase in pWCET due to the faults, while the y-axis

represents the number of new samples from the modified distribution added to the dataset

until the KPSS test fails. Cases where the pWCET becomes shorter are considered harmless
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and excluded from the analysis. Notably, when pWCET change is small, detecting the

distribution change becomes challenging, necessitating a larger number of samples. Then,

the detection latency can be defined as the number of new samples required to detect the

statistical distribution change. The latency limit for each task is a design parameter; a

detection is deemed unsuccessful if the detection latency exceeds the limit. In this example,

the latency limit is set equal to the end-to-end deadline of the system. Due to the varying

task periods, the latency limit for each task can be expressed as the number of samples

during the limit, as depicted in Fig. 4.3 (dashed horizontal line). Then, the safety margin

point is sought, beyond which the number of required samples remains below the latency

limit as depicted in Fig. 4.3 (solid vertical line). The safety margin is added to the fault-free

pWCET, effectively masking the small changes in pWCET which are difficult to detect.

Table 4.1: GEV parameter and pWCET estimation based on measurements

Task EKF Planner Loc. Lane D. Obj. D. SFM
Impl. EKF H. A* FLOAM LaneNet Darknet SFM
dist.1 W W F F W W
shape -0.14 -0.02 0.03 0.03 -0.07 -0.13
scale 0.07 0.72 0.82 1.11 1.06 6.01
loc. 2.36 22.83 86.40 18.64 27.88 6.58

WCET2 2.74 28.91 94.91 27.03 34.94 39.41
1GEV distributions. W: Werber, F: Frechet 2unit: msec

Tasks exhibit varying sensitivity to KPSS test depending on their GEV parameters. Among

the tasks, EKF demonstrates a strong fit with the KPSS test, showcasing the safety margin

of 15.64%. Other tasks shows poor detection accuracy, with the safety margin hovering

around 100%. Particularly, the KPSS test struggles a lot with SFM with the safety margin

of 190.86%. Among GEV parameters in Table 4.1, SFM has the largest scale parameter.

Notably, other two poor performing tasks, LaneNet and Darknet, also have relatively high

scale values.
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4.3.3 Boosting multiple i.i.d tests
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Figure 4.4: Characterization of i.i.d tests with GEV parameter sensitivity using Darknet

As can be seen, KPSS performs well for certain tasks and poorly for others. We also explored

two other i.i.d tests: RS, and Ljung-Box. Fig. 4.4 characterizes each i.i.d test by system-

atically altering GEV parameters. The results also display varying sensitivity for different

tasks, however, we only show the Darknet result for brevity. KPSS shows a low senesitiv-

ity to small changes in the shape and scale parameters. On the contrary, it detects small

changes in location (mean) as it is known for verifying the stationarity of a time series. While

both RS and Ljung-Box perform relatively well on shape and scale, their curves continuously

fluctuate, competing for the best method. In addition, their curves often reach zero, which

indicates false negative cases. Although it is uncommon for only one GEV parameter to

change, this still raises concerns.

As a result, we combine i.i.d tests with a boosting algorithm [26], expecting a synergy among

varying GEV parameter sensitivity. For training, similar to the experiment in Fig. 4.3, GEV

parameters are randomly modified and the results of all the i.i.d tests for the same dataset

are fed into the boosting algorithm as input. To minimize the training bias, half of the input

consists of datasets with samples from a single distribution. The resulting classifier from

the boosting is expected to lower the detection latency and safety margin. Furthermore, to

reduce false negative and false positive cases as in Fig. 4.4, we included the previous n i.i.d

test results as part of the boosting input.
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4.4 A New Safe Energy-Efficient Configuration

Upon identifying a potential timing violation, the system enters the emergency mode, aiming

to maximize system utilization to serve as a buffer against the uncertain effects of the fault. In

DVFS enabled systems, the emergency mode could be simply maximizing the CPU frequency

that was previously lowered for energy optimization. During emergency mode, if a timing

violation occurs, FRTS cannot proceed further and a fallback maneuver must be initiated.

Otherwise, if the effects of faults can be mitigated by the maximum CPU frequency, FRTS

seeks a new set of scheduling parameters that is both safe and energy efficient, ultimately

triggering a system reconfiguration.

4.4.1 Identifying new pWCETs affected by faults

A pWCET for a task is derived by extracting a point with a specific probability from a CDF

of a GEV distribution. In that way, the probability of the task execution time exceeding

the pWCET is regulated. The typical pWCET estimation process involves (i) collecting

execution time samples, (ii) performing i.i.d tests to assess the integrity of samples, (iii)

estimating GEV parameters, and (iv) executing GoF test to verify the GEV estimation.

