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Abstract
The US Department of Energy Office of Science and the National Nuclear Security
Administration (NNSA) initiated the Exascale Computing Project (ECP) in 2016 to
prepare mission-relevant applications and scientific software for the delivery of the
exascale computers starting in 2023. The ECP currently supports 24 efforts directed
at specific applications and six supporting co-design projects. These 24 application
projects contain 62 application codes that are implemented in three high-level
languages—C, C++, and Fortran—and use 22 combinations of GPU programming
models. The most common implementation language is C++, which is used in 53
different application codes. The most common programming models across ECP
applications are CUDA and Kokkos, which are employed in 15 and 14 applications,
respectively. This paper provides a survey of the programming languages and models
used in the ECP applications codebase that will be used to achieve performance on
the future exascale hardware platforms.
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Introduction
Leadership-class high-performance computing (HPC) systems could enable game-
changing advances in science, engineering, and national security applications that are
critical to the US Department of Energy (DOE) mission. In the 2023–2024 time frame,
the DOE computing centers at the Oak Ridge Leadership Computing Facility (OLCF),
Argonne Leadership Computing Facility (ALCF), and Lawrence Livermore National
Laboratory (LLNL) will stand up three new exascale systems: Frontier, Aurora, and El
Capitan. This paper defines an exascale system as a computer capable of greater than
or equal to 1EFlops for general 64-bit floating point operations. The planned exascale
systems, along with the 200PFlops Summit computer at the OLCF†, use GPUs for
the majority of their performance (& 94%). As discussed in Alexander et al. (2020),
DOE began the Exascale Computing Project (ECP) in 2016 to ready a suite of mission-
critical applications for deployment at the DOE leadership computing facilities in time
for the arrival of the exascale platforms in 2023. In addition to the target applications, the
ECP is developing a complete supporting software ecosystem consisting of mathematics,
visualization, linear and nonlinear solvers, and performance tuning libraries and utilities
through the ECP Software Technology (ST) focus area, as summarized in Heroux et al.
(2020).

The ECP Application Development (AD) focus area currently contains 24 applications
that span chemistry and materials, energy production and transmission, earth and space
science, data analytics and optimization, and national security. Each application has a
formally defined challenge problem, the details of which are found in Siegel et al. (2021).
The ECP is a formal project with quantitative metrics for success that are measured
through project-defined key performance parameters (KPPs). AD projects are grouped
into two objective categories, generically referred to as first and second KPP (KPP-1 and
KPP-2). The 24 applications projects are listed by objective category in Tables 1 and 2.

The KPP-1 applications have a quantitative performance figure of merit (FOM). The
FOMs are defined as a ratio of performance work rates on the current platform relative
to a baseline measurement from the start of the project. In each case, these baseline
measurements were performed on the OLCF’s Titan or ALCF’s Mira computers. Each
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Evans et al. 3

Table 1. ECP applications targeting KPP-1.

Project name Category Short description Lead lab

LatticeQCD Chemistry and
materials

Exascale lattice gauge theory
opportunities and requirements for
nuclear and high-energy physics

Fermilab

NWChemEx Chemistry and
materials

Stress-resistant crops and efficient
biomass catalysts

Ames

EXAALT Chemistry and
materials

Molecular dynamics at the exascale LANL

QMCPACK Chemistry and
materials

Find, predict, and control material
properties

ORNL

ExaSMR Energy production Coupled Monte Carlo neutronics and fluid
flow simulation of small modular reactors

ORNL

WDMApp Energy production High-fidelity whole device modeling of
magnetically confined plasmas

PPPL

WarpX Energy production Plasma wakefield accelerator design LBNL

ExaSky Earth and space
science

Cosmological probe of the Standard
Model

ANL

EQSIM Earth and space
science

Seismic hazard risk assessment LBNL

E3SM-MMF Earth and space
science

Regional assessments in earth systems
models

SNL

CANDLE Data analytics and
optimization

Accelerate and translate cancer research ANL

FOM is defined uniquely by the application project. For example, the work rate for the
ExaSMR project Monte Carlo (MC) particle transport application is particles per wall-
clock time. Full descriptions of the application FOMs can be found in Siegel et al. (2021).
The ECP KPP-1 objective is for 50% of the applications to achieve an FOM ≥ 50 on their
defined challenge problems.

