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Feasible Trajectory Generation for Atmospheric Entry

Guidance

James A. Leavitt∗ and Kenneth D. Mease†

University of California, Irvine, CA 92697

An atmospheric entry trajectory planner is developed that generates a feasible trajec-

tory and associated bank angle profile. Feasibility denotes that the initial and final state

conditions, the path and control constraints, and the nominal equations of motion are all

satisfied. Feasible trajectories are easier to track, and thus enhanced performance is ex-

pected when the trajectory planner is combined with a tracking law for entry guidance.

Insights from computing maximum crossrange trajectories are factored into the design

of the planner, and as a result that it can generate trajectories to most of the landing

footprint. Drag profile design is central in the planning approach, but in addition both

longitudinal and lateral motions are accounted for, including bank reversal planning, and

the assumption of zero flight path angle is not required. Comparisons of trajectories cre-

ated by the new planner and optimal trajectories and guidance simulation results using an

algorithm based on the new planner demonstrate the performance improvements.

Nomenclature

Amax = maximum allowable normal acceleration, ft/s2

Cγ = Coriolis acceleration term in γ′ equation, rad· s2/ft2

Cψ = Coriolis acceleration term in ψ′ equation, rad· s2/ft2

CD = coefficient of drag

CL = coefficient of lift

D = drag acceleration, ft/s2

De.g. = equilibrium glide drag boundary, ft/s2

Dmax = vehicle constraint upper drag boundary, ft/s2

∗Graduate Research Assistant, Department of Mechanical and Aerospace Engineering, jleavitt@uci.edu
†Professor, Department of Mechanical and Aerospace Engineering, kmease@uci.edu, Associate Fellow AIAA
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Dmaxf = feasible upper drag boundary, ft/s2

Dminf = feasible lower drag boundary, ft/s2

Dref = reference drag profile, ft/s2

E = energy divided by vehicle mass, ft2/s2

Ẽ = normalized energy

Ẽm = drag interpolation shaping parameter

g = gravitational acceleration, ft/s2

h = altitude, ft

hs = scale height, ft

k1 = integral gain in drag tracking law

k2 = proportional gain in heading angle tracking law

k3 = integral gain in heading angle tracking law

L = lift acceleration, ft/s2

Ln = normal acceleration, ft/s2

M = Mach number

m = vehicle mass, slugs

P1 = normalized downrange parameter

P2 = normalized crossrange parameter

q̄ = dynamic pressure, lbf/ft2

Q = heat load, BTU/ft2

Q̇ = thermal flux, BTU/ft2/sec

r = radial distance from vehicle to planet center, ft

req = planet surface radius at equator, ft

S = reference wing area, ft2

t = time, s

V = planet-relative speed, ft/s

α = angle of attack, rad

γ = flight path angle, rad

µ = gravitational constant, ft3/s2

ωn = natural frequency of desired drag error dynamics, rad/s

ωp = angular rate of planet rotation, rad/s

φ = latitude, rad

ψ = heading angle with ψ = 0 as due east, rad
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ψref = reference heading angle profile, rad

ρ = atmospheric density, slugs/ft3

ρeq = atmospheric density at req, slugs/ft3

σ = bank angle, rad

θ = longitude, rad

ζ = damping ratio of desired drag error dynamics

3−DOF= three-degrees-of-freedom

AGC = Advanced Guidance and Control

FBL = feedback linearization

HAC = Heading Alignment Cone

PD = position and derivative feedback control

TAEM = Terminal Area Energy Management

Introduction

To reduce cost and increase safety, a goal for next generation reusable launch vehicles (RLVs) is aircraft-

like operation. To realize this goal requires advances in entry guidance.1 An entry guidance algorithm

determines, repetitively during entry, the bank angle profile, and if appropriate also the angle of attack

profile, required to steer the vehicle to the desired landing site. In the context of the entry guidance

problem, one or both of these angles are considered to be the controls. The equations of motion relating

the control profiles to the vehicle position and velocity are nonlinear and must be based on vehicle and

atmospheric models that are inaccurate. The position and velocity inputs to the guidance algorithm will

also be inaccurate. The guidance problem that the algorithm solves is further complicated by the need to

respect path constraints on vehicle heating, acceleration and dynamic pressure, and control constraints on

the bank angle and angle of attack. Most guidance algorithms operate with a reference trajectory. Although

for vehicles with a limited flight envelope and focused mission it is adequate to have the trajectory generator

on the ground, on-board trajectory generation is arguably a requirement for RLVs to achieve aircraft-like

operation for the entire set of nominal and abort mission scenarios.

