
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Exploring Complexity in Decisions from Experience: Same Minds, Same Strategy

Permalink
https://escholarship.org/uc/item/05x063f2

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 37(0)

Authors
Konstantinidis, Emmanouil
Ashby, Nathaniel J.S.
Gonzalez, Cleotilde

Publication Date
2015
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/05x063f2
https://escholarship.org
http://www.cdlib.org/


Exploring Complexity in Decisions from Experience: Same Minds, Same Strategy
Emmanouil Konstantinidis (em.konstantinidis@gmail.com), Nathaniel J. S. Ashby (nathaniel.js.ashby@gmail.com),

& Cleotilde Gonzalez (coty@cmu.edu)
Department of Social & Decision Sciences

Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract

One frequent piece of advice is not to “put all our eggs in
one basket” and opt for multiple alternatives in order to min-
imize risk and uncertainty in our decisions. In a behavioral
study involving decisions-from-experience, Ashby, Konstan-
tinidis, and Gonzalez (2015) showed that participants follow
an “irrational” strategy in choice selection which departs from
maximization. As structural complexity (number of avail-
able options) increased, participants diversified their choices
more, proportional to rank ordering options based on their ex-
pected value. The current work explores the underlying cogni-
tive mechanisms through a reinforcement-learning model and
shows that people’s choices can be explained by a singular
strategy (diversification in choice), which originates from sim-
ilar cognitive processes regardless of structural complexity.

Keywords: Decisions from Experience; Diversification; Com-
putational Modeling; Probability Matching

Introduction
People are often confronted with many real-life situations in
which they have to make decisions among a number of op-
tions such as investments programs, medical plans, and re-
tirement options. One “safe” approach in choosing among
multiple investment programs, for example, is not to “put all
the eggs in one basket”, but instead select several investments
in order to minimize the risk of losing everything (Ayal &
Zakay, 2009). This approach is non-optimal given normative
accounts of decision-making under risk and uncertainty such
as expected value (EV) maximization.

In experience-based decision-making, people make deci-
sions between options that carry monetary payoffs in the
absence of explicit information about the payoffs and asso-
ciated probabilities (Barron & Erev, 2003; Hertwig et al.,
2004). On each trial, they receive feedback from their se-
lections and their goal is to maximize overall winnings. This
is usually achieved by first exploring the environment (i.e.,
the available options) and then exploiting the most rewarding
options (Gonzalez & Dutt, 2011). Often, in decisions-from-
experience (DFE), people prefer options with higher EVs
(e.g., Hills, Noguchi, & Gibbert, 2013; Jessup, Bishara, &
Busemeyer, 2008). While more choices are made from the
most advantageous option, perhaps indicating a shift from
exploration to exploitation, some degree of variability in
choice remains even after a great deal of experience (Ashby &
Rakow, in press). Such variability might suggest that while
individuals generally drift towards the EV maximizing op-
tion, they might also (incorrectly) see some value in diver-
sifying their choices across available options; such contin-
ued variation might represent strategies such as probability
matching (see Shanks, Tunney, & McCarthy, 2002).

Ashby et al. (2015) investigated whether the less-than-
optimal rates of maximization found in DFE and continued
variability in choice are more likely the result of diversifica-
tion in choice, or whether it more likely reflects noise (un-
clear preferences) or strategies such as win-stay-lose-shift or
hot-stove effects (e.g., Biele, Erev, & Ert, 2009). The di-
versity hypothesis suggests that participants distribute their
choices in a quasi-normative way, choosing from options pro-
portional to their experienced EVs (e.g., through probability
matching). This hypothesis was tested using an experimental
design where the structural complexity of a typical decisions-
from-feedback (DFF) paradigm was manipulated by increas-
ing the number of options available to choose from. Ashby
et al. found support for the diversity hypothesis across all
levels of complexity (see Behavioral Results in the current
manuscript).

The purpose of the present work is to examine this ef-
fect and decompose its underlying cognitive and psycholog-
ical underpinnings by using computational modeling analy-
sis. Cognitive models can be used to assess latent psycho-
logical factors that affect behavior in a task and to quantify
these processes via model parameters. The main hypothesis
is that diversification in choice originates from similar cog-
nitive processes; in other words, model parameters will be
similar across conditions and levels of structural complexity.

Method
Participants
We tested a total of 722 participants, recruited from Ama-
zon Mechanical Turk. Participants who did not complete
the study and failed to pass an attention check test (click on
the corner of the screen instead of clicking continue) were
removed from analysis. Four-hundred and five participants
fulfilled our inclusion criteria (Mage = 33.46, 47% female).
Participants received $1.25 for their participation and an ad-
ditional amount dependent on their performance in the task
(Mearnings = $4.45).

