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ABSTRACT OF THE DISSERTATION

Video packet loss visibility models and their application to packet prioritization

by

Ting-Lan Lin

Doctor of Philosophy in Electrical Engineering (Signal and Image Processing)

University of California, San Diego, 2010

Professor Pamela C. Cosman, Chair

In video transmission, packets can be lost for many reasons. Traditionally

the impact of packet losses is measured by mean squared error induced by the loss

in the pixel domain. However, mean squared error does not correlate with human

perception well. In this dissertation, we aim to provide predictions of how human

observers respond to different video packet losses. Based on their estimated visual

importance, we can insert a prioritization bit for each video packet before sending

it over a lossy network, or perform unequal channel protection on packets before

transmission over a wireless channel. The models are developed from data collected

from subjective tests. The models predict the packet loss visibility, that is, the

probability of a given packet producing a glitch that will be observed by the end

user if it is lost. We discuss the development and the application of encoder-based

packet loss visibility models and network-based packet loss visibility models.

We discuss an encoder-based packet loss visibility model using three sub-

jective experiment data sets that span various encoding standards (H.264 and

MPEG-2), group-of-picture structures, and decoder error concealment choices.

The factors of scene cuts, camera motion, and reference distance are highly signif-

icant to the packet loss visibility. The encoder-based packet loss visibility model

exploits factors in the pixel domain as well as reference frame information.

The first application of the encoder-based packet loss visibility model

is packet prioritization for a video stream. When a network gets congested at

xviii



an intermediate router, the router is able to decide which packets to drop such

that visual quality of the video is minimally impacted. Experiments are done to

compare our perceptual-quality-based packet prioritization approach with existing

Drop-Tail and cumulative-MSE-based prioritization methods. The result shows

that our prioritization method produces videos of higher perceptual quality for

different network conditions and group-of-picture structures.

The second application of the encoder-based packet loss visibility model

is unequal error protection. For an AWGN channel, we aim to minimize the end-to-

end video quality degradation using rate-compatible punctured convolutional codes

for a given channel rate budget. We solve the integer programming problem by the

Branch and Bound method, K-means clustering, and the subgradient method. We

also exploit the advantage of not sending or not coding packets of lower importance.

The algorithm is compared to an existing method.

In order to reduce the computational complexity of the encoder-based

model so that a model can be implemented at the router, we aim to develop

a network-based model that uses only information within one packet to predict

the importance of that packet, requiring no frame-level reconstruction nor any

information on the reference frame. We conduct subjective experiments for SDTV

and HDTV resolutions on visual quality following packet loss. We design the model

for SDTV and HDTV resolutions, and discuss the differences in the important

factors between SDTV and HDTV models.

We then use the model to measure the visual importance of incoming

packets to the router. During network congestion, we drop the least visible frames

and/or the least visible packets until the required bit reduction rate is achieved.

Our algorithm performs better than dropping B packets/frames.

The way we estimated the frame importance is based on the summation

of the visibility of all slices in a frame, which is an indirect approach. Therefore,

we conduct subjective experiments and collect responses from human observers

directly on whole frame losses. We develop a model which can predict the visibility

xix



of whole frame losses for B frames. This model could be useful for designing an

intelligent frame dropping approach for use at a router during congestion.
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Introduction

Video transmission over wired and wireless networks is very popular due

to the high demand of multimedia and widespread availability of personal web

surfing devices. However, as compressed videos are transmitted over a network,

they can suffer losses which affect overall video quality for several reasons. For

example, packets may be dropped in a router to relieve network congestion, or bit

errors occur in the packet. To deal with these situations, we can perform packet

prioritization and unequal error protection over packets so that the algorithms can

protect packets of higher importance. Therefore, it is very important to accurately

predict how human observers respond to different packet losses, which is the main

focus of this dissertation. In Figure I.1(a), we show a compressed and reconstructed

frame where a single horizontal row of macroblocks has been lost (the lost row is

shown as a gray bar). In Figure I.1(b) the compressed and reconstructed frame is

shown where the loss has been concealed by holding over the corresponding blocks

from the previous frame. The glitch in this case is visible. Figures I.2(a) and (b)

show another pair of frames with a loss and a concealed loss. In this case, no glitch

is visible, because the loss occurred in a background area which was not moving.

In this work, we measure the importance of a packet by performing subjective

experiments and using the data to develop models to predict the probability that a

certain packet will produce an observable glitch if it is lost. We call this probability

1
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(a) with no concealment

(b) after concealment

Figure I.1: A frame with packet loss (a) with no concealment (b) after concealment.

The loss is visible.

packet loss visibility. Based on this measurement, we develop applications such as

intelligent dropping and unequal error protection. Our work covers two categories:

encoder-based packet loss visibility and network-based packet loss visibility. In the

following, we introduce each of them and their applications, along with relevant

literature.



3

(a) with no concealment

(b) after concealment

Figure I.2: A frame with packet loss (a) with no concealment (b) after concealment.

The loss is less visible.

I.A Encoder-based packet loss visibility

To ensure a satisfactory viewing experience for the end users, it will be

beneficial for network providers or video transmitters to have an accurate video

quality monitoring system to help evaluate the quality of video reception. A good

video quality monitoring system can help video senders or network service providers

decide/optimize the transmission settings that result in efficient usage of network

resources (for example, bandwidth) for video services with cost-based quality.

Video quality measurement can be categorized into three different types

based on the accessibility of information about the original (reference) video. Full-
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reference (FR) methods evaluate the video quality with access to the original video,

providing the most precise measurements on the video quality difference. Reduced-

reference (RR) metrics extract partial information about the original video at the

sender and are sent reliably to the receiver to estimate the video quality. No-

reference (NR) methods only use information available in the bitstream (NR-B) or

the decoded pixels (NR-P) without reference video information. These methods

are illustrated in Figure I.3.

One of the most widely used FR metrics is MSE (Mean Squared Error)

of pixel values between original and evaluated videos. The Structural SIMilarity

index for images (SSIM) [1] and for videos (VSSIM) [2] also requires the origi-

nal content to calculate statistical structure information. Another FR metric is

Continuous Video Quality Evaluation (CVQE) [3], which models the temporally

continuous quality scores of human observers. Video Quality Metric (VQM) [4], a

FR metric developed by the National Telecommunication and Information Admin-

istration, has been shown to be better correlated with human perception than two

competing metrics, DVQ (Digital Video Quality) and VSSIM, as shown in [5]. A

RR method developed in [6] sends a low-bandwidth descriptor which approaches

the performance of VQM. In [7], harmonic analysis on filtered images is done to

provide a RR metric, which shows good correlation with subjective data in the

VQEG database. A NR method proposed in [8] evaluates blurring artifacts using

edges and adjacent regions in the lossy image. In [9], PSNR of a lossy video is

estimated by a NR metric using only received coded transform coefficients.

Packet losses in the network can significantly damage video quality during

transmission. They occur for different reasons. An intermediate router can drop

packets because the incoming data rate is so high that the buffer overflows. With

IPTV, a subscriber may want to watch a video in high resolution, but his access

bandwidth is less than required. In this situation, a router should drop enough

data to meet the access capabilities of the subscriber. The packet dropping policy

in the router should be intelligent to minimize the video quality damage observed
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Figure I.3: FR, RR, NR-P and NR-B methods

by the end user. The packet dropping rates required at the router can vary by a

large amount. Therefore, considerable research has been conducted to understand

the relationship between packet losses and visual quality degradation. Although

PSNR (Peak Signal to Noise Ratio) and MSE do not always reflect perceptual

quality well [10, 11], they are commonly used to measure video quality. The relation

between PSNR and perceptual quality scores is considered in [12]. It finds that

packet losses are visible when the PSNR drop is greater than a threshold, and the

distance between dropped packets is crucial to perceptual quality. The prediction

of objective distortion by MSE is discussed in [13]. Average performance across

an entire video sequence is the focus in [14], which uses MSE to assess quality for

different compression standards and different concealment techniques; a specific

model is used for each compression standard and concealment technique. Three

different NR metrics in [15] are developed to estimate the MSE caused by a packet

loss.

Much of the effort to understand the visual impact of packet losses [16,

17, 18, 19] has focused on modeling the average quality of videos as a function of

average packet loss rate (PLR). Video conferencing was studied in [16] using the

average consumer judgments on the relative importance of bandwidth, latency and

packet loss. A random-neural-network model was developed in [18] to assess quality

given different bandwidths, frame-rates, packet loss rates, and I-block refresh rates.
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In [20, 21], NR metrics of low complexity were developed using the length and

strength of packet loss impairment from each decoded image.

However, PLR can provide wrong interpretations on video quality since

packet losses are perceptually not equal. The visual impact of a packet loss is a

combined effect of various factors such as the location of the packet loss in the video,

the content of the video at that location, and whether there are other packet losses

in its vicinity. Therefore subjective experiments are important to construct/verify

the video quality metrics related to packet losses. Hughes et al. [19] discovered

that many different realizations of both packet loss and video content are necessary

to reduce the variability of viewer responses. Also the “forgiveness effect” causes

viewers to rank a long video based on more recently viewed information. In [22],

using computational metrics from a no-reference model as well as a subjective test,

it was found that simple quality metrics (such as blockiness, blurriness and jerki-

ness) do not predict quality impairments (caused by packet losses or compression)

very well. In [23], an NR metric was used to calculate the temporal fluidity im-

pairments resulting from packet losses. This is a good predictor for the perceptual

scores due to motion discontinuity under several image dropping conditions.

Instead of studying how packet losses affect the overall perceptual video

quality, or how packet losses relate to MSE, our goal is to develop a robust predictor

for packet loss visibility for each individual packet based on the information of its

encoded content and other factors. This will serve as a useful tool for various pur-

poses. The first one is packet prioritization. One can assign low priority to packets

that cause low loss visibility. When the buffer in a network node is congested, it

can opt to discard the low-priority packets and hence minimize the degradation to

perceived video quality for the end user. For unequal error protection, one can give

more parity bits and hence more protection to packets with higher visual impor-

tance, so that if those packets are corrupted during transmission, they are more

likely to be corrected by the channel decoder.

The closest previous work to our research is [24, 25, 26, 27, 28, 29]. In [24,
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25, 26, 27], as in our research, subjective experiments were performed to collect

and analyze data from human observers. Isolated packet losses were introduced in

the video and viewers were asked to observe the videos and respond to the visible

glitches that they notice. Based on the data and the coding parameters associated

with each packet, regression models for prediction were built. Papers [24, 25, 26]

used MPEG-2 and [27] used H.264. In [28], information from the neighboring

slices of a packet, both spatially and temporally, is further considered. In [29],

more complicated factors such as scene cut information and camera motion are

included. The model uses data from multiple codecs, video resolutions, GOP

(Group Of Pictures) structures, and error concealment methods. The best model

that achieves the least prediction error is presented in Chapter II. This model,

which is developed in large part by Dr. Sandeep Kanumuri and Dr. Amy Reibman,

is used in Chapters III and IV of this dissertation in packet prioritization and

unequal error protection applications.

I.A.1 Packet prioritization

One application for the visibility model is packet prioritization. A net-

work can sometimes become congested due to sudden traffic. To relieve the con-

gestion, the router needs to drop packets. Therefore it is important that the router

can identify important packets and make sure they are not dropped. In Chapter III

we use the visibility model described in Chapter II to perform packet prioritiza-

tion. Using the packet priorities, an intermediate router can intelligently drop

low-priority packets.

Among existing approaches on packet classification, the work by De Mar-

tin et al. assigns a packet high/low priority based on the cumulative MSE due

to the packet loss [30, 31], network status and end-to-end QOS constraint [32].

Also, the Rate-Distortion Hint-Track method was proposed for packet schedul-

ing [33, 34] and packet dropping [35, 36]. Especially in [35, 36], an intermediate

router with an optimization algorithm drops packets in a congested network from
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different streams to minimize the sum of the cumulative MSE, where the sum of

the outgoing rates is constrained to be less than the bandwidth of the outgoing

link. A similar idea on a rate-distortion optimized dropping policy was proposed

earlier in [37] using a rate vector and a distortion matrix, and employing a different

optimization philosophy. A detailed discussion of the Hint-Track (HT) and Distor-

tion Matrix (DM) methods is in [38]. The most significant difference between our

approach and the above-mentioned methods is that we do not use MSE (or PSNR)

as a quality metric to develop our method; the model is built from subjective ex-

periments. We compare our visibility-based packet prioritization strategy with the

Cumulative-MSE-based method and the widely-used Drop-Tail policy using the

NS-2 Network Simulator [39]. The comparisons are made using VQM. This work

is presented in Chapter III.

I.A.2 Forward error protection

A video transmitter can also protect important packets by channel cod-

ing. Joint source and channel coding that trades between source video quality

and error resilience of the transmission in a lossy network is a well-studied area.

The work in [40] studied a combined source-channel coding problem for trans-

mission in an AWGN channel using Rate-Compatible Punctured Convolutional

(RCPC) codes. A universal operational distortion-rate characteristic is used for

the optimization problem, and the performance of the algorithm approaches the

information-theoretic bound. The rate-distortion optimization among source cod-

ing, channel coding and error concealment is jointly considered in [41]. A selective

packet retransmission mechanism is integrated into the algorithm. Unequal error

protection for joint source and channel coding is considered in [42] using a source

and channel distortion function to find the best source and channel rate allocation,

where the channel codes used are RCPC codes. The method in [43] optimally de-

cides both slicing based on the estimated incurred distortion, and optimal forward

error correction (FEC) rate for each packet. In [44], H.264 Flexible Macroblock



9

Ordering (FMO) is used to group macroblocks of similar estimated distortion into

a slice, with different levels of Reed-Solomon (RS) coding over slices. This method

is extended in [45] with Converged Motion Estimation, which performs motion esti-

mation for the current frame using mostly the highly-protected MBs (Macroblocks)

in the previous frame as reference.

Unequal error protection (UEP) tailors the error-handling measures to

different components of the video. For example, in [46], frames closer to the end

of a GOP have less error protection. Two different RS codes are assigned to video

data of high/low priorities in [47]. In [48], channel protection bits are assigned

unequally among frames in a GOP using the Genetic Algorithm.

UEP can be jointly used with intra updating which stops error propaga-

tion. This option requires more source and channel bits to intra-code the slice,

therefore there is a tradeoff among video quality, error correctability, and the abil-

ity to stop error propagation in case of uncorrectable errors [49, 50, 51]. UEP for

progressively coded images/videos is also extensively studied [52, 53].

Most of the work on UEP discussed above involves either progressive or

scalable coding, or a change to the source encoder. In our work, we consider non-

scalable video streams pre-encoded and stored; the problem is choosing optimal

packet protection for the channel conditions at the time of transmission. Also,

traditionally, video quality degradation is measured with MSE. To improve the

performance of channel rate allocation in terms of human visual perception, we

use the encoder-based model form Chapter II to estimate the visual importance of

each packet. Based on this metric, we aim to optimally allocate RCPC codes to

minimize the visual quality degradation when transmitting video over an AWGN

channel, given a total rate budget. We solve the optimization problem first by the

Branch and Bound method (BnB) [54]. However, BnB has worst case exponential

complexity [55]. We reduce the complexity of the algorithm by preprocessing the

packet information using k-means clustering [56]. We further devise an algorithm

where the optimal FEC code rate allocation search is done efficiently in the dual
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domain by the method of subgradients, and we also include the options of not cod-

ing a packet, or not sending it at all. Those modifications improve the performance

significantly in terms of VQM measurement. We also compare with an existing

approach [57] that uses the notion of not coding and not sending a packet. This

research is presented in Chapter IV.

I.B Network-based packet loss visibility

In the application of packet dropping described above, the incoming pack-

ets to the router must have a prioritization bit embedded for the router to perform

intelligent dropping. To cover the common situation where the incoming packets do

not have a prioritization bit, we focus on developing a network-based model where

the packet importance is estimated at the router. In this case, the complexity

must be limited, and reference frames are not necessarily available because pack-

ets may be out of order or because there are multiple streams and the network

node cannot afford to decode and reconstruct them. In a network-based model

therefore, we refrain from using factors such as MSE, and scene cut information

that requires pixel domain information and reference frame information. To this

end, we perform a subjective experiment, for SDTV and HDTV resolutions. We

build network-based models for each resolution and compare their prediction accu-

racies against those of the encoder-based models. We also discuss some differences

of the human responses between SDTV and HDTV videos. Some visual differences

between SDTV and HDTV have been discussed in previous literature [58, 59, 60].

The development and the discussion of these models are covered in Chapter V.

I.B.1 Intelligent packet discarding

Using this network-based model, we can produce visual scores on the

fly at a router with limited information and limited computational power, and

perform packet dropping. Prior research [61, 62] considered No-Reference network
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monitoring, which can compute estimated video quality for a given packet loss

pattern. However, they give an overall quality score for the sequence and do

not tell us how to best drop packets to minimize the video quality degradation

during congestion. In this dissertation, using the visual scores computed by the

network-based model, we drop packets on a packet basis and on a frame basis. The

dropping method on a frame basis is visually better than the method on a packet

basis since spatial misalignment artifacts can be more distracting than temporal

frame copy [63]. Our method performs better than one used by industry which

drops B packets, for different levels of packet loss rate, where the video quality is

evaluated by VQM. Chapter VI covers the discussion of dropping methods using

our network-based model.

I.C Network-based whole frame loss visibility

Which whole frame to be dropped in Chapter VI was estimated by the

visibility model for single-slice packets from Chapter V. That is, the visibility

score for the frame was taken to be simply the sum of the visibility scores for

the slices which compose the frame. And those visibility scores for slices came

from a model designed using a human observer experiment involving slice loss

data. Therefore, to obtain more meaningful scores for frame losses, we conduct

a subjective experiment to concentrate on the subjective results for whole frame

loss, and build a direct model for whole frame loss. Two common concealment

methods for whole frame losses are frame copy and temporal frame interpolation.