The state-of-the-art operational entry guidance is embodied in the entry guidance algorithm for the U.S.

Space Shuttle Orbiter.2 The algorithm is comprised of a trajectory planning function and a trajectory

tracking function. Much of the complexity and uncertainty of the entry trajectory planning problem is

circumvented by using the drag acceleration as a surrogate control variable. The path constraints and

final altitude constraint are converted to drag constraints. Assuming flight on a great circle arc to the
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target longitude and latitude to determine the required range, a drag profile satisfying the constraints and

producing the required range is planned. With energy as the independent variable, determining range for

a drag profile requires the integration of a scalar first-order differential equation. This differential equation

under the given assumptions is an exact kinematic relation between drag and the derivative of range with

respect to energy. A drag tracking law specifies the magnitude of the bank angle. The sign of the bank

angle is determined by a heading error corridor. In the Shuttle entry guidance only the longitudinal motion

is considered in the planning. Various authors3–7 have proposed and evaluated potential improvements to

the Shuttle entry guidance; in each case the planning is limited to the longitudinal motion.

To achieve aircraft-like operation and the capability of “returning the vehicle safely in any situation where

this is physically possible,”1 future RLVs will need to fly trajectories that differ significantly from great circle

arcs and have a guidance algorithm that can plan and execute such trajectories. The Shuttle trajectory

planning strategy has been extended8,9 to combined longitudinal and lateral motion planning. By making

two mild approximations,8 the planning requires the integration of only three first-order differential equations.

The altitude and flight path angle dynamics are eliminated, which, in addition to order reduction, avoids

the sensitivity in planning due to phugoid-like motion. The complexity of the planning problem is further

reduced by breaking the problem into two subproblems and using a successive approximation approach. The

longitudinal subproblem is essentially the drag planning problem solved in the Shuttle guidance, except that

the great circle arc assumption has been eliminated. By solving the lateral subproblem, bank reversals are

planned and the curved path to the target is computed. Accounting for the curvature allows the drag profile

to be planned more accurately, which is especially important for high-crossrange targets. The planner was

combined with a tracking law to construct an entry guidance algorithm referred to as Evolved Acceleration

Guidance Logic for Entry (EAGLE).9 The trajectory planner is fast enough that trajectory re-planning to

correct for the effects of tracking errors can be part of the real-time guidance strategy. EAGLE can deliver

an entry vehicle to the start of a terminal area energy management (TAEM) phase, as does the Shuttle

guidance, or it can deliver to a parachute deploy point. Extensive simulation testing results for EAGLE are

presented in Saraf et al.9 EAGLE performed extremely well in an independently conducted evaluation10 of

several entry guidance algorithms.

In this paper we present a new trajectory planner that possesses near-maximum downrange and crossrange

capabilities and that addresses certain limitations of the previous EAGLE planner. The construction of the

drag profile in the Shuttle entry planning and in the previous EAGLE entry planning does not take into

account the control capability. As a result, a drag profile can be constructed that is difficult to track and

the guidance accuracy will suffer. In the EAGLE testing mentioned above, despite the overall excellent

performance, tracking difficulties were observed in some suborbital abort cases. The entry guidance of
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low L/D capsules, such as those used for Mars landing, presents a more serious challenge for drag planning,

because of the very limited control authority. Numerical integration with a constant intermediate bank angle

has been used to generate an initial drag profile.6 A different approach to constructing a more easily tracked

drag profile is presented in this paper. Interpolation and pre-tracking are used to reduce the complexity of the

drag planning, yet produce a flyable drag profile. Pre-tracking begins with a trajectory generated by some

means that neglects certain constraints or uses approximations to the equations of motion to simplify the

trajectory computation. A simulation is then run in which the initial trajectory is tracked, using some control

law, with some or all of the previously neglected constraints and modeling details included. Pre-tracking has

been used previously by Mease et al.8 and Lu and Shen.11,12 The new planner matches the vehicle’s initial

flight path angle and bank angle and enforces the full three-degree-of-freedom (3-DOF) equations of motion

with control derivative limits. These improvements increase the likelihood that the planned trajectory can

be accurately tracked. In addition, the new planner is not based on the assumption of a small flight path

angle.

