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Summary	30	

Microbial	populations	can	withstand,	overcome,	and	persist	in	the	face	of	environmental	31	

fluctuation.	Previously	we	demonstrated	how	conditional	gene	regulation	in	a	fluctuating	32	

environment	drives	dilution	of	condition-specific	transcripts,	causing	a	population	of	33	

Desulfovibrio	vulgaris	Hildenborough	(DvH)	to	collapse	after	repeatedly	transitioning	from	34	

sulfate	respiration	to	syntrophic	conditions	with	the	methanogen	Methanococcus	35	

maripaludis.		Failure	of	the	DvH	to	successfully	transition	contributed	to	the	collapse	of	this	36	

model	community.		We	investigated	the	mechanistic	basis	for	loss	of	robustness	by	37	

examining	whether	conditional	gene	regulation	altered	heterogeneity	in	gene	expression	38	

across	individual	DvH	cells.	We	discovered	that	robustness	of	a	microbial	population	across	39	

environmental	transitions	was	attributable	to	the	retention	of	cells	in	two	states	that	40	

exhibited	different	condition-specific	gene	expression	patterns.	In	our	experiments,	a	41	

population	with	disrupted	conditional	regulation	successfully	alternated	between	cell	42	

states.	Meanwhile,	a	population	with	intact	conditional	regulation	successfully	switched	43	

between	cell	states	initially,	but	collapsed	after	repeated	transitions,	possibly	due	to	the	44	

high	energy	requirements	of	regulation.	These	results	demonstrate	that	the	survival	of	this	45	

entire	model	microbial	community	is	dependent	on	the	regulatory	system’s	influence	on	46	

the	distribution	of	distinct	cell	states	among	individual	cells	within	a	clonal	population.		 	47	
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Introduction	48	

In	order	to	understand	microbial	functions	within	ecosystems,	we	must	understand	the	49	

mechanisms	by	which	microorganisms	interact	with	one	another	as	a	community,	respond	50	

to	perturbations,	and	signal	approaching	collapse	or	tipping	points	(Dai	et	al.	2012).		A	51	

central	property	in	this	regard	is	the	ability	of	microbial	communities	to	maintain	function	52	

in	face	of	dynamic	fluctuations	in	nutrient	and	energy	resources	(Kitano	2004;	Fuhrman	et	53	

al.	2015;	Song	et	al.	2015).		Such	fluctuations	of	resource	availability	in	space	and	time	are	54	

fundamental	features	of	numerous	environments,	including	many	ecologically	and	55	

economically	relevant	microbial	systems	(McClain	et	al.	2003).	Understanding	how	56	

fluctuations	in	resource	availability	affect	microbial	community	structure	and	growth	is	57	

very	important	towards	understanding	microbial	systems.		58	

Conditional	gene	regulation,	or	the	control	of	gene	expression	in	response	to	specific	59	

conditions,	has	been	hypothesized	to	be	important	for	adaptation	and	response	of	60	

microbial	communities	to	environmental	perturbations	(Futuyma	&	Moreno	1988).	There	61	

is	building	evidence	from	several	studies	that	regulatory	elements	accumulate	mutations	62	

during	the	evolution	of	improved	growth	under	stable	resource	regimes	(Hindré	et	al.	63	

2012;	Blount	et	al.	2008;	Cooper	&	Lenski	2000;	Hillesland	&	Stahl	2010;	Lee	et	al.	2009;	64	

Hottes	et	al.	2013;	Kurlandzka	et	al.	1991;	Yang	et	al.	2011;	Hillesland	et	al.	2014).		For	65	

example,	the	sulfate	reducing	bacterium	Desulfovibrio	vulgaris	Hildenborough	(DvH)	was	66	

grown	for	1000	generations	in	syntrophic	co-culture	with	the	methanogen	Methanococcus	67	

maripaludis	(Mmp)	without	sulfate	available	as	an	electron	acceptor.	In	the	absence	of	68	

sulfate,	DvH	is	dependent	on	the	consumption	of	its	fermentation	products	by	Mmp	to	69	

obtain	energy	for	growth	on	lactate	(Bryant	et	al.	1977).		This	type	of	syntrophic	70	
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relationship	is	also	prevalent	in	nature	(Plugge	et	al.	2011;	Steger	et	al.	2011;	Raskin	et	al.	71	

1996).		Under	these	stable	conditions,	DvH	gained	mutations	in	many	sulfate	respiration	72	

pathway	genes	(Hillesland	et	al.	2014),	in	particular	mutations	were	enriched	in	the	coding	73	

regions	of	regulatory	genes	(Turkarslan	et	al.	2017).		74	

	75	

In	light	of	these	observations,	in	a	previous	study	we	investigated	whether	conditional	76	

regulation	contributes	to	robustness	of	a	model	microbial	population	growing	under	77	

variable	conditions	in	contrast	to	the	stable	conditions	noted	above.		One	of	the	DvH	78	

regulatory	genes	that	accumulated	mutations	during	evolution	in	syntrophy	(DVU0744	-	a	79	

sigma-54	family	transcription	factor),	was	identified	as	a	potential	novel	transcriptional	80	

regulator	of	sulfate	respiration	using	a	network	model	of	gene	expression	under	a	range	of	81	

conditions	and	a	DVU0744	transposon	insertion	mutant	was	generated	(Turkarslan	et	al.	82	