If the i.i.d tests fail, the subsequent steps become invalid. As a part of BoostIID, the i.i.d

tests are invoked periodically. When triggered by BoostIID’s detection, the sample collection

process is initiated and continues until a certain number of samples are accumulated. The

necessary number of samples is determined by either the minimum sample requirement for

the i.i.d test or that for the GoF test. In this study, we will use the minimum sample size of

2,500 for the MAD GoF test. The GEV paramter estimation and the GoF test are executed

during the emergency mode; however, ensuring schedulability at design time is crucial to

identify the maximum fault tolerance, which will be discussed in Section 4.5.
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4.4.2 Redundant execution for acceleration of sampling

If the impact of faults can be mitigated by the maximum CPU frequency during the emer-

gency mode, then there will be idle periods in the system that can be utilized. However,

this slack has not been identified yet so it cannot be allocated to safety-critical tasks. In-

stead, performing redundant task execution during the slack time can effectively reduce the

duration of emergency mode, leading to quicker sampling and preventing excessive energy

consumption due to maximum CPU frequency. To prioritize the safety-critical tasks within

an EDF scheduler, the redundant tasks could be assigned very large deadlines, making them

susceptible to preemption by tasks with imminent deadline. Then, a challenge arises in

determining which task should be selected for redundant execution during the slack period.

Even without the redundant execution policy, as the system operates, sampling will natu-

rally occur, but at different rates for different tasks due to variations in task periods and

WCETs. An ineffective task selection policy would imbalance the sampling rate and may

incur an oversampling of certain tasks. An optimal redundant task execution policy would

invoke the precise number of instances for each task, thereby preventing oversampling.

To tackle this challenge, we first formulate an optimization problem as follows:

minimize
xi

t =
∑
i

xiei +
t

pi
ei (4.1)

subject to yi(t) = k − t

pi
− xi ≤ 0, yi(0) = k, ∀i, (4.2)

where t represents the time to acquire at least k samples for each task, xi is the decision

variable that represents the number of redundant instances for task i, and yi(t0) is the number

of remaining samples at time t0. ei and pi are the WCET and period of task i, respectively.

Given time t, yi calculates the number of remaining samples by subtracting (i) the number
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of instances by the natural execution rate (t/pi), and (ii) xi from the total minimum required

samples (k). In summary, the optimization problem finds the values of xis that minimize t

such that y(t) ≤ 0.

Nonetheless, the formulation encounters several challenges. The optimization solvers are

often not computationally scalable, which can become problematic when dealing with a

growing number of variables. More seriously, the assumption of WCET ei tends to be overly

pessimistic with the actual execution time distribution, resulting in a conservative value of

yi and an increased value for t. Therefore, inspired by the formulation, we devise a heuristic

to mimic the optimal behavior. Algorithm 4 provides a pseudo code for an EDF scheduling

Algorithm 4 Pseudo code - EDF scheduling with FRTS redundant execution

Require: EDF scheduler (edf), current time (t), safety-critical tasks (sched tasks), redun-
dant task set (red task), max. deadline (MAX DL), min. required samples (k)

Ensure: Next task to run (next task)
1: for task ∈ sched tasks do
2: if task.deadline < t then
3: task.start new job()
4: task.set deadline(t+ task.p)
5: edf.submit(task)
6: end if
7: end for
8: for task ∈ red tasks do
9: if task.finished() == True and task.y < k then
10: task.start new job()
11: task.set deadline(MAX DL− task.p ∗ task.y)
12: edf.submit(task)
13: end if
14: end for
15: next task = edf.schedule()
16: return next task

approach that incorporates a redundant execution policy. For lines 1-7, safety-critical tasks

are submitted to the EDF scheduler if their period has ended. In line 4, a deadline is set

with respect to the task period and the current time t. Redundant tasks (red tasks) are
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managed separately in lines 8-14. The difference from the case with safety-critical tasks is

if condition in line 9. For red tasks, the algorithm checks if the previous job has finished

instead of monitoring the period end. This approach ensures seamlessly task submission and

maximizes the utilization of available slack time. Additionally, the algorithm also checks

whether the required number of sample has been collected, thus preventing the submission

of unnecessary redundant tasks. The central concept of the heuristic is encapsulated in line

11. By setting the task deadline near MAX DL, the safety-critical tasks are given higher

priority, while enabling scheduling between redundant tasks. Therefore, redundant tasks can

only be executed when there are no safety-critical tasks in the scheduling queue. When the

deadlines are the same for more than one task, the EDF scheduler will pick one randomly

to break a tie. The heuristic favors the redundant task with a larger task period and a

greater number of remaining samples to collect. Finally, in line 15, the EDF scheduler

selects the task with the earliest deadline to be executed next. In the evaluation section,

various heuristic policies will be compared with the optimization problem approach.