The purpose of this paper is to present the new entry trajectory planning approach and demonstrate the

beneficial features of this approach. The performance of the new planner is demonstrated both separately

and as the planning function in EAGLE, replacing the original planner. Testing and validation under a

broad range of conditions is outside the scope of this paper. Other approaches to entry guidance can be

found in the papers11–19 and the references therein.

Entry Guidance Problem Formulation

The entry guidance problem considered here is to determine for a given initial state the α and σ commands

throughout the entry such that the vehicle path constraints, control constraints, and the final conditions are

satisfied. This section describes the formulation and supporting models. Because the focus of this paper

is trajectory planning, we do not explicitly address modeling or navigation uncertainties, except briefly in

the Results section. EAGLE has been shown to adequately accommodate these important aspects of the

guidance problem in other work.8–10

Entry Dynamics

The translational dynamics of an atmospheric entry vehicle are defined with respect to a planet-fixed

coordinate frame and with energy E as the independent variable. E = V 2/2 − µ/r, where V is the planet-

relative velocity of the vehicle, r is the radial distance from the vehicle’s center of mass to the planet center,

and µ is the gravitational constant. With energy as the independent variable, the vehicle’s translational

motion can be modeled by five differential equations. The control variables are taken to be bank angle σ
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and angle of attack α. Angle of attack appears in the equations of motion through lift and drag, while bank

angle appears explicitly. Neglecting winds and centripetal acceleration from planet rotation, the equations

of motion, consistent with those given in Ref. 20 except for the transformation to energy as the independent

variable, are

θ′ = −cos γ cos ψ

r cosφ

(
1
D

)

φ′ = −cos γ sin ψ

r

(
1
D

)

r′ = − sin γ

(
1
D

)

ψ′ =
cosψ tan φ cos γ

r

(
1
D

)
+

1
V 2 cos γ

(
L sin σ

D

)
+ Cψ

γ′ =
(

g − V 2

r

)
cos γ

V 2

(
1
D

)
− 1

V 2

(
L

D
cos σ

)
+ Cγ

(1)

where θ is the longitude, φ is the declination latitude, ψ is the heading angle with ψ = 0 as due east, and

γ is the flight path angle. Both γ and ψ describe the orientation of the planet-relative velocity vector.

The bank angle σ is defined such that a bank to the right is positive and zero bank corresponds to the lift

vector directed upward in the longitudinal plane. Initial control and state variable values will be denoted

with subscript “0”, while target state values will be denoted with subscript “f”. The lift L and drag D

accelerations are given by

L =
1
2
ρ(r)V 2 · S

m
· CL(α, M)

D =
1
2
ρ(r)V 2 · S

m
· CD(α, M)

(2)

where ρ(r) is the density as a function of altitude, CL(α, M) and CD(α, M) are the lift and drag coefficients

as functions of angle of attack α and Mach number M , S is the reference area, and m is the vehicle mass.

Specific gravity is modeled as g = µ/r2. The density variation with altitude is modeled using the exponential

equation

ρ(r) = ρeqe
− (r−req)

hs (3)

where req is the equatorial radius of the planet, and hs (called scale height) and ρeq are constants. The

terms Cψ and Cγ are the Coriolis accelerations due to planet rotation and are given as

Cψ = −
(

2ωp

V D

)
(tan γ sin ψ cos φ− sin φ)

Cγ = −
(

2ωp

V D

)
cos ψ cos φ

(4)
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where ωp is the angular rate of planet rotation.

Path and Control Constraints

The vehicle has upper limits on dynamic pressure, aerodynamic acceleration, and heat flux. The limit on

dynamic pressure is given by

q =
1
2
ρV 2 ≤ qmax (5)

The constraint on aerodynamic acceleration is expressed as

Lz = L cos α + D sin α ≤ Amax (6)

Vehicle thermal constraints are treated by using stagnation point heat flux as the sole indicator. The heat

flux is constrained according to the heating model

Q̇ = cρ1/2V 3.15 ≤ Q̇max (7)

where c is a vehicle-dependent constant.

0 0.25 0.5 0.75 1

Normalized Energy

D
ra

g

D
max

D
maxf

D
e.g.