Task
A typical DFF paradigm was employed (Barron & Erev,
2003). Participants had to make 200 consequential choices
in one of four conditions: choices involving 2 (C2: N = 99),
4 (C4: N = 100), 8 (C8: N = 100), or 16 options (C16: N =
106). Different options were labeled alphabetically (“Option
A” to “Option P”) and appeared as buttons on the computer
screen in random order. In each condition, there was an equal
number of safe (two moderate outcomes with equal probabil-
ity) and risky (low probability of a high outcome, but higher
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probability of a low outcome) options (see Table 1). For ex-
ample, in the two option condition (C2), gambles S1 (a safe
high EV option) and R1 (a risky low EV option) were ran-
domly assigned to “Option A” and “Option B”. The C4, C8,
and C16 conditions included gambles S1 and R1 along with
additional gambles shown in Table 1. The maximizing option
(i.e., the option with the highest EV) was option S1 across
conditions. After each choice, participants received feedback
about the outcome of their decision.

Table 1: Safe (S) and risky (R) gamble pairs outcomes in points
(OS1-OS2 and OR1-OR2), probabilities (50%-50% and 20%-80%),
and expected values in points (EVS and EVR) in all experimental
conditions (C2, C4, C8, C16).

Conditions Safe Risky

C2 C4 C8 C16 OS1-0.5 OS2-0.5 EVS OR1-0.2 OR2-0.8 EVR

X X X X 70 60 65 100 30 44
X X X 65 55 60 110 20 38

X X 60 50 55 120 10 32
X X 55 55 55 130 0 26

X 67 57 62 105 25 41
X 64 54 59 115 15 35
X 61 51 56 125 5 29
X 58 48 53 135 0 27

Procedure
Participants provided informed consent and answered demo-
graphic questions. They were informed that they would be
presented with either 2, 4, 8, or 16 options (between sub-
jects), and that they would have to play the options in order
to learn what outcomes were possible as their outcomes and
probabilities would not be provided. They were told that their
goal was to earn as many points as possible, as points would
be converted to money (40 points = $0.01). After participants
made their 200 decisions, they were informed of their total
earnings and thanked for their time.

Behavioral Results
The first step in our analysis was to examine the pattern of
choice selections across conditions. According to the diver-
sity hypothesis, we would expect participants’ strategies to
depart from maximization (i.e., select consistently the option
with the highest EV) and to rather show a pattern where they
allocate their choices based on the EV of each option. In other
words, the option with the highest EV attains the highest pro-
portion of choices, followed by the option with the second
highest EV, and so on.

Figure 1 shows this pattern of results. While the maxi-
mizing option (red bar) has the greatest proportion of choices
in each condition, indicating that participants learn to select
more frequently from this option, the option with the sec-
ond highest EV in each option set receives the second highest
proportion, and so on. In fact, there is a direct mapping be-
tween the rank ordering of options based on their EV and
the proportion of choices each of them receives. Thus, the

preference of spreading selections across choices is not ran-
dom, but rather it follows a quasi-normative approach. This
EV matching strategy is also consistent with other strategies
such as probability matching. For instance, recent studies in
DFE and multi-armed bandit tasks have shown that partici-
pants’ choice strategies may be best explained by a probabil-
ity matching heuristic (Schulz, Konstantinidis, & Speeken-
brink, 2015; Speekenbrink & Konstantinidis, in press).
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Figure 1: Proportion of choices from each option across conditions.
Numbers in parentheses indicate each option’s EV.

A possible explanation of this effect is that it may be driven
by initial exploration of the environment and thus diminishes
towards the end of the experiment. Put differently, the ten-
dency to spread choices might be a result of extended explo-
ration in the first blocks of the experiment and participants
select more frequently the maximizing option in the last tri-
als of the task. In order to examine this possibility, we tested
whether the experienced outcome from each option (first 160
trials) is a significant determinant of choice selection in the
last trials of the experiment (40 trials).

We conducted a mixed-effects multiple regression predict-
ing the proportion of choices for each option in the last 40
trials by the average experienced outcome up to trial 160.
The analysis showed that each option’s average experienced
outcome significantly predicts choice proportions in the last
40 trials, b = .01,z = 23.80, p < .001. The effect is also
present when we examine each of the four conditions seper-
ately (zs> 9, ps< .001). This result suggests that participants
allocate their choices according to each option’s EV even in
the later stages of the experiment and after extended feedback
and interaction with the task.
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Modeling Structural Complexity
Inspection of choice strategies across conditions suggested a
close link between each option’s EV and the proportion of
selections it received. We utilised a computational model-
ing analysis in order to examine whether the psychological
and cognitive processes underlying choice behavior are simi-
lar across conditions.