4.4.3 Scheduling parameter optimization & Safe reconfiguration

Once a sufficient number of samples collected for each task, the GEV parameters will be

estimated and verified by the GoF test. Then, the system acquires the final pWCETs that

account for the impact of faults. With the new WCETs, the P&S optimization described

in Section 3.3 employs geometric programming techniques to identify the best period and

speed factor for each task, aiming to reduce energy usage. The optimization process relies

an iterative interior-point method to incrementally approach to the optimal solution. This

can be time-consuming if the initial estimates for the variables are significantly off from

their optimal values. Under the assumption that a fault would not dramatically shift the

optimization parameters, we can use the previously identified optimal point as an initial
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guess for the optimization solver (i.e., warm start). Then, the optimization solving time

will be significantly shorter compared to the design-time optimization if the solver starts

searching for the solution from the previous operating point.

For timing safety during transitioning to a new operating point, both the system utilization

bound and end-to-end deadline are considered. In emergency mode, the end-to-end deadline

is satisfied as long as each task is finished before their implicit deadlines. In that case,

the total system utilization is lower than the bound as there is slack time. However, the

reconfiguration occurs task-wise and the instant utilization can cause the system utilization

to exceed the upper bound. Therefore, the P&S optimization should add the constraint of

utilization invariability that limits the task utilization to be unchanged. This constraint

might affect the solution’s energy efficiency. However, its impact has been shown to be

negligible, as evidenced in Fig. 3.12d from 3.6.6.

4.4.4 Evaluation Metric: Survivability

The primary objective of the FRTS framework is to improve the survivability in presence

of faults by timely reconfiguration of the system with new optimized scheduling parameters

that better utilize the system. The survivability in the literature is typically measured by fail

operational (FO) and fail robust (FR) counts [22]. Both metrics assess the system’s ability

to tolerate a certain number of job overruns without leading to dropped jobs or missed

deadlines. The two metrics are aggregated into a job failed (JF) count, which then guides

the system in determining the severity of faults and subsequently initiating appropriate

fault-tolerant techniques at different levels. However, FRTS is designed to adapt to the

faults by quantifying the severity of faults in terms of changes in WCET, necessitating a

more coarse-grained measurement of survivability. In the evaluation section, alongside JF

75



counts, the analysis also aims to identify the maximum allowable WCET change that can

be accommodated by a fault-tolerant technique, thereby simulating different levels of fault

severity.

4.5 FRTS Overhead Analysis: System Utilization

Real-time systems adhere to rigorous schedules determined by timing analyses. Therefore,

periodically running multiple i.i.d tests should be considered in the design as well. We

evaluate the overhead of our proposed detector with a real-time system described in Section

2.1.1.

From the two constraints of P&S optimization, the end-to-end deadline and the system uti-

lization, the FRTS tasks do not contribute to the end-to-end deadline (Eq. 3.6). Therefore,

only the system utilization should be re-distributed over all tasks, including FRTS ones. The

revised constraint is

n∑
i=1

ei
pisi

+
m∑
i=1

edi
fd
i p

d
i

≤ Uupper = 100%, (4.3)

where m represents the number of FRTS tasks, which include i.i.d tests, estimation, GoF,

and optimization for each original task, while ed represents the WCET of those FRTS tasks.

fdpd represents the WCET and the effective period of FRTS tasks, where it implies that for

every fd executions of the corresponding original task, the FRTS task is executed once. To

avoid oversampling, pd is set equal to the period of the corresponding task. We assume FRTS

tasks always run at maximum frequency for simplicity. As a result, the utilization of the

original tasks will decrease compared to when FRTS was not considered. Then, each task will

have either (i) an increased period, (ii) an increased speed factor (CPU frequency), or (iii)
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a combination of both. However, the period is bounded by the end-to-end deadline, making

it more likely the speed factor to increase. According to the average power consumption

(Eq. (3.4)), the system now consumes more energy at an increased CPU frequency to

meet the same end-to-end deadline. Therefore, the overhead of our framework also can be

translated into an increased energy consumption. However, as we will demonstrate in the

following experiments, this overhead is small and amortized by the larger system energy

savings achieved by BoostIID.