In this experiment, we simulate frame copy error concealment by the JM standard

decoder [64], and frame interpolation by FFMPEG [65]; these two decoders are

popular in research and industry. We analyze the experimental data, and model

the whole frame packet loss visibility based on information associated with the

lost frames. In the literature, the perceptual quality of frame losses is discussed

in [66, 67]. However, the video quality is computed in the pixel domain and
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requires the original video. Also, their model aims to evaluate the overall quality

of a lossy video, and does not indicate the visual importance of a specific frame.

The discussion of our experiment is in Chapter VII.

I.D Introduction to generalized linear models

Our goal in several sections of this dissertation is to develop a model that

predicts the probability of a glitch from a lost packet being visible to viewers. We

first conduct subjective experiments. Viewers watch videos with isolated packet

losses, and they are asked to press the space bar when they notice a glitch. In

some experiments, each loss was observed by ten people, while in other experi-

ments each loss was seen by twelve people. The ground truth packet loss visibility

is the number of people who observe the packet loss divided by 10 (or 12) peo-

ple. In our experiment and data analysis, we assume each viewer’s response is

an independent observation of the average viewer (for whom we are developing

the model). Therefore, each viewer response can be considered independent and

identically distributed with probability p for seeing a particular packet loss. This

leads us to the binomial distribution for modeling the packet loss visibility.

A Generalized Linear Model (GLM) is an extension of classical linear

models [68, 69]. The probability of visibility is modeled using logistic regression,

a type of GLM which is a natural model to predict the parameter p of a binomial

distribution [68]. Let y1, y2, ..., yN be a realization of independent random variables

Y1, Y2, ..., YN where Yi has binomial distribution with parameter pi. Let y, Y and

p denote the N-dimensional vectors represented by yi, Yi and pi respectively. The

parameter pi is modeled as a function of P factors. Let X represent a N×P matrix,

where each row i contains the P factors influencing the corresponding parameter

pi. Let xij be the elements in X. A generalized linear model can be represented as

g(pi) = γ +
P∑

j=1

xijβj (I.1)
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where g(.) is called the link function, which is typically non-linear, and β1, β2, ...., βP

are the coefficients of the factors. Coefficients βj and the constant term γ are usu-

ally unknown and need to be estimated from the data. For logistic regression,

the link function is the logit function, which is the canonical link function for the

binomial distribution. The logit function is defined as

g(p) = log(
p

1− p
). (I.2)

Given N observations, one can fit models using up to N parameters. The

simplest model (Null model) has only one parameter: the constant γ. At the other

extreme, it is possible to have a model (Full model) with as many factors as there

are observations. The parameters and coefficients of the GLM are estimated such

that the resulting model has the least deviance (the deviance is a generalization of

the residual sum of squares). This method is used in Chapter II.

The method treats data points equally, no matter how far they are from

the regression line. However, outliers may distort the results. To give unequal

treatment to data points to suppress outliers, we minimize the M-estimator [70];

data points farther from the regression line have smaller weights, and contribute

less to the final modeling result. We chose the “Fair” function as the M-estimator

function, shown in Figure I.4. The M-estimator is computed as the sum of the

weighted residual squares, where the weight of each data point is computed by the

residuals in the previous iteration. The M-estimator function is chosen to avoid the

weights of the curve going close to zero at the two ends, because we do not want to

have a final model that has least M-estimator just because most of the data points

are at the two ends. The model developing procedure uses 4-fold cross validation

to prevent the model overfitting the data, so an average M-estimator is produced

for a set of factors. The factor which most reduces the average M-estimator goes

next into the model. This procedure repeats until there is no improvement in the

average M-estimator by including an additional factor. This method is used in

Chapters V and VII.
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Figure I.4: The Fair function versus the residual.

I.E Thesis outline

In Chapter II, we provide detailed background on an encoder-based packet

loss visibility model that was largely developed by Dr. Sandeep Kanumuri and

Dr. Amy Reibman. The description of the experiment settings for the three

different subjective tests and the variety of settings used for video encoding are

provided. The measurements of packet loss are explained in terms of required

information about the video, computational complexity and factor attributes. The

GLM model building strategy using all the different data sets and the incorporation

of significant factors are discussed. Applications of this visibility model form the

research in Chapters III and IV.

In Chapter III, we discuss the application of the encoder-based packet

loss visibility model to packet prioritization. We present the experiment results

comparing the visibility-based prioritization method with others.



15

In Chapter IV, we discuss the application of the encoder-based packet

loss visibility model to unequal error protection. We formulate the RCPC rate

allocation problem as an integer programming problem. Several different algo-

rithms to find the solution are discussed. We discuss the simulation results of our

algorithms, and compare our algorithm with one in the literature.

In Chapter V, we develop a network-based packet loss visibility model.

The subjective tests are described. We discuss self-contained factors that relate to

packet loss visibility, and the models based on these factors.

In Chapter VI, we discuss the application of the network-based packet loss

visibility model to packet dropping. We propose a multiple packet loss algorithm

using measurements obtained by the network-based packet loss visibility model.

Simulation results are discussed.

In Chapter VII, we develop a network-based packet loss visibility model

for whole frame loss. The setup of the subjective experiment is introduced. We

cover the analysis of data, the whole frame loss modeling process and feature

selection.

In the Conclusions section, we summarize the contributions of this dis-

sertation, and discuss potential future work. We note that partial conclusions are

also given at the end of each individual chapter.



II

Background: Encoder-based

model building

In this chapter, we provide a background introduction on works related

to the development of the packet loss visibility model.

The research in [24] studied the problem of predicting the visibility of

individual packet losses in MPEG-2 bitstreams. Packet losses were introduced in

MPEG-2 bitstreams and concealed using zero-motion error concealment (ZMEC).

Viewers were asked to observe the videos and respond to the visible glitches that

they notice. Using the subjective test results and a set of factors that were ex-

tracted from the videos, the Classification and Regression Trees (CART) algo-

rithm [71] was applied to classify the losses as visible or invisible. This work was

extended in [25] and [26] to model the probability of packet loss visibility using

a generalized linear model (GLM) [68]. The visibility for H.264 packets was dis-

cussed in [27]. Visibility models specifically for individual and multiple packet

losses based on RR factors were derived.

In all these studies, the main factors are based on encoding information

within a slice (packet), such as motion vectors, residuals, and number of inter parti-

tions. The work in [28] focused more on exploring features of the video frames in the

pixel domain: encoded signal, decoded signal, and the error between them. Those

16
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factors are not only considered in the scope of a slice, but also for its neighboring

slices, both spatially and temporally. For example, the work considered both the

temporal and spatial edges induced by a packet loss, and also the error duration.

In addition, [28] obtained a generic model that predicts the visibility of packet loss

for two compression standards and three decoder concealment techniques with-

out prior specification of either the standard or the concealment technique. The

work in [29] considered factors related to the proximity of a scene cut and camera

motion, and found their effectiveness to predict the visibility of packet loss. The

Patient Rule Induction Method (PRIM) [72] was used to understand when the

packet loss will be very visible and very invisible.

In this chapter, we discuss a new packet-loss visibility model based on

a more general strategy for factor inclusion than in [28, 29]. There are many

differences between this work and previous work [26], which used data from a single

codec (MPEG-2), video resolution (720×480), GOP structure (IBBP), and error

concealment method (ZMEC). This chapter uses data from multiple codecs, video

resolutions, GOP structures, and error concealment methods. Also, the visibility

model in [26] uses features which are specific to that GOP structure(IBBP). In

this chapter, the GOP-specific variables are avoided. So the current model allows

a far more generalized use, due to both the data used to build the model, and the

choice of factors for prediction.

This chapter is organized as follows: Section II.A describes the exper-

iment settings for the three different subjective tests and the variety of settings

used for video encoding. Section II.B discusses constraints on factor extraction.

Section II.C introduces the attributes of packet loss that can be extracted from the

encoded signal, the decoded signal, and the error between them, to predict packet

loss visibility. The measurements of packet loss are explained in terms of required

information about the video, computational complexity and factor attributes. In

Section II.D, we illustrate the GLM model building strategy using all the different

data sets and incorporate significant factors.
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II.A Subjective datasets

The major purpose of this work is to develop a generalized and robust

visibility model for packet loss impairments. Therefore, the work considers the

results of three prior subjective experiments [26, 27, 73] in which the video clips

are generated by using various codecs and settings as summarized in Table II.1.

The data sets used are the same as in [29].

Tests 1 and 2 use videos compressed by MPEG-2 at spatial resolution

720 × 480 with an adaptive GOP structure in which an I-frame is inserted at each

scene cut. In these videos, there are usually two B-frames between each reference

frame, and the typical GOP length is 13 frames. However, each GOP ends with

a P frame and there are no B-frames between the final P-frame of one GOP and

the first I-frame of the next GOP. Test 3 uses videos encoded by H.264/AVC

extended profile (JM 9.1) at spatial resolution 352 × 240 with a fixed IBPBPB-

type GOP structure of 20 frames. The encoder in this case uses each I-frame of the

current GOP as a long-term reference frame. For P frames, a long-term reference

frame and a short-term reference frame (previously-coded P frame) are used for

motion compensation. B frames use the future P frame and either the long-term

or short-term reference frame for bidirectional prediction. Test 3 does not enable

the Flexible Macroblock Ordering (FMO) functionality in H.264. An important

application of the desired visibility model is for high-quality video transmission

over mostly reliable networks, where there are few, if any, visible compression

artifacts and only isolated packet-loss events. Therefore, the encoding rates for all

videos in the three tests were set such that there are no obvious encoding artifacts.

This allows us to concentrate on impairments induced by packet loss. H.264 videos

have one slice (a row of macroblocks) per Network Adaptation Layer Unit (NALU)

by default, and each packet loss is equivalent to the loss of one slice. For MPEG-2

videos, the generic packet sizes are explored, by recognizing that a large variety of

packet sizes can be accommodated by considering the loss of one slice, two slices
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(where a loss affects a slice header) or a full frame (where a loss may affect a

picture header).

The main difference among the decoders is the concealment strategy,

which is the most important factor influencing the initial error induced by a packet

loss. Test 1 uses a default error concealment typical of a software decoder. The

concealment uses the 2nd previous frame (previous to previous) in display order.

This is because of the way the display buffers are updated. There are two display

buffers - one is active for display while the other buffer is getting overwritten with

the new frame getting decoded. When a slice is lost, the memory area correspond-

ing to that slice will not be updated and so it will be an automatic concealment

from the 2nd previous frame. Test 2 uses zero-motion error concealment (ZMEC),

in which a lost macroblock is concealed using the macroblock in the same spa-

tial location from the closest prior reference frame in display order. Test 3 uses

Motion-Compensated Error Concealment (MCEC) [27], which incurs a lower ini-

tial error compared to ZMEC [24, 25, 26]. The MCEC algorithm estimates the

motion vector and the reference frame for the lost macroblock and conceals it with

the macroblock predicted using the estimated motion vector. Motion compensa-

tion in H.264/AVC can occur at different levels from the macroblock level to the

smallest block level (4 × 4 pixel block). Accordingly, each macroblock can have

a different number of motion vectors ranging from 1 to 16. These motion vectors

can reference different reference frames because of multiple frame prediction. A

set of motion vectors is formed from motion vectors of blocks around the lost mac-

roblock. The frame that is referenced the most number of times in the set among

all the reference frames is selected for concealment. The estimated motion vector

is the median of all the motion vectors in the set that refer to this selected frame.

The improved performance of MCEC can be seen from Table II.1. In Test 3, both

the number of viewers observing each packet loss, and the initial MSE (IMSE),

are reduced compared to Tests 1 and 2. Note that one common feature for the

error-handling strategies of all the three decoders is that the video decoder only



20

Table II.1: Summary of subjective tests’ parameters and their datasets

Test 1 [73] Test 2 [26] Test 3 [27]
Spatial resolution 720x480 720x480 352x240
Frame rate (fps) 30 24 30 30
Duration of
video in test
(minutes) 7.3 8.9 72 36

Compression
standard MPEG-2 MPEG-2 H.264

GOP structure I-B-B-P- I-B-B-P- I-B-P-

I-frame insertion
scene

adaptive
scene

adaptive fixed
GOP length ≤ 13 ≤ 15 ≤ 13 20

concealment default ZMEC MCEC

Losses 108 107 1080 2160
Losses in B-frames 14% 14% 50%
Full-frame losses 20% 30% 0%

Mean num. viewers
who saw each loss 4.56 5.13 3.11 1.32
Null Pred. error 0.14599 0.12236 0.041571

Initial Mean Sq.
Error (IMSE) 5.245 3.919 1.708

processes slices that are completely received.

The videos used in each test are highly varied in motion and spatial

texture. They contain a wide variety of scenes with different types of camera

motion (panning, zooming) and object motion. The high motion scenes include

bike racing, bull fighting, dancing and flowing water. The low motion scenes

include a slow camera pan of geographical maps, historic buildings and structures.

The videos also have scenes with varying spatial content such as a bird’s eye view

of a city, a crowded market, portraits, sky and still water. The signal attributes

of per-frame mean, variance, mean motion-vector length, and residual energy after

motion compensation are all statistically identical across the three tests. The video

content in Test 3 is identical to half the video content in Test 2, while the content

in Test 1 is distinct and includes some content from film encoded at 24 fps.
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The purpose of these subjective experiments is to obtain the ground truth

on the visibility of packet losses. In each of these three tests, the viewers’ task is

to indicate when they saw an artifact, where an artifact is defined simply as a

glitch or abnormality. All the subjective tests were single stimulus tests, which

means that the viewers were only shown the videos with packet losses and not the

original videos. A single stimulus test mimics the perceptual response of a viewer

who does not have access to the original video, which is a natural setting for most

applications. For each of the three tests, exactly one packet loss occurs in the first

3 seconds of every 4-second time slot, and the last second in the slot has no losses.

This isolates the visual effect of one packet loss from another, and provides the

viewer time to respond to the current loss before the next loss occurs. This was

not intended to be a realistic simulation of a real network, rather, it was intended

to provide information on the visibility of individual packet losses. However, the

experimental section shows that the model is robust to various packet loss rates

and to losses which may not be isolated. The distributions of the losses in the

three tests are different. In Test 1, roughly 1/7th of all losses were forced to be

in B-frames, 1/7th in I-frames, and 5/7th in P-frames, and roughly 20% of losses

caused an entire frame to be lost. In Test 2, there is a similar ratio of losses in

I/B/P frames, and roughly 30% of losses cause an entire frame to be lost. In Test

3, roughly half of the losses are in B-frames and about 5% of losses are in I-frames.

During the subjective test in all three tests, each packet loss was evaluated

by 12 viewers. No more than one viewer for each packet loss was an expert viewer.

A 1-minute pilot training video was shown to viewers, before the actual test, to

help them understand the task and attain a basic level of expertise. Viewers were

told that they will watch videos which are affected by packet losses. Whenever

they see a visible artifact or a glitch, they should respond by pressing the space

bar. They were asked to keep their finger on the space bar to minimize response

time and ensure that this task did not take their attention away from the monitor.

All tests were conducted in a well-lit office environment. Viewers were positioned
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approximately 6 picture heights from the CRT display. Based on comments from

viewers after the tests, the full-color full-motion video was sufficiently compelling

that they were immersed in the viewing process rather than searching for every

artifact.

The output of the subjective test was a set of files containing the times

that the viewer pressed the space bar relative to the start of the video. Once

gathered, the data was processed as in [26] to obtain viewers’ Boolean responses

corresponding to whether they saw a loss or not. The ground-truth packet visibility

was calculated as the number of viewers who saw the loss divided by 12.

II.B Constraints on factor extraction

The goal of the encoder-based packet loss visibility model is to describe

the impact of losing this specific packet during transmission. Factors needed by the

visibility model can either be extracted from the complete loss-free bitstream on

the fly at the server when needed for transmission, or pre-computed and stored with

the specific packet in the server. Any factors that depend on the uncompressed

video must be computed at the encoder and sent to the server on a reliable channel

along with the compressed video. However, factors that depend on the compressed

video can be computed either at the server or at the encoder; the choice of where

is up to the system constraints. However, in this work, to minimize the bandwidth

between encoder and server that is required for these RR factors, only those based

on the uncompressed video will be computed at the encoder. However, since the

primary functions of the server are streaming and traffic shaping, factors computed

here should not require excessive computation. In particular, any factors related

to the propagation or accumulation of errors due to packet loss are not suitable to

be computed here.

It is necessary to assume some knowledge of what concealment strategy

is implemented by the actual decoder. For example, if using motion-compensated
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error concealment, the estimated motion depends on the motion of the neighboring

received packets.

Section II.C describes the factors chosen to predict the visibility of packet

loss, and indicates for each factor both whether it must be computed at the encoder

or could be computed at the server.

II.C Attributes of packet-loss impairments

To create a versatile model for packet loss visibility, it is crucial to un-

derstand the types of impairments induced by a packet loss, and whether these

impairments depend on (a) the codec and its parameters, (b) the packetization

strategy, (c) the decoder error concealment and (d) the video content. In this

section, these issues are explored by describing attributes that affect the visibility

of packet loss impairments and the associated measurements. The following are

defined to facilitate the discussion:

1. f(t): the original signal of the uncompressed video frame at time t,

2. f̂(t): the compressed signal,

3. f̃(t): the decompressed signal (with possible packet loss), and

4. e(t) = f̂(t)− f̃(t): the error signal.

