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Abstract

In many areas of computational biology, hidden Markov models (HMMs) have been used to

model local genomic features. In particular, coalescent HMMs have been used to infer ancient

population sizes, migration rates, divergence times, and other parameters such as mutation and

recombination rates. As more loci, sequences, and hidden states are added to the model, however,

the runtime of coalescent HMMs can quickly become prohibitive. Here we present a new

algorithm for reducing the runtime of coalescent HMMs from quadratic in the number of hidden

time states to linear, without making any additional approximations. Our algorithm can be

incorporated into various coalescent HMMs, including the popular method PSMC for inferring

variable effective population sizes. Here we implement this algorithm to speed up our

demographic inference method diCal, which is equivalent to PSMC when applied to a sample of

two haplotypes. We demonstrate that the linear-time method can reconstruct a population size

change history more accurately than the quadratic-time method, given similar computation

resources. We also apply the method to data from the 1000 Genomes project, inferring a high-

resolution history of size changes in the European population.

1 Introduction

The hidden Markov model (HMM) is a natural and powerful device for learning functional

and evolutionary attributes of DNA sequence data. Given an emitted sequence of base pairs

or amino acids, the HMM is well-suited to locating hidden features of interest such as genes

and promotor regions [2,5]. HMMs can also be used to infer hidden attributes of a collection

of related DNA sequences. In this case, emitted states are a tuple of A's, C's, G's and T's, and

the diversity of emitted states in a particular region can be used to infer the local

evolutionary history of the sequences. When two sequences are identical throughout a long

genetic region, they most likely inherited that region identical by descent from a recent

common ancestor. Conversely, high genetic divergence indicates that the sequences

diverged from a very ancient common ancestor [1,15].
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In recent years, coalescent HMMs such as the Pairwise Sequentially Markov Coalescent

(PSMC) [15] have been used to infer the sequence of times to most recent common ancestor

(TMRCAs) along a pair of homologous DNA sequences. Two other coalescent HMMs

(CoalHMM [4,12,16] and diCal [24,25]) also tackle the problem of inferring genealogical

information in samples of more than two haplotypes. These methods are all derived from the

coalescent with recombination, a stochastic process that encapsulates the history of a

collection of DNA sequences as an ancestral recombination graph (ARG) [13,29]. The

hidden state associated with each genetic locus is a tree with time-weighted edges, and

neighboring trees in the sequence are highly correlated with each other. Sequential changes

in tree structure reflect the process of genetic recombination that slowly breaks up ancestral

haplotypes over time.

The methods mentioned above all infer approximate ARGs for the purpose of demographic

inference, either detecting historical changes in effective population size or estimating times

of divergence and admixture between different populations or species. PSMC and

CoalHMM have been used to infer ancestral population sizes in a variety of non-model

organisms for which only a single genome is available [6,17,19,20,28,30], as well as for the

Neanderthal and Denisovan archaic hominid genomes [18]. Despite this progress, the

demographic inference problem is far from solved, even for extremely well-studied species

like Homo sapiens and Drosophila melanogaster [7,9,15,23,27]. Estimates of the population

divergence time between European and African humans range from 50 to 120 thousand

years ago (kya), while estimates of the speciation time between polar bears and brown bears

range from 50 kya to 4 million years ago [3,10,19]. One reason that different demographic

methods often infer conflicting histories is that they make different trade-offs between the

mathematical precision of the model and scalability to larger input datasets. This is even true

within the class of coalescent HMMs, which are much more similar to each other than to

methods that infer demography from summary statistics [8,11,21] or Markov chain Monte

Carlo [7].

Exact inference of the posterior distribution of ARGs given data is a very challenging

problem, the major reason being that the space of hidden states is infinite, parameterized by

continuous coalescence times. In practice, when a coalescent HMM is implemented, time

needs to be discretized and confined to a finite range of values. It is a difficult problem to

choose an optimal time discretization that balances the information content of a dataset, the

complexity of the analysis, and the desire to infer particular periods of history at high

resolution. Recent demographic history is often of particular interest, but large sample sizes

are needed to distinguish between the population sizes at time points that are very close

together or very close to the present.