D
minf

Q
max

A
max

Figure 1. Drag boundaries

For drag acceleration guidance methods, the vehicle constraints are converted to an upper drag boundary

using the following procedure. First the constraints are converted to separate drag constraints. The dynamic

pressure, normal acceleration and heat flux constraints take the forms

D ≤ qmax

S

m
CD (8)

D ≤ Amax

sin α + L
D cosα

(9)
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D ≤ 1
2

(
Q̇max

cV 3.15

)2

V 2 S

m
CD (10)

Three drag boundary curves are defined by separately treating Eqs. (8-10) as equalities. A composite

maximum drag profile, referred to as Dmax, is constructed by taking the minimum of the three drag boundary

values at each energy value. An example of a Dmax profile is shown in Fig. 1. The vehicle constraints are

met when D ≤ Dmax. The maximum and minimum drag boundaries depend on α. In our approach, the

drag profile planning is always performed for a fixed α-profile. If the α-profile is treated as adjustable in the

planning process, then the planning is conducted in a hierarchical manner in which the α-profile is adjusted

iteratively outside the drag planning, while in each cycle the drag is planned with a fixed α-profile. If α

is commanded for tracking, it is not allowed to differ by more than a few degrees from the profile used for

planning.

A lower boundary is also constructed in the D versus E plane, though it is based on vehicle performance

capabilities instead of safety-related constraints. The boundary, which we denote De.g., is constructed from

the zero-bank equilibrium glide condition, which occurs when γ′ = 0 and σ = 0. A vehicle flying in this

condition has just enough lift to maintain its flight path angle. The vehicle cannot maintain steady flight

with D < De.g.. However, flying with D < De.g. does not necessarily pose a risk to the vehicle. For this

reason the boundary is considered a soft boundary, i.e., one that does need not to be enforced strictly.

Figure 1 shows an example of a De.g. profile.

Limits are placed on the magnitudes of the first and second time derivatives of the σ and α guidance

commands according to

|σ̇| ≤ σ̇max, |σ̈| ≤ σ̈max

|α̇| ≤ α̇max, |α̈| ≤ α̈max

(11)

Equation 11 does not necessarily represent vehicle limits. In trajectory planning, more conservative bounds

may be used to save capability for tracking.

Target Conditions

The target conditions are application-specific. For example, the Space Shuttle ends its entry phase

by starting a Terminal Area Energy Management (TAEM) phase, which prepares it for a runway landing.

For the computations described in this paper, we adopt the target TAEM initiation point conditions as

defined for the Advanced Guidance and Control (AGC) study.10 Under the conventions of that study, entry

terminates at a specified final speed, Vf . The final altitude hf is specified with a tolerance of ±3000 ft, the

final horizontal distance to the Heading Alignment Cone (HAC) point should be greater than or equal to 27

n miles and less than or equal to 33 n miles, and the final heading angle should be within 5 deg of the line of
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sight to the HAC point. EAGLE can also be configured for a parachute deployment target. EAGLE handles

both cases by targeting a specific point in position space. In the case of targeting for TAEM, the TAEM

point, represented as (hf , θf , φf ), is targeted. In order to meet the final heading requirement, EAGLE

changes the location of the TAEM point on the TAEM circle each time it updates the reference trajectory

(see Ref. 9). In the case of targeting for parachute deployment conditions, (hf , θf , φf ) is taken as the desired

chute deployment point and Vf becomes the chute deployment speed. In both cases, the final altitude hf

is enforced by specifying a final drag value. The accuracy of this method of enforcing hf depends on the

accuracy of the models for density and coefficient of drag.

Entry Guidance Strategy

The objective of an entry guidance algorithm is to solve the entry guidance problem to sufficient accuracy

for the set of expected initial and final conditions, despite modeling and navigation errors and delay and

inaccuracy in the execution of the guidance commands. We assume that a solution to the guidance problem

exists. The task of selecting a feasible entry target (landing site) is not addressed here. In this section we

describe the basic features of the guidance strategy employed in EAGLE. EAGLE is composed of a trajectory

planner and a trajectory tracker. The trajectory planner features discussed in this section are common to

the old and new planner. In the subsequent section, the improved features of the new planner are described

and the planning algorithm is given.

Trajectory Planning

EAGLE plans a full 3-DOF trajectory by designing a drag profile and scheduling the bank reversal(s).

For the purposes of this paper, we assume that the α-profile is given and not to be modified by the planner.

(Other work21,22 by the authors has examined onboard α-profile selection for increased ranging capability.