II.C.1 Encoded signal at location of loss

First, the attributes of the encoded signal at the location of the packet

loss are described. For the encoded signal f̂(t), the tendency of human observers

to track moving objects with their eyes may enhance visibility of packet loss in

smoothly moving regions, yet local signal variance and motion variability may hide

the packet loss. Texture masking, luminance masking, and motion masking may

each reduce visibility of the packet loss. In a high-quality encoding, these features
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of the encoded signal are essentially equal to those of the original uncompressed

signal. These signal attributes do not depend on the compression standard.

Motion information is considered to be an underlying feature of a video,

independent of the compression algorithm. Therefore, the following RR signal

descriptors related to motion information directly are measured from the uncom-

pressed signal f(t). For each macroblock, its motion vector is measured by forward

motion estimation from the previous frame. For each packet, MOTX and MOTY

are the mean motion vectors in the x and y directions over all MBs in the packet.

Also, MotionVarX and MotionVarY are the variances of the the motion vectors

in the x and y directions over the macroblocks in the packet. We define a high-

motion descriptor HighMOT to be true if MOTM=
√

MOTX2 + MOTY 2 >
√

2. ResidEng is the average residual energy after motion compensation within a

packet. The above motion-related descriptors were also considered in [26]. Finally,

SigMean and SigVar are the mean and variance of the signal f(t) over the MBs

in a packet.

II.C.2 Encoded signal surrounding location of loss

The attributes of the encoded signal f̂(t) surrounding the location of

the packet loss can also affect visibility. For a packet loss after a scene cut, the

impairments can be masked by the change of the scenes. This is called forward

temporal masking and it decreases visibility of packet loss. Backward temporal

masking also decreases the visibility of a packet loss before a scene cut [29]. In

addition, when an entire frame is lost immediately at the start of a new scene cut

to a still (low motion) scene, even though the still scene will be concealed using

a frame from the previous scene, leading to a large MSE, the impairment may be

invisible. The low motion in the new scene does not change the displayed images

very much, and the new scene may appear to start at the next I-frame [74]. In

addition to scene cuts, camera motion is also important to packet loss visibility.

Viewers are likely to follow, or track, consistent camera motion. This will enhance
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the visibility of temporal glitches.

Scene- and reference-related factors were examined in [29] using exploratory

data analysis. These factors are extracted from the encoded video signal f̂(t),

without losing any accuracy relative to the original uncompressed video. Many

techniques exist to detect scene boundaries, including those in [75] and [76]. Each

packet loss is labeled by the distance in time between the frame first affected by

the packet loss and the nearest scene cut, either before or after. This quantity is

DistFromSceneCut, and is positive if the packet loss happens after the closest

scene cut in display order, and negative otherwise. DistToRef per MB describes

the distance between the current frame (with the packet loss) and the reference

frame used for concealment. This variable is positive if the frame at which the

packet loss occurs uses a previous (in display order) frame as reference, and nega-

tive otherwise. FarConceal is true if MaxDistToRef (maximum of |DistToRef|
in a slice) ≥ 3. In this inequality, MaxDistToRef has units of frames. A Boolean

variable OtherSceneConceal is TRUE if |DistFromSceneCut|< |MaxDistToRef|,
where the compared variables must be of the same sign (same direction). In this

inequality, the compared variables have units of seconds. If the compared variables

have different signs, OtherSceneConceal is FALSE. OtherSceneConceal describes

whether the packet loss will be concealed by an out-of-scene reference frame which

will increase the visibility of packet loss. To account for the depressed visibility

immediately before the scene cut, a Boolean variable BeforeSceneCut is defined,

which is TRUE if −0.4sec < DistFromSceneCut < 0sec [29]. Depressed visibility

after a scene cut requires that the packet loss not only appear close to the scene

cut, but also disappear quickly after the scene cut. Therefore, to account for the

depressed visibility immediately after a scene cut, the Boolean variable After-

SceneCut is defined, which is TRUE when both OtherSceneConceal is FALSE

and 0sec < (DistFromSceneCut + Duration) < 0.25sec.

Camera motion information can also be extracted from the compressed

video using a number of techniques, including those in [77]. In this work, scenes are
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classified based on four camera-motion types: still, panning, zooming, or complex

camera motions. Table II.2 indicates the distribution of camera motion both in the

complete videos shown to viewers, as well as the fraction of losses which occurred

in each type of camera motion. Significantly fewer viewers saw packet loss in still

scenes than in panning or zooming scenes. Therefore, NotStill is defined to be

TRUE if motion type is not still.

II.C.3 Decoded signal

The decoded signal, f̃(t), at the location of a packet loss has several

attributes that affect packet-loss visibility. Due to imperfections in the error con-

cealment of the lost packet, there can be spatial (vertical or horizontal) or temporal

discontinuity with the neighboring MBs or frames; these are called edge artifacts.

A lost frame is likely to introduce temporal edges and a lost slice is likely to intro-

duce both temporal and horizontal edges into the decoded signal. For example, a

moving vertical bar that is continuous in the encoded signal may become disjointed

in the decoded signal due to the impairment. Vertical edges may also be intro-

duced with FMO, or when the impairment propagates into subsequent frames. All

of these edge artifacts are likely to increase the visibility of the impairment. SBM,

Slice Boundary Mismatch, describes the impact of packet loss on slice boundaries.

Methods to measure SBM can be found in [28, 29].

II.C.4 Error signal

The error caused by the impairment, e(t), is completely characterized by

its support and its amplitude. The error support is characterized by spatial sup-

port (size, spatial pattern and location) and temporal support (duration). The

size is controlled by the packet size as well as the frequency of synchronization

codewords like slice start codes. The spatial pattern of the error can be governed

by the FMO setting in H.264. The error duration is dominated by the frequency

of I-frame or I-block information. The initial amplitude of the error at the time
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of the loss depends more heavily on the underlying video content and the decoder

concealment strategy than on the compression standard itself. The effectiveness of

error concealment strategies greatly depends on the content, since some content is

more easily concealed than others; however, it can also be improved with a care-

ful selection of encoding parameters. For example, concealment motion vectors in

MPEG-2 I-frames are very helpful. The error amplitude may decrease as a function

of time even when no I-blocks are present due to the motion-compensation pre-

diction process [78]. In addition, using long-term prediction in H.264 can improve

error attenuation [79].

To measure these attributes of the error signal, it is straightforward to

extract from a lossy bitstream the exact error size (SpatialExtent), spatial pat-

tern, vertical location within the frame (Height), and temporal duration (Dura-

tion). SXTNT2 is true when two consecutive slices are lost (SpatialExtent=2),

SXTNTFrame is true when all slices in the frame are lost, and Error1Frame is

TRUE if the packet loss lasts only one frame (Duration=1).

MSE and SSIM (Structural Similarity Index) are commonly used to char-

acterize the amplitude of the error. For an accurate evaluation of quality degra-

dation due to both compression artifacts and packet loss, these must be computed

at the encoder, since they depend on f(t). However, we only consider the quality

degradation due to packet loss without encoding artifacts. Therefore, when cal-

culating MSE and SSIM, f̂(t) is the reference video instead of f(t). As a result,

these can be computed at the server.

The MSE directly measures the error due to packet loss, e(t) = f̂(t)−f̃(t),

and is defined for one frame, t, as

MSE =
1

MN

M∑
i=1

N∑
j=1

eij(t)
2 (II.1)

where M×N is the image video resolution, and i and j are the indexes in the hori-

zontal and vertical directions of the frame. MSE characterizes the error amplitude.
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The SSIM for one frame is defined as

SSIM(f̂ , f̃) =
(2µf̂µf̃ + C1)(2σf̂ f̃ + C2)

(µ2
f̂

+ µ2
f̃

+ C1)(σ2
f̂

+ σ2
f̃

+ C2)
(II.2)

where µ and σ are the mean and the standard deviation of the corresponding sig-

nal, σf̂ f̃ is the cross-correlation coefficient between f̂ and f̃ , and C1 and C2 are

constants [1]. SSIM captures the structural statistics of f̃(t) at the location of the

impairment through its mean and variance. However, as with MSE, SSIM char-

acterizes error amplitude but neither error size nor duration. SSIM also does not

directly measure the decoded impairment attributes (like horizontal and temporal

edges).

Due to the predictive nature of video coding, if a packet is lost, an er-

ror may propagate to the predicted frames. To completely describe the error,

one must calculate the errors induced on all affected frames. CumulativeMSE

(CumulativeSSIM) is the sum of MSE (SSIM) over all the frames that are af-

fected by a packet loss. To compute these at the encoder, it is necessary to decode

once for every single possible packet loss. Thus, accumulating these factors across

all affected frames for every possible packet loss dramatically increases the com-

putational complexity. This is prohibitively expensive, and thus neither Cumula-

tiveMSE or CumulativeSSIM are considered in the visibility model.

Instead, only the initial error induced by a packet loss within the frame

where the packet loss occurs is considered. Two measurements are useful: initial

MSE and initial SSIM. These factors can be pooled in two ways. The first is IMSE

(or ISSIM), the MSE (or SSIM) averaged over the entire frame that is initially

impacted by the loss. Another pooling strategy for the initial MSE or initial SSIM

is to consider extrema over a small spatial window. MaxIMSE is defined as the

maximum per-MB MSE over all MBs in the initial impairment, and MinISSIM

is defined as the minimum per-MB SSIM over all MBs in the initial impairment.

MaxIMSE was shown to be useful in [27]. An equation to compute a per-MB

initial SSIM in an RR framework was presented in [28] using the local means and
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Table II.2: Distribution of camera motion in videos and in losses

Camera motion type % Frames # Losses % Losses

Mean viewers
noticing a packet

loss among 12 people
Still 63.7 2380 68.9 1.31
Panning 23.6 814 23.6 3.95
Zooming 6.7 169 4.9 3.99
Complex 1.8 92 2.7 2.62

variances of the encoded and decoded signals, as well as their MSEs. Table II.3

summarizes the factors.

II.D GLM model building approach on multiple data sets

In this section a Generalized Linear Model (GLM) is built on the data

sets. The background of GLMs is introduced in Chapter I. For the prediction

factors, in order to reduce the dependency on the RR factors sent from the encoder,

as discussed in II.B, in this work only the motion and the residual information are

used. CumulativeMSE and CumulativeSSIM are considered too computationally

intensive, and here the initial MSE and initial SSIM are used.

The subjective datasets available for training the model capture a wide

range of possible system configurations: different spatial resolution, compression

standards, coding parameters, and error concealment strategies. The RR and NR

factors described in Section II.C capture almost all of these variations. For exam-

ple, the effects of different GOP structures and lengths on packet loss impairment

can be partly described by temporal duration of the packet loss, as discussed in Sec-

tion II.C. The only exception is that neither the encoder nor the quality monitor

can know what error concealment strategy will be used by the decoder.

As noted in Table II.1, there is much less subjective data for default

concealment than for the other two concealment strategies, and the default con-

cealment produces more visible errors (as indicated in Table II.1 by the mean



30

Table II.3: Factors for predicting visibility, classified by its attributes, factor types

(FR/RR/NR), and whether the factor must be computed at the encoder or can

be computed at the server

Factor Attributes Factor Name Factor type

Suggested
Calculating

Point

Signal

SigMean, SigVar, MOTX
MOTY, MotionVarX

MotionVarY, ResidEng RR Encoder

Error
IMSE, ISSIM

MaxIMSE, MinISSIM RR Server
SpatialExtent, Duration, Height NR Server

Scene
DistFromSceneCut

BeforeSceneCut, AfterSceneCut RR Server

Concealment
reference

DistToRef, OtherSceneConceal
FarConceal RR Server

Camera motion NotStill RR Server
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number of viewers who saw each loss). There is most data for the MCEC, which

produces fewer noticeable errors. If the model were trained using samples chosen

randomly from the combined dataset, the resulting fit will be dominated by the

MCEC strategy. Therefore, models are trained using an equal number of samples

from each of the datasets, and then use cross-validation to evaluate the goodness

of fit and select the best model. Cross-validation [80] is commonly used for model

evaluation and to prevent over-fitting when data is sparse. A model is trained on a

fraction of the data (training set) and then tested using the remaining data points

(testing set). A partition like this is known as a fold, and it is repeated for different

folds with different training and testing partitions of the data. The training and

testing sets are to achieve equal representation from all datasets including Dataset

1, which has the fewest samples (215). Specifically for each fold, 159 samples from

each dataset are randomly chosen to fit a model using 159×3 training data. Also,

a testing set contains the remaining 56 samples from Dataset 1, the remaining 921

samples from Dataset 2, and the remaining 2001 samples from Dataset 3. The

model coefficients are estimated from the training set for given factors, and then

we evaluate the performance error of the fitted model in the jth fold using the

testing set as follows:

qj =
1

3

3∑

k=1




1

Nk

∑

ith packet loss
in testing set k

(pi − p̃i)
2)


 , (II.3)

where p̃i is the predicted fraction of viewers who saw the ith packet loss, and Nk is

the number of samples in the testing set of Dataset k. Four-fold cross-validation

is performed: the fitting process is run for a total of four times with four different

folds, therefore producing 4 fitted models and qj, j = 1, 2, 3, 4. This four-fold

procedure is repeated four times with four different random seeds. The average

performance error of these sixteen models is Q.

Q =
1

16

4∑
r=1

4∑
j=1

qr
j (II.4)
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Table II.4: Factors in the final model

Factors
Coeff. for

Final Model
Intercept 4.18061

log(1− ISSIM + 10−7) 0.22871
SXTNT2 -0.41208

SXTNTFrame -1.47672
Error1Frame -0.33009

log(MaxIMSE + 10−7) 0.27578
log(ResidEng + 10−7) -0.61219

HighMOT 0.18290
NotStill 0.73364

BeforeSceneCut -1.14434
OtherSceneConceal 2.08966
log(IMSE + 10−7) 0.30492

log(IMSE + 10−7)× FarConceal 0.25720

where the superscript r stands for the rth random seed.

For factor selection, Q is used to decide if a specific factor is significant

and should be included in the model: for each considered factor added to the

model, Q is calculated by the 4-seeds-4-folds GLM modeling process. A factor is

included only if the model with that factor included has smaller Q than the model

without that factor. By the same idea, factors are excluded from the model if it

has lower Q without them. To obtain the factor coefficients, fitting is used from

the seed that achieved the lowest performance error. The factors and coefficients of

the final model are summarized in Table II.4. Since the model is developed based

on data from different GOP types, and the factors are not GOP-type-specific, this

packet loss visibility model is versatile enough to be applied to video compressed

with various GOP types.
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II.E Conclusion

In this chapter, we discuss a generalized linear model for packet loss vis-

ibility applicable to different GOP structures. The contributions of this chapter

are that, unlike earlier models, this visibility model is developed on datasets from

multiple subjective experiments using different codecs, different encoder settings,

and different decoder error concealment strategies. So the model has broad appli-

cability.
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Packet Prioritization using the

encoder-based model

The visibility model described in Chapter II allows an encoder to estimate

the importance of each individual compressed video packet. How can we exploit

this estimate? In Chapter IV, we will use the estimate for unequal error protection.

In the current chapter, we apply the visibility model from Chapter II to packet

prioritization for a video stream. Before we send video packets into a lossy network,

we estimate the packet loss visibility using the encoder-based model. Based on the

values, we insert high or low prioritization bits into packets. Using the packet

priorities, during network congestion, an intermediate router can intelligently drop

low-priority packets.

Several previous works store cumulative MSE information as a “hint

track” for the packet, and the router, by inspecting the information, can choose to

drop packets with lower distortion [30, 31, 32, 35, 36]. We compare our visibility-

based packet prioritization strategy with the Cumulative-MSE-based prioritization

method and the widely-used Drop-Tail policy using NS-2 (Network Simulator) [39].

This chapter demonstrates the utility of the model in a general packet prioritiza-

tion application; the application uses various GOP structures, including ones which

were not used in the subjective experiments used for building the model. The com-

34
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parisons are made using the well-known perceptual quality metric VQM [4].

This chapter is organized as follows: Section III.A presents the design

for the packet dropping experiment. Section III.B presents the experiment results

comparing our visibility-based prioritization method with others. Section III.C

concludes the chapter.

III.A Experimental design

The generalized-GOP visibility model can be used in different applica-

tions, such as packet prioritization, unequal error protection and network quality

monitoring. In this section we present how the visibility model can be used to pri-

oritize packets, and how this prioritization scheme helps an intermediate router in

a congested network decide which packets should be dropped to minimize degrada-

tion in the quality of the transmitted video stream. In particular, we demonstrate

that while the visibility model was designed for high-quality video over a mostly

reliable network, it is still applicable when the video is more heavily quantized and

there are more packet losses.

Major applications of packet classification are packet prioritization for

a differentiated-services network [30, 31, 32], packet scheduling in the transmit-

ter [33, 34] in which video packets are sent/resent by an optimal schedule based

on the packet classification, transmission delay and network status etc., and packet

discarding at an intermediate router [35, 36], in which packets are discarded, in

the event of network congestion, based on packet classification and bandwidth of

the outgoing link from the router. In particular, an optimization algorithm is de-

veloped in [36] to be run in the router to optimally discard less important packets.

However, it is technically difficult to implement complex algorithms (such as rate-

distortion optimization) in current intermediate routers. Also for all the methods

mentioned above, the algorithms utilize the cumulative MSE, which is computa-

tionally expensive to measure since it includes the MSE due to error propagation.
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Therefore, our aim is to develop an efficient packet dropping policy for

the router. We propose the perceptual-quality based packet prioritization policy,

denoted PQ, designed by the visibility model that prioritizes packets. At the

server, we set a packet to be low priority when its visibility is less than 0.25 as

predicted by the model, and high priority otherwise. The 1-bit high/low priorities

can be signaled in the packet itself. The router can be therefore designed to

drop packets of low priority to reduce traffic during network congestion. The

intermediate router with this capability is realizable in a DiffServ (Differentiated

Services) network [81]. Furthermore, instead of the cumulative MSE, the initial

MSE, which only considers errors in a frame in which the packet is lost, is used

for the factor consideration.