2017).		The	growth	rate	of	the	DVU0744::Tn5	mutant	was	reduced	relative	to	wild	type	83	

under	conditions	of	excess	sulfate.		To	test	the	importance	of	conditional	regulation	on	the	84	

survival	of	a	model	microbial	community	in	variable	conditions,	we	established	co-cultures	85	

of	DvH	wild	type	and	DvH	DVU0744::Tn5	with	Methanococcus	maripaludis,	and	86	

investigated	the	robustness	of	these	two-organism	model	microbial	communities	during	87	

growth	in	repetitively	fluctuating	conditions	that	either	supported	independent	growth	of	88	

DvH	via	sulfate	respiration	(SR)	or	required	interdependent	growth	of	the	two	organisms	89	

in	syntrophy	(ST).		We	found	that	all	replicates	of	the	wild	type	DvH	co-culture	were	unable	90	

to	persist	with	repeated	transfer	between	these	growth	states,	some	collapsing	after	as	few	91	

as	3	SR/ST	transitions.		Remarkably,	all	replicates	of	a	co-culture	with	DvH	DVU0744::Tn5	92	

persisted	across	the	same	transitions	without	collapse	(Turkarslan	et	al.	2017).			A	series	of	93	
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additional	measurements	were	used	to	explore	the	mechanism	underlying	this	collapse	in	94	

wild	type	and	persistence	in	the	mutant.	A	model	was	developed	that	predicted	decrease	in	95	

cellular	concentrations	of	essential	proteins	in	wild	type	cells	as	they	transitioned	between	96	

ST	and	SR	conditions,	due	to	active	conditional	regulation.	In	contrast,	mutant	cells	with	97	

disrupted	conditional	regulation	(DVU0744::Tn5),	demonstrated	"leaky"	expression	of	98	

genes	that	are	normally	repressed	by	DVU0744	in	ST	conditions,	allowing	carryover	of	SR	99	

essential	proteins	from	ST	conditions	to	jumpstart	growth.	Global	proteomics	and	initial	100	

analysis	of	single	cell	gene	expression	reflected	model	predictions,	displaying	decreased,	or	101	

"diluted",	protein	and	transcript	abundance	in	wild	type	cells	after	repeated	transitions.	In	102	

addition,	the	amount	of	heat	production	measured	through	microcalorimetry	was	much	103	

higher	for	wild	type	than	the	mutant,	suggesting	that	conditional	regulation	imposed	a	104	

greater	energetic	burden	on	cells	during	a	fluctuating	resource	environment,	leading	to	105	

depletion	in	abundance	of	condition-specific	transcripts	and	proteins	and	collapse	106	

(Turkarslan	et	al.	2017).		107	

	108	

The	purpose	of	the	present	study	was	to	further	investigate	whether	collapse	of	the	wild	109	

type	DvH	population	during	repetitive	resource	fluctuations	was	a	consequence	of	altered	110	

population	structure	with	regard	to	heterogeneity	in	gene	expression	between	single	cells,	111	

beyond	simply	diluted	transcript	abundance	noted	in	Turkarslan	et	al.	(2017).	112	

Technological	advances	have	made	it	possible	to	examine	gene	expression	in	113	

microorganisms	at	the	single	cell	level	and	have	uncovered	stochastic	processes,	114	

heterogeneity	among	single	cells,	and	relationships	between	mRNA	and	protein	abundance	115	

(Blake	et	al.	2006;	Taniguchi	et	al.	2010;	Cai	et	al.	2006).		This	body	of	work	has	revealed	116	
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the	importance	of	heterogeneity	at	the	single	cell	level	in	the	emergence	of	population	level	117	

properties	such	as	growth	rates,	yield,	resilience,	and	robustness	during	dynamic	growth	118	

conditions	(Buettner	et	al.	2015;	Delvigne	&	Goffin	2014;	Paszek	et	al.	2010;	Kellogg	&	Tay	119	

2015).		120	

	121	

We	sought	to	investigate	the	impact	of	disrupted	conditional	gene	regulation	on	the	122	

heterogeneity	of	gene	expression	among	single	cells	of	a	clonal	population	during	123	

fluctuating	resource	conditions.		We	examine	robustness	as	a	general	concept	that	124	

incorporates	properties	such	as	resistance	and	resilience	(Song	et	al.	2015),	adhering	to	the	125	

definition	of	robustness	as		“a	property	that	allows	a	system	to	maintain	its	functions	126	

against	internal	and	external	perturbations”	(Kitano	2004).	Gene	expression	patterns	in	127	

single	cells	were	measured	using	a	microfluidic	device	and	those	patterns	then	used	to	128	

identify	specific	“states”	of	individual	DvH	cells	and	proportions	of	cells	in	each	state	within	129	

the	community.		Our	results	offer	insight	into	patterns	of	heterogeneity	among	single	cells	130	

in	the	context	of	conditional	regulation	and	robustness	in	a	model	syntrophic	association.	131	

This	model	system	is	representative	of	microbial	communities	in	many	anaerobic	132	

environments	such	as	ruminant	digestive	systems,	anaerobic	digesters,	and	sediments	133	

(Stolyar	et	al.	2007;	Schink	1997).		Thus,	these	analyses	provide	basic	understanding	of	134	

mechanisms	contributing	to	the	robustness	of	microbial	communities.		135	

	136	

Results	137	

Growth	across	syntrophic	(ST)	and	sulfate	respiration	(SR)	conditions.		Growth	of	138	