Even if alpha profile selection is part of the planning process, the discussion given here would still apply,

due to the hierarchical manner in which the α-profile is adjusted iteratively outside the drag planning.) The

first objective in the drag planning is to achieve the downrange of the target. Other constraints, namely

the initial and final altitudes and the vehicle constraints, are also enforced during the drag design process.

The new planner enforces more constraints, such as limits on σ̇ and σ̈, as described in the next section. The

objective of the bank sign planning is to achieve the crossrange of the target.

For drag planning, the planner creates a family of constraint-observing drag profiles that differ by the

value of one parameter, P1. The drag planning entails selecting a value for P1 that achieves the downrange

distance consistent with the target conditions. The parameter associated with the bank sign planning is

referred to as P2. P2 is the normalized energy at which the primary bank reversal begins. The initial bank
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sign is chosen to turn the vehicle toward the target. Though other bank reversals may be specified at fixed

normalized energy values, they are left fixed and not adjusted by the planner. The selection of P2 determines

the final crossrange, since it is the only free parameter associated with the bank sign profile.

Trajectory Tracking

The purpose of the trajectory tracking function is to command σ and α such that the vehicle follows

the reference trajectory produced by the planner. The tracking function accomplishes this by tracking drag,

tracking heading angle (though only late in entry), and executing timed bank reversals. Bank angle is

treated as the primary control variable. Because the tracking law is also used in the new planning process,

we describe it briefly here. For more a complete discussion than is given here, including a description of how

limited α commands are issued to control high-frequency drag error in a secondary tracking law, please see

Ref. 9.

Both the drag tracking law and the heading angle tracking law are based on feedback linearization. The

drag tracking law is designed to achieve second-order linear drag error dynamics of the form

(D′′ −D′′
ref ) + 2ζωn(D′ −D′

ref ) + ω2
n(D −Dref ) + k1

∫
(D −Dref )dE = 0 (12)

where ζ is a constant to be tuned, ωn is scheduled with dynamic pressure, k1 is a constant gain, and

D′′ = a + b(L/D)cos σ (13)

Variables a and b are functions of the state variables and α that have been given elsewhere.9 Equation (13)

is substituted into Eq. (12), and Eq. (12) is solved for σ at each guidance cycle during entry.

Similarly, the heading tracking law is designed to achieve first-order linear heading angle error dynamics

of the form

(ψ′ − ψ′ref ) + k2(ψ − ψref ) + k3

∫
(ψ − ψref )dE = 0 (14)

where k2 is scheduled with dynamic pressure and k3 is a constant gain. The equation for ψ′ (see Eq. (1)),

which contains σ, is substituted into Eq. (14), and Eq. (14) is solved for σ at each guidance cycle during

entry.

The bank angle command is taken as a weighted combination of the σ values obtained from the two

tracking laws. Up until the last part of entry, all of the control weighting is assigned to the drag tracking

law. Drag tracking is used exclusively at first because it is challenging and requires full attention. In the

absence of modeling error, perfect drag tracking will also result in the reference heading angle being followed

perfectly. In actuality, tracking drag exclusively will result in an off-nominal bank command history, causing
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heading angle to stray from the nominal as well. Planning updates correct the effects of heading error by

resetting the timing of the primary bank reversal and starting the reference trajectory from the current

heading angle. After the last reversal has been executed, planning updates cannot correct heading error in

this manner. For this reason, heading tracking is mixed in at roughly even proportion with drag tracking

after the last bank reversal is completed.

New Trajectory Planner

Objectives

The first goal for the new trajectory planner is to be able to plan trajectories that are within the capability

of the vehicle to fly, i.e., to plan feasible trajectories. A feasible trajectory is one that meets the boundary

conditions and the vehicle constraints and that satisfies the equations of motion with the nominal models.

The boundary conditions include matching the initial entry state, the initial bank angle σ0, and the target

conditions within certain tolerances. For feasibility as we define it here, we do not require matching the

initial angle of attack α0. Testing of an earlier version of the new planner that did match α0 led us to

conclude that the potential benefits did not justify the increased level of algorithm complexity.