The Hint Track method in [35, 36] can not directly be used as a basis

of comparison for our method. On the one hand, we consider their optimization

algorithm too complicated to run in today’s routers. On the other hand, the packet

dropping policy in [35, 36] can not be entirely implemented at the server which

has a much better computational ability, since it uses knowledge of the router’s

instantaneous outgoing bandwidth, which is not accessible to the server. However,

we can compare our algorithm with their notion of using cumulative MSE. A one-

bit prioritization scheme, called cMSE (Cumulative MSE prioritization method), is

designed. The cumulative MSE for a particular packet is measured by summing the

MSE in all frames in a video affected by the packet drop, and a packet is assigned

high priority if the cumulative MSE due to its loss is larger than a threshold, and

low priority otherwise. The threshold is derived such that we have approximately

the same number of high-priority packets for both cMSE and PQ prioritization. We

also compare to the Drop-Tail (DT) policy, a widely-implemented packet dropping

approach, which drops packets at the end of the buffer queue in the router when

the network is congested. The different policies are evaluated based on the received

video quality, measured by VQM.

We simulate the experiment using NS-2 [39] for a network topology shown
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Figure III.1: Topology of experimental network

in Fig. III.1. Two videos (variable-bit-rate encoded at r1 and r2 bps on the average)

are transmitted simultaneously from sources S1 and S2 to destination D. Packets

belonging to both videos compete for space in the queuing buffer (of size BF

bits) at intermediate node I. The bottleneck link’s bit-rate is constant at R bps.

When instantaneous rates of S1 and S2 sum to more than R, packets accumulate

in the buffer. If this condition persists, the buffer will eventually overflow and

packets are dropped in accordance with a policy. At destination D, the quality of

received videos is evaluated using VQM, which ranges from 0 (excellent quality)

to 1 (poorest possible quality).

Six videos (two videos for each motion type - still, low and high motion)

of 10s duration are coded at R/2 bps using the H.264/AVC JM codec, with MCEC

implemented in the decoder of the server and the receiver. Each simulation with

a pair of source videos produces a pair of corresponding received videos for each

policy. We form 9 pairs from the six videos such that a balanced representation

(each type of video competes twice with all the three types) is obtained. For each

of the received videos (18 from 9 pairs), a policy wins if its VQM score is lower

than the other policy used for comparison, and a tie occurs when the policies

have identical VQM scores. This procedure is repeated for each (R,BF) setting of

interest. To show the effectiveness of our policy across different GOP structures,

we conducted experiments with IPPP, IBBP and Pyramid (Fig. III.2) encoding

structures, and the numbers of reference frames are 1, 2 and 4 respectively. I-frames

are repeated every 24 frames for all three of these different GOP structures.
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Figure III.2: Pyramid GOP structure; A B-frame in upper case can be used for

reference while the ones in lower case can not. The I frame is coded first, the P

frame is coded second, and then the numbers indicate the coding order within the

group of B/b frames.

III.B Experimental results

III.B.1 PQ comparison with DT and cMSE

Table III.1 shows the comparison results for different buffer sizes when

the bottleneck rate is fixed at R=1200 kbps. A larger buffer size is used for

Pyramid because the effect of out-of-display-order coding is more prevalent than

the other two GOP structures and hence its bitstream is burstier. To quantify the

performance comparison, we define comparison ratio =
∑

#wins/
∑

#losses for

each GOP-Competitor comparison. The proposed PQ prioritization significantly

outperforms DT with comparison ratios of 5, 2 and 1.27 for IPPP, IBBP and

Pyramid, respectively. We can observe from the table that this trend occurs across

all settings of buffer size. When compared with cMSE, the proposed method has

a large advantage for Pyramid and IBBP with comparison ratios of 6.14 and 5

respectively. However, in the case of IPPP, the proposed method has a slight

disadvantage (comparison ratio of 0.687) when compared with cMSE. The average

of the comparison ratios from the six GOP-Competitor comparisons is as high

as 3.34, which means on average we perform considerably better than the other
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policies. We also did similar experiments at a lower fixed bottleneck rate (R=800

kbps) and the results can be seen in Table III.2. We observe a similar trend as

in Table III.1 (we win for 5 GOP-Competitor comparisons and lose for 1). We

continue to have a good average of comparison ratios (2.01) although it is lower

than that in Table III.1 (3.34). The reason we have a lower average of comparison

ratios for a lower fixed bottleneck rate could be the fact that the data used for

building the model were collected from videos with no obvious coding artifacts,

but the model is being applied to videos at lower rates which do have obvious

coding artifacts. However, the model is still capable of prioritizing the video well

and outperforms other policies.

Table III.3 compares the performance of the different policies for a variety

of bottleneck rates while the buffer size is fixed. An important observation, again,

is that we perform relatively better at a higher encoding rate (R=1200 kbps) than

at lower rates. Nevertheless, the performance of the model is quite robust at

lower encoding rates. For IBBP, the proposed PQ prioritization performs very

well at all encoding rates, and the comparison ratios are 1.57 over DT, and 3.9

over cMSE. For Pyramid, we have a good comparison ratio over cMSE (2.17),

while the comparison ratio is smaller (1.07) when compared with DT. For IPPP,

we outperform DT with a comparison ratio of 4.40, but we lose slightly against

cMSE (0.741). Table III.4 shows very similar comparison results for a higher

fixed buffer size. The average of comparison ratios for these two tables remains

almost the same (2.31 for Table III.3 and 2.39 for Table III.4). This shows that we

consistently perform better than other policies across different fixed buffer sizes.

From Tables III.1, III.2, III.3 and III.4, an interesting observation is

found: for videos of Pyramid and IBBP, PQ outperforms cMSE even more than

it outperforms DT. This is interesting because DT is a simplistic policy with no

consideration of video content, and one would expect a policy that takes video

content into account to do better. To understand why DT does as well as it does,

we compared DT, which drops tail packets during congestion, against DropRan-
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dom (DR), which randomly drops any buffered packet during congestion. For all

network conditions, DT outperformed DR for those GOP structures which have B

frames (comparison ratio =
∑

#wins/
∑

#losses = 12.81 over all cases in Pyra-

mid, and 5.42 in IBBP), and it did worse (comparison ratio = 0.53 over all cases)

for the GOP structure (IPPP) which has no B frames. To explain the better perfor-

mance of DT than DR in GOP structures with B frames, let us consider the IBBP

structure. The encoder must set aside the two B frames in order to encode the P

frame, and then it can encode the two B frames. Assuming frame encoding time is

much smaller than frame display time, we can consider that the encoder releases

all the bits at once, corresponding to the P frame followed by the two B frames.

The router queueing buffer is therefore sitting with B frame bits at the tail. After

the encoder waits for the next three frames, it processes and releases their bits all

at once, again the router queueing buffer will be sitting with B frame bits at the

tail. The DT policy almost always finds B-frame packets at the tail. Dropping B

frame packets is of course desirable because there is no error propagation. This

is the reason why DT can perform well and does better than DR for the GOP

structures with B frames (IBBP or Pyramid). The advantages of DT in IBBP and

Pyramid can overtake cMSE even though cMSE is much better than DR in every

case of our network scenarios and GOP structures (the comparison ratio=5.60 in

Pyramid, 3 in IBBP and 3.34 in IPPP). However, the advantages of DT in IBBP

and Pyramid are not enough to overtake the visibility-based prioritization.

The PQ prioritization works well in most of the cases (five out of six

GOP-Competitor comparisons) in each of the four tables. In particular, the pro-

posed policy is always better than DT, a widely implemented dropping method in

existing intermediate routers, and is better than cMSE for two out of three cases.

The reason that we are not better than cMSE in IPPP is that all frames in this

GOP structure are reference frames. Hence an important factor, Error1Frame (in-
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dicating whether the loss last only for one frame), in the model is the same for all

frames and can not be used to distinguish the importance of a packet. Therefore,

in IPPP, we perform slightly worse than cMSE. However, cMSE is a very compu-

tationally expensive approach, since it is based on cumulative MSE which has to

account for the MSE due to error propagation. Instead of cumulative MSE, the

visibility model just uses initial MSE (MSE in the frame where the packet loss

occurred) which is computationally trivial.

Another performance comparison is illustrated in Figure III.3, where

average VQM scores among PQ, DT and cMSE over the competitions in Ta-

bles III.1, III.2, III.3 and III.4 are shown. We can see that on average, the VQM

scores obtained by PQ are lower (better) than those by DT and cMSE in different

comparison scenarios. We conclude that our PQ prioritization not only improves

more cases on video quality most of the time, as shown in Tables III.1 through III.4,

but also on average has lower (better) VQM scores over different comparisons.

Although the visibility model is built using data of isolated losses (one

packet loss for every four seconds, as discussed in chapter II), the model is quite

robust to different packet loss rates in the simulations for real networks. In these

experiments, depending on the buffer size and the transmission rate and the vari-

ability of the video content, packet losses occur with different degrees of bursty

behavior. The model does well consistently across different buffer sizes and trans-

mission rates. Note that in our experiments, the buffer sizes are chosen such that

the packet loss rate has a reasonable range for video quality; our packet loss rates

(0.7%-20%) are similar to those investigated in the literature (e.g., [18, 20]).

III.B.2 Packet loss rate for PQ, cMSE and DT

In addition to VQM score comparisons for various network conditions

detailed in subsection III.B.1, we also analyze the packet loss rate (PLR) induced

by each of the three dropping policies (PQ, DT and cMSE) for Pyramid, IBBP,

and IPPP in Figure III.4. A PLR value corresponding to a dropping method in a
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Figure III.3: Comparisons of average VQM scores among PQ, DT and cMSE over

the competitions in Tables III.1, III.2, III.3 and III.4
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Table III.1: Proposed PQ compared to DT and cMSE: Higher Fixed bottleneck

rate (R kbps) and varied buffer size (BF kbits). Average of comparison ratios=3.34.

W stands for Wins, L for Losses and T for Ties.

Pyramid (R=1200) IBBP (R=1200) IPPP (R=1200)

vs. DT
(comp.

ratio=1.27) W L T

vs. DT
(comp.

ratio=2) W L T

vs. DT
(comp.

ratio=5) W L T
BF=200 10 8 0 BF=80 12 6 0 BF=80 18 0 0
BF=400 9 9 0 BF=100 12 6 0 BF=100 13 5 0
BF=600 9 5 4 BF=120 12 6 0 BF=120 14 4 0

vs. cMSE
(comp.

ratio=6.14) W L T

vs. cMSE
(comp.

ratio=5) W L T

vs. cMSE
(comp.

ratio=0.68) W L T
BF=200 15 3 0 BF=80 16 2 0 BF=80 9 9 0
BF=400 16 2 0 BF=100 14 4 0 BF=100 7 11 0
BF=600 12 2 4 BF=120 15 3 0 BF=120 6 12 0

GOP is obtained by averaging the PLRs from corresponding (R, BF) pairs listed

in the tables from subsection III.B.1. Figure III.4 shows that the proposed PQ

prioritization drops slightly more packets than DT or cMSE on average. In spite

of the higher PLR values, our PQ performs well as shown in subsection III.B.1.

Also in each comparison, the bit-rate for the bottleneck link is the same for the

compared policies. Therefore, with higher PLR by PQ, we infer that the average

size of dropped packets with PQ is smaller than that of other policies. Our PQ

drops slightly more packets, but they are smaller-size visually unimportant packets,

and therefore PQ achieves a better perceptual video quality. This result also

indicates that traditional video quality assessments based on the PLR may not

relate well to perceptual video quality.

III.C Conclusion

We use the visibility model from Chapter II to prioritize video packets

and discard packets based on perceptual quality. Experiments done under diverse
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cMSE in different GOP structures.
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Table III.2: Proposed PQ compared to DT and cMSE: Lower Fixed bottleneck rate

(R kbps) and varied buffer size (BF kbits). Average of comparison ratios=2.01.

W stands for Wins, L for Losses and T for Ties.

Pyramid (R=800) IBBP (R=800) IPPP (R=800)

vs. DT
(comp.

ratio=1.21) W L T

vs. DT
(comp.

ratio=1.57) W L T

vs. DT
(comp.

ratio=3.5) W L T
BF=200 10 8 0 BF=80 11 7 0 BF=80 13 5 0
BF=400 7 7 4 BF=100 11 7 0 BF=100 15 3 0
BF=600 6 4 8 BF=120 11 7 0 BF=120 14 4 0

vs. cMSE
(comp.

ratio=2.5) W L T

vs. cMSE
(comp.

ratio=2.85) W L T

vs. cMSE
(comp.

ratio=0.459) W L T
BF=200 13 5 0 BF=80 14 4 0 BF=80 7 11 0
BF=400 10 4 4 BF=100 14 4 0 BF=100 5 13 0
BF=600 7 3 8 BF=120 12 6 0 BF=120 5 13 0

network conditions and GOP structures show that the PQ dropping performs

better than the policy using cumulative MSE as used in the Hint-Track method

in most cases, and outperforms the widely-implemented Drop-Tail in all cases.

Although the model is designed for high-quality video transported over a mostly

reliable network, the experiments show that the model performs well for videos

with various encoding rates. The analysis on packet loss rate across three different

dropping policies shows that our policy achieves a better visual quality by dropping

more, but perceptually unimportant, packets with smaller sizes. This emphasizes

that evaluating video quality based solely on packet loss rate is inaccurate.
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Table III.3: Proposed PQ compared to DT and cMSE: Lower Fixed buffer size (BF

kbits) and varied bottleneck rate(R kbps). Average of comparison ratios=2.31. W

stands for Wins, L for Losses and T for Ties.

Pyramid (BF=300) IBBP (BF=80) IPPP (BF=80)

vs. DT
(comp.

ratio=1.07) W L T

vs. DT
(comp.

ratio=1.57) W L T

vs. DT
(comp.

ratio=4.4) W L T
R=800 9 9 0 R=800 11 7 0 R=800 13 5 0
R=1000 9 9 0 R=1000 10 8 0 R=1000 13 5 0
R=1200 10 8 0 R=1200 12 6 0 R=1200 18 0 0

vs. cMSE
(comp.

ratio=2.17) W L T

vs. cMSE
(comp.

ratio=3.9) W L T

vs. cMSE
(comp.

ratio=0.74) W L T
R=800 13 5 0 R=800 14 4 0 R=800 7 11 0
R=1000 13 5 0 R=1000 13 5 0 R=1000 7 11 0
R=1200 11 7 0 R=1200 16 2 0 R=1200 9 9 0

terial as it appears in T.-L. Lin, S. Kanumuri, Y. Zhi, D. Poole, P. Cosman and

A. Reibman, “A Versatile Model for Packet Loss Visibility and its Application to

Packet Prioritization”, IEEE Transactions on Image Processing, vol. 19, No. 3,

pp. 722-735, March 2010. I was the primary author and the co-authors Prof. Cos-

man and Dr. Reibman directed and supervised the research which forms the basis

for Chapter III. The co-authors Dr. Kanumuri and Dr. Poole also contributed to
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Table III.4: Proposed PQ compared to DT and cMSE: Higher Fixed buffer size (BF

kbits) and varied bottleneck rate(R kbps). Average of comparison ratios=2.39. W

stands for Wins, L for Losses and T for Ties.

Pyramid (BF=600) IBBP (BF=140) IPPP (BF=140)

vs. DT
(comp.

ratio=1.5) W L T

vs. DT
(comp.

ratio=2.6) W L T

vs. DT
(comp.

ratio=3) W L T
R=800 6 4 8 R=800 13 5 0 R=800 14 2 2
R=1000 3 3 12 R=1000 11 7 0 R=1000 13 5 0
R=1200 9 5 4 R=1200 15 3 0 R=1200 12 6 0

vs. cMSE
(comp.

ratio=3.28) W L T

vs. cMSE
(comp.

ratio=3.5) W L T

vs. cMSE
(comp.

ratio=0.5) W L T
R=800 7 3 8 R=800 13 5 0 R=800 7 8 3
R=1000 4 2 12 R=1000 14 4 0 R=1000 5 13 0
R=1200 12 2 4 R=1200 15 3 0 R=1200 5 13 0



IV

RCPC rate allocation for

perceptual video quality

For videos transmitted in an error-prone network, it is necessary to pro-

tect the source bitstream. The sender can perform unequal error protection against

the bit errors from a wireless channel [46, 47, 48]. The research area in joint source

and channel coding has been growing rapidly [40, 41, 42, 43, 44, 45]. Joint source

and channel coding for progressively coded images/videos are studied in [52, 53].

To stop error propagation due to packet losses, combined consideration of channel

coding, source coding and intra updating intervals is necessary [49, 50, 51].

Most of the work concentrates on the situation where the video encoder

is scalable, and the measurement for packet importance is the MSE induced by

the packet loss. Here we consider non-scalable video streams pre-encoded and

stored. Also in this chapter, to correlate better with human perception, we use

the encoder-based packet loss visibility model from Chapter II to measure the per-

ceptual importance of each packet. We aim to optimally allocate rate-compatible

punctured convolutional (RCPC) codes to minimize the visual quality degrada-

tion when transmitting video over an AWGN channel, given a total rate budget.

With various packet sizes and distortions for each packet, we transform the origi-

nal problem into a binary-decision problem. This integer programming problem is

48
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first solved by the Branch and Bound method (BnB) [54]. The complexity of the

algorithm can be reduced by k-means clustering before using the BnB [56]. The

lower complexity algorithm can still provide comparable results. We next use the

subgradient method to search in the dual domain for the optimal RCPC channel

code rate allocation for each packet. The complexity is further lowered and we

can consider the full 13 RCPC codes and do not need to perform packet grouping

to obtain approximate solutions as we did. We also exploit the advantage of not

sending or not coding packets of lower importance. This boosts the performance

especially in worse channel conditions.