The model
We employed a reinforcement-learning (RL) model (see Ahn
et al., 2008; Daw et al., 2006; Sutton & Barto, 1998), which
incorporates three basic assumptions regarding the decision
process in DFE. These assumptions reflect psychological and
cognitive processes whose interaction is responsible for ob-
served performance (e.g., Busemeyer & Stout, 2002). The
first assumption relates to the subjective evaluation of re-
ceived feedback in each trial after selecting an option by a
utility function. This transformation is achieved by using a
utility function similar to the value function of Prospect The-
ory (Kahneman & Tversky, 1979):

u(t) = x(t)α , (1)

where u(t) represents the subjective utility of payoff x on trial
t. The free parameter α (0≤ α ≤ 1) determines the shape of
the utility function. When α equals 1, the subjective utility
matches the received payoff, whereas values less than 1 result
in a curved utility function.

The second assumption refers to the formation of expectan-
cies, E, about the values of each option j on trial t. Specifi-
cally, the momentary utility u j(t) serves as input to a learning
rule which updates these expectancies. In this model, we used
a delta learning rule. This rule updates only the expectancy
E of the selected option j on trial t, whereas the expectancies
of the unselected options remain unchanged:

E j(t) = E j(t−1)+A ·δ j(t) · [u j(t)−E j(t−1)]. (2)

The dummy variable δ j(t) determines whether an option is
selected on trial t (δ j = 1) or not (δ j = 0). The free param-
eter A (0 ≤ A ≤ 1) indicates how much the old expectancy,
E j(t−1), is modified by the prediction error, [u j(t)−E j(t−
1)]. Large values of A reflect rapid forgetting and strong re-
cency effects, whereas smaller values of A indicate weak and
recency effects and long associative memories (Busemeyer &
Stout, 2002).

Finally, a choice, which is a probabilistic function of the
relative strength of each option (i.e., its expectancy compared
to the expectancies of the other options; third assumption),
is made. This is achieved by employing a softmax selection
rule:

P[G(t +1) = j] =
eθ ·E j(t)

∑
k
k=1 eθ ·Ek(t)

, (3)

which defines the probability of selecting option G on the
next trial, t + 1. The free parameter θ (sensitivity or inverse
“temperature” parameter) controls the degree to which choice

probabilities match the formed expectancies. When θ ap-
proaches zero, choice between options is random (P[G(t +
1) = j] = 1/k, where k is the number of available options)
allowing for exploration behavior. On the other hand, large
values of θ indicate that options with high expectancies will
be selected more often (exploitation). In this model instantia-
tion, θ is independent of time (i.e., trial number; see Yechiam
& Ert, 2007):

θ = 3c−1, (4)

where c ranges between 0 and 5, with values close to 0
indicating random choice and values close to 5 suggesting
deterministic-exploitative choice1.

Model Evaluation Parameters were estimated for each in-
dividual using maximum likelihood estimation (MLE). The
procedure was a combination of grid-search (60 different
starting points for each set of parameters) and Nelder-Mead
simplex search methods which identified the parameter val-
ues that maximized the following log likelihood criterion:

LLi =
t−1

∑
t=1

k

∑
j=1

ln(P[G j(t +1) | Xi(t),Yi(t)]) ·δ j(t +1). (5)

The model is assessed on how accurately it can predict choice
on the next trial, P[G j(t+1)], given an individual’s history of
choices, Xi(t), and associated payoffs, Yi(t), up to and includ-
ing trial t (also known as one-step-ahead prediction method).
The dummy variable δ j indicates whether an option is se-
lected on trial t +1.

Modeling Results
Model Fitting

The first step in our analysis was to ensure that the model
we employed provides a good fit to the data and an accurate
representation of the participants’ choices. The RL model
was compared against a random pick model which assumes
random choice on every trial (P[G(t +1 = j) = 1/k, where k
the number of options) and a statistical mean-tracking model
which assumes choice is based on the relative strength of each
option’s mean observed payoff in each trial. In order to assess
the fit of the models, we computed the Schwartz Bayesian
information criterion (BIC) for each individual that takes into
account the number of free parameters of each model2.