The second class of applications are categorized as KPP-2 projects. This metric is
intended to assess the creation of new science and engineering capabilities that can
fully exploit exascale resources. Each KPP-2 project has a work plan that defines the
computational capabilities that are needed to execute a science and engineering campaign
using leadership-class computers. At the end of the project, 50% of these applications
must demonstrate these capabilities on their project challenge problems. The work plans
for the KPP-2 projects are listed in Siegel et al. (2021).

The six AD co-design projects provide support for applications, focusing on novel
capabilities that are not supported by the ECP software ecosystem. The co-design
projects are software middleware oriented around computational motifs as defined
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Table 2. ECP applications targeting KPP-2. Note that SPARC and EMPIRE are considered a
single project within ECP even though they are separate national security projects.

Project name Category Short description Lead lab

GAMESS Data analytics and
optimization

Biofuel catalyst design Ames

ExaAM Chemistry and
materials

Additive manufacturing of qualifiable
metal parts

ORNL

ExaWind Energy production Predictive wind plant flow modeling NREL

Combustion-
Pele

Energy production Combustion engine and gas turbine
design

SNL

MFIX-Exa Energy production Multiphase flow reactor design NETL

ExaStar Earth and space
science

Demystify the origin of chemical
elements

LBNL

Subsurface Earth and space
science

Carbon capture, fossil fuel extraction,
waste disposal

LBNL

ExaSGD Data analytics and
optimization

Reliable and efficient planning of the
power grid

PNNL

ExaBiome Data analytics and
optimization

Metagenomics LBNL

ExaFEL Data analytics and
optimization

Light source-enabled analysis of
molecular structure

SLAC

Ristra National security High-energy density physics and
materials under extreme conditions

LANL

MAPP National security Inertial confinement fusion and pulsed
power applications

LLNL

SPARC National security Virtual flight test of reentry vehicles SNL

EMPIRE National security Electromagnetic plasma physics SNL

in Alexander et al. (2020). The original 13 motifs are dense linear algebra, sparse
linear algebra, spectral methods, particles, structured grids, unstructured grids, MC,
combinatorial logic, graph traversal, graphical models, finite-state machines, dynamic
programming, backtrack, and branch-and-bound. Additionally, the co-design projects
include fundamental computational motifs in finite element methods (FEM), adaptive
mesh refinement (AMR), artificial intelligence (AI), and data reduction, compression,
and analysis. The complete list of ECP AD co-design projects is given in Table 3.

This paper briefly summarizes the programming models employed and the current
performance measurements attained by ECP applications. Each year, the AD application
portfolio undergoes a rigorous review, the results of which are extensively documented
and publicly released at https://exascaleproject.org. Full details on
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Table 3. ECP AD co-design projects.

Project name Principal motifs Applications

CEED Unstructured grids, FEM ExaAM, ExaSMR, Ristra, MARBL, SPARC

AMReX Structured grids, AMR ExaWind, Combustion-Pele, MFIX-Exa,
WarpX, ExaSky, ExaStar

CODAR Data reduction and analysis WDMApp, NWChemEx, CANDLE

CoPA Particles, spectral methods EXAALT, ExaAM, WDMApp, ExaSky,
WarpX, MFIX-Exa

ExaGraph Graph traversal, combinatorial logic ExaBiome, ExaWind, NWChemEx, SPARC,
EMPIRE,

ExaLearn Machine learning, AI ExaSky, CANDLE

challenge problem definitions, capability plans, and performance on pre- and early
exascale hardware are available in the 2021 AD review report by Siegel et al. (2021).