The idea of not channel coding and not sending the packets was also used

in [57], however, they consider a packet erasure channel, and optimal RS erasure

coding. Our work treats the same problem of optimal code rate allocation for

already encoded packets, but we consider a bit error channel and RCPC codes. The

problem is therefore to unequally protect the packets for a given outgoing channel

bit rate and channel SNR. The coding decision is based on both the distortion

induced by the packet, as well as the size of the packet. We will compare our

algorithms with one from [57].

The organization of this chapter is as follows. Section IV.A formulates

the RCPC rate allocation problem as an integer programming problem. In Sec-

tion IV.B, we discuss several different algorithms to find the solution. Section IV.C

discusses the simulation results. Section IV.D compares our algorithm with the

method from [57]. Section IV.E concludes the chapter.

IV.A RCPC rate allocation for expected packet loss visi-

bility

Using the model described in Chapter II, we can compute for each packet

the loss visibility. The visibility scores can be regarded as the visual importance

of each packet. If we assign a lower channel code rate to the packet, the proba-
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bility that the packet will be lost is lower. However, the lower code rate requires

more FEC (Forward Error Correction) bits. Thus it is important to find out the

best code rates to be allocated to each packet given a total bit budget and other

characteristics of the packets.

Assume we have N packets, where the ith packet has size Si and packet

loss visibility Vi, i = 1, 2, ..., N . We seek the optimal RCPC rate ri for the ith

packet from the RCPC candidate set {R1, R2, ..., RK}, so as to minimize the

end-to-end expected packet loss visibility, while the outgoing total rate budget

is constrained to be B. The packet error probability Pe depends on channel SNR,

packet size, and RCPC code rate selected for the packet. Each packet will be

appended with a 16-bit CRC for error detection. We include the CRC bits in the

packet size and assume perfect error detection. Whenever there is at least one

bit error in the packet after channel decoding, we discard the packet. Therefore,

Pe = 1− (1− Pb(SNR, ri))
Si where Pb(SNR, ri) (hereafter denoted Pb) is the bit

error probability after channel decoding for code rate ri. The optimization problem

of minimizing the expected packet loss distortion subject to the total bit constraint

can be formulated as:

min
r

N∑
i=1

Vi{1− (1− Pb)
Si} subject to

N∑
i=1

Si

ri

≤ B

ri ∈ {R1, R2, ..., RK}, i = 1, 2, ..., N (IV.1)

where r = [r1, r2, ..., rN ].

This problem can be recognized as a nonlinear integer programming prob-

lem, and we will discuss several different algorithms to solve this problem.

IV.B Solutions to the integer programming problem

IV.B.1 Branch and bound method

The problem can be solved by a well-developed method called branch-

and-bound (BnB). To use BnB to solve an integer optimization problem, it is
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preferable to transform the original discrete optimization variables into binary

boolean variables [82]. For our problem, the optimization variables and the set

ri ∈ {R1, R2, ..., RK} are transformed into xij ∈ {0, 1} defined as

xij =





1 if packet i uses rate j

0 otherwise

Since one packet can only use one rate, we have the following linear equality

constraint:
K∑

j=1

xij = 1,∀i = 1, 2, ..., N

Therefore, our problem in (IV.1) can be written as:

minxij

1
N

∑N
i=1

∑K
j=1 xij × Vi × {1− (1− Pb)

Si}
s.t.

∑N
i=1

∑K
j=1 xij × Si × 1

Rj
≤ B

∑K
j=1 xij = 1,∀i = 1, 2, ..., N

xij ∈ {0, 1} (IV.2)

i = 1, 2, ..., N, j = 1, 2, ..., K

BnB partitions the original problem into smaller subsets by tree-growing,

and eliminates further consideration of the feasible solutions that can not be better

than the current one [82]. The algorithm solves the binary-variable problem as

follows :

1. The original problem is solved with the integer constraint relaxed to allow

0 ≤ xij ≤ 1. A lower bound (LOWER) of the optimized value to the original

problem is the optimized value of the relaxed problem since it has a larger

feasible set. An upper bound (UPPER) of the optimized value to the original

problem can be obtained by substituting the rounded solutions (to zero or

one so that they are feasible) into the problem. This is an upper bound of

the optimal value to the original problem since it is the best feasible value

we can find at this stage. The optimal value to the original problem must be

less than or equal to UPPER, and greater than or equal to LOWER.
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2. For non-zero-or-one entries (which are infeasible) in the solution from the

previous stage, the algorithm grows binary subtrees that fix one entry to zero

or one, then solves the problem while relaxing other entries. The optimized

value is a lower bound to this subproblem. If this lower bound is greater

than the UPPER, we prune this branch, since the solutions to any feasible

combination of the trees growing from this point are not going to be better

(less) than the UPPER we currently have. Otherwise, we keep the node for

further growing. The upper bound of this subproblem can again be yielded

by substituting the rounded solution to the problem. If the upper bound

to this subproblem is less than UPPER, we update UPPER, and mark this

rounded solution (feasible) as the best solution so far.

3. Step 2 will be repeated until there is no node to be grown.

Details of the BnB algorithm can be found in [82].

In our simulation, we have N=450= 15 packets/frame × 30 frames/GOP

for our experiment. If the optimization is done over one frame, the algorithm is not

able to exploit the relative differences in visibility that occur in different frames

and redistribute FEC bits efficiently. For example, if we optimize the channel rate

allocation over one I frame where the loss visibility of most packets would be high,

we are not making use of the less necessary FEC bits used in B frames where there

are more packets with lower visibility. So ideally, we should perform BnB on all

packets in a GOP using all (K = 13) RCPC codes for the algorithm to select from.

However, if the optimization is to be done over a GOP (30 frames), there will be

N = 450 variables, which is too large for the BnB method; the complexity of BnB

has worst-case exponential time [55].

Here we consider all packets in a GOP, but we partition the packets into

groups. We first sort the packets by their packet loss visibility in ascending order.

Each group of packets (N = 15) to be optimized by BnB includes 13 packets of

low visibility from the head of the sorted packets, and 2 packets of high visibility

from the tail of the sorted packets. For example, after sorting the packets by
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the estimated loss visibility in ascending order, the first group of packets includes

packets 1-13, 449, 450 from the sorted packets, and the second 14-26, 447, 448, etc.

This way, we attempt to distribute FEC bits from more packets of low visibility, to

few packets of high visibility. Also due to complexity, we only use 4 channel code

rates to select from ({ 8
12

, 8
14

, 8
16

, 8
18
}). Therefore for each GOP, we need to perform

a (N,K)=(15,4) BnB 30 times. We denote this the SORTED-4 algorithm.

IV.B.2 K-means clustering

An algorithm involving (N,K)=(15,4) BnB 30 times for a GOP may still

be complicated for real-time processing, therefore, we aim to reduce the complex-

ity of the algorithm. From Equation IV.1 we see that the optimization problem

depends on not only the visibility of the packet (Vi), but also the size of the packet

(Si). The idea is to group packets of similar visibility and packet size together and

consider this group as one packet. Thus we propose to use k-means clustering to

group packets before using BnB. We consider N packets in a GOP and each has a

2-dimensional vector (Vi,Si). The k-means clustering algorithm partitions the N

vectors into P clusters with the goal of minimizing the sum, over all clusters, of the

within-cluster sums of point-to-cluster-centroid distances. Each of the P clusters

has a quantized vector (V̄z,S̄z) for the cluster, z = 1, 2, ..., P . We then use these P

vectors to perform the BnB. Equation IV.1 can now be rewritten as:

minr̄
1
N

∑P
z=1 V̄z ×Numz × {1− (1− Pb)

S̄z}
s.t.

∑P
z=1 S̄z ×Numz × 1

r̄z
≤ B

r̄z ∈ {R1, R2, ..., RK}
z = 1, 2, ..., P (IV.3)

where r̄ = [r̄1, r̄2, ..., r̄P ], and Numz is the number of vectors in cluster z. After

solving this problem, the optimal rate allocation for each packet i, i = 1, 2, ..., N ,

is the optimal r̄z where packet i is in cluster z. In our experiment, we use P =

15. Therefore, for each GOP, we only need to do one (N = P,K)=(15,4) BnB,
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which is 30 times less complicated than SORTED-4 is. The proposed algorithm

is denoted KMEANS-4. We also demonstrate the performance of this algorithm

for (N = P, K)=(15,6) using 6 channel code rates { 8
10

, 8
12

, 8
14

, 8
16

, 8
18

, 8
20
}, denoted

KMEANS-6.

IV.B.3 Subgradient method

For the above two methods, heuristic packet groupings were used to re-

duce complexity, and only 4 or 6 RCPC codes were used [54, 56]. In this subsection,

we use a low-complexity subgradient search in the dual domain to efficiently find

the best code for each individual packet from the full set of 13 RCPC rates. We

also discuss and utilize the advantage of discarding packets.

We first relax our constrained optimization problem in (IV.1) to an un-

constrained problem [83, 84]. By absorbing the constraint into the objective with

a Lagrange multiplier λ ∈ R+, we construct the Lagrangian function L(r, λ) :

L(r, λ) =
N∑

i=1

Vi

(
1− (1− Pb)

Si

)
+ λ

( N∑
i=1

Si

ri

−B

)

We form a dual function d(λ) by minimizing the Lagrangian function for a given

λ:

d(λ) = min
r∈C

L(r, λ)

= min
r∈C

{[ N∑
i=1

Vi

(
1− (1− Pb)

Si

)
+ λ

Si

ri

]
− λB

}

=

{ N∑
i=1

min
ri∈Rj

j=1,2,...,K

[
Vi{1− (1− Pb)

Si}+ λ
Si

ri

]}
− λB

=

{ N∑
i=1

min
ri∈Rj

j=1,2,...,K

Li(ri, λ)

}
− λB (IV.4)

where C is the space of all possible combinations of ri, i = 1, 2, ..., N selected from

{R1, R2, ..., RK}. This minimization for a given λ can be found by minimizing

the sub-Lagrangians Li(ri, λ) individually; the latter is done by exhaustive search
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over the discrete set {R1, R2, ..., RK}. The solution space of the minimization of

L(r, λ) is KN , but because we can minimize sub-Lagrangians individually, we can

compute d(λ) with only NK evaluations of Li(ri, λ) and comparisons [83].

We use the subgradient method to search for the best λ in the dual

domain. The dual function d(λ) is a concave function of λ even when the problem

in the primal domain is not convex [83, 84]. Therefore, the optimal λ is found by

solving: maxλ∈R+ d(λ). Since the dual is a piecewise linear concave function [83],

the function may not be differentiable at all points. Nevertheless, subgradients

can still be found and used to find the optimal value [83]. It can be shown that

the subgradient is a descent direction of the Euclidean distance to the set of the

maximum points of the dual function [83]. This property is used in the well-known

subgradient method for the optimization of a nonsmooth function. The subgradient

method is an iterative search algorithm for λ. In each iteration, λk+1 is updated

by the subgradient ξk of d at λk:

λk+1 = max(0, λk + skξ
k/‖ξk‖) (IV.5)

where sk is the step size. Based on the derivation in [83], the subgradient ξk of the

dual function d(λ) at λk is

ξk = g(rk)−B =
N∑

i=1

Si

rk
i

−B (IV.6)

where g is the constraint function of the problem, and rk = [rk
1 , r

k
2 , ..., r

k
N ] is the

solution to L(r, λk).

The step size sk trades off between the speed of convergence and the

variance of the optimized value in each iteration [83]. The complexity of this

algorithm is low. In the proposed algorithm, the stepsize is scaled 10 times smaller

whenever there is a sign change in subgradient from the previous iteration. When

a certain precision of stepsize is achieved, the algorithm terminates. The precision

can be chosen differently by context; we used 10−18. By this heuristic method

on the change of the stepsize, our method finds the best λ using 82 iterations on
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average for each optimization. Due to the much lower complexity, we can now

consider a larger set of RCPC code rates; the RCPC rates each packet can select

from are {8
9
, 8

10
, 8

12
, 8

14
, 8

16
, 8

18
, 8

20
, 8

22
, 8

24
, 8

26
, 8

28
, 8

30
, 8

32
}. Therefore, there are K = 13

candidate code rates for our dual search algorithm (Dual-13).

Here we further include “not-sent” (ri = ∞) and “uncoded” (ri = 1) in

the RCPC set. The optimization in (IV.1) has the same form. In (IV.1), the Pb

corresponding to packets not sent is set to 1; those packets will induce distortion

for sure. When we include the options “not-sent” and “uncoded” to the 13 rates,

we now have K = 15 and we denote the method Dual-15.

Compared to equal error protection (EEP) where there is only one chan-

nel rate, we need to signal which channel code rate is used for each packet; this

introduces an overhead to each packet. To signal to the decoder which code is used

for each packet, we need 4 bits per packet. We assume these bits are collected to-

gether and well protected as part of a GOP header. Since the mean packet size is

1917 bits (including both source and channel bits), the 4-bit overhead is negligible.

IV.C Performance of proposed algorithms

In this section, we demonstrate the performance of our end-to-end loss

visibility minimization methods. The rate allocation problem is preferably per-

formed across all the packets in a GOP using the rate budget available in a GOP,

rather than just considering one frame, so that the number of variables and budget

are larger to improve performance.

The video sequence used in our experiment is encoded by H.264/AVC

JM Version 12.1 in SIF resolution (352 × 240) with GOP structure IPPP, frame

rate 30 fps, and encoding rate 600 kbps. We define a packet (a NAL unit) as a

horizontal row of macroblocks. Therefore, there are 15 packets in a frame. And a

GOP (30 frames) consists of N = 450 packets.

The convolutional coder to produce the mother code of the RCPC code
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Figure IV.1: The average VQM comparison among six methods over 100 realiza-

tions of each AWGN channel.

has rate 1
L

where L = 4, with memory M = 4. The puncturing period of the RCPC

code is P = 8. In the simulation, soft-decision is used for the Viterbi decoder. We

simulate an AWGN channel, and find Pb given RCPC code rate and channel SNR.

The RCPC rate used by Equal Error Protection EEP is 8
14

. The RCPC rates from

which our UEP methods can select are {8
9
, 8

10
, 8

12
, 8

14
, 8

16
, 8

18
, 8

20
, 8

22
, 8

24
, 8

26
, 8

28
, 8

30
, 8

32
},

depending on the method we use, as will be discussed below. The bit budget

for the optimization problem will be the number of bits used by the EEP in the

optimization group. The simulated AWGN channel SNR (defined as Es/No, where

Es is the energy per coded bit, and No is the variance of Gaussian noise) ranges

from −2 to 2 dB. Instead of using mean square error, the resulting source-decoded

videos are evaluated by the full-reference metric VQM (Video Quality Metric) [4].

VQM ranges from 0 (excellent quality) to 1 (poor quality).

Figure IV.1 shows the VQM comparison result among EEP, SORTED-4,
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KMEANS-4, KMEANS-6, DUAL-13 and DUAL-15. Each data point is obtained

by averaging the performance of the corresponding algorithm over 100 realizations

of the AWGN channel. We observe that our proposed UEP methods consistently

perform better (lower VQM scores) than EEP for all SNRs.

For the method of SORTED-4, the RCPC rates to be considered are

{ 8
12

, 8
14

, 8
16

, 8
18
}. The largest VQM difference between EEP and SORTED-4 is about

0.1, which is considered to be a significant difference in VQM score (see, e.g., [85]).

As discussed earlier, for a GOP, KMEANS-4 is 30 times less complicated

than SORTED-4. However, with much less computational complexity, we can see

from Figure IV.1 that the VQM result of KMEANS-4 is competitive with and even

slightly better than the result by SORTED when the number of RCPC codes is

the same (K = 4). This is because for SORTED-4, each optimization is performed

for the heuristically grouped packets in a GOP, so the bit budget allocation is

restricted in each small group of N=15 packets. However, KMEANS-4 can assign

the resources to representative packets from the total budget of N=450 packets,

and therefore achieve better performance.

Since the complexity is lower for KMEANS-4, we try to improve the

performance by offering the algorithm six RCPC code rates { 8
10

, 8
12

, 8
14

, 8
16

, 8
18

, 8
20
}

to select from. Figure IV.1 shows that at 0 dB, by using 6 RCPC codes, the

improvement from EEP increases to 0.1 in VQM score, while at -1 dB, the VQM

difference to EEP increases from 0.1 to 0.15. This means that the performance of

our visibility-based algorithm makes more difference in the comparison when more

RCPC codes are used in the optimization scheme.

Due to the lower complexity of the subgradient method, we can use the

full set of the 13 RCPC codes (DUAL-13). We can see from Figure IV.1 that

DUAL-13 provides large improvements compared to KMEANS-6 in all channel

SNR conditions. There are two reasons for this. First, there are more RCPC code

rates from which the optimization process can select. Second, DUAL-13 does not

do grouping for packets to perform the optimization; it uses the whole 450 packets
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in a GOP.

When we add the “not-sent” and “uncoded” options into the 13 RCPC

codes for the optimization (DUAL-15), we get a large improvement even compared

to DUAL-13 in every channel condition. Especially, the improvement is about 0.1

in VQM score at SNR=-1 and 1 dB, and 0.2 in VQM score at SNR=0, showing

the advantage of not sending and not coding some of the packets, allowing more

resources to go to more important packets.

IV.D Experimental results of comparison against existing

method

In [57], the ideas of “not-sent” and “uncoded” are also used for opti-

mal channel code allocation, and the channel codes used are RS codes. The

packet importance is measured by Di, the MSE over a GOP between a com-

pressed/reconstructed video with no packet loss, and one with the ith packet lost.