In a coalescent HMM under a given demographic model, optimal demographic parameters

can be inferred using an expectation-maximization (EM) algorithm. The speed of this EM

algorithm is a function of at least three variables: the length L of the genomic region being

analyzed, the number n of sampled haplotypes, and the number d of states for discretized

time. In most cases, the complexity is linear in L, but the complexity in n can be enormous

because the number of distinct n-leaved tree topologies grows super-exponentially with n.

PSMC and CoalHMM avoid this problem by restricting n to be very small, analyzing no
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more than four haplotypes at a time. diCal admits larger values of n by using a trunk

genealogy approximation (see [22,24,25] for details) which is derived from the diffusion

process dual to the coalescent process, sacrificing information about the exact structure of

local genealogies in order to analyze large samples which are informative about the recent

past.

To date, all published coalescent HMMs have had quadratic complexity in d. This presents a

significant limitation given that small values of d lead to biased parameter estimates [16]

and limit the power of the method to resolve complex demographic histories. PSMC is

typically run with a discretization of size d = 64, but diCal and CoalHMM analyses of larger

datasets are restricted to coarser discretizations by the cost of increasing the sample size. In

this paper, we exploit the natural symmetries of the coalescent process to derive an alternate

EM algorithm with linear complexity in d. The speedup requires no approximations to the

usual forward-backward probabilities; we perform an exact computation of the likelihood in

O(d) time rather than O(d2) time using an augmented HMM. We implement the algorithms

presented in this paper to speed up our published method diCal, which is equivalent to

PSMC when the sample size is two, yielding results of the same quality as earlier work in a

fraction of the runtime. We have included the speedup in the most recent version of our

program diCal; source code can be downloaded at http://sourceforge.net/projects/dical/.

2 Linear-Time Computation of the Forward and Backward Probabilities

We consider a coalescent HMM ℳ with hidden states S1, …, SL and observations x = x1,

…, xL. For PSMC, Sℓ is the discretized time interval in which two homologous

chromosomes coalesce at locus ℓ, while xℓ is an indicator for heterozygosity. The method

diCal is based on the conditional sampling distribution (CSD) which describes the

probability of observing a newly sampled haplotype x given a collection ℋ of n already

observed haplotypes. In diCal, the hidden state at locus ℓ is Sℓ = (Hℓ, Tℓ), where Hℓ ∈ ℋ

denotes the haplotype in the “trunk genealogy” (see [22]) with which x coalesces at locus ℓ

and Tℓ ∈ {1, …, d} denotes the discretized time interval of coalescence; the observation xℓ ∈

 is the allele of haplotype x at locus ℓ. For n = |ℋ| = 1, diCal is equivalent to PSMC. In

what follows, we present our algorithm in the context of diCal, but we note that the same

underlying idea can be applied to other coalescent HMMs.

2.1 A linear-time forward algorithm

We use f(x1:ℓ, (h, j)) to denote the joint forward probability of observing the partial emitted

sequence x1: ℓ := x1, …, xℓ and the hidden state Sℓ = (h, j) at locus ℓ. The probability of

transitioning from state (h′, k) at locus ℓ to state (h, j) at locus ℓ + 1 is denoted by ϕ(h, j | h′,

k), the stationary probability of state (h, i) is denoted ζ(h, i), and the emission probability of

the observed allele xℓ = a given coalescence at Tℓ = j onto haplotype h with allele hℓ = b at

locus ℓ is denoted by ξ(a | b, j). When ℓ is obvious from the context, we sometimes use ξ(a |

s) := ξ(a | hℓ, j) for s = (h, j). Explicit expressions for ζ(h, i), ϕ(h, j | h′, k), and ξ(a | b, j) in

the context of our program diCal are given in [24].

The forward probabilities are computed using the recursion
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(1)

which contains nd terms. Since there are also nd possibilities for Sℓ+1 = (h, j), it should

naively take O(n2d2L) time to compute the entire forward dynamic programming (DP) table

. The key to achieving a speed-up is to factor (1) in a way that reflects the

structure of the coalescent, exploiting the fact that many transitions between different hidden

states have identical probabilities.

After a sampled lineage recombines at time tr between loci ℓ and ℓ + 1, it will “float”

backward in time from the recombination breakpoint until eventually coalescing with a

trunk lineage chosen uniformly at random (Figure 1(a)). This implies that ϕ(h, j|h′, k) = ϕ(h,

j|h″, k) whenever h′ ≠ h and h″ ≠ h, and exploiting this symmetry allows the forward table to

be computed in O(nd2L) time. This speed-up was already implemented in the algorithm

described in Paul et al. [22].