Programming Models Used in ECP
Intranode implementations of each application require programming models to build
code that can use the GPUs for each architecture. The ECP ST ecosystem supports
several programming models and compilers for GPU programming. One principal
consideration for this approach is to provide performance portability across a range
of GPU architectures that will constitute the exascale landscape (e.g., NVIDIA, Intel,
AMD), each with its own underlying assembly languages (e.g., PTX on NVIDIA, GCN
on AMD).

Table 4 lists the full suite of application codes organized by AD project. The primary
DOE platform portability software efforts in ECP are Kokkos, as described in Edwards
et al. (2014); RAJA, as described in Beckingsale et al. (2019); and Legion, as described
in Bauer et al. (2021). Several projects are also using or experimenting with third-
party vendor implementations, including OpenMP‡, OpenACC§, OpenCL¶, CUDA‖,
HIP∗∗, and SYCL††. The SYCL implementation used throughout these applications
is part of the Intel Data Parallel C++ (DPC++) framework that provides a standard
SYCL implementation with several Intel-specific extensions‡‡. Some applications are
built using AI frameworks (e.g., PyTorch, TensorFlow). Nearly all projects use Python

‡https://www.openmp.org
§https://www.openacc.org
¶https://www.khronos.org/opencl
‖https://docs.nvidia.com/cuda/cuda-runtime-api/index.html
∗∗https://github.com/ROCm-Developer-Tools/HIP
††https://www.khronos.org/sycl
‡‡https://software.intel.com
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for various purposes, particularly workflows, postprocessing, and data analysis. Several
of these technologies—including OpenMP, OpenACC, and the LLVM compiler suite that
supports them—are supplemented by projects within the ECP ST focus area.

Table 4. AD application codes. Custom abstraction layers built by projects are marked with
an asterisk (?).

Application project Code Main language GPU programming model

LatticeQCD

Chroma C++ Kokkos, QUDA library?

CPS C++ OpenMP, GRID, QUDA libraries?

GRID C++ HIP, SYCL, CUDA
MILC C GRID, QUDA libraries?

QUDA C++ HIP, SYCL, CUDA

NWChemEx NWChemEx Python, C++ CUDA, HIP, SYCL

GAMESS
GAMESS Fortran libcchem?, libaccint?

libcchem C++ CUDA, HIP, DPC++

EXAALT

ParSplice C++ -
LAMMPS C++ Kokkos
SNAP C++ Kokkos
LATTE Fortran OpenMP, CoPA (BML/Progress)

ExaAM

AMPE C++ RAJA
Diablo Fortran OpenMP
ExaCA C++ Kokkos
ExaConstit C++ RAJA, CEED (MFEM)
ExaMPM C++ Kokkos
MEUMAPPS-SS C++ Kokkos
TruchasPBF Fortran AMReX
Tusas C++ OpenMP, Kokkos, CUDA

QMCPACK
QMCPACK C++ OpenMP, CUDA, HIP
RMG C++ CUDA, HIP

ExaWind
Nalu-Wind C++ Kokkos
AMR-Wind C++ AMReX
OpenFAST Fortran -

Combustion-Pele
PeleC C++ AMReX
PeleLM C++ AMReX
PelePhysics C++ AMReX

ExaSMR
NekRS Fortran, C++ CEED (libParanumal/OCCA)
OpenMC Python, C++ OpenMP
Shift C++ CUDA, HIP

WDMApp
GENE Fortran, C++ gtensor?

GEM Fortran, C++ OpenACC, OpenMP
XGC C++ CoPA (Cabana), OpenMP, Kokkos

MFIX-Exa MFIX-Exa C++ AMReX

WarpX WarpX + PICSAR C++ AMReX

ExaSky
HACC C++ CUDA, HIP, OpenCL
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Evans et al. 7

CRK-HACC C++ CUDA, HIP, OpenCL
Nyx C++ AMReX

ExaStar
FLASH-X Fortran, C++ OpenMP
CASTRO C++ AMReX
SEDONA C++ AMReX

EQSIM SW4 C++ RAJA

Subsurface
Chombo-Crunch C++ Proto?