The algorithm does not consider multiple code rates or variable packet size. We

consider variable-sized packets and a bit error channel, so packet size needs to

be considered in choosing protection, including the options of discarding and no

protection. In this section we compare our DUAL-13 and DUAL-15 with their

algorithm. To compare, we modified our algorithm by substituting the packet im-

portance measurement from Vi to Di, and the end-to-end lossy video quality is

measured by, instead of VQM, Peak Signal to Noise Ratio (PSNR), calculated by

the MSE over all frames between decoded and original videos. Note that because

Di is computed by applying the loss and decoding the whole GOP to measure

MSE, this is a costly but accurate way of computing Di, that includes the effect

of error propagation.

Although [57] is intended for packet erasure channels and uses RS codes,

we made a version using RCPC codes intended for bit error channels. Among the N

packets sorted on Di, the first kd are discarded, the next ku are sent uncoded, and
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the remaining are protected with a single code rate r. We denote this SortMSE.

SortMSE finds {kd, ku, r} that solves:

min
{kd,ku,r}

kd∑
i=1

Di +

kd+ku∑

i=kd+1

Di

{
1−

[
(1− Pb(SNR, 1))Si

]}

+
N∑

i=kd+ku+1

Di

{
1−

[
(1− Pb(SNR, r))Si

]}

subject to

kd+ku∑

i=kd+1

Si +
N∑

i=kd+ku+1

Si

ri

≤ B

r ∈ {R1, R2, ..., RK} (IV.7)

where i is the sorted packet index. This problem is solved by the method described

in [57]. The proposed Dual method requires evaluating the sub-Lagrangian Li(ri, λ)

82NK times or evaluating the Lagrangian function about 82K times. SortMSE,

according to [10], requires evaluating the objective function in equation (IV.7)

at most 2N times. This objective function has complexity comparable to the

Lagrangian function. Therefore the complexity comparison between the proposed

Dual method and SortMSE is about 82K : 2N . For the values we used (K = 13

RCPC code rates, N = 450 packets in the optimization) the complexities are

comparable.

For simulation, we used H.264/AVC JM Version 12.1 with SIF resolution

(352× 240), GOP structure IPPP and IBBP, frame rate 30 fps, and encoding rate

600 kbps. The error concealment is frame copy, which is one of the options provided

in the JM.12.1 decoder. We define a packet (a NAL unit) as a horizontal row of

macroblocks. There are 15 packets in a frame. For each GOP structure, we tested

two videos: Foreman and Mother-Daughter. We optimize over one GOP at a time.

As there are 30 frames in a GOP, the number of packets in each optimization

is N = 30 × 15 = 450. Again, there are K = 13 candidate code rates for our

dual search algorithm (Dual13), and when we include the options “not-sent” and

“uncoded”, K = 15 (denoted Dual15).

We simulate an AWGN channel, and find Pb given the RCPC code rate
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and channel SNR. The RCPC rate used by Equal Error Protection EEP is 8
14

,

and the budget for the UEP optimization problem is the number of bits used

by the EEP in the optimization group. Channel SNR ranges from −2 to 5 dB,

corresponding to channel bit error rates from about 10−1 to 10−3.

PSNR comparisons among decoded videos for Dual13, Dual15, SortMSE

and EEP are performed for Foreman and Mother-Daughter for IPPP and IBBP

GOP structures. All results show similar trends. We present the results for Fore-

man in IPPP in Fig. IV.2(a), Foreman in IBBP in Fig. IV.2(b), Mother-Daughter

in IPPP in Fig. IV.3(a) and Mother-Daughter in IBBP in Fig. IV.3(b). We see ob-

vious improvements of Dual15 that allows “not-sent” and “uncoded” over Dual13

that does not. The advantage of Dual15 takes place in every channel condition,

and is more obvious at lower SNR because discarding large or unimportant pack-

ets is particularly useful in worse channel conditions. The largest improvements of

Dual15 over Dual13 are 3.64 dB, 3.49 dB, 3.59 dB and 3.23 dB for the four com-

parisons (Foreman in IPPP, IBBP, Mother-Daughter in IPPP and IBBP). The

advantage of discarding also can be observed for SortMSE: for low SNR, SortMSE

outperforms Dual13 despite SortMSE allowing only one RCPC code for each op-

timization group. However for better channels, SortMSE is worse than Dual13

because in better channels, packets are less likely to be discarded, so the discard-

ing option of SortMSE can not compensate for its having only one code rate. At

better SNRs, SortMSE performs slightly worse than EEP. One might think that

SortMSE should never do worse than EEP. EEP only assigns one code rate to

all packets, whereas SortMSE chooses {kd, ku, r} and should be more flexible.

However, by basing the importance on distortion with no consideration of packet

size, SortMSE may discard tiny packets that would have cost little to retain, or

may heavily protect large packets that are costly to retain, and may do worse than

EEP. However in worse channels, the flexibility of being able to discard packets

compensates for this disadvantage. Dual15 that features both packet discarding

and flexible rate allocation for each packet performs the best for every channel
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SNR.

The results so far use rate 8
14

for the EEP. The total number of bits after

channel coding by this EEP is the constraint for the optimization. It is possible that

8
14

is particularly unsuitable for some channel SNRs. To show that Dual15 performs

better than EEP for our entire set of possible EEP rates, we separately channel

encode the same pre-encoded video sources using each different EEP (excluding the

possibility of discarding everything). This gives rise to 14 different bit constraint

totals. For each, we ran Dual15. The average improvement of Dual15 over the

corresponding EEP is {13.2, 12.3, 9.8, 7.2, 5.6, 4.3, 3.5, 2.4, 1.7, 0.9, 0.5, 0.3, 0.09, 0}
dB. Dual15 outperforms EEP in all cases, even with a tiny bit budget (EEP =

“uncoded”), because Dual15 can discard some packets to free up bits for protecting

important packets. The advantage of Dual15 decreases as total bits increase, until

finally when each packet is equally protected by the strongest channel code, the

improvement of Dual15 over EEP vanishes, because at that high total bit rate

Dual15 and EEP both can afford to equally protect every packet with the strongest

rate. In summary, Dual15 outperforms all the EEP values except for the extreme

cases of maximal protection and total discarding where they are equal.

IV.E Conclusion

In conclusion, we use the branch and bound method to solve the channel

rate RCPC allocation problem to reduce the end-to-end packet loss visibility over

an AWGN channel. The result shows that our method consistently achieves better

end-to-end video quality in different channel SNRs than Equal Error Protection.

Then we proposed a much less complicated algorithm using K-means clustering

that performs better since no heuristic grouping is used. And because of the lower

complexity, the code rate set can be enlarged and better visual performance is

achieved. We further develop an algorithm that searches in the dual domain by

the subgradient method for the optimal channel code rate for each packet with
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different packet size and different importance. The algorithm is of low complexity.

We exploit the options of not coding and not sending the packets. The algorithm

improves the performance considerably. We also compare this algorithm with a

simpler UEP version that considers only options of discarding, not coding, and a

single level of protection. For all channel conditions, video clips and GOP struc-

tures tested, our algorithm significantly outperforms it, as well as the equal error

protection.
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Figure IV.2: Foreman. Average PSNR of decoded video vs. channel SNR. Com-

parison among Dual13, Dual15, SortMSE and EEP over 100 realizations of each

AWGN channel.



65

−2 −1 0 1 2 3 4 5
20

22

24

26

28

30

32

34

36

38

40

Channel SNR (dB)

P
S

N
R

 (
d

B
)

 

 

Dual13

Dual15

SortMSE

EEP

(a) Mother-Daughter in IPPP GOP structure
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Figure IV.3: Mother-Daughter. Average PSNR of decoded video vs. channel SNR.

Comparison among Dual13, Dual15, SortMSE and EEP over 100 realizations of

each AWGN channel.



V

Network-based packet loss

visibility model

Since different video packets have different impact on visual quality when

dropped, it is important for an intermediate router to estimate the visual impor-

tance of each packet to know which ones to drop during congestion. The previous

chapters focused on encoder-based models which are used to estimate the visual

importance of each packet. In Chapter III, the packet is embedded with a pri-

ority bit at the encoder so that the router could perform smart dropping during

congestion. The model requires factors such as Initial MSE, type of camera mo-

tion, information on the reference frame and on scene cuts. This is applicable at

the encoder where the reference frame is available, and where the computational

capability is high.

In contrast, the current chapter focuses on a network-based model where

the complexity must be limited, and in any case, reference frames are not neces-

sarily available because packets may be out of order or because there are multiple

streams and the network node cannot afford to decode and reconstruct them. This

model is intended to be a good tool to evaluate the perceptual importance of

incoming packets that do not have prioritization bits.

Another goal is to explore the difference between SDTV and HDTV

66
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packet visibility models. Subjective results in [58] showed that displays should

guarantee a large screen with high contrast to achieve the higher expectation for

watching HDTV than for watching SDTV. The work in [59] concluded that people

prefer SDTV with high quality over HDTV with low quality. These works compar-

ing SDTV and HDTV are not concerned with packet loss visibility. One related

paper is [60], which studied region of interest (ROI) determination for SDTV and

HDTV. The study showed that the ROI of a video is identical for both SDTV and

HDTV. Also, losses occurring in the top and the bottom regions of the picture

were not generally in the ROI.

This chapter is organized as follows: In Section V.A, the subjective tests

are described. In Section V.B, we discuss self-contained factors that relate to

packet loss visibility, and the models based on these factors. Section V.C presents

results and discussion.

V.A Subjective experiments

The video encoder is H.264 JM9.3. Encoder settings (Table V.1) adhere

to ITU and DSL Forum Recommendations [86, 87]. Each Network Abstraction

Layer (NAL) packet contains a horizontal row of MBs in a frame. There are 30

packets per SD frame, and 68 per HD frame. The raw video sources are in HD

format, and the SD versions are obtained by downscaling the HD videos by bicubic

interpolation. Nine videos with widely varying motion and texture characteristics

are concatenated into a 20-minute sequence.

The decoder is FFMPEG [65] due to its high efficiency and wide use in

industry. For error concealment for non-whole-frame losses, the FFMPEG decoder

begins by making a guess, for each lost macroblock, of whether it is more likely

to have been intra coded or inter coded. For example, in P and B frames, the

algorithm looks at the coding mode of some or all of the macroblocks that are

not lost, and if more than half of those have a coding mode which is intra, then
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the algorithm will guess that all the lost macroblocks in the frame were coded

intra. Once the guess has been made of coding mode for each lost macroblock, the

algorithm uses two different approaches. For the macroblocks which are guessed to

be intra coded, for each 8×8 block in each MB, ffmpeg does a process called FillDC,

which looks at the four directions surrounding the block (top, bottom, left, right)

to find uncorrupted blocks. It then finds the pixel average of each uncorrupted

neighboring block. Finally, it takes a weighted average (weighted according to

distance) of the uncorrupted averaged blocks, and the result is the block that is

used for concealment. For the macroblocks which are guessed to be inter coded,

the algorithm estimates the forward and backward motion vectors by scaling, in

display distance, the co-located future and past (in display order) motion vectors

in the buffer. The obtained motion vectors are used to perform bi-directional

motion estimation to conceal the lost MB. The whole frame losses are concealed

by temporal interpolation of closest past and future (in display order) reference

frames.

Each subject watches a lossy HD video and the corresponding SD version,

40 minutes in total. The experiment takes one hour, which includes an introductory

session and a break. When viewers see a glitch, they press the space bar. To allow

observers enough time to respond to each individual loss, only one packet loss

occurs for every 4-sec interval. The loss occurs in the first 3 seconds, and the

fourth second allows any error propagation to terminate. During the 40 minutes

of video, there are 600 packet loss data points obtained from a subject. These

losses are divided equally among I frames, P frames and B frames. There are three

different loss realizations; each of the three 40-minute lossy video pairs is watched

by 10 people. The ground truth packet loss visibility for a specific packet can be

obtained as the number of people who see the loss artifact divided by 10. With

three loss realizations, each evaluated by 10 people, we have ground truth visibility

for 600×3=1800 packets (900 for SD, 900 for HD resolution).
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Table V.1: Summary of the subjective experiment setup for SD and HD videos. H

is the height of the video.

SD HD
Resolution 720× 480 1920× 1080
Bitrate 2.1 Mbps 10 Mbps

H.264
Profile

Main profile
Level 3

Main profile
Level 4

Viewing
Distance 6H 3H
Frame rate 30 fps
GOP IBBPBBPBBPBBPBB 15/3

V.B Features and model building

In this section, we first introduce candidate factors associated with a

packet. Next, we build models using these parameters to predict, for each packet,

the packet loss visibility results of our subjective experiment.

V.B.1 Important features

Content dependent factors depend on the actual video content at the

location of the loss. The ones we use all involve taking a mean, maximum, or vari-

ance computed over all macroblocks in the packet. MeanRSENGY is the mean

residual energy after motion compensation. MaxRSENGY denotes the maximal

residual energy after motion compensation. Following the way these factors were

used in Chapter II, we used the above two terms after logarithm because they

were shown to be more correlated with packet loss visibility (we add 10−7 before

taking the log to avoid a log of zero problem). MeanMotX and MeanMotY are

the mean motion vectors in the x and y directions. MaxMotX and MaxMotY

are the maximal motion vectors. VarMotX and VarMotY are the variances of

the motion vectors. MotM is
√

MeanMotX2 + MeanMotY 2. To compute the

factors related to phase of motion vectors, we only consider macroblocks with non-
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zero motion, for which the phase is well defined. MeanMotA is the mean phase.

MaxMotA is the maximal phase. MaxInterparts is the maximal number of

inter macroblock partitions in the packet.

Content independent factors depend on, for example, the spatial location

or frame type of the loss, but do not depend on the actual video content at the

location of the loss. TMDR is the maximum number of frames to which the

error from this packet loss can propagate. TMDR=1 for non-reference frames. For

reference frames, TMDR depends on the distance to the next I frame. Height is

the spatial location where the loss occurs; the top slice in a frame has Height=1,

and the bottom slice in a frame has Height=N, where N is the number of packets in

a frame (30 for SDTV and 68 for HDTV). Most of the factors mentioned above have

a monotonically increasing (or decreasing) relationship with the average packet loss

visibility. However, this is not the case for Height. The plots of average packet

loss visibility versus Height are in Fig.V.1. Although the data are noisy, we see the

trend that average packet loss visibility is highest near the middle of the screen,

and decreases as we move to the top or bottom. This is difficult to capture by

a linear relation, therefore, we create DevFromCenter = abs(Height-floor(N/2))

to indicate how far away the loss occurs from the vertical center of the frame.

In addition to these content independent and content dependent factors,

we also consider the interactions between factors in one category and factors in

the other, as well as between factors within the content independent category.

The motion information mentioned above is estimated by the network

node where reference frames are not available. In some cases, the “true” values

for those quantities require the reference frames. For example, the “direct” mode

of coding a macroblock assumes that an object is moving with constant speed,

so the motion vector for the current MB is copied from the previous co-located

MB. Within a packet, we do not have any information on the previous co-located

macroblock. We instead copy the motion vector from a spatial neighbor. This

way, the model is fully self-contained at the packet level, and can be implemented
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Figure V.1: Average packet loss visibility versus Height

at a network node.

V.B.2 Modeling process

We choose a generalized linear model (GLM) with the logit function as

link function, since it can predict a probability parameter in a binomial distribu-

tion. We want to know the probability that a packet loss artifact will be observed

when the packet is lost. The background of GLMs was introduced in Chapter I.

In Chapter II, the GLM development treats data points equally, no mat-

ter how far they are from the regression line. In this Chapter, we give unequal

treatment to data points to suppress outliers by minimizing the M-estimator. The

detailed discussion is presented in Chapter I.

We develop GLM models for both SD and HD resolution videos. The best

factors chosen for them and their corresponding coefficients are listed in Tables V.2
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and V.3. Figure V.2 shows the decrease of the M-estimator as additional factors

are incorporated in the SD and HD models.

V.C Results and discussion

From Figure V.2, we see the best M-estimator value is 0.1096 for the

SDTV model and 0.1201 for the HDTV model. If we compare against an encoder-

based model which uses initial MSE, requiring the reference frame and frame re-

construction, as a factor, the encoder-based models perform better as expected;

the minimum achievable M-estimators are 0.1067 for SDTV and 0.1172 for HDTV,

as shown in Figure V.2. However, the performance difference is slight; the network-

based model performs almost as well as the encoder-based model, but the former

is suitable for a router as it uses no information from reference packets or pixel

domain processing.

We can not properly interpret the model by the sign of the coefficients in

Tables V.2 and V.3 if the factors correlate with each other [88], however the order

in which factors are added to the model provides an indication of their importance.

The most important factors in both SDTV and HDTV relate to TMDR, indicating

that error propagation duration dominates the packet loss visibility regardless of

resolution. However the spatial location of the loss affects the visibility differently

between models. In Fig.V.1, the maximum average loss visibility is 0.3957 at

Height=13 for SDTV, and 0.6833 at Height=27 for HDTV; they are both near

the middle slice. The minimum average loss visibility is 0.0615 at Height=30 for

SDTV, and 0.0400 at Height=68 for HDTV; they are both at the bottom slice.