Another symmetry of the transition matrix, not exploited previously, can be found by

decomposing the transition from locus ℓ to locus ℓ + 1 as a sequence of component events.

In particular, let Ri be the event that a recombination occurs during time interval i, and let R ̅

be the event that no recombination occurs between ℓ and ℓ + 1. Then we have that

(2)

where E = 1 if the event E is true or 0 otherwise. The factor 1/n corresponds to the

probability that the sampled lineage coalesces with haplotype h ∈ ℋ in the trunk genealogy.

If a recombination occurs in time interval i, the sampled lineage will start to “float” freely

back in time until it either coalesces in i or floats into the next time interval i + 1 (Figure

1(b)). Specifically, we let C>i denote the event where the sampled lineage recombines at or

before i and floats into i + 1, and Ci denote the event where the recombined lineage

coalesces back in interval i. Noting that ℙ(Ri, Ci | Tℓ = i′) and ℙ(Ri, C>i | Tℓ = i′) are

independent of i′ whenever i′ > i, and that coalescence happens as a Markov process

backwards in time, we obtain

(3)

Explicit formulas (specific to the method diCal) for the above terms are provided in the

appendix.
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By combining (2) with (3) and then collecting terms in (1), we can remove the sum over Tℓ

= k when computing f(x1:ℓ+1, Sℓ+1). In particular, we define additional forward probabilities

(4)

(5)

(6)

Then, (1) can be written as

(7)

This can be seen by noting that the first three terms in the sum correspond to the terms for i

< j, i = j < k, and i = j = k, respectively when putting together (1) and (2). Alternatively, (7)

follows from directly considering the probabilistic interpretation of the terms f(x1:ℓ, *) as

given by (4), (5), and (6).

The required values of f(x1:ℓ, R≤i, C>i) and f(x1:ℓ, Tℓ > i) can be computed recursively using

(8)

(9)

with the base cases

Hence, using the recursions (7), (8), and (9), it is possible to compute the entire forward DP

table  exactly in O(ndL) time.
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2.2 A linear-time backward algorithm

The backward DP table {b(xℓ+1:L | Sℓ)} can be also computed in O(ndL) time. Given the

linear-time forward algorithm discussed in the previous section, the easiest way to compute

the backward DP table is as follows: Let , , xL−1, …, x1 denote the

reversed x and let  denote the hidden states for the HMM generating x(r). Then, since the

coalescent is reversible along the sequence,

3 Linear-Time EM via an Augmented HMM

The primary application of PSMC and diCal is parameter estimation, specifically the

estimation of demographic parameters such as changing population sizes. This is done

through a maximum likelihood framework with the expectation maximization (EM)

algorithm. In this section, we describe how to speed up the EM algorithm to work in linear

time.

3.1 The standard EM algorithm with O(d2) time complexity

Let Θ denote the parameters we wish to estimate, and Θ̂ denote the maximum likelihood

estimate:

To find Θ̂, we pick some initial value Θ(0), and then iteratively solve for Θ(t) according to

where S1:L := S1, …, SL. The sequence Θ(0), Θ(1), … is then guaranteed to converge to a

local maximum of the surface ℒ(Θ).

Since (x1:L, S1:L) forms an HMM, the joint likelihood ℙ(x1:L, S1:L) can be written as

Letting [#ℓ : E | x1:L] denote the posterior expected number of loci where event E occurs,

and π(x) := ℙ(x) = Σs f(x1:L, s) denote the total probability of observing x, we then have
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(10)

Note that we have to compute the term Σℓ fΘ(x1:ℓ, s)ϕΘ(s′ | s)ξΘ(xℓ+1 | s′) bΘ(xℓ+2:L | s′) for

every pair of states s, s′, which makes computing the EM objective function quadratic in the

number d of discretization time intervals, despite the fact that we computed the forward and

backward tables in linear time.

3.2 A linear-time EM algorithm

By augmenting our HMM to condition on whether recombination occurred between loci ℓ

and ℓ + 1, the EM algorithm can be sped up to be linear in d. We now describe this

augmented HMM. Let ℳ denote our original HMM, with states S1:L and observations x1:L.