Table 2 includes the mean BIC (µBIC) and the number of
participants best fit by each model (nBIC). It is evident that
the cognitive RL model outperforms its competitors in both
fit measures across all conditions. In other words, predic-
tions regarding choice performance improve if we use the RL
model.

1We also tried a trial-dependent version of θ parameter of the
form θ(t) = (t/10)c, but it produced almost identical model fits.

2BIC is defined as follows: BICi = −2 ·LLi +m · ln(N), where
m is the number of parameters and N the number of observations (in
this case, it is the number of trials).
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Table 2: Model fitting results: Values of mean BIC (µBIC; lower values indicate better fit) and total number of participants best fit by each
model (nBIC) across complexity conditions.

C2 C4 C8 C16

Model µBIC nBIC µBIC nBIC µBIC nBIC µBIC nBIC
RL 139.19 87 343.75 91 588.61 93 836.6 85
Mean 154.17 6 393.33 0 721.03 0 1068.44 1
Random 275.87 6 551.75 9 827.62 7 1103.49 20

Figure 2 shows the observed mean proportion of choices
from each option across 200 trials (Data) and model’s predic-
tions (Model). The model accurately predicts the rank order
of each option; that is, the option with the highest EV is se-
lected more often, followed by the option with the second
highest EV and so on. In addition, the model’s predictions
for the overall proportion of choices are also very close to
the observed ones (see Figure 3). The accuracy of the model
(both overall and across trials) provides further support that
the model we employed is a good representation of the fac-
tors responsible for observed behavior.
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Figure 2: Mean proportion of observed choices (Data: Solid line)
and mean predicted choice probabilities (Model: Dashed line) for
each option across conditions (C2, C4, C8, and C16). Lines are
smoothed by a moving window of 7 trials.

Model Parameters
According to the diversity hypothesis, people manifest a
quasi-normative approach to choice allocation in experience-
based decision-making by choosing options proportional to
their EV. In other words, they do not maximize their overall
winnings by consistently selecting the most profitable option,
but they prefer to distribute their choices by rank ordering the

options based on their EV. If this hypothesis stands true, then
model parameters should not differ across conditions, reflect-
ing similar underlying psychological processes.
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Figure 3: Overall observed proportion of choices from each op-
tion (Data) and overall predicted choice probabilities (Model) across
conditions. Numbers in parentheses indicate each option’s EV.

Table 3 shows the mean and median values of the model
parameters. We tested whether individual parameters differ
across conditions. Three non-parametric between-subjects
ANOVAs (Kruskall-Wallis test), one for each parameter, re-
vealed significant effects of condition in α , K(3)= 14.84, p=
.002, and A parameters, K(3) = 18.96, p < .001, whereas
there were no differences in c parameter, K(3) = 4.95, p =
.18. Pairwise comparisons (Mann-Whitney tests; p values ad-
justed for multiple comparisons using the Holm-Bonferroni
method) showed that differences across conditions found in
parameters α and A are mainly because of condition C2 being
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significantly different from the remaining conditions. No dif-
ferences were observed between the remaining comparisons
(conditions C4, C8, and C16).

Table 3: Mean (M) and median (Md) values of model parameters
across conditions.

Parameters

Condition α A c
M Md M Md M Md

C2 0.87 0.99 0.30 0.13 1.17 0.57
C4 0.68 0.99 0.12 0.05 1.30 0.77
C8 0.70 0.99 0.12 0.05 1.31 0.73
C16 0.72 0.99 0.13 0.07 1.21 0.67

The main question from the previous analysis relates to the
difference found between condition C2 and the rest of the
conditions. Participants exhibit similar patterns of behaviour
across conditions, which is consistent with the diversity hy-
pothesis (see Figure 3). However, computational modelling
analysis showed that condition C2 is different with partici-
pants showing higher updating rates (parameter A) compared
to the other conditions. In other words, participants in C2
condition rely more on newly received payoffs and thus show,
on average, stronger recency effects and rapid forgetting of
the previously formed expectancies compared to participants
in the remaining conditions. In addition, conditions differ in
parameter α but a closer look at the median value indicates
that this may be due to some extreme cases.

While the interpretation may seem reasonable when look-
ing at the parameter values, this may not represent the way
people behave in different levels of structural complexity.
Figure 2 suggests that differences in parameter A between
conditions is the result of a different pattern of behavior in
the first 50 trials. Specifically, participants in condition C2
learn to pick the maximizing option faster than participants
in other conditions: The choice curves are steeper (i.e., dif-
ferent slopes) in the first 50 trials in the C2 condition, in-
dicating that participants discover the best option easier and
faster. The 0.30 value of A represents the average updating
rate across 200 trials, including the first 50 trials. Hence, this
value does not necessarily mean that participants in the C2
condition update more, with their choices being based more
on recent payoffs than in other conditions. As Figure 2 shows,
participants’ choice behavior stabilizes after the initial explo-
ration phase and they do not update the expectancies of the
options.