4.6 Evaluation

4.6.1 Experimental Setup

We measured the execution time of tasks in Table 4.1 and the i.i.d tests on a NVIDIA Jet-

son TX2 platform: the pWCET for KPSS, RS, and Ljung-Box are 1.16 ms, 0.63 ms, and

1.03 ms, respectively. We used the Chauffeur benchmark suite[65] for self-driving vehicles,

which implements the representative automotive tasks from the Bosch WATERS industrial

challenge[47]. The i.i.d tests are from Chronovise 1.0, a C++ framework for MBPT [70].

The estimation of GEV parameters was done by Chronovise, using Maximum Likelihood

Estimation (MLE) method on 500 measurements with a BM block size of 5. When ran-

domly modifying GEV parameters, a uniform distribution is used in a range from 0 to 200%

of its original value. MATLAB 2022b was used to generate random samples from vari-

ous GEV distributions. The pWCET estimation was performed using Chronovise with a

probability of 10−4 and cross-checked with MATLAB’s gevcdf. Finally, the boosting was

performed on 100,000 datasets using XGBoost 1.7.6 python package. For hyperparameter

tuning for each task, we used GridSearchCV from scikit-learn 1.2.1 to find best values for
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max depth, min child weight, gamma, subsample, colsample bytree, and reg alpha. The rest

of the training parameters were set to default.

For evaluation of FRTS framework, we have implemented a simulator with EDF scheduler

equipped with redundant execution policies. The simulator executes 10 tasks from WATERS

DAG with task periods and speed factors for a designated duration of time, and can be

configured to simulate using only WCETs, or random execution times drawn from GEV

distributions. The FRTS tasks – i.i.d tests, GEV estimation, P&S optimization, and GoF

test – utilizes the ones from Chronovise framework. We measure the system’s fault resilience,

in addition to average energy consumption in three phases – pre-fault, reconfiguration, and

post-fault – and compared them to a EDF-Virtual Deadline (EDF-VD) method with DVFS

optimization from [54]. In EDF-VD approach, a virtual deadline is set for each task, which

triggers a utilization of maximum CPU frequency to mitigate the fault impact. The deadline

shortening parameter x is multiplied to the original (implicit) deadline. In this study, we

used two configurations for the value of x, 0.5 and 0.75.

4.6.2 BoostIID Evaluation

Fig. 4.5 presents the detection evaluation of BoostIID on six representative automotive

tasks (EKF, HybridA*, FLOAM, LaneNet, Darknet, SFM) shown earlier in Table 4.1. The

x-axis represents a pWCET increase of a randomly modified GEV distribution from the

original one, while the y-axis represents the count of additional samples for BoostIID to

detect statistical distribution changes. The latency limits are set equal to the ones in Fig.

4.3, the number of periods within the end-to-end deadline. Throughout the x-axis, the data

points are generally moved downwards, indicating a decrease in latency overall. As a result,

the safety margin (solid vertical line) beyond which latencies are maintained below the limit
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(horizontal dashed line) has decreased.
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Figure 4.5: Detection accuracy and latency of BoostIID
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Figure 4.6: F1 scores for various detector configurations

The safety margin will be added to the fault-free WCET when performing a single-mode P&S

optimization in Section 3.3.1, as it is the blind spot for our detector. While SFM displays a

notable visual improvement, most data points still exceed the latency limit. This is because

SFM execution times exhibit a high standard deviation, requiring a relatively large number

of samples with the current set of i.i.d tests to effectively distinguish the change in statistical

distribution. Fig. 4.6 shows the classification accuracy of BoostIID and the individual i.i.d

tests for the same automotive tasks. The y-axis shows the F1 score described in Section

4.3.3, derived using randomly selected 20% of the 100,000 input datasets. KPSS and RS

demonstrates strong F1 scores ranging from 0.85 to 0.95 except for SFM, with some false

positive cases which are mostly masked with the safety margin. On the other hand, Ljung-

box (LBox) exhibits the lowest F1 scores around 0.6, generating numerous false negative

cases due to its excessive sensitivity. BoostIID outperformed the other tests with F1 scores
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ranging from the peak of 0.99 for FLOAM to a minimum of 0.96 for Darknet, excluding

SFM at 0.80. In the case of SFM, the accuracy is poor even with the boosting, allowing us

to revert to the fault-aware method.
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Figure 4.7: Comparison of average dynamic power consumption on a real-time system with
various WCET estimations

We measured the average dynamic power consumption on the real-time system described

in Section 3.3.1, using Eq. (3.4) after performing P&S optimization with the safety mar-

gins obtained from our analysis. In Fig. 4.7, the average power consumption is normalized

with respect to the system’s maximum power consumption, representing normalized energy

consumption in a unit time. The first bar, fault-aware WCET, assumes that the WCET

has doubled for all the tasks, equivalent to the safety margin of 100%. The fault-aware

WCET method operates at near maximum CPU frequency to meet the same deadline,

drawing 89.6% of the maximum energy consumption. The last bar represents the system

with fault-free WCET which consumes only 14.4% of the system’s maximum energy con-

sumption, contrasting the energy efficiency of the fault-aware WCET method. The following

three detectors that configured with a single i.i.d test show a significant reduction in energy

consumption by lowering the safety margins. Among i.i.d tests, KPSS exhibits the worst

performance at 57.0%, followed by RS and Ljung-box at 26.65% and 24.47%, respectively.