The previous planner designed a three-segment piecewise-linear-in-energy drag profile. The middle seg-

ment was taken constant drag. The initial drag value was determined by the initial conditions and the final

drag value was determined by the final conditions. The segment breakpoints were chosen to match the shape

of the Dmax boundary in the D versus E plane. The height of the middle segment was chosen to match a

desired trajectory length. Portions of the three-segment drag profile that exceeded Dmax were replaced by

the corresponding sections of Dmax. While this method works well over a large part of the entry corridor

for orbital entry (it performed well in the AGC study10), some problems arise when it is used for suborbital

entry. The short duration of suborbital entry makes it harder to correct for the tracking errors that result

from infeasibilities in the reference trajectory. Infeasibilities associated with the previous drag design method

include not matching σ0 and γ0, discontinuous changes in σ and γ at segment breakpoints and at breakpoints

introduced by adopting sections of Dmax, excessive bank angle derivatives, and incompatibility with the γ′

equation of Eqs. (1). Arbitrary drag shapes may specify values for γ′ that demand more vertical lift than the

vehicle can attain by simply lowering |σ|. Some of the infeasibilities can be quite significant during orbital

entry as well, particularly γ′ incompatibility, and discontinuities in γ resulting from flying segments of the

Dmax boundary. The X33-type vehicle model used for the AGC testing had an L/D of about one. Tracking

problems for infeasible trajectories will be more serious for lower L/D vehicles, such as capsules.

The second goal for the new trajectory planner is to be able to plan trajectories to the entire landing

footprint. The challenging targets not covered by the original EAGLE planner are those near the boundary.
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These targets are the endpoints of optimal trajectories, yet ideally we would like the planner to compute

trajectories to these points without actually solving optimal control problems.

Optimal Trajectory Features

To characterize the features of trajectories to the boundary points of the landing footprint, optimal

trajectories were generated using ASTOS23 – an optimal control and simulation tool for aerospace applica-

tions. ASTOS solves trajectory optimization problems using collocation or direct multiple shooting. The

optimization problem we solved is to maximize or minimize the final latitude for a given final longitude θf ,

subject to the initial conditions, equations of motion, constraints, and boundary conditions given earlier.

Also, h was constrained to be below h0 to exclude skip trajectories. The value for θf was varied to obtain

vertices to construct an optimal landing footprint polygon for a particular initial condition (labeled EG16)

given in the Performance Demonstration section.

The following features of the optimal trajectories were observed and are used to guide the new planner

design to increase its crossrange and downrange capabilities. D(Ẽ) profiles of maximum-range trajectories

lie close to the equilibrium glide drag profile, De.g., which corresponds to γ′ = 0 and σ = 0. An example of a

De.g. profile is shown in Fig. 1. D(Ẽ) profiles of minimum-range trajectories tend to closely follow the Dmax

boundary. Maximum crossrange trajectories show a reduction in drag in the last part of entry, which extends

range once the vehicle is headed in the desired direction; with the drag reduction there is a corresponding

decrease in the bank angle magnitude and an increase in the vertical component of lift. By imitating these

behaviors, the new planner is capable of achieving near-optimal downrange and crossrange.

Feasible Drag Profiles with Optimal Features via Interpolation and Pre-Tracking

The three-segment linear drag profile design of the previous planner is replaced with an interpolation-

based feasible drag design method. Drag is taken as a weighted combination of minimum and maximum drag

profiles. The interpolation depends on a parameter P1 defined such that P1 = 0 produces the maximum drag

profile, P1 = 1 produces the minimum drag profile, and 0 < P1 < 1 produces a drag profile that lies between

the two extremes. The use of interpolation is motivated by computation time. During the search for P1,

many drag profiles may be considered. Enforcing feasibility on each profile would increase computation time.

Using the interpolation method, direct enforcement of feasibility is only required for the first two profiles that

are tested, the lower and upper drag profiles. Our experience indicates that trajectories generated from drag

interpolation will be feasible to sufficient accuracy, if both the lower and upper drag profiles are associated

with feasible trajectories.

The desired near-optimal behavior is built into the planner in the following manner. The upper drag

12 of 24

American Institute of Aeronautics and Astronautics



profile used for interpolation is taken as a feasible variant of the Dmax boundary in the D versus E plane,

and is referred to as Dmaxf . The lower drag profile is taken as a feasible variant of De.g. in the D versus E

plane, and is referred to as Dminf . Figure 1 shows examples of Dmax, Dmaxf , De.g., and Dminf profiles. The

crossrange-enhancing feature is implemented at the interpolation stage of drag design, and is not applied to

Dmaxf or Dminf .