GEOSX C++ RAJA

E3SM-MMF E3SM Fortran, C++ YAKL?, OpenACC, OpenMP

ExaSGD
ExaGO C, C++ RAJA
HiOP C++ RAJA
ExaPF-jl Julia CUDA

CANDLE CANDLE Python TensorFlow, PyTorch

ExaBiome
MetaHipMer C++ CUDA, HIP, SYCL/DPC++
HipMCL C++ CUDA, HIP, SYCL/DPC++

ExaFEL
M-TIP C++ CUDA, HIP, OpenCL
PSANA Python, C++ Legion, OpenMP
CCTBX Python, C++ CUDA

Ristra
Symphony C++ Kokkos
FUEL C++ Kokkos
Portage C++ Kokkos

MAPP
MARBL C++ RAJA
Miranda Fortran OpenMP

SPARC SPARC C++ Kokkos

EMPIRE EMPIRE C++ Kokkos

Many ECP applications achieve platform portability through the application
programming interfaces (APIs) provided by co-design middleware, particularly AMReX,
CEED, and CoPA. In this mode, the role of the co-design efforts broadens to provide
primary data structure, performance optimization, and algorithmic support. Furthermore,
although most applications have internal APIs that manage device-based code and data
structures, several applications have built custom external-facing frameworks to support
platform portability. Examples of these include Proto∗ in the Subsurface project, Yet
Another Kernel Launcher (YAKL)† in E3SM-MMF, and gtensor‡ in WDMApp. All
these custom frameworks ultimately use a platform-specific native layer (e.g., CUDA,
OpenMP) in their instantiations. In Table 4, the co-design, ST, and custom layers

∗https://github.com/applied-numerical-algorithms-group-lbnl/Proto
†https://github.com/mrnorman/YAKL
‡https://github.com/wdmapp/gtensor
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Python
Julia

C

Fortran

C++

C/C++

Python/C++

Fortran/C++

Total application codes: 62
Python (1.6%)
Julia (1.6%)
C (1.6%)
Fortran (9.7%)
C++ (69.4%)
C/C++ (1.6%)
Python/C++ (6.5%)
Fortran/C++ (8.1%)

Figure 1. Principal code languages used in ECP application codes.

do not include the underlying implementations (e.g., CUDA, OpenMP, SYCL); if a
programming model is listed, it is used directly in the core codebase.

Figure 1 shows the current distribution of principal coding languages and
programming models used in the 62 ECP AD codes. The majority of codes are written
in C++ (e.g., C++11, C++14, C++17), although at the beginning of the project, there
was a more even split between Fortran and C++, as shown in Figure 2. Several project
codes began life as Fortran codes but have since have been partly or completely rewritten
by using C++ over the intervening three years. Although each project might assess its
own risks and path forward based on the specific needs of its application, the most
common reasons for moving from Fortran to C++ are the ability to leverage programming
abstractions that require closures (e.g., Kokkos, RAJA) and the perception that Fortran
support for advanced architectures has lagged significantly behind C++. Today, C++ is
the primary implementation in > 69% of codes, and it is used in a total of ∼ 85% of
all applications in ECP AD. Conversely, Fortran was used in ∼ 31% of all codes at
the beginning of the project but is only used in ∼ 18% today. Python is included as a
principal language for several application codes; however, many additional application
codes employ Python at the code construction and input processing steps. In these cases,
because Python is not formally used at runtime, it has not been listed as a principal
language.

The programming models used in ECP AD codes are illustrated in Figure 3. These
data show that CUDA, Kokkos, OpenMP, and HIP are the most commonly used tools for
achieving GPU performance in the ECP AD codebase; they are used in roughly 24, 23,
19, and 19% of the codes, respectively. Platform portability provided by the co-design
projects is used in approximately 23% of all application codes, and ST programming
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Figure 2. Distribution of primary languages in ECP AD applications over the lifetime of the
project.

models account for another ∼ 35%. This represents a significant benefit of the ECP
because much of the fine-scale architectural details of algorithm implementation have
been leveraged through these projects. Nonetheless, ∼ 55% of the application codes
in the ECP are using either native implementations (e.g., CUDA, HIP) or their own
custom implementations built on top of these languages. This reflects the difficulty of
developing universal platform-portable programming models that span a diverse set of
scientific applications.