BoostIID achieved 25.42% of the maximum energy consumption, showing 71.2% reduction

from the fault-aware one. While Ljung-Box demonstrates the lowest energy consumption,
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this is attributed to its high sensitivity as discussed before, rendering it undesirable for stan-

dalone use. In sum, boosting led to higher accuracy in consistent with the highest F1 score,

while also achieving a slight improvement in energy efficiency. When the detector overhead

is considered, other tasks run at a slightly higher CPU frequency, resulting in an increased

energy consumption at 33.49% of the maximum. Nevertheless, BoostIID shows energy re-

duction of 62.6% over the classical fault-aware approach, demonstrating amortization of the

detector’s energy overhead.

4.6.3 FRTS Redundant Execution Evaluation
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Figure 4.8: Comarison of various redundant execution policies

Utilizing redundant execution is a method to harness any unutilized slack within the system,

aiming to expedite the sampling of execution times during the emergency mode. Con-

sequently, a reduction in the duration of the emergency mode leads to decreased energy

consumption. Given that the maximum CPU frequency is being employed, the energy con-

sumption is directly linked to the length of the emergency mode. In Fig. 4.8, different

redundant execution policies are compared based on the number of actuations, a platform-

independent metric that quantifies time. That is, the count of actuation decisions from

the DASM task in Fig. 2.1 is represented on the y-axis when all of the desired number of

samples for each task have been collected. Two sets of simulations were conducted. The
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first set examined cases where tasks consistently displayed their WCET during execution

(namely, WCET configuration), which is useful to check the optimality of the formulation

from Section 4.4.2. In the second set of simulations, task execution times were randomly

drawn from their GEV distribution (namely, GEV configuration) to simulate the normal op-

erational conditions, which is useful to compare average energy consumptions. The policies

are implemented by substituting Line 11 from Algorithm 4 with the following strategies: (i)

Longest-WCET-First (LWF), (ii) Longest-Period-First (LPF), (iii) Largest-Period*Y-First

(LPYF), and (iv) optimization formulation. When redundant execution is absent, there is no

variation in the collection time between the two sets of simulations, as the sample acquisition

rate for each task remains constant due to their fixed task periods. In the WCET configu-

ration, Opt. demonstrates the optimal performance, closely followed by the LPYF policy,

which achieved near-optimal results at 99.9% of the Opt. solution. However, the Opt. policy

exhibits the poorest performance in the GEV configuration. This is attributed to the fact

that, in the Opt. case, the number of redundant executions for each task is predetermined

during the design phase and is calculated based on their WCETs. In contrast, the other

policies are dynamic in nature such that a redundant task can cease execution prematurely

once the desired number of samples has been collected. This adaptability effectively coun-

teracts the randomness of execution times. In result, the LPYF policy achieved the highest

79.3% reduction in the duration of emergency mode. It is worth noting that the disparity

between the WCET and GEV configurations might have been more pronounced if a lower

value for the pWCET probability had been used, thus further increasing the gap between

the randomly sampled execution time and the WCET.
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Figure 4.9: Resilience comparison between EDF-VD and FRTS using representative auto-
motive tasks from WATERS DAG

4.6.4 FRTS Resilience Evaluation & Utilization Overhead

We use a soft real-time system, where implicit deadline violations are tolerable as long as the

end-to-end deadline is kept, which is vital for ensuring the timing from sensors to actuators.

Fig. 4.9 depicts the resilience for such a system with comparison between the EDF-VD

approach and the FRTS framework. Two configurations are used for EDF-VD: x = 0.75

configuration triggers a switch to the maximum CPU frequency when the task execution time

exceeds 75% of its WCET, while the x = 0.5 configuration does so at 50%. Therefore, x = 0.5

consumes more energy but is expected to exhibit a higher resilience against more severe

degree of task overrun. The resilience was measured by gradually increasing the WCETs for

affected tasks until the system starts to exceed an end-to-end delay threshold, which is set

equally for all the cases in Fig. 4.9. The simulator was configured for this experiment such

that a job always takes its WCET amount of time, simulating the worst-case behaviors. The

y-axis is represented on a logarithmic scale, indicating the normalized maximum increase

in WCET, relative to the fault-free value of each task. The x-axis displays the scenario

where JF= 1, indicating a single job failure (overrun), with six representative automotive

tasks, followed by JF= 10, where it assumes all tasks were affected by the fault. Across all

configurations, the FRTS approach exhibited the highest resilience, even when considering