Between loci ℓ and ℓ + 1, define

Now let , and  for ℓ > 1. We let ℳ* be the HMM with hidden

variables , observations x1:L, transition probabilities

, and emission probabilities . Note that the

probability of observing the data is the same under ℳ and ℳ*, i.e.,

and so we may find a local maximum of ℒ(Θ) by applying the EM algorithm to the

augmented HMM ℳ*, instead of to the original HMM ℳ.

To compute the EM objective function for ℳ*, we start by noting that the joint likelihood is

(11)

where we decomposed the joint likelihood into the initial probability, the emission

probabilities, the transitions without recombination, and the transitions with recombination.

We note that the initial probability can be decomposed as
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(12)

and from (3), we decompose the product of transition recombination probabilities as

(13)

where R<i := ∪j<iRj. Figure 2 shows a graphical representation for the transitions of ℳ*.

By plugging (12) and (13) into (11), then taking the posterior expected logarithm of (11), we

obtain the EM objective function for ℳ*:

(14)

where

(15)

The computation time for each of the posterior expectations Θ[#ℓ : * | x1:L] and ℙΘ(T1 |

x1:L) does not depend on d; full expressions are listed in the appendix. Hence, the number of

operations needed to evaluate (14) is linear in d.

We note another attractive property of (14). By decomposing the EM objective function into

a sum of terms qi(Θ, Θ′), we obtain a natural strategy for searching through the parameter

space. In particular, one can attempt to find the argmaxΘ′ of (14) by optimizing the qi(Θ, Θ′)

one at a time in i. In fact, for the problem of estimating changing population sizes, qi(Θ, Θ′)

depends on Θ′ almost entirely through a single parameter (the population size  in interval

i), and we pursue a strategy of iteratively solving for  while holding the other coordinates

Harris et al. Page 8

Res Comput Mol Biol. Author manuscript; available in PMC 2014 October 20.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



of Θ′ fixed, thus reducing a multivariate optimization problem into a sequence of univariate

optimization problems.

Although both the linear and quadratic EM procedures are guaranteed to converge to local

maxima of ℒ(Θ), they may have different rates of convergence, and may converge to

different local maxima. The search paths of the two EM algorithms may differ for two

reasons: first, the intermediate objective functions (10) and (14) are not equal, and secondly,

as discussed above, we use different search strategies to find the optima of (10) and (14).

We have no proven guarantee that either search should perform better than the other, but our

observations indicate that the linear-time EM algorithm typically converges to a value of Θ

with a equal or higher value of ℒ(Θ) than the quadratic-time algorithm, in a fraction of the

time (see Figure 5 for an example).

4 Results

To confirm the decrease in runtime, we ran the linear-time diCal method on simulated data

with L = 2 Mb of loci and 2 haplotypes (in which case diCal is equivalent to PSMC), using d

= 2, 4, 8, 16, 32, 48, 64, 80, 96, 112, 128 discretization intervals. To simulate the data, we

used ms [14] with a population-scaled recombination rate ρ = 0.0005 to generate an ARG,

and then added mutations using a population-scaled mutation rate of θ = 0.0029 and a finite-

sites mutation matrix described in Sheehan et al. [24]. Figure 3(a) shows the time required to

compute the table of forward probabilities. We also measured the time required for one EM

iteration and then extrapolated to 20 iterations to approximate the time required to estimate

an effective population size history (Figure 3(b)). In both figures, the linear runtime of our

new algorithm is apparent and significantly improves our ability to increase the number of

discretization intervals.

To assess the gain in accuracy of population size estimates that is afforded by more

discretization intervals, we ran both the linear- and quadratic-time methods on simulated

data with 10 haplotypes and L = 2 Mb. The conditional sampling distribution was used in a

leave-one-out composite likelihood approach [24] in this experiment. To run each method

for roughly the same amount of time (≈ 40 hours), we used d = 9 for the quadratic method

and d = 21 for the linear method. For both methods, we ran the EM for 20 iterations and

inferred d/3 size change parameters. As measured by the PSMC error function, which

integrates the absolute value of the difference between the true size function and the

estimated size function [15], larger values of d permit the inference of more accurate

histories.

We also ran our method on 10 CEU haplotypes (Utah residents of European descent)

sequenced during Phase I of the the 1000 Genomes Project [26] (Figure 4(b)). We can see

that for the quadratic method with d = 9, we are unable to fully characterize the out-of-

Africa bottleneck. In the same amount of computational time, we can run the linear method

with d = 21 and easily capture this feature. The disagreement in the ancient past between the

two methods is most likely due to diCal's lack of power in the ancient past when there are

not many coalescence events. Using a leave-one-out approach with 10 haplotypes, the
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coalescence events in the ancient past tend to be few and unevenly spaced, resulting in a less

confident inference.