Desulfovibrio	vulgaris	(DvH)	and	Methanococcus	maripaludis	(Mmp)	was	measured	in	the	139	
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mutant	and	wild	type	co-cultures	by	OD	as	they	were	transferred	alternately	between	140	

syntrophic	(no	sulfate)	and	sulfate	respiration	(sulfate	available)	conditions.	All	three	141	

replicates	of	the	mutant	strain	maintained	consistent	growth	rates	across	all	7	ST/SR	142	

transitions	while	one	wild	type	replicate	collapsed	(no	detectable	growth)	at	ST	transfer	4	143	

(ST4),	after	3	ST/SR	transitions	(Figure	1).	All	three	wild	type	replicates	collapsed	by	ST6.	144	

Across	all	transfers,	we	observed	faster	growth	in	SR	conditions	than	in	ST	conditions	in	145	

strains.	At	the	first	transfer	from	ST	to	SR	(ST1/SR1),	all	wild	type	replicates	grew	faster	146	

than	the	mutant.	The	wild	type	replicate	that	collapsed	earliest	at	ST4	(replicate	“2”)	was	147	

chosen	for	single	cell	analysis	alongside	the	corresponding	mutant	replicate	at	the	first	148	

transition	(ST1	to	SR1)	and	at	the	third	transition	(ST3	to	SR3),	prior	to	collapse	of	the	wild	149	

type	in	ST4	(Figure	1).	The	relative	abundance	of	Mmp	and	DvH	remained	constant	in	all	150	

growing	cultures	with	Mmp	at	approximately	1/4th	the	concentration	of	DvH,	measured	by	151	

microscopic	cell	counts,	as	published	in	Turkarslan	et	al	(2017).	These	growth	data	are	152	

consistent	with	similar	experiments	testing	wild	type	co-cultures	against	a	set	of	153	

conditional	regulatory	mutants	for	RNA-Seq	analysis	(Turkarslan	et	al.	2017).		154	

	155	

Single	cell	rRNA	gene	expression	screening	and	analysis.	For	all	time	points	selected	for	156	

single	cell	analysis	(Figure	1),	a	subset	of	the	80	sorted	cells	were	selected	for	further	157	

analysis	if	they	expressed	both	16S	and	23S	rRNA	genes,	totaling	488	single	cells	across	all	158	

populations	(Supplemental	Figure	12).	It	is	unknown	whether	absence	of	16S	and/or	23S	159	

rRNA	expression	in	some	single	cells	was	due	to	low	activity	or	a	technical	issue,	such	as	160	

failed	sorting,	cell	lysis,	or	cDNA	synthesis.	The	number	of	cells	in	which	expression	of	both	161	

rRNA	genes	was	detected	was	higher	in	the	mutant	populations	(range	65-69	cells,	mean	162	
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66.5	cells)	than	wild	type	populations	(range	51-59	cells,	mean	55.5	cells)	(p-value	<	0.01,	163	

Student's	t-test).	For	each	cell,	16S	and	23S	rRNA	gene	expression	was	positively	correlated	164	

(Supplemental	Figure	12).	Cells	exhibited	heterogeneity	in	the	number	of	rRNA	transcripts	165	

expressed	per	cell,	ranging	from	2-557	16S	rRNA	transcripts	per	cell	and	7-1,800	23S	rRNA	166	

transcripts	per	cell	(Figure	2).	Population	expression	distributions	varied	from	unimodal	to	167	

multimodal	patterns	(Figure	2).		In	the	ST1/SR1	transition,	mean	expression	of	16S	and	168	

23S	rRNA	genes	in	single	cells	increased	in	both	wild	type	and	mutant	(Figure	2).	However,	169	

in	the	ST3/SR3	transition	mutant	cells	increased	expression	of	both	rRNA	genes	similar	to	170	

the	ST1/SR1	transition,	while	in	the	wild	type	ST3/SR3	transition	23S	rRNA	expression	171	

barely	increased	and	16S	rRNA	expression	decreased,	as	expected	from	growth	rates	172	

(Figure	1).		173	

	174	

Relative	quantity	(RQ)	of	transcripts	per	cell	across	all	conditions.	For	cells	expressing	both	175	

16S	and	23S	rRNA	genes,	mRNA	transcript	levels	per	cell	were	very	low.	Of	the	transcripts	176	

expressed	above	the	limit	of	detection	(1	molecule	per	cell,	see	Experimental	Procedures),	177	

each	cell	contained	an	average	of	1.97	mRNA	molecules	(RQ)	from	a	given	gene	(log2RQ=1	178	

for	a	cell	expressing	2	mRNA	molecules	of	a	particular	gene)	(Figure	3).	If	we	include	179	

transcripts	that	were	not	expressed	above	the	limit	of	detection,	the	average	expression	180	

level	of	each	transcript	per	gene	per	cell	was	0.4	molecules	(data	not	shown).		181	