83



the overhead. This was followed by EDF-VD approaches, the x = 0.5 configuration and then

the x = 0.75 one, as expected. This divergence in resilience can be attributed to the FRTS’s

capability for timely reconfiguration, whereas EDF-VD is constrained by fixed task periods,

which in turn sets a lower limit on the possible end-to-end latency. In JF= 1 configuration,

the FRTS approach demonstrated a resilience improvement of x2.14 and x3.18 compared

to the x = 0.5 and x = 0.75 configurations, respectively. In JF= 10 configuration, the

FRTS approach achieved 18.2% and 39.3% resilience improvement against the x = 0.5 and

x = 0.75 configurations, respectively. The disparity in resilience improvement between the

two JF configurations can be attributed to the availability of slack in the JF= 1 case, which

the FRTS can leverage – unlike in the JF= 10. We designed an experimental setup where the

target system is powerful enough to afford doubled WCETs of all tasks while maintaining the

same end-to-end deadline. The FRTS approach can efficiently reconfigure the system close to

this limit, which is 1.95 when accounting for overhead as can be seen in Fig. 4.9. The limited

improvement observed in the JF=10 configuration is attributable to this constraint. Finally,

the resilience of the system with FRTS can be quantified as JF=1x20.9 and JF=10x1.95,

while JF=1x8.3 and JF=10x1.65 for the system with EDF-VD x=0.5.

4.6.5 FRTS Warm-start Scheduling Parameter Optimization
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Figure 4.10: Evaluation of warm start in P&S optimization
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Under the assumption that a fault would not dramatically shift the optimization parameters,

we can use the previously identified optimal point as an initial guess for the optimization

solver, which is commonly referred to as a warm start. Utilizing a warm start can substan-

tially decrease the number of iterations needed within the solver, thereby reducing the overall

time required for solving. In Fig. 4.10, we evaluated the efficacy of the warm start approach

by measuring the average optimization runtime over 1,000 runs. This was followed by an

evaluation under the JF=10 condition. The measurements were obtained on the NVIDIA

TX2 target platform, where we used the Python CVXPY package for solving, as MATLAB

was not available on this platform. The experimental results starts with JF=1 scenario, in

which a fault was injected into a single task. Warm-up refers to the initial run measurement

with no fault injection for a fair comparison by eliminating the cold cache effect when solver

is first initialized. Cold start, in contrast to warm start, refers to the runtime measurement

of the optimization with no fault injection when the initial guess is made by the solver, which

may be far from optimal solution. In the Cold Start scenarios, we observed an average 5.86%

reduction in the number of actuations compared to the Warm-up cases. In the Warm start

cases, we intentionally introduced the most severe fault for each task, based on our resilience

experiment findings, with the goal of distancing the initial guess from the optimal solution.

Regardless of the task or fault severity, Warm start approach achieved an average reduction

of 92.51% in optimization time.

4.6.6 FRTS Energy Overhead Evaluation

In Fig. 4.11, the average energy consumptions during three phases are displayed: pre-fault,

system reconfiguration, and post-fault phase. The average energy consumption pertains to

normal operations, hence the tasks exhibit random execution times following a GEV distri-

bution throughout the simulation. Two levels of fault severity, x1.25 and x1.5, are applied in
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Figure 4.11: Average energy consumption comparison between EDF-VD and FRTS in pre-
fault, reconfiguration, and post-fault phases

conjunction with JF=10, affecting all tasks uniformly. For pre-fault and after-fault phases,

the energy consumption was measured for 1,000 seconds in simulation time, equivalent to

33,000 actuation decisions, while reconfiguration phase took 4,820 and 7,400 actuation de-

cisions for fault severities of x1.25 and x1.5, respectively. During the pre-fault phase, the

energy consumption of EDF-VD decreases with increasing values of the deadline shortening

parameter x increases. This occurs because, statistically, fewer jobs exhibit execution times

that exceed WCETx0.75 compared to those exceeding WCETx0.5, leading to less frequent

utilization of the maximum CPU frequency. The system with FRTS operates normally with