The runtime of the full EM algorithm depends on the convergence of the M-step, which can

be variable. Occasionally we observed convergence issues for the quadratic method, which

requires a multivariate optimization routine. For the linear method, we used the univariate

Brent optimization routine from Apache Math Commons (http://commons.apache.org/

proper/commons-math/), which converges quickly and to a large extent avoids local

maxima.

To examine the convergence of the two EM algorithms, we ran the linear and quadratic

methods on the simulated data with 10 haplotypes and the same number of intervals d = 16.

We examine the likelihoods in Figure 5(a). The linear method reaches parameter estimates

of higher likelihood, although it is unclear whether the two methods have found different

local maxima, or whether the quadratic method is approaching the same maximum more

slowly. Figure 5(b) shows the inferred population sizes for each method, which although

similar, are not identical.

We have also looked at the amount of memory required for each method, and although the

difference is small, the linear method does require more memory to store the augmented

forward and backward tables. A more thorough investigation of memory requirements will

be important as the size of the data continues to increase.

5 Discussion

The improvement to diCal described in this paper will enable users to analyze larger datasets

and infer more detailed demographic histories. This is especially important given that large

datasets are needed to distinguish between histories with subtle or recent differences. By

using samples of 10 haplotypes rather than 2, diCal v1.0 [24] was able to distinguish

between histories that diverged from each other less than 0.1 coalescent time units ago, in

which period PSMC tends to exhibit runaway behavior and hence cannot produce reliable

population size estimates. The faster algorithm described here can handle samples of 30

haplotypes with equivalent computing resources. Our results indicate that this improves the

method's ability to resolve rapid, recent demographic shifts.

In organisms where multiple sequenced genomes are not available, the resources freed up by

O(d) HMM decoding could be used to avoid grouping sites into 100-locus bins. This binning

technique is commonly used to improve the scalability of PSMC, but has the potential to

downwardly bias coalescence time estimates in regions that contain more than one SNP per

100 bp.

In general, it is a difficult problem to choose the time discretization that can best achieve the

goals of a particular data analysis, achieving high resolution during biologically interesting

time periods without overfitting the available data. Sometimes it will be more fruitful to

increase the sample size n or sequence length L than to refine the time discretization; an

important avenue for future work will be tuning L, n, and d to improve inference in humans

and other organisms.
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Another avenue for future work will be to develop augmented HMMs for coalescent models

with population structure. Structure and speciation have been incorporated into several

versions of CoalHMM and diCal, and the strategy presented in this paper could be used to

speed these up, though a more elaborate network of hidden states will be required. We are

hopeful that our new technique will help coalescent HMMs keep pace with the number and

diversity of genomes being sequenced and tease apart the demographic patterns that

differentiated them.

Acknowledgments

We are grateful to Matthias Steinrücken and other members of the Song group for helpful discussions. This
research was supported in part by NSF Graduate Research Fellowships to K.H. and S.S., and by an NIH grant R01-
GM094402 and a Packard Fellowship for Science and Engineering to Y.S.S.

A Appendix

A.1 Explicit Computation of Transition Probabilities

In Equations 2 and 12 from the main text, we decompose the transition probabilities ϕ(s | s′)

and the stationary probability ζ(s) into the component terms ℙ(Ci | C>i−1), ℙ(C>i | C>i−1),

ℙ(Ri, Ci | Tℓ = i), ℙ(Ri, Ci | Tℓ > i), ℙ(Ri, C>i | Tℓ = i), ℙ(Ri, C>i | Tℓ > i), and ℙ(R̅ | Tℓ = i).

Here we give explicit formulae for these transition probabilities in terms of scaling factors

λ1, …, λd that specify the relative effective population sizes within each time interval. These

formulae are specific to the method diCal with variable population size but no population

structure. Very similar computations could be used for diCal with population structure, as

well as for PSMC, CoalHMM, and related methods.