	182	

Frequency	of	single	cells	expressing	different	numbers	of	genes.	The	number	of	different	183	

genes	that	were	expressed	at	any	RQ	was	determined	for	each	cell	(Figure	4).	The	number	184	

of	expressed	genes	per	cell	ranged	from	2	(16S	and	23S	rRNA	genes	only)	to	80	out	of	the	185	
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88	total	genes	we	assayed.	Average	counts	of	the	number	of	expressed	genes	per	cell	varied	186	

across	each	population	(Figure	4).	The	frequency	of	cells	(y-axis)	with	more	expressed	187	

genes	increased	in	both	mutant	and	wild	type	in	the	ST1/SR1	transition	(Figure	4A-B),	188	

though	wild	type	expressed	more	genes	per	cell	than	the	mutant	(Figure	4C).		This	result	is	189	

consistent	with	the	higher	growth	rate	of	wild	type	in	SR1	(Figure	1)	and	the	increased	190	

rRNA	gene	expression	in	wild	type	during	the	ST1/SR1	transition	(Figure	2).	In	the	191	

ST3/SR3	transition	the	mutant	behaved	similarly	to	the	ST1/SR1	transition	with	an	192	

increase	in	the	number	of	expressed	genes	per	cell	in	SR3	(Figure	4E).	In	contrast,	in	the	193	

wild	type	ST3/SR3	transition,	the	number	of	expressed	genes	per	cell	decreased	in	SR3	194	

(Figure	4D).	Furthermore,	the	SR3	mutant	population,	which	continued	growth	in	195	

subsequent	transfers,	expressed	more	genes	per	cell	than	WT	in	the	SR3	conditions	(Figure	196	

4F),	a	reversal	of	the	result	observed	in	SR1	(Figure	4C).	This	result	is	consistent	with	the	197	

greater	rRNA	gene	expression	in	mutant	than	wild	type	in	SR3	(Figure	2).	This	molecular	198	

signature	of	collapse	was	not	recapitulated	at	the	phenotype	level	as	both	mutant	and	wild	199	

type	had	similar	growth	rates	and	OD	at	transfer	(Figure	1C).		200	

	201	

Defining	states	of	single	cells	based	on	gene	expression	profiles.	Principal	component	analysis	202	

(PCA)	was	used	to	visualize	differences	between	single	cells	from	each	population	and	203	

growth	condition	(Figure	5).	We	found	that	in	each	population,	single	cells	were	204	

heterogeneous	in	their	expression	patterns.	We	observed	regions	of	the	PCA	plots	that	205	

exclusively	contained	cells	from	the	ST1	condition	(called	“state	A”),	cells	from	the	SR1	206	

condition	(called	“state	B”),	or	contained	both	ST	and	SR	cells	(called	“state	C”)	(Figure	5A).	207	

The	“state	space”	for	each	cell	state	was	defined	for	wild	type	when	the	cultures	were	208	
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growing	well	in	ST1	and	SR1	(Figure	5A).	Then,	the	boundaries	of	the	“state	space”	was	209	

superimposed	onto	the	PCA	plots	for	other	single	cells	in	populations	including	mutant	210	

ST1/SR1	(Figure	5B),	wild	type	ST3/SR3	(Figure	5C),	and	mutant	ST3/SR3	(Figure	5D).		211	

	212	

We	observed	striking	changes	in	the	number	of	cells	in	each	state	across	the	ST/SR	213	

transitions.	In	the	mutant	that	grew	across	all	transitions,	the	number	of	cells	in	state	A	and	214	

B	were	inversely	correlated	for	all	transitions	(Figure	6).		In	ST	conditions,	state	A	cells	215	

increased	in	abundance	and	state	B	cells	decreased	in	abundance.	In	SR	conditions	state	B	216	

cells	increased	in	abundance	while	state	A	cells	decreased	in	abundance	(Figure	6).	217	

Initially,	we	observed	the	same	pattern	in	the	wild	type,	with	a	much	more	dramatic	shift	in	218	

the	relative	proportions	of	cells	in	state	A	and	B	from	ST1	to	SR1	to	SR3	than	observed	in	219	

the	mutant	(Figure	6).	However,	in	contrast	to	the	mutant	population,	in	wild	type	SR3,	220	

prior	to	collapse,	state	A	cells	remained	elevated	in	abundance	rather	than	decreasing.	And,	221	

state	B	cell	abundance	increased	only	slightly	rather	than	increasing	markedly	as	in	SR1.	In	222	

summary,	wild	type	single	cell	population	structure	shifted	dramatically	between	state	A	223	

and	B	initially,	but	when	approaching	collapse	there	was	little	change	in	the	relative	224	

abundance	of	the	cells	in	each	state.	Meanwhile,	the	mutant	population,	though	it	exhibited	225	

less	dramatic	shifts	between	cell	states	A	and	B	initially,	continued	to	alternate	between	the	226	

two	cell	states	with	environmental	shifts	for	the	duration	of	our	experiment.		227	

	228	

Gene	expression	of	cells	from	each	cell	state.	We	wondered	what	genes,	or	gene	expression	229	

patterns,	defined	the	different	cell	states	we	observed	(states	A,	B,	and	C)	and	questioned	230	

how	the	loss	of	the	state	B	cells,	and	lingering	of	state	A	cells,	contributed	to	population	231	
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collapse	in	wild	type	after	SR3.		We	found	two	genes	DVU0847	(adenylyl-sulfate	reductase,	232	

alpha	subunit)	and	DVU2405	(iron-containing	alcohol	dehydrogenase)	that	were	233	

significantly	differentially	expressed	(p-value	<	0.05,	Student's	t-test)	between	state	A	and	234	

state	B	cells.	In	addition,	state	A	cells	were	up-regulated	relative	to	state	C	cells	in	DVU2405	235	

and	DVU0847	as	well	as	DVU1295	(sulfate	adenylyltransferase,	sat)	and	DVU2399	236	