Internode parallelism is primarily handled by using the message passing interface
(MPI); a small number of codes use UPC++. Summit supports both device-to-device and
host-to-host parallel communication operations. Device-to-device, or CUDA-aware MPI,
allows the client to directly transfer data between GPUs. In theory, this should provide
performance benefits because data can be transferred directly using network interface
controller memory, bypassing the host. However, except for very large message sizes,
the communication performance on Summit has been mixed in practice, and the principal
benefit of this approach is the convenience of not needing to manually transfer data back
to the host to perform communications. Additionally, this programming strategy will
have future benefits because the exascale platforms will likely only allow direct device-
to-device communication.

The papers in this special issue are focused on the coupling implementations and, in
some cases, frameworks used by six application projects in the ECP: WDMApp, E3SM-
MMF, EQSIM, ExaStar, ExaAM, and MFIX-Exa. These coupling strategies encompass
aspects of both inter- and intranode parallelism. As such, they generally rely on both
MPI and GPU programming models. Full details on the interaction of coupling and
programming models are discussed in these papers.
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Figure 3. GPU programming models used in ECP application codes. The SYCL
implementations imply the version supported by Intel’s DPC++ framework.

Current Performance of ECP Applications
The ECP tracks regular performance progress on all KPP-1 applications. In the first two
years of the project, each KPP-1 application generated benchmark FOM measurements
on either Titan at the OLCF or Mira at ALCF. As new measurements are performed on
Summit, the current FOM values are updated and posted in a dashboard.

Current performance measurements for AD projects are shown in Figure 4. The latest
measurements indicate that five out of the eleven KPP-1 projects have already achieved
an FOM increase of 50 or greater on Summit, and two additional projects observe FOM
improvement well over 50 when extrapolated to the full machine. Although these early
results are exceptionally encouraging, we stress that these measurements have been
performed on the NVIDIA architecture on Summit. The exascale platforms will use
AMD (Frontier at OLCF and El Capitan at LLNL) and Intel (Aurora at ALCF), and the
software environments and architectures for both systems are less mature than NVIDIA
technology. The work to prepare these applications to efficiently use AMD and Intel
GPUs is ongoing, and this represents the crucial final stage of the ECP.

Conclusion
The ECP AD focus area supports 62 application codes in 24 projects with the objective
of preparing these applications to use the exascale platforms that will be delivered
in 2023. Over half of the KPP-1 applications have already seen ≥ 50× performance
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Figure 4. Current performance measurements on Summit at OLCF. The extrapolated results
project the measured results to the full machine assuming linear scaling. The red line shows
the end-of-project objective of a 50× improvement in FOM.

improvements on the pre-exascale Summit computer. Thus, a 3–4 year investment in
code optimization for GPUs can realize significant performance benefits. Because the
ECP has also produced many supporting technologies to help in this task, the authors
expect that this time frame will be shorter in future efforts.

Some of the interesting trends that can be seen across the ECP code landscape are
the contraction of core implementation languages and the proliferation of programming
model approaches. The use of Fortran has been significantly impacted by the increasing
diversity of GPU hardware. No new Fortran code efforts have been initiated since the
start of the ECP, and the use of C++ has proliferated from 41 to 53 codes over the
course of the project, all at the expense of Fortran. Fortran-only codes have shrunk from
seventeen codes at the beginning of the project to six, primarily due to the move toward
programming abstractions requiring closures and concerns over consistent and timely
Fortran support across architectures. The usage trends of GPU programming models do
not show any clear favorites, although significant benefits have accrued from the use
of ECP co-design and ST technologies. This suggests that the choice of programming
models is still largely dictated by the application’s algorithmic requirements, and there is
no unified approach that will serve all scientific computing domains.
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