BoostIID, consuming a similar amount of energy to EDF-VD with x = 0.75, yet with much

higher resilience as in Fig. 4.9. In the system reconfiguration phase, the system enters the

emergency mode, during which it collects execution time samples, performs GEV parameter

estimation, conducts the GoF test, and optimizes the scheduling parameters (P&S opti-

mization). This is followed by a safe mode change to a new operating point. All of these

reconfiguration processes run at the maximum CPU frequency, resulting in the highest av-

erage energy consumption, but they occur over a short burst of time. During the post-fault

phase, EDF-VD frequently switches to a maximum CPU frequency than before, as the fault
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severity becomes more pronounced. The FRTS approach consumes less energy at a fault

severity of x1.25 compared to x=0.5, yet it consumes more energy at a fault severity of

x1.75. This can be attributed to the fact that the execution time of BoostIID is also im-

pacted by the fault. Despite the brevity of individual execution times, the three i.i.d tests in

BoostIID are executed after every job, resulting in significant overhead under conditions of

high fault severity. Thus, minimizing the utilization overhead of FRTS could enhance energy

efficiency in the post-fault phase. Strategies might include reducing the detection frequency

of BoostIID or isolating its execution from faults by employing separate hardware. Finally,

only the FRTS approach could withstand a fault severity level of x1.75, albeit at the cost of

increased energy consumption.

4.7 Summary

We introduced FRTS: Framework for Resilient Timing Safety against WCET Changes in

autonomous driving. Our research is driven by the emerging trend of extended lifespans

for autonomous vehicles and the accompanying increase in permanent fault hazards in com-

puter components. The stringent timing safety guarantees, predicated on design-time WCET

analysis, are jeopardized by permanent system faults. Traditional detection methods, which

target specific faults, evaluate potential fault impacts through targeted analyses and incorpo-

rate these assessments into the WCET as a safety margin. These approaches thereby result

in limited coverage and energy inefficiency after tolerating faults. Classical fault-tolerant

techniques employ this safety margin in high-criticality modes to maintain end-to-end delays

below deadlines. However, after tolerating faults, the fixed scheduling parameters determined

during the design phase impose a lower limit on end-to-end delays, thereby preventing the

hardware from being utilized to its full potential. To address these issues, FRTS leverages
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the safety margin (or slack time) to reevaluate the WCET and subsequently reconfigure the

system, thereby achieving resilient timing safety. The detection module in FRTS, Boost-

IID, proactively monitors statistical changes in execution times aiming to detect safety haz-

ards before actual violation happens. By concentrating on the end-effects of faults, namely

changes in execution time, BoostIID exhibits a fault-agnostic feature that mitigates the cost

and effort required for fault-specific analyses. The limitations of BoostIID in fault tolerance

are complemented by the reconfiguration capabilities of the FRTS enabled system. During

emergency mode, when the maximum available slack time is generated, FRTS samples ex-

ecution times to determine new, safe scheduling parameters that fully exploit the system’s

capabilities. Thanks to its timely reconfiguration, the FRTS system demonstrates an im-

proved resilience against WCET changes, showing a 39.3% compared to the state-of-the-art

fault-tolerance technique, EDF-VD with x=0.75. To the best of our knowledge, FRTS is the

first attempt to adjust scheduling parameters in real-time for resilient timing safety.

The contributions of FRTS can be summarized as follows:

• BoostIID proactively detects the end-results of permanent fail-slow faults, reducing

safety margin to improve energy efficiency during normal operations

• BoostIID combines multiple i.i.d tests with a boosting technique to improve detection

accuracy and latencies.

• FRTS introduces a method for assessing fault impact in real-time and dynamically

reconfiguring the system to achieve resilient timing safety.

• The duration of emergency mode is minimized with our near-optimal sample acceler-

ation heuristic.

• The overhead of FRTS in terms of system utilization and energy consumption are
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evaluated.

Expanding upon the core functionalities of FRTS, our future plans include enhancing the

system to support a broader range of fault types beyond just fail-slow, as well as integrating

recovery techniques such as checkpointing and reexecution. The overhead incurred during

the reconfiguration phase can be mitigated by incrementally reconfiguring the system on a

task-by-task basis. The overhead incurred during the post-fault phase raises the question

of ”Who guard the guards?”[69] as the fault-tolerant workloads themselves affected may be

compromised by the fault. This concern extends beyond energy efficiency, as the correctness

of the fault-tolerant workloads may also be compromised. A viable solution is to insulate

the FRTS workloads from faults by utilizing dedicated hardware.
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Chapter 5