Another important consideration is the fact that expectan-
cies initiate with a value of 0. Before any feedback is re-
ceived, the model assumes that there is no prior informa-
tion (negative or positive) regarding the task. The latter indi-
cates that, assuming constant sensitivity (c) across conditions,
higher updating rate in the first 50 trials would explain the al-
most abrupt switch to the maximizing option in condition C2.

The relative strength of the maximizing option is higher in the
C2 condition which would explain the maximization rate of
70%.

Discussion
The main objective of the current work was to investigate
choice preferences and strategies in a setting where the struc-
tural complexity of a typical DFF paradigm was manipulated
across experimental conditions. Examination of participants’
decisions revealed two main theoretical and practical implica-
tions for theories of experience-based decision-making. First,
behavioral results suggest that participants showed a tendency
to distribute and diversify choices, despite the fact that they
would move away from the optimal EV maximization option:
choice proportions follow the rank ordering of options based
on their EV, in a way that the option with the highest EV is
selected more often, followed by the option with the second
highest EV, and so on. In other words, people do not solely
select the maximizing option, but they spread their choices
even after prolonged exposure to the task.

The previous finding bolsters recent observations in
decisions-from-experience literature which have shown that
people’s choice strategies in multi-armed bandit tasks may
be best described by a probability matching heuristic.
Speekenbrink and Konstantinidis (in press) found that a
computational model that utilises probability matching (by
a means of a sampling-choice procedure which is called
Thompson sampling; see May et al., 2012) provides the best
account of participants’ behavior in a dynamic (restless) DFF
paradigm. Probability matching can be seen as a different
manifestation of the EV matching heuristic observed in our
study.

The second implication comes from computational model-
ing analysis. One would assume that people employ different
strategies to cope with the increased uncertainty in the envi-
ronment as they have to track the value of multiple options
in order to make advantageous decisions. Figure 1 suggests
that participants’ maximization rates (red bar) are different
across conditions. This fact alone would indicate that deci-
sion strategies are different, inconsistent with our EV match-
ing hypothesis. However, inspection of model parameters
across conditions suggests that the underlying psychological
processes responsible for observed behaviour are essentially
identical across different levels of structural complexity. Dif-
ferences in maximization rates cannot be attributed to differ-
ences in the underlying cognitive mechanisms responsible for
participants’ choices. On the contrary, the underlying minds
are seemingly identical, following an EV matching strategy.

A potential limitation of the computational modeling anal-
ysis is that the parameter estimates across conditions come
from different participants and, thus, do not represent stable
latent psychological processes, but rather individual differ-
ences and variation (or lack thereof) not attributable to the
experimental design. Future research can overcome this lim-
itation by employing within-subjects designs or by using a
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Hierarchical Bayesian Estimation (HBE; Steingroever, Wet-
zels, & Wagenmakers, 2014). HBE allows for individual dif-
ferences in parameter estimates, which come from a group
or population level distribution, and are more reliable (uncer-
tainty in parameter estimates is also taken into account). Test-
ing our hypothesis using HBE would require model fitting
to be conducted twice: first, by pooling all subjects from all
experimental conditions together and thus assuming identi-
cal group-level distributions for each parameter and secondly,
assuming separate posterior parameter distributions for each
condition. Comparison of the two fittings (i.e., posterior dis-
tributions of parameters estimates) could potentially provide
a more definitive answer as to whether the underlying psy-
chological mechanisms are similar across conditions.

In addition, the RL model we used was compared against
two rather “weak” and cognitive-free statistical models. This
suggests that other cognitive models may be more appropri-
ate to account for the observed behavioral patterns and could
provide deeper insights into the processes that govern choice
allocation. Future research can test alternative models and as-
sumptions regarding learning (e.g., decay and instance-based
learning rules) and choice (e.g., different choice rules such as
greedy, ε-greedy, and softmax with exploration bonus).

Overall, the present work sought to answer whether an
observed tendency to spread choices and favor diversity in
decisions-from-experience is characterized by similar cogni-
tive mechanisms across different levels of structural complex-
ity. Future research should delve into the mechanisms and
identify determinants of this preference for choice allocation
as it may be more pronounced than previously believed.
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