In addition to λ1, …,λd, these formulae will include the recombination rate ρ, scaled with

respect to an implicit population size N0 such that λi · N0 is the effective population size in

interval i and ρ = 4N0r, where r is the recombination rate per site per generation. Time

intervals are defined with respect to a fixed sequence of time points t0 = 0 < t1 < ⋯ < td =

∞, where the ith time state is the interval between ti−1 and ti. In addition, n̅i denotes the

average number of lineages that are present at time ti−1 in an n-leaf coalescent tree, and is

computed in [24].

We compute the components of the stationary and transition probabilities as follows:
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A.2 Posterior Expectations for the Augmented HMM

In this section of the appendix, we discuss how to compute the posterior expectations in

(15). We express these posterior expectations in terms of usual forward and backward

probabilities f(x1:ℓ, Sℓ) and b(xℓ+1:L | Sℓ), and also the combined forward probabilities f (x1:ℓ,

Tℓ = i), f (x1:ℓ, Tℓ > i), and f (x1:ℓ, R≤i, C>i) introduced in Section 2.1 of the main text. In

addition, we need to define the combined backward probabilities,

We start by showing how to express [#ℓ : {ℛℓ,ℓ+1 = Ri, Tℓ > i, Tℓ+1 > i} | x1:L] in terms of

these forward and backward probabilities:
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where π(x) := P(x) = Σs f(x1:L, s).

Computing the other posterior expectations is similarly straightforward. We list the derived

expressions for them here:
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A.3 Running diCal on Simulated and Real Data

To run diCal on the simulated data, we used the commandlines below (d = 9 and d = 21):

java -jar diCal.jar -F data.fasta -I params.txt -n 10 -p "3+3+3" -t

1.0 -u 0

java -jar diCal.jar -F data.fasta -I params.txt -n 10 -p

"8+2+2+2+2+2+3" -t 2.0 -u 1

where n is the total number of haplotypes, p is the grouping of discretization intervals into

parameters, t is the start point of the last discretization interval (in coalescent units) and u is

a flag for using the linear vs. quadratic method.

To run diCal on the 1000 Genomes data, we used the commandlines:

java -jar diCal.jar -F data.fasta -I params.txt -n 10 -p "3+3+3" -t

1.0 -u 0

java -jar diCal.jar -F data.fasta -I params.txt -n 10 -p

"5+3+2+2+2+3+4" -t 2.0 -u 1

For both the simulated and real data, the parameter groupings were chosen such that the

number of parameters inferred would be d/3, with minimal runaway behavior.
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Figure 1.
(a). Here, we illustrate a transition from hidden state Sℓ = (hn, i) to hidden state Sℓ+1 = (hk, j)

that proceeds via recombination at time tr. The probability of this transition does not depend

on the identity of the haplotype hk.(b). As a recombined lineage floats through time interval

j, it can either coalesce with the trunk (event Cj) or keep floating (event C>j) and eventually

coalesce with the trunk in a more ancient time interval.
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Figure 2.
This diagram illustrates the flow of transition probabilities through the augmented HMM.

Lineages may transition between different coalescence times at loci ℓ and ℓ + 1 by

recombining and passing through the floating states represented by circles. Each interval

contains three distinct floating states to capture the the dependence of recombination and

coalescence probabilities on whether any of these events occur during the same time

interval.
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Figure 3.
Runtime results on simulated data with L = 2 Mb and 2 haplotypes, for varying number d of

discretization intervals. (a) Runtime results (in minutes) for the forward computation. (b)

Runtime results (in hours) for the entire EM inference algorithm (20 iterations) extrapolated

from the time for one iteration.
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Figure 4.
Effective population size change history results. The speedup from the linear method allows

us to use a finer discretization (d = 21) than the quadratic method (d = 9) for about the same

amount of runtime. (a) Results on simulated data with L = 2 Mb and 10 haplotypes. Using

the quadratic method with d = 9, the error was 0.148. Using the linear method with d = 21,

the error dropped to 0.079. (b) Results on 10 European haplotypes over a 2 Mb region of

chromosome 1. The out-of-Africa bottleneck is very apparent with d = 21, but is not as well

characterized for d = 9.
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Figure 5.
Results on simulated data, using the same discretization for the linear and quadratic

methods. Each method was run for 20 iterations. (a) The log likelihood of the EM algorithm,

plotted against time, for both the linear and quadratic methods. (b) Population size change

history results for the linear and quadratic methods, run with the same discretization using d

= 16 and estimating 6 parameters.
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