(putative	hydrogenase)	(Figure	7B).	State	B	cells	expressed	higher	levels	of	sat	relative	to	237	

cell	state	C	cells.	State	A	and	B	cells	had	in	common	higher	expression	of	sat	relative	to	state	238	

C	cells.	We	also	compared	the	number	of	different	genes	expressed	by	cells	from	each	state	239	

in	wild	type	ST1/SR1.	Interestingly,	we	found	that	whereas	state	A	cells	expressed	few	240	

genes	at	high	levels,	significantly	greater	number	of	condition-specific	genes	were	241	

expressed	in	state	B	cells	(Figure	8).		242	

	243	

Discussion	244	

Microbial	populations	experience	constant	perturbations	that	affect	their	relationship	to	245	

the	environment,	intrinsic	state,	and	ecosystem	function	(Song	et	al.	2015).	The	nature	of	246	

response	to	perturbations	is	a	fundamental	property	of	microbial	communities.	Using	a	247	

model	microbial	community,	we	aimed	to	determine	how	conditional	regulation	influences	248	

the	robustness	of	a	simple	community	by	analyzing	gene	expression	among	single	cells	249	

during	repeated	environmental	transitions.	250	

	251	

We	found	that	the	robustness	of	a	two-organism	model	microbial	community	across	252	

repeated	transitions	relies	on	small	subpopulations	of	cells	in	distinct	states	expressing	253	

condition-specific	genes	(Figure	5-8).	Meanwhile,	a	larger	population	of	cells	remains	the	254	
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same	across	conditions	without	sharing	a	distinct	pattern	of	gene	expression.	In	our	255	

experiments,	wild	type	DvH	exhibited	dramatic	and	robust	switching	between	two	cell	256	

states	early	in	the	experiment	(Figure	6,	ST1	and	SR1),	while	growing	robustly	(Figure	1)	257	

and	elevating	rRNA	gene	expression	for	translation	(Figure	2).	However,	after	repeated	258	

transitions,	wild	type	cells	failed	to	alternate	between	states	to	match	the	altered	growth	259	

conditions.	When	the	numbers	of	cells	in	one	condition-specific	cell	state	(state	B	–	those	260	

expressing	many	condition-specific	genes	under	sulfate	respiration	conditions)	dropped	261	

below	a	critical	frequency	the	population	was	unable	to	grow	in	the	next	transition	and	262	

collapsed.	In	contrast,	a	regulatory	mutant	exhibited	less	dramatic	shifts	between	the	263	

abundance	of	cells	in	each	of	the	states	(Figure	6),	and	overall	slower	growth	relative	to	264	

wild	type	(Figure	1),	but	was	able	respond	to	new	conditions	with	expression	of	condition-265	

specific	genes	by	a	small	set	of	cells	and	maintain	growth	across	transitions.			266	

	267	

Our	results	offer	a	novel	single	cell	perspective	into	the	effect	of	conditional	regulation	on	268	

robustness,	which	is	relevant	to	discovering	mechanisms	that	control	survival	of	microbial	269	

communities	across	resource	fluctuations.		For	an	infrequent	shift	in	conditions,	the	extra	270	

energy	and	nutrient	resources	required	to	meet	that	challenge	by	producing	condition-271	

specific	cells	is	advantageous,	resulting	in	increased	growth	rates	and/or	yield.	These	data	272	

raise	the	question	of	the	consequences	of	differences	between	the	frequency	of	fluctuations	273	

and	the	rate	at	which	conditional	regulation	can	act.	If	rate	of	regulation	and	the	rate	of	274	

fluctuation	are	disparate,	cells	may	not	be	able	to	respond	to	resource	shifts	appropriately,	275	

leading	to	population	collapse.	Meanwhile,	a	mutant	population	—	with	an	altered	276	

regulatory	system—	produces	a	smaller	proportion	of	condition-specific	cells	in	response	277	
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to	new	conditions,	and	will	persist	through	repeated	fluctuations.	Our	previous	work	278	

showed	lower	heat	output	by	the	mutant	relative	to	wild	type,	suggesting	that	the	279	

production	of	large	proportions	of	cells	with	condition-specific	gene	expression	patterns	280	

(whether	many	expressed	genes	in	state	B,	or	a	few	highly	expressed	genes	in	state	A)	281	

imposes	a	significant	energetic	burden	(Turkarslan	et	al.	2017).	282	

	283	

If	resource	fluctuations	are	slower	than	the	system's	intrinsic	dynamics,	microbial	284	

communities	may	be	capable	of	adjusting	appropriately	to	the	new	environment	and	still	285	

maintain	function	(Song	et	al.	2015).		This	is	likely	the	case	in	many	natural	microbial	286	

assemblages	that	inhabit	variable	resource	environments	(Fuhrman	et	al.	2015),	and	may	287	

be	pertinent	to	predict	how	microbial	communities	will	respond	to	future	perturbations	288	

and	understand	how	they	have	responded	to	past	perturbations.		Thus,	future	experiments	289	

examining	different	rates	of	environmental	transitions	and	different	energy	resources	will	290	

contribute	to	fundamental	understanding	of	tipping	points,	where	the	rate	of	fluctuation	291	