The procedures used for generating Dmaxf and Dminf are basically the same, so only the procedure for

creating Dmaxf will be described in detail. The trajectory planner creates Dmaxf by pre-tracking Dmax.

The term “pre-tracking” has been used to clarify the point that the tracking is a simulation performed by

the planner. The planner performs a tracking simulation and takes the resulting drag history as Dmaxf , a

feasible variant of Dmax. During the simulation, the initial conditions, equations of motion with the nominal

models, and control derivative limits are all enforced to ensure that Dmaxf is feasible. Another control

constraint, |σ| > σmin, is enforced (except during bank reversals) to ensure some lateral control authority

for tracking. For the results presented in this paper σmin = 5 deg. The same feedback linearization (FBL)

plus proportional-derivative (PD) drag tracking law used in EAGLE’s trajectory tracking function is used

to pre-track Dmax, though the gain tuning is different. For the pre-tracking, ζ = 1 since an overshoot

is not desired. Due to rate saturation of σ, an overshoot in drag may occur if ωn is too high. A search

is performed for the value of ωn that achieves the closest drag tracking while maintaining the overshoot

below a specified tolerance. The overshoot is defined as the maximum value of the drag error, where drag

error is D(E) − Dmax(E). The tolerance is small but non-zero to allow for minor numerical error effects

in the steady-state tracking response. The resulting drag profile is taken as Dmaxf . The search for ωn is

performed by the planner during the creation of the Dmaxf profile each time a trajectory is planned, though

re-determining ωn each time may not be necessary.

Dmax is modified before it is pre-tracked to create Dmaxf to smooth the slope discontinuities at energy

values where a different vehicle constraint becomes active. Cubic bridging segments are applied at the corners

of Dmax to give a smooth transition from one constraint curve to the next. A final cubic segment is added

to smoothly connect Dmaxf (not Dmax) to Df at the end of entry. The corner cubic segments match the

value and slope of Dmax at points where they connect to it. The final segment matches the value, slope and

curvature of Dmaxf at its connection point.

The same procedure is used to create a feasible variant of De.g., except that there are no corners in De.g. to

smooth out. The resulting minimum drag profile is labeled Dminf . For low-energy entry conditions or vehicles

with low lift to drag ratio, it might be difficult or impossible to attain steady tracking of De.g.. In these

cases Dminf is created by integrating the full equations of motion from the initial entry state with σ = σmin.

This method could always be used to generate Dminf , but pre-tracking De.g. is the preferred method when
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possible because it precludes the excessive phugoiding that can result from flying with σ = σmin.

In general it is not possible to track De.g. with σ = 0. Experience has shown that tracking De.g. requires

non-zero σ commands and that γ decreases slowly with time while De.g. is tracked. The observation that

σ 6= 0 indicates that De.g. is a conservative minimum drag boundary. The conservatism can be removed by

multiplying CL by 1 + η during the computation of De.g., where η is a small number such as 0.05. During

the computation of Dminf , σ will eventually saturate at σmin and a small phugoid oscillation will occur.

The magnitude of the phugoid oscillation decreases as η decreases. The lowest drag profile in Fig. 2c was

generated using η = 0.07. De.g. in Fig. 1 was generated with nominal lift (η = 0). The addition of phugoid

motion in this manner increases range. This is consistent with the optimal footprint, whose maximum-range

trajectories oscillate slowly near De.g.. While this modification is important for planning trajectories to

the maximum range boundary of the footprint, it may not be required for planning within an operational

guidance algorithm.

Interpolation between Dminf and Dmaxf is performed according to

D(Ẽ) = Dminf (Ẽ) +
1− P1

1 + ek(Ẽ−Ẽm)

(
Dmaxf (Ẽ)−Dminf (Ẽ)

)
(15)

where P1 is the normalized downrange parameter and k > 0 and Ẽm are shaping parameters. Equation (15)

approximates linear interpolation at values of Ẽ sufficiently less than Ẽm. As Ẽ increases, drag drops

smoothly to Dminf . The value of k determines how quickly the transition to Dminf occurs. For the results

presented in this paper, k = 30 and Ẽm = 0.85. Drag is reduced at the end of entry to increase crossrange,

imitating this feature observed in the optimal trajectories. As it is, Eq. (15) does not produce Dmaxf when