Packet losses in the center are more visible than those at the bottom. What is

more, given that the average packet loss visibility for all losses in SDTV is lower

than that in HDTV (0.2565 and 0.3506), it is surprising that the average loss

visibility of the bottom packet in HDTV is lower than that in SDTV, and the

ratios of maximum loss visibility to minimum loss visibility are 6.4341 and 17.0825
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Figure V.2: M-estimator value decreases as important factors are included in the

SDTV and HDTV models. Numbers on x-axis denote the index in factor order

shown in Tables V.2 and V.3. The dashed horizontal line denotes the minimum

M-estimator value of the SDTV and HDTV encoder-based models.

for SDTV and HDTV respectively. In the viewing conditions of Recommendations

[86, 87], HD requires a larger viewing angle. The viewing angles are (vertical,

horizontal)=(9.52◦, 14.25◦) for SDTV, and (18.92◦, 33◦) for HDTV. Therefore, a

viewer who watches HDTV may not fully realize what happens in the edge area of

a frame. Prior research [60] found that losses occurring in the top and the bottom

regions of the picture were not generally in the region-of-interest. We would add

to this that, for HDTV, losses occurring at the top and bottom are less likely to

be noticed not only because they are not in the ROI but also because of the larger

viewing angle.
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Table V.2: Table of factors in the order of importance for SD GLM model. The ×
symbol means multiplication. Bolded factors relate to spatial location.

Order Factors Coefficients
α 1 -2.6407
1 TMDR×MaxMotA -4.7591e-3
2 DevFromCenter×MaxMotA 2.2996e-2
3 Height×MeanMotA -8.8462e-4
4 TMDR×log(MeanRSENGY +10−7) 3.5954e-3
5 TMDR×MeanMotY -1.6431e-2
6 DevFromCenter×TMDR -1.0164e-2
7 DevFromCenter×MeanMotY 5.3172e-3
8 TMDR 2.3680e-1
9 TMDR×MaxInterparts -5.6283e-3

10 TMDR×MotM 4.9349e-3
11 Height×DevFromCenter -3.1830e-3
12 Height×MaxInterparts 2.1661e-3
13 TMDR×VarMotY 5.1232e-4

V.D Conclusion

We propose self-contained packet loss visibility models for SDTV and

HDTV. These network-based models perform only slightly less well than the much

more complicated non-self-contained models that could be implemented only at

the encoder. The proposed models allow a network node to efficiently evaluate

the visual importance of packets just by information contained in each packet. No

reference information or frame reconstruction is required for the prediction factors.

This model can be useful to evaluate packets in the network in case of congestion.

The study found that packet loss is more visible in HDTV than in SDTV. And

due to the wider viewing angle for HDTV, the spatial location of the packet loss

in HDTV matters more than in SDTV. For both SDTV and HDTV models, the

temporal duration of the error propagation is a very important factor for a packet

to be visible.
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Table V.3: Table of factors in the order of importance for HD GLM model. The

× symbol means multiplication. Bolded factors relate to spatial location.

Order Factors Coefficients
α 1 -3.0413
1 TMDR×log(MaxRSENGY +10−7) 9.1743e-3
2 Height×DevFromCenter -2.1129e-3
3 Height×TMDR 3.4239e-4
4 TMDR×MaxMotA 6.0561e-2
5 Height×MotM 9.9631e-4
6 Height 3.2186e-2
7 DevFromCenter×MeanMotY 1.3397e-3
8 Height×VarMotX -2.0544e-5
9 TMDR×VarMotX 3.8690e-4

10 TMDR×MeanMotX 3.3589e-3
11 DevFromCenter×TMDR -4.7789e-3
12 log(MaxRSENGY +10−7) -6.5376e-2
13 DevFromCenter 7.6811e-2
14 Height×MaxInterparts 7.9892e-4
15 DevFromCenter×MaxInterparts -9.3612e-4
16 DevFromCenter×MaxMotY -6.7759e-4

17
DevFromCenter×

log(MeanRSENGY +10−7) 3.9123e-3
18 TMDR×MeanMotY 2.1333e-3
19 VarMotY 2.3235e-4
20 TMDR×log(MeanRSENGY +10−7) 3.1425e-3

V.E Acknowledgements

This work was supported by Futurewei Technologies, Inc. and by the

Center for Wireless Communications at UCSD.

Chapter V of this dissertation, in part, is a partial reprint of the material

as it appears in T.-L. Lin and P. Cosman, “Network-based packet loss visibil-

ity model for SDTV and HDTV for H.264 videos”, International Conference on

Acoustics, Speech, and Signal Processing (ICASSP), 2010. Co-author Prof. Cos-

man directed and supervised the research which forms the basis for Chapter V.



VI

Packet dropping using a

network-based loss visibility

model

In past work, dropping decisions made by an intelligent router depend

on MSE induced by a packet loss. Especially in [36], an intermediate router with

an optimization algorithm drops packets in a congested network from different

streams to minimize the sum of cumulative MSE. The packets must have embedded

information about the associated induced MSE. Also, the optimization process is

too complex for most current routers. Furthermore, MSE does not correlate well

with human perception [11]. The works [61, 62] are for No-Reference network

monitoring, which can compute estimated video quality for a given packet loss

pattern using only video bitstream information. However, they give an overall

quality score for the sequence and do not tell us how to best drop packets to

minimize the video quality degradation during network congestion.

In Chapters II and III, the visual importance of each packet is evaluated

in the encoder by an encoder-based packet loss visibility model. Every piece of

information available to the encoder can be used. Before the packet is sent to the

network, a single bit of priority score is added to the header based on the estimated
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packet loss visibility. The router can then drop packets of lower priority during

congestion. One limitation of Chapter III is that the priority score needs to be

determined at the encoder and added as one bit to the packet header.

In this chapter, we do not assume packets coming into the router are

embedded with a visual priority bit; for each packet, the visual importance is

obtained by the network-based model described in Chapter V which requires in-

formation only within one packet and no reference frame information. This is

desirable because packets may be out of order or because there may be multi-

ple streams and the network node cannot afford to decode and reconstruct them.

The parameter extraction process can be made very efficient since it does not in-

volve motion compensation (requiring reference frame) and frame reconstruction.

Second, we devise a packet dropping method for widely varying packet loss rates

including high rates. The algorithm drops the least visible frames, which incurs

fewer blocky artifacts compared to dropping on a packet basis. This method is

shown to be better than a method used by industry which drops B packets, for

different levels of packet loss rate in terms of VQM scores.

This chapter is organized as follows. Section VI.A discusses the proposed

multiple packet loss algorithm using measurements obtained by the network-based

packet loss visibility model. Simulation results are in Section VI.B, and Sec-

tion VI.C concludes the chapter.

VI.A Multiple packet loss algorithm

In Chapter III, the packet dropping policy used the fact that each incom-

ing packet to the router has a 1-bit prioritization bit to signal whether this packet

is estimated to be of low or high packet loss visibility. The loss visibility estima-

tion is done at the encoder. In this chapter, we assume no prioritization bit and

use the network-based model to estimate the visual importance of each incoming

packet. This model predicts the packet loss visibility of each packet based only on
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the information within one packet (NAL in H.264). Also the model does not need

information from the pixel domain, and therefore the tasks of motion compensa-

tion, deblocking filtering and frame reconstruction are not necessary. Therefore the

complexity to obtain the factors for prediction is much lower than a full decoder

and is more realistic for implementation in a router.

We define bit reduction rate (BRR) as the percentage of bits that need to

be dropped of the buffered packets to alleviate the congestion. Given the packet

loss visibility scores, during network congestion, a router can straightforwardly

drop packets with least estimated visibility until the required bit reduction rate

is achieved and the congestion is relieved. We denote this method Vis-Pkt. An

intelligent dropping method that is implemented in a video-aware digital subscriber

line access multiplexer (DSLAM) is discussed in [89]. It inspects the nal ref idc

(NRI) bit in every NAL unit header. Packets which do not serve as reference

pictures can be dropped during network congestion. We denote this method B-

Pkt.

In [63], subjective test results showed that in general, frame freezes are

less noticeable than blockiness resulting from random packet loss. That is, when

one portion of a frame is lost, and another part is not lost, the concealment may

cause a spatial misalignment between objects/background in the intact portion

of the frame and objects/background in the lost and concealed portion, as shown

in Figure VI.1. This spatial misalignment in a frame often draws more attention

from viewers than does a frame freeze, which has no spatial misalignment problem.

Frame freeze can be produced by whole frame loss when the decoder conceals the

lost frame by “frame copy”. This motivated us to consider dropping packets on a

frame basis, instead of dropping on a packet basis, as done in Vis-Pkt and B-Pkt.

We design an algorithm, denoted Vis-Frame-Pkt. The summed visibility over all

packets in a frame is calculated for each frame. We drop the N least visible frames.

N is chosen such that the total number of bits in the packets comprising these

frames is under the total number of bits of BRR, but dropping the (N+1) least
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Figure VI.1: An example of spatial misalignment

visible frames would put the total over BRR. Then we drop packets on a packet

basis to reach the required number of bits of BRR. We design a similar algorithm,

denoted B-Frame-Pkt, which randomly drops B packets on a frame basis, and

when dropping the next B frame would mean dropping more than BRR bits, it

switches to dropping on a packet basis to reach the BRR bits.

Since the size of a packet is much less than that of a frame, these methods

that switch to dropping on a packet basis try to meet very closely the goal of

number of bits to be dropped. However, spatial misalignment is introduced by

this approach since some packets are dropped on a packet basis rather than on a

frame basis. Another approach is to drop the (N+1) least visible frames all the way

until the goal of number of bits to drop has been reached, even though this means

that, in general, the goal will be exceeded by perhaps a large number of bits due

to the granularity of dropping whole frames. We denote this method Vis-Frame.

And the counterpart of this in dropping B packets is denoted B-Frame, which

randomly drops B frames until the requirement is reached.

VI.B Experimental results

In this section, we compare the six methods for different videos and dif-

ferent levels of BRR. All the methods which relate to dropping B packets are
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implemented by randomly dropping B packets/frames in the buffer, and when

running out of B packets/frames to be dropped, P packets/frames are dropped

randomly. The performance is evaluated by averaging 50 random realizations.

The video encoder is H.264 JM9.3. The decoder used is FFMPEG [65].

The resolution is SDTV. The tested videos are encoded at 2.5Mbps, 30 fps using

Main profile Level 3. The GOP structure is IBBP (15 frames). Each NAL packet

comprises one horizontal row of macroblocks. Therefore we have 30 packets in a

frame. The error concealment strategy in FFMPEG is described in Section V.A.

We perform each dropping algorithm in a GOP, and the BRR is the per-

centage of bits to be dropped for this GOP. After the dropping policy is performed

for a GOP, the FFMPEG decoding and error concealment are run, and then the

Video Quality Metric (VQM) [4] is calculated to obtain the video quality score for

this lossy GOP. It ranges from 0 (excellent quality) to 1 (poorest possible quality).

Two videos are tested in the simulation: golf is of slow movement, and

soccer is of high motion and fast panning. The simulated BRRs are 0.5%, 5%,

10% and 20%. Note that BRR can be very different from packet loss rate (PLR).

For example, 20% BRR can result in 50% PLR if the dropping algorithm drops B

packets, which have much smaller sizes than I or P packets on average. Therefore,

BRR ranging from 0.5% to 20% considers a very wide range of packet dropping

levels. The two videos are subsets of the nine videos used for the subjective exper-

iments, however, the losses injected for this section are very different from those

in the subjective experiments because the latter used isolated slice losses.

Figure VI.2 shows the VQM performance versus GOP index for the six

dropping methods for BRR = 0.5%, 5%, 10% and 20% for the golf video. Fig-

ure VI.3 shows VQM score averaged over GOPs versus BRR for the six packet

dropping policies. From the figures, we observe the general trend that the -Frame-

Pkt method is better than the -Pkt method for both the Vis and B methods. This

means that dropping packets on a frame basis helps the video quality. We also

observe that the -Frame method is better than the -Frame-Pkt method in general.
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This means even though -Frame drops more bits than BRR needs, the perceptual

quality is improved due to having no spatial misalignment (blockiness) problem.

Note that the y-axis scale changes steadily as one looks at Figure VI.2(a),

then VI.2(b), VI.2(c) and VI.2(d). This is because higher BRR makes the quality

generally worse, so VQM scores become higher and have more variance. Note

also that the y-axis scale for Figure VI.3(a) is not the same as for Figure VI.3(b).

Because soccer is a high motion video, and golf is a low motion video, losses are

less concealable for soccer. Therefore, for a given BRR, the scores for soccer are

worse (higher) than they are for golf. So, the average improvement in VQM score

for the best dropping approach compared to the worst one is very much larger for

soccer than for golf. While the average improvement in VQM score (provided by

the best dropping method) shown in Figure VI.3(a) for the golf sequence is very

small, and so might be considered perceptually not noticeable, if one looks at the

VQM scores versus GOP index shown in Figure VI.2, many of the individual GOPs

have substantial VQM improvements, which would be perceptually noticeable.

For comparisons between B- methods and Vis- methods, when the BRR is

very low (0.5%), Vis-Pkt is better than B-Pkt. However, when the BRR increases,

Vis-Pkt is not better than B-Pkt. It may be that Vis-Pkt does better at low

dropping rates because the visibility model is developed from videos with isolated

losses where the evaluated packets have their intact reference frames, which is

not the case for much higher packet loss rate. However when we perform whole

frame drop (Vis-Frame-Pkt or Vis-Frame methods), we can see from Figure VI.3

that for all BRRs, both Vis-Frame and Vis-Frame-Pkt are better than B-Pkt, B-

Frame-Pkt, and B-Frame. Lastly, we can observe that Vis-Frame is always better

than Vis-Frame-Pkt except at the lowest loss rates. This makes sense because

for low loss rates, the fact that Vis-Frame exceeds the target BRR in order to

maintain dropping of whole frames incurs a more severe penalty percentagewise in

bits dropped.



82

VI.C Conclusion

We used a network-based packet loss visibility model to measure the vi-

sual importance of packets incoming to a router. The estimated visibility scores

are then used by the router to perform intelligent packet dropping. For a very wide

variety of bit reduction rates, the performance of the proposed algorithm outper-

forms both a visibility-based algorithm that drops packets on a packet basis, and

an algorithm that drops B packets or B frames such as one currently implemented

in a video-aware digital subscriber line access multiplexer. The contributions of

this chapter are (a) We showed that dropping whole frames and concealing by sim-

ple frame interpolation produces better quality video than dropping on a packet

(slice) basis, (b) We showed that the visual advantage of dropping whole frames is

sufficiently large that, except for low dropping rates, it pays to drop whole frames

even when that means exceeding the target bit reduction rate for the GOP, (c)

A simple visibility model that can be implemented inside the network provides a

better basis for choosing frames to drop than just targeting B frames for dropping.
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Figure VI.2: VQM performance vs. GOP index for the six packet dropping policies

for SDTV golf for BRR = (a) 0.5% (b) 5% (c) 10% and (d) 20%. Lower VQM

scores correspond to higher quality.
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Figure VI.3: Average VQM score over GOPs vs. BRR for the six packet dropping

policies for SDTV videos (a) golf and (b) soccer. Lower VQM scores correspond

to higher quality.
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Whole frame packet loss visibility

The packet loss visibility modeling in previous chapters was designed for

packets that are just slices (defined to be one horizontal row of macroblocks) of a

frame. For these types of packet losses, after error concealment, spatial misalign-

ment relative to the intact portion of the frame stands out. Spatial misalignment

artifacts can be more distracting than temporal frame copy [63]. In Chapter VI,

under the same dropping target, we dropped packets on a slice basis, and on a

frame basis. We found that the frame-level temporal interpolation artifact is bet-

ter than the slice-level spatial misalignment artifact using VQM scores.

Nevertheless, which whole frame to be dropped in Chapter VI was esti-

mated by the visibility model for single-slice packets. That is, the visibility score

for the frame was taken to be simply the sum of the visibility scores for the slices

which compose the frame. And those visibility scores for slices came from a model

designed using a human observer experiment involving slice loss data. Therefore,

to obtain more meaningful scores for frame losses, in this chapter, we conduct

a subjective experiment to concentrate on the subjective results for whole frame

loss, and build a direct model for whole frame loss. Two common concealment

methods for whole frame losses are frame copy and temporal frame interpolation.

In this experiment, we simulate frame copy by the frame copy error concealment

in the JM standard decoder [64], and frame interpolation by FFMPEG [65]; these
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two decoders are popular in research and industry. In this chapter we analyze

the experimental data, and model the whole frame packet loss visibility based on

information associated with the lost frames.

We hope to build a model that is suitable for router operation so that in

the case of network congestion, the router is able to decide based on our model

which frame or frames to drop to relieve the congestion while maintaining good

video quality. Therefore, as in Chapter V, we consider factors associated with the

frame considered for dropping to be self-contained, meaning that the computation

of the factors does not need other (reference) packets. This is desired since in a

router, the incoming packets may be out of coding order or may be multiplexed

with other video streams, so the router may not be able to identify which is the

reference packet of the current packet. Also we want the complexity of the factor

extraction process to be low. Therefore we do not consider factors such as initial

mean square error or scene cut detection that require pixel domain reconstruction

by full decoding as used in Chapter II.

Perceptual quality of frame losses is discussed in [66]. The work studies

different whole frame loss type as a function of frame loss burst length and frame

loss burst distribution. The authors conclude that the visibility of frame dropping

is dependent on content, loss duration and motion. Later, in [67], they built an

assessment model for subjective video quality as a function of frame loss burst and

frame loss burst distribution. However, the quantities are computed in the pixel

domain and require the original video. And the model aims to evaluate the overall

quality of a lossy video, and does not indicate the visual importance of a specific

frame.

This chapter is structured as follows: in Section VII.A, the setup of the

subjective experiment is introduced. Section VII.B covers the analysis of data,

and Section VII.C introduces the whole frame loss modeling process and feature

selection. Section VII.D concludes the chapter.
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VII.A Subjective experiment on whole frame losses

In this section, we introduce the subjective experiment setup, including

the encoding configuration, decoder concealment and experimental design.