exceeds	the	intrinsic	capabilities	of	the	cells’	regulatory	system	and	energy	stores.	The	292	

effect	of	genetic	diversity	on	microbial	community	response	to	fluctuating	resource	293	

availability	must	also	be	considered	to	place	the	results	of	this	work	in	the	context	of	294	

natural	assemblages.	As	most	microbial	communities	are	highly	diverse,	response	to	295	

fluctuating	resources	could	occur	simultaneously	on	multiple	scales	as	distinct	cells,	296	

species,	or	even	sub-communities	distribute	themselves	over	time	into	distinct	297	

physiological	states	driven	by	the	environment	in	contrast	to	the	two-organism	system	298	

studied	here.	Furthermore,	community	structure	of	microbial	communities	can	shift	299	

rapidly	in	response	to	small	environmental	changes	(Ward	et	al.	2017),	adding	an	300	
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additional	challenging	dimension	to	predicting	the	role	of	single	cell	heterogeneity	and	301	

conditional	regulation	in	persistence	of	microbial	communities	through	environmental	302	

fluctuations.		303	

	304	

These	results	are	also	relevant	towards	understanding	how	the	Allee	effect,	defined	as	305	

negative	density-dependent	growth	below	a	population	threshold	(Allee	et	al.	1949;	P.	A.	306	

Stephens	W.	J.	Sutherland	1999),	works	in	microbial	populations.	For	the	DvH/Mmp	307	

system,	our	data	suggests	that	the	structure	of	the	cell	population	with	regard	to	single	cell	308	

gene	expression	patterns	is	important	for	growth	after	dilution	or	bottlenecking.	Therefore,	309	

not	only	the	total	density	of	cells,	but	also	the	density	of	heterogeneous	groups	of	310	

individual	cells,	controls	growth	of	the	microbial	community	during	subsequent	311	

environmental	fluctuations.		312	

	313	

It	remains	unknown	what	mechanism	cells	use	to	reach	distinct	cell	states.		There	is	strong	314	

evidence	for	the	role	of	stochasticity	in	gene	expression	at	the	single	cell	level	(Elowitz	et	315	

al.	2002;	Swain	et	al.	2002;	McAdams	&	Arkin	1997;	Spudich	&	Koshland	1976).		Therefore,	316	

it	is	possible	that	stochastic	processes	are	behind	at	least	some	of	the	heterogeneity	in	gene	317	

expression	we	observe.		Also,	the	low	numbers	of	mRNA	transcripts	per	cell	we	detected	318	

are	consistent	with	other	studies	that	quantified	mRNA	transcripts	per	cell	in	other	319	

prokaryotic	microorganisms	such	as	E.	coli	(Taniguchi	et	al.	2010),	Burkholderia	320	

thailandensis	(Kang	et	al.	2011),	and	DvH	(Qi	et	al.	2014).	While	we	did	not	measure	321	

protein	expression	at	the	single	cell	level,	it	is	also	known	that	many	important	proteins	are	322	

expressed	at	low	levels	and	are	controlled	by	stochastic	processes	(Ghaemmaghami	et	al.	323	
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2003;	Guptasarma	1995;	Cai	et	al.	2006).	It	remains	unknown	whether	the	gene	expression	324	

of	the	single	cells	we	measured	was	influenced	by	any	mutations	at	the	single	cell	level	that	325	

would	affect	gene	expression	levels.		Overall,	our	work	suggests	that	stochastic	processes	at	326	

the	single	cell	level	could	affect	population-level	characteristics	such	as	growth,	energy	use,	327	

and	robustness	across	fluctuating	conditions.	328	

	329	

In	conclusion,	we	found	that	robust	growth	of	a	model	microbial	community	across	330	

fluctuating	resources	was	supported	by	the	emergence	of	condition-specific	cell	states	in	331	

one	organism	(DvH)	as	defined	by	patterns	of	gene	expression	in	a	set	of	88	condition-332	

specific	genes.	These	findings	with	Methanococcus	and	Desulfovibrio	offer	novel	insight	into	333	

how	heterogeneity	in	gene	expression	among	single	cells	supports	robustness	in	a	simple	334	

microbial	community	and	highlights	the	tradeoffs	associated	with	conditional	regulation	in	335	

a	fluctuating	resource	environment.	Future	work	will	examine	if	these	properties	of	a	two-336	

member	microbial	community	expand	to	more	diverse	microbial	communities	where	337	

several	genotypes	(or	species)	can	fulfill	the	same	metabolic	functions	independently	or	338	

through	interactions	with	another	organism.		339	

	340	

Experimental	Procedures	341	

Growth	medium	and	assessment.	Cultures	of	DvH	and	Mmp	were	obtained	and	grown	as	342	

previously	described	(Turkarslan	et	al.	2017).	Briefly,	all	cultures	were	grown	at	37	°C	on	343	

CCMA	medium	(Walker	et	al.	2009)	with	the	following	modifications.	Medium	for	344	

syntrophic	(ST)	growth	contained	40	mM	of	lactate	without	sulfate.	Medium	for	sulfate	345	

respiration	(SR)	contained	40	mM	lactate	and	15	mM	sulfate.	Headspace	consisted	of	80%	346	
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N2	and	20%	CO2	to	create	an	anoxic	environment	and	pH	was	adjusted	to	7.2	with	347	

bicarbonate.	Cell	concentration	of	both	partners	DvH	and	Mmp	was	monitored	by	OD	and	348	

flow	cytometry.	For	transitions	between	ST	and	SR,	co-cultures	were	initially	grown	in	ST	349	

medium	until	early	log	phase	(OD	~	0.15)	then	0.5	mL	of	inoculum	was	transferred	into	10	350	

mL	of	fresh	SR	medium.	Co-cultures	were	grown	to	early	log	density	(OD600	~	0.2)	and	0.5	351	

mL	was	transferred	back	into	fresh	ST	medium	or	SR	medium	repeatedly	(Figure	1).		352	