Conclusions

Autonomous machines are increasingly important as they evolve to manage tasks offloaded

from humans, performing them with capabilities that surpass human abilities. Particularly

when a failure could lead to catastrophic outcomes, the safety guarantees in these machines

become increasingly critical. Numerous studies have been conducted in the field of real-

time systems to address the safety issues of these machines. Real-time systems have been

successfully utilized in a variety of applications to perform safety-critical jobs, including

but not limited to avionics, surgical robots, and spaceflights. However, evolving workloads

and operating conditions introduce additional challenges. Autonomous driving epitomizes

the complexity of modern real-time systems, characterized by tasks that are increasingly

demanding in both performance and volume. These vehicles are equipped with an exten-

sive array of sensors to navigate through an unprecedented number of hazards, including

moving objects and obstacles, all while operating on battery power. These new environmen-

tal dynamics introduce intriguing and novel challenges, such as dynamic deadlines. These

evolving dynamic operating conditions amplify the gap between worst-case scenarios and

normal operations, thereby escalating design difficulty, costs, and energy inefficiency. Fur-

thermore, the anticipated proliferation of autonomous vehicles stands to intensify existing
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energy challenges, given the current energy consumption patterns of electric vehicles. Lastly,

the extended lifespan of vehicles also increases the system’s exposure to a variety of perma-

nent faults, such as the fail-slow condition of storage devices.

Inspired by mixed-criticality systems[77], the implementation of distinct operational modes

and safe transitions between them could serve to mitigate these challenges. This dissertation

presented two frameworks that employ adaptive system reconfiguration for energy efficiency

and for resilient timing safety. EASYR focuses on dynamic deadlines imposed by the velocity

of the ego vehicle and the distance from the front vehicle. By timely utilization of predefined

discretized modes that are individually optimized for energy and come with guaranteed

latency, EASYR enables the system to adaptively consumes only the amount of energy

necessary for the situation. FRTS concentrates on the extended lifespan of vehicles and

empowers the system to counteract unpredictable execution time changes at run-time that

could compromise safety guarantees established at the design phase. A novel fault-agnostic

detector for WCET changes, known as BoostIID, has been introduced as a submodule within

FRTS. By proactively identifying potential timing hazard, FRTS seeks to transition the

system into emergency mode before any actual violation occurs, consequently facilitating

the assessment and counteraction of fault impact. As a result, FRTS enhances the system

resilience against WCET changes compared to classical fault-tolerance techniques.

As such, enabling adaptive system reconfiguration offers many advantages for safety-critical

real-time systems. Moving forward, EASYR and FRTS open up a variety of intriguing

avenues for exploration. Rather than relying solely on a simple dynamic deadline based

on the vehicle’s velocity and proximity to objects, there could be a multitude of different

dynamic deadlines imposed on the vehicle. For instance, the vehicle could be equipped

with multiple cameras in various locations. The end-to-end deadline for the front camera

may vary from that of the rear camera. In fact, this is contingent upon the specific driving
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context, such as whether the vehicle is on a highway, in a downtown area, or in a parking lot.

In such contexts, factors like the number of objects, their directions of movement, and their

acceleration and velocities become significant considerations. These factors are elegantly

formalized in NVIDIA’s Safety Force Field [68] for collision avoidance, which calculates the

available set of actions for the vehicle based on the surrounding environment. It may be

possible to learn dynamic deadlines for each driving context to optimize for energy efficiency

using a photorealistic simulator such as CARLA [39]. For BoostIID, the level of proactiveness

could be enhanced by delving deeper into its architecture and applying advanced anomaly

detection techniques. Even before a fault occurs, an anomaly technique using periodic state

machines and trace analyzer could be employed to monitor hardware properties. This would

allow BoostIID to adaptively select the appropriate set of i.i.d tests or modify the safety

margin, therefore reducing the overhead in system utilization. FRTS could be adapted

to manage multiple ongoing faults that maintain the system in emergency mode for an

extended duration. To achieve this, task-level optimization is essential rather than system-

wide adjustments. The challenge of task-level optimization lies in managing the uncertainties

associated with the impact of a fault on other tasks that have not yet been identified. A

thorough analysis is essential to determine an energy-efficient safety margin under those

circumstances. Additionally, the current FRTS system is resilient up to the level of faults

that the system can feasibly manage given tasks, scheduler, and hardware. Should a more

severe fault arise, the FRTS system could increase its resilience by opting for alternative

tasks. For instance, certain DNN frameworks or models may be less impacted by specific

types of faults compared to others, while still maintaining a comparable level of accuracy.

If a vehicle is permanently relocated to an area with more severe weather conditions, the

system can reduce its dependence on LiDAR sensors, which are vulnerable to rain and snow.

Instead, it can prioritize vision-related tasks and reconfigure the system accordingly. Such

adaptations could be possible by the run-time reconfiguration capabilities provided by FRTS.
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