The video encoder is configured in the same way as in Chapter V, except

that here we only consider SDTV videos. The decoders we considered are the JM

9.3 standard decoder [64] which produces frame copy artifacts, and FFMPEG [65]

which conceals whole frame losses using temporal frame interpolation. For the

JM decoder, the lost frame is concealed by copying the pixels from the previous

frame (in coding order). For the FFMPEG decoder, a lost P frame is concealed

by copying the pixels from the previous reference frame, and a lost B frame is

concealed by temporal interpolation between the frame pixels of the previous and

the future frames. These two decoders are widely used in academia and industry.

In this experiment, we concentrate on B frames. We introduce whole

frame losses once every 4 seconds to allow observers enough time to respond to

each individual loss. The losses occur in the first 3 seconds of each 4-second interval.

Among these intervals, we inject evenly single or dual whole frame losses in a GOP;

we want to understand the visual response to isolated whole frame losses and any

interaction between nearby whole frame losses. In this work, we concentrate on

the analysis of the data from isolated whole frame losses.

We create six different realizations of whole frame loss events of the 20-

minute video, producing 900 distinct isolated whole frame losses. All the six lossy

videos are decoded by FFMPEG and JM decoders. A subject watches two different

loss realizations of whole frame loss events from the same decoder, so a session

involves 40 minutes of actual watching time per subject. The experiment takes one

hour, including an introductory session and a break. When viewers see a glitch,

they respond to that glitch by pressing the space bar. If the response time is within

2 seconds of the loss, the loss is regarded as visible. Each of the 40-minute lossy

videos is watched by 10 people. The ground truth loss visibility score for a specific
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frame loss is calculated as the number of people who see the loss artifact divided

by 10. We have a total of 60 people participating in the experiments, where 30

people watch JM-decoded videos and 30 people watch FFMPEG-decoded videos.

1800 ground truth visibility scores are obtained (900 for the JM decoder and 900

for the FFMPEG decoder).

VII.B Data analysis

In this section, we compare the visual performance of frame copy (JM)

and frame interpolation (FFMPEG).

Figures VII.1(a) and VII.1(b) show the histograms of the visibility of

the JM decoder and the FFMPEG decoder, respectively. For the JM decoder,

40.78% of the losses are not observed by any subjects (visibility is zero). For the

FFMPEG decoder, 38.89% of the losses are not observed by any subjects. In

other words, more than 1/3 of losses are not seen by any user. And for the JM

decoder, 62.43% of losses have visibility less than or equal to 0.2, whereas for the

FFMPEG decoder, 58.29% of losses have visibility less than or equal to 0.2. For

both decoders well over half of isolated whole B frame losses are seen by 2 or fewer

out of 10 people. One implication is that if we can identify these frames that are

less visible to viewers when lost, in the case of network congestion, we can choose

to drop unimportant frames to relieve network congestion, and not many end users

will observe the losses.

In the design of our experiment, because there is a loss event in every 4

second interval, it could be a concern that viewers would begin to anticipate the

next loss event. However, we do not believe that viewers noticed the loss pattern

because there was such a high percentage of loss events which were invisible, so

viewers were not perceiving losses in each time slot.

Figure VII.2 is the 3-D histogram of the visibility with respect to the JM

and FFMPEG decoders. This figure shows that the invisible whole frame losses
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decoded by JM usually are also invisible by FFMPEG and vice versa. Many losses

are of zero visibility for both FFMPEG and JM decoders, and it is rare that one

loss is highly visible in one decoder and of lower visibility in the other. Most of

the time, the visibility of a particular whole frame loss is similar (not exactly the

same) for different concealment methods. The correlation of the visibility scores

between JM and FFMPEG is 0.6043. This motivates us to develop one model to

predict the whole frame packet loss visibility for both JM and FFMPEG decoders.

We discuss it in the next section.

Also, we want to know whether one decoder is better than the other in

terms of whole frame error concealment visually. We start with a simple paired

comparison of the ground truth loss visibility scores between JM and FFMPEG.

We say a decoder wins if the ground truth of one decoder is lower (visually better)

than the other, and loses if it is higher. The result shows that the fractions of JM

wins, FFMPEG wins and ties are 33.16%, 29.64% and 37.18%. This means more

than 1/3 of the whole frame losses are observed by exactly the same number of

observers for both error concealment methods used. Among the tie cases, 79.05%

represent losses with zero visibility for both JM and FFMPEG. Also JM wins

more times against FFMPEG. When JM conceals the whole frame loss by frame

copy, there are no spatial concealment artifacts; it is just a copy of the previous

intact frame. However, for FFMPEG that conceals by temporal interpolation,

ghosting artifacts may appear when there is enough motion. A visual example is

demonstrated in Figure VII.3. Frame 35 is lost and concealed by JM with frame

copy in Figure VII.3(a) and by FFMPEG with temporal frame interpolation in

Figure VII.3(b). The average whole frame loss visibility over all the data is 0.1716

for JM and 0.1879 for FFMPEG, indicating that on average, the whole frame losses

concealed by JM are less visible than by FFMPEG.

For a significance test between the visibility scores of FFMPEG and JM,

we can not perform a hypothesis test that assumes the data to be normal (e.g.,

t test) since from Figures VII.1(a) and VII.1(b), their distribution is far from
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normal. Therefore we resort to nonparametric hypothesis testing. The Wilcoxon

Signed Rank Test (paired comparison) [90] compares paired data x and y in a two-

sided test where the null hypothesis H0 is that the median of x− y comes from a

continuous, symmetric distribution with zero median, against the alternative that

the distribution does not have zero median. Let xi and yi be the visibility for

FFMPEG and JM in the ith comparison set. Define w =
∑n

i=1 rizi where ri is the

rank of |xi− yi| among all |xj − yj|, and zi = 1 if xi− yi > 0 and zi = 0 otherwise.

Here n = 900, the number of losses. The statistic for the test,

Z =
w − [n(n + 1)]/4√

[n(n + 1)(2n + 1)]/24
, (VII.1)

distributes approximately as Normal(0,1) when n > 12. The p-value is 0.176

(> 5%), meaning that we can not reject the null hypothesis at 95% confidence

level that the visibility scores of FFMPEG minus JM come from a distribution of

zero median.

VII.C Whole frame packet loss visibility model

In this section, we introduce the prediction model for whole frame loss

visibility. To predict the loss visibility, we first cover network-extractable factors

associated with a particular frame computed from a bitstream. The process of

model building and feature selection will be discussed.

VII.C.1 Factors extractable from the bitstream

From a frame, we want to obtain factors that can be extracted without the

need for other frames. Therefore, we do not consider initial MSE and other metrics

involving operations related to pixel domain reconstruction (as pixel reconstruction

would require access to the reference frame). By this, the frame loss visibility can

be determined even in the case that we do not have access to other frames.

Several factors were shown to be important to the prediction of packet

loss visibility in previous chapters. We consider the residual energy distribution of
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the MBs in a frame, denoted by RSENGY. We take the average of the residual

energy of all the MBs in a frame. We denote this quantity as MeanRSENGY.

MaxRSENGY denotes the maximal residual energy after motion compensation

among all MBs in a frame. VarRSENGY denotes the variance of the residual

energy of MBs in a frame. Aside from these which were used in previous chap-

ters, here we include two more descriptions of the distribution. The skewness [90]

of RSENGY describes the amount of asymmetry of the RSENGY distribution,

denoted as SkewRSENGY, and the entropy [91] of RSENGY captures the ran-

domness of the RSENGY distribution, denoted as EntRSENGY.

In addition to RSENGY, the QP distribution used for each MB is also

included. In H.264, the partition of a MB is supported, so the Interparts distri-

bution of MBs in a frame is included as a factor. Another important factor involves

motion vectors. MotX and MotY are motion vectors distributions in x and y

directions of MBs in each frame. MotM, the motion magnitude distribution of

MBs in a frame, is considered. To compute the factors related to phase of motion

vectors, we only consider macroblocks with non-zero motion, for which the phase is

well defined. We denote the phase information distribution of the motion vectors

as MotA. The packet size distribution in bits in a frame, denoted as SliceSize,

is also included for prediction.

For each one of these distributions (QP, Interparts, MotX, MotY, MotM,

MotA and SliceSize), we include the Mean, Max, Var, Skew and Ent (as we do

for RSENGY) as predictive features in our model. In addition, we are inter-

ested in how the way MBs are coded can affect the frame loss visibility, thus

we include the number of MBs in a frame that are coded in the mode of IN-

TRA (NumIntraMB), INTER (NumInterMB), DIRECT (NumDirectMB)

and SKIP (NumSkipMB) into factor consideration.

For residual energy, as in Chapter II, we found that this factor after log-

arithm was more correlated with frame loss visibility (where we add 10−7 before

taking the log to avoid a log of zero problem). Therefore we use this transforma-
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tion. Also note for the motion information to be self-contained in a packet, as

in Chapter V, the MB coded in “direct” mode should estimate the true motion

vectors from neighboring blocks.

VII.C.2 Modeling process and discussion

As before, we choose a GLM with the logit function as link function

to predict the packet loss visibility, since it can predict a probability parameter

in a binomial distribution. We follow the same model developing process as in

Chapter V which uses the concept of the M-estimator to account for the effects of

outliers. We use the factor set described in Section VII.C.1, plus interaction terms

between any two factors in the set by multiplication between two factors.

From Section VII.B we know that the concealed result for JM is not

significantly better than for FFMPEG, and that a whole frame loss with high

visibility for one decoder is very likely to be highly visible for the other decoder,

therefore it is reasonable to make one generalized model for both decoders. One can

make such a model by taking the average of the two visibility scores associated with

the same whole frame loss. We denote the result Avg JM FFMPEG. Another

way is taking the maximum of the two visibility scores of the JM and FFMPEG

decoders; this aims to predict the visibility for the worst decoder for a loss, and

we denote the result Max JM FFMPEG.

Figures VII.4(a) and (b) show decreasing M-estimator as we add factors

in the order of importance into the models that predict Avg JM FFMPEG and

Max JM FFMPEG respectively. The circle markers in the plots consider all the

factors discussed in Section VII.C.1. We observe that adding more factors in the

model produces diminishing returns. In fact, most of those factors involve the

computation of skewness and entropy, which are very complicated. Therefore,

we remove the factors involving skewness and entropy from consideration. The

factors in Figure VII.4(a) and (b) that are marked by diamonds do not include

skewness and entropy. We can see that by saving the computation and reducing
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Table VII.1: Table of factors for Avg JM FFMPEG model in the order of impor-

tance.

Order Factors Coefficients
α 1 -2.3502
1 MeanMotM 8.5907e-2
2 VarMotY -2.4423e-3
3 log(MaxRSENGY +10−7) 5.7905e-2
4 VarMotX -7.5725e-4
5 MeanSliceSize × VarMotY 4.8017e-7
6 NumInterMB -6.0581e-4
7 MaxMotM 3.6750e-3

the number of factors in the model, we only lose 12.4% for (a) and 6.45% for (b)

of the full performance achieved by all the circled factors (computed by the M-

estimator decrease from the best diamond model to the best circle model, divided

by the M-estimator decrease from the initial model to the best circle model).

The factors in order of importance and the corresponding coefficients of the final

models of Avg JM FFMPEG and Max JM FFMPEG are listed in Table VII.1

and Table VII.2, respectively. One interesting observation is that the first four

important factors are the same for both models. Also, the information relating to

motion vectors is very important; more than 70% of factors in the model involve

motion vector computations. This indicates the amount of motion in the lost frame

dominates the visual performance of concealment by both the JM and FFMPEG

decoders.

VII.D Conclusion

We present a subjective test and its results on whole B frame loss visibility

of the H.264 encoded bitstream. We compare the visual result of the concealment

by the JM standard and FFMPEG decoders. For whole frame loss, JM produces

frame copy artifact, while FFMPEG produces temporal frame interpolation arti-
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Table VII.2: Table of factors for Max JM FFMPEG model in the order of im-

portance.

Order Factors Coefficients
α 1 -1.930
1 MeanMotM 9.4313e-2
2 VarMotY -2.2636e-3
3 log(MaxRSENGY +10−7) 5.5021e-2
4 VarMotX -8.3054e-4
5 MaxMotM 9.2753e-3
6 MaxMotY -6.0405e-3
7 MeanSliceSize × VarMotY 3.9402e-7
8 NumInterMB -5.1083e-4
9 MaxMotX -4.4854e-3

fact. We found that there is no statistically significant difference in the visibility of

these losses between the two different decoders. Experimental results showed that

approximately 40% of all isolated losses were not observed by any viewers, and

about an additional 20% of the loss events were only observed by 1 or 2 out of 10

observers. We then developed two whole frame loss visibility models; one predicts

the average visibility by the decoders, the other is for the worst case visibility.
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Figure VII.1: (a) Histogram of whole frame loss visibility by JM decoder, (b)

Histogram of whole frame loss visibility by FFMPEG decoder.
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Figure VII.2: 3-D Histogram of whole frame loss visibility by JM decoder and

FFMPEG decoder.
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(a) Lost frame number 35 of Stefan. Whole frame concealment by JM decoder with

frame copy.

(b) Lost frame number 35 of Stefan. Whole frame concealment by FFMPEG decoder

with temporal frame interpolation.

Figure VII.3: Frame 35 is lost and concealed by JM decoder with frame copy in

(a) and by FFMPEG decoder with temporal frame interpolation in (b).
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Figure VII.4: The M-estimator plot versus the number of included factors pre-

dicting (a) Avg JM FFMPEG (b) Max JM FFMPEG.



VIII

Conclusion

In this dissertation, we have proposed an encoder-based packet loss vis-

ibility model, a network-based packet loss visibility model, and a network-based

whole frame loss visibility model. We discuss their applications to packet prioriti-

zation, unequal error protection and intelligent packet dropping. We compare our

methods to existing ones.

In Chapter II, we discuss an encoder-based packet loss visibility model.

The model has broad applicability since it is developed on datasets from multi-

ple subjective experiments using different codecs, different encoder settings, and

different decoder error concealment strategies. Factors related to scene cuts and

camera motion are found to be effective in predicting the visibility of packet loss.

In Chapter III, we discuss the application of the encoder-based packet

loss visibility model to packet prioritization. We use the visibility model to pri-

oritize video packets and use this for perceptual-quality based packet discarding.

The proposed policy performs better than the policy using cumulative MSE pri-

oritization in most cases, and outperforms the widely-implemented Drop-Tail in

all cases under diverse network conditions and GOP structures. The experiments

show that the model performs well for videos with various encoding rates, even

though the model is designed for high-quality video transported over a mostly

reliable network.

99
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In Chapter IV, we discuss the application of the encoder-based packet loss

visibility model to unequal error protection. We use the branch and bound method,

K-means clustering and the subgradient method to solve the RCPC channel rate

allocation problem to reduce the end-to-end packet loss visibility over an AWGN

channel. The subgradient method is most efficient for the optimal channel code rate

allocation. We exploit the options of not coding and not sending the packets. Our

algorithm significantly outperforms an existing approach under different channel

conditions, video clips and GOP structures.

In Chapter V, we develop a network-based packet loss visibility model.

We propose self-contained and network-based packet loss visibility models for

SDTV and HDTV resolutions. These models perform only slightly less well than

the much more complicated non-self-contained models that could be implemented

only at the encoder. Due to a wider viewing angle for HDTV, the spatial location

of the packet loss in HDTV matters more than in SDTV. For both SDTV and

HDTV models, the temporal duration of the error propagation is a very important

factor for a packet to be visible.

In Chapter VI, we discuss the application of the network-based packet

loss visibility model to packet dropping. We use a network-based packet loss

visibility model to measure the visual importance of packets incoming to a router.

The estimated visibility scores are used by the router to perform intelligent packet

dropping. We show that dropping whole frames and concealing by simple frame

interpolation produces better quality video than dropping on a packet (slice) basis.

The visual advantage of dropping whole frames is sufficiently large that, except for

low dropping rates, it pays to drop whole frames even when that means slightly

exceeding the target bit reduction rate for the GOP. A simple visibility model that

can be implemented inside the network provides a better basis for choosing frames

to drop than just targeting B frames for dropping.

In Chapter VII, we develop a network-based packet loss visibility model

for whole frame loss. We present a subjective test and its results on whole B frame
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loss visibility for an H.264 encoded bitstream. There is no statistically significant

difference in the visibility of these losses between the JM and FFMPEG decoders.

Experimental results show that approximately 40% of all isolated losses were not

observed by any viewers, and about an additional 20% of the loss events were only

observed by 1 or 2 out of 10 observers. We develop two whole frame loss visibility

models; one predicts the average visibility by the decoders, the other is for the

worst case visibility.

VIII.A Future work

The future work for the application of the network model includes:

• Network monitoring : The network model can serve as a quality monitor

for videos transmitted in the network. This can allow one to understand the

quality of the video for a specific channel. This is important for, for example,

an IPTV provider.

• Intelligent early dropping : In this dissertation, we look at methods of packet

dropping during network congestion. It may also be desirable for the router

to perceive the forthcoming congestion and drop the visually unimportant

packets earlier so that the more important packets can be saved and scheduled

for transmission even during congestion.

• Fair dropping among streams : When there are multiple video flows into the

router, we should define a best way to drop packets among different streams.

One way is to drop the packets to maximize the sum of video quality across

all users. Another approach is to drop packets so that largest video quality

degradation among the streams is minimized. Factors such as pricing can

also come into play.

For the subjective experiment of whole frame losses, several topics can be

extended:
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• Whole frame dropping protocol : In the whole frame dropping method pro-

posed in the dissertation, the importance of the whole frame drop is estimated

by the summation of the visibility scores of all the packets in the frame. By

the network-based whole frame model, we can estimate directly the visual

importance of the whole frame loss. And based on this measurement, we can

develop a dropping method specifically for whole frame loss.

• Encoder-based whole frame loss visibility model : By including effective factors

in the pixel domain, such as MSE and scene cut information, the prediction

accuracy can increase. Based on this model, we can perform frame level

unequal error protection and prioritization.
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