	353	

Sampling	for	single	cell	gene	expression.	At	each	transfer	point,	samples	were	collected	for	354	

single	cell	gene	expression	analysis	by	anaerobically	sampling	then	immediately	freezing	355	

0.5	mL	aliquots	of	culture	in	liquid	nitrogen	with	storage	at	-80	°C.		356	

	357	

Flow	cytometric	cell	sorting.	Cell	sorting	of	single	DvH	cells	from	ST	and	SR	conditions	was	358	

carried	out	as	previously	described	(Thompson	et	al.	2015).	Briefly,	a	BD	Influx	high-speed	359	

cell	sorter	equipped	with	a	small	particle	detector	was	prepared	for	clean	single	cell	360	

genomics	work	following	previously	published	protocols	(Rodrigue	et	al.	2009)	then	used	361	

to	distinguish	DvH	and	Mmp	cells	based	on	differences	in	forward	scatter	(proxy	for	size)	362	

and	side	scatter	(proxy	for	shape	or	granularity)	properties.	Single	DvH	cells	were	sorted	363	

into	individual	wells	of	96-well	plates	containing	lysis	buffer	using	1.0	Drop	Pure	sort	364	

mode.		365	

	366	

Single	cell	quantitative	RT-PCR	with	the	Fluidigm	96.96	Dynamic	Array.	Single-cell	367	

transcriptional	changes	for	88	DvH	genes	(Supplemental	Table	1)	were	tracked	across	368	

SR/ST	transitions	using	protocols	developed	for	the	Fluidigm	96.96	Dynamic	Array	369	
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(Fluidigm	Inc.,	South	San	Francisco,	CA).	The	Fluidigm	96.96	Dynamic	Array	is	a	370	

microfluidic	device	that	is	capable	of	combining	amplified	cDNA	template	from	up	to	96	371	

samples	with	reagents	for	up	to	96	distinct	qPCR	assays	in	a	total	of	up	to	9,216	unique	372	

quantitative	PCR	reactions.	Assays	used	in	this	study	include	88	genes	(Supplemental	Table	373	

1)	identified	based	on	previously	published	whole-genome	expression	profiles		where	they	374	

were	identified	as	essential	to	sulfate	respiration	in	DvH	(Turkarslan	et	al.	2017).	375	

Essentiality	was	determined	based	on	Rapid	Transposon	Liquid	Enrichment	Sequencing	376	

and	an	associated	model	for	essentiality	(Fels	et	al.	2013).	Control	genes,	16S	and	23S	rRNA	377	

genes,	were	also	included.	The	final	set	of	88	genes	(Supplemental	Table	1)	was	a	subset	of	378	

120	assays	that	were	initially	tested	for	amplification	specificity.	To	check	amplification	379	

specificity,	assays	were	examined	for	the	production	of	non-specific	products	or	cross-380	

reactivity	with	other	primers	using	melting	curve	analysis.	To	prepare	cDNA,	cells	were	381	

sorted	directly	into	a	lysis/RT	buffer	solution	consisting	of	1X	VILO	Reaction	Mix	(Life	382	

Technologies),	6U	SUPERase-In	(Life	Technologies),	0.5%	NP-40	(ThermoScientific),	and	383	

nuclease-free	water	(TEKnova)	in	a	96-well	plate	format.	Sort	plates	were	centrifuged,	384	

vortexed	for	15	seconds,	then	frozen	on	dry	ice	and	stored	at	-80°C.	Following	cell	lysis	and	385	

RNA	denaturation	(90	seconds	at	65°C)	reverse	transcription	(RT)	was	carried	out	with	1X	386	

SuperScript	Enzyme	Mix	(Life	Technologies)	and	T4	Gene	32	Protein	(New	England	387	

BioLabs,	Beverly,	MA)	by	the	following	program:	25	°C	for	5	minutes,	50	°C	for	30	minutes,	388	

55	°C	for	25	minutes,	60	°C	for	5	minutes,	and	70	°C	for	10	minutes.	cDNA	was	amplified	in	389	

a	multiplexed	specific	target	amplification	(STA)	reaction	with	the	88	DvH	gene	primer	390	

pairs	using	TaqMan®	PreAmp	Master	Mix	(Applied	Biosystems)	and	EDTA	pH	8.0	by	the	391	

following	program:	95°C	for	10	min,	25	cycles	of	96	°C	for	5s,	and	60	°C	for	4	min.	STA-392	
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cDNA	was	then	cleaned	up	by	an	Exonuclease	I	treatment	(New	England	Biolabs,	Beverly,	393	

MA).	The	resulting	cDNA	product	was	diluted	5-fold	in	DNA	Suspension	Buffer	(TEKnova),	394	

loaded	into	the	Fluidigm	96.96	Dynamic	Array	following	Fluidigm	protocols	395	

(https://www.fluidigm.com/documents),	and	assayed	for	88	DvH	genes	by	quantitative	396	

PCR	(qPCR)	using	Sso	Fast	EvaGreen	Supermix	(Bio-Rad	Laboratories)	with	ROX	passive	397	

reference	dye	by	the	following	program:	95	°C	60	seconds,	40	cycles	of	96	°C	for	5	seconds	398	

and	60	°C	for	20	seconds,	and	melting	curve	analysis	from	60-95	°C.		399	

For	each	strain	(WT	or	DVU0744::Tn5),	condition	(SR	or	ST),	and	time-point	400	

(transfer	1	or	3)	(8	samples	total),	we	measured	amplification	of	88	DvH	genes	in	the	401	

following:	single	cells	with	RT	(n=80),	single	cells	without	RT	as	genomic	DNA	background	402	

controls	(n=6),	positive	control	of	10.6	pg	purified	DvH	RNA	with	RT	(n=4),	positive	control	403	

of	10.6	pg	purified	DvH	RNA	without	RT	(n=2),	and	no	template	controls	(n=4).		404	

	405	

Single	cell	analysis.	BioMark	Real-Time	PCR	Analysis	software	(Fluidigm	Inc.	South	San	406	

Francisco,	CA)	was	used	to	analyze	amplification	and	melting	curves	for	each	single	cell	and	407	

control	for	all	88	assays.	Cycle	of	quantification	(Cq)	thresholds	were	set	using	the	408	

AutoGlobal	method	and	the	baseline	correction	method	used	was	Linear	Derivative.	Raw	409	

data	for	RT	single	cells	and	no	RT	single	cells	are	displayed	for	all	assays	and	samples	in	410	

Supplemental	Figures	1-2.			411	

Several	steps	to	verify	controls	were	carried	out	as	follows.	Positive	controls	treated	412	

with	RT	and	without	RT	(no	RT)	were	used	to	confirm	that	reactions	were	not	413	

contaminated,	not	amplifying	non-specifically,	and	not	cross-reacting	with	other	assays	414	

(Supplemental	Figure	3).	Excluded	from	further	analyses	were	cells	or	controls	with	415	
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atypical	amplification	curves	or	melting	temperatures	(Tm)	that	varied	significantly	from	416	

the	positive	control	in	a	Student’s	t-test	(Supplemental	Figures	4-11).	Relative	quantity	of	417	

molecules	(RQ)	was	calculated	from	each	Cq	value	for	more	intuitive	analysis	(Ståhlberg	et	418	

al.	2013)	using	the	equation:	RQ	=	2(Cqcutoff	–	Cq).		We	used	data	collected	from	“no	RT”	single	419	

cells	to	set	the	limit	of	detection	rather	than	setting	an	arbitrary	limit	of	detection	as	in	420	

Ståhlberg	et	al.	2013.	Cqcutoff	was	set	to	the	median	of	“no	RT”	single	cell	controls	to	yield	421	

an	limit	of	detection	(LOD)	at	RQ=1,	or	log2RQ=0,	or	1	molecule	present	in	the	reaction,	422	

which	is	what	we	expect	for	each	single	copy	gene	amplified	from	genomic	DNA	in	the	“no	423	

RT”	single	cell	controls.	Assays	from	RT-treated	single	cells	that	did	not	amplify	(Cq	=	NA),	424	

or	amplified	at	very	high	Cq,	were	set	to	RQ	=	0.5	molecules,	or	log2RQ=-1,	thus	below	the	425	

LOD	(RQ	=	1	molecule)	following	methods	described	in	Ståhlberg	et	al.	(2013).	All	analyzed	426	

data	is	provided	in	Supplemental	Table	2.	Further	analysis	was	only	performed	on	single	427	

cells	that	amplified	in	both	16S	and	23S	rRNA	assays	(Supplemental	Figure	12).	Finally,	the	428	

expression	of	the	most	highly	expressed	genes	among	single	cells	was	compared	to	429	

population-level	expression	measured	by	RNA-Seq	(Supplemental	Figure	13).		430	

	431	

Principal	component	analysis	(PCA).	PCA	was	used	to	compute	and	visualize	the	distances	432	

between	single	cells	based	on	their	expression	in	the	target	genes	(excluding	signals	from	433	

16S	and	23S	rRNA	genes).	To	limit	the	noise	signal	near	the	limit	of	detection	for	gene	434	

expression,	PCA	was	completed	with	a	subset	of	highly	expressed	genes.	The	list	of	highly	435	

expressed	genes	was	a	set	of	the	10	most	highly	expressed	genes	that	was	gathered	from	436	

each	population.	These	lists	were	combined	into	a	set	of	13	unique	genes	for	further	437	

examination.	In	addition,	we	used	PCA	to	compute	and	visualize	distances	between	genes	438	
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based	on	their	expression	across	single	cells.	The	PCA	of	genes	was	conducted	separately	439	

for	each	population	of	single	cells.	PCAs	were	completed	in	R	using	the	function	princomp.		440	

	441	

Bean	plots	and	violin	plots.	Beanplots	and	violin	plots	were	used	to	visualize	the	442	

distribution	of	gene	expression	levels	and	numbers	of	expressed	genes	in	the	different	cell	443	

populations.	These	programs	were	implemented	in	R	using	beanplot	(Kampstra	2008)	and		444	

vioplot	(Hintze	&	Nelson	1998).		445	

	446	
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