P1 = 0 because of the crossrange-enhancing drag reduction at the end. The equation can be modified

to gradually eliminate the drag reduction as P1 approaches 0. One way to do this is to replace P1 with

max(1.2P1− 0.2, 0) and Ẽm with Ẽm− 2 min(1.2P1− 0.2, 0) in the equation. Figure 2 gives an example of

drag profiles generated using Eq. (15) with the substitutions. For low energy cases, including the suborbital

cases of the AGC study,10 the total entry time is not sufficient for the drag reduction method that has been

described to be an effective means of increasing crossrange. In these cases, simple linear interpolation is

applied according to

D(Ẽ) = P1Dminf (Ẽ) + (1− P1)Dmaxf (Ẽ) (16)

Experience has shown that the bank angle profiles that result from the drag interpolation of Eq. (15)

and Eq. (16) are flyable when Dmaxf and Dminf are both flyable and appropriate values for k and Ẽm are

used for Eq. (15).
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Feasible Bank Reversal Planning

In order for a trajectory to be feasible, bank sign reversals cannot occur instantaneously. A trajectory is

modified to include a rate-limited bank reversal in the following manner. Starting from the value of Ẽ where

the reversal is scheduled to begin, the equations of motion are integrated using an open-loop constant rate

bank reversal. After the reversal is complete, pre-tracking with the FBL plus PD drag tracking law is used

to smoothly return the drag to the original curve. As during the computation of Dmaxf and Dminf , ζ = 1

is used along with the highest value of ωn that maintains the overshoot below a small tolerated value. As

before, the planner finds this value through an automated numerical search. The pre-tracking simulation is

terminated once the drag error and the drag slope error are both below specified tolerances.

For low and medium crossrange entry scenarios, a second bank reversal is added near the end of entry

to reserve some crossrange correction capability. In planning updates that occur before the first reversal is

executed, the normalized energy at which the second reversal occurs is fixed. In these initial updates, P2

controls the first bank reversal. After the first reversal has been executed, P2 controls the remaining bank

reversal. Unless an additional reversal is allowed, it is important that the second bank reversal is planned

to occur near the target, because after it is executed, the planner loses its ability to target in crossrange.

For entry cases that require high crossrange or for low-energy cases, a single bank reversal is sufficient if it

will occur close enough to the target. The previous planner scheduled the two bank reversals in a slightly

different manner, to similar effect.9 However the new method that is described here eliminates one of the

two parameters that were previously associated with adding a second bank reversal.

Planning Algorithm

The function of the planning algorithm is to generate a feasible entry trajectory. We have parameterized

the final longitude and latitude with the parameters P1 and P2. The parameter P1 ∈ [0, 1] specifies the

drag profile; the parameter P2 ∈ [0, 1] specifies the bank reversal initiation normalized energy. The target

longitude and latitude values are denoted by (θf , φf ). For the evaluation of the delivery error in longitude

and latitude, the final position is expressed in “target frame” coordinates. The final 3D position is projected

radially onto the sphere of radius rf , where rf is the target radius. The distance along the great circle

containing the target final position, which is on this sphere, and the projected initial position is defined as

downrange; whereas the crossrange distance, for a given downrange is measured along the great circle, on

the same sphere, that intersects the downrange great circle perpendicularly. The downrange distance error

is denoted by edr, with a positive value denoting an overshoot, the crossrange distance error by ecr, with a

positive value denoting an error to the right of the downrange great circle. Accordingly we write edr(P1, P2)

and ecr(P1, P2).
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The problem solved by the planning algorithm is thus to determine (P1, P2) such that edr(P1, P2) = 0

and ecr(P1, P2) = 0. The inputs to the algorithm are the boundary conditions on the state, the final energy

Ef , the path constraint bounds q̄max, Amax, and Q̇max, a reference α profile, nominal models for CD, ρ and

g, and tolerances TOLdr and TOLcr for the downrange and crossrange errors. A successive approximation

approach is used to determine the (P1, P2) pair that nulls the downrange and crossrange errors. P1 is

adjusted in an outer-loop false position search to achieve the target downrange. Each time P1 is updated

during the search, an inner-loop determines the value of P2 that minimizes the crossrange error. With this

successive approximation approach, P1 and P2 are found using “nested” single-parameter searches instead of

a two-parameter search. The false position searches converge to within an acceptable tolerance after several

iterations. Approximately 50 to 100 (P1, P2) pairs are tested during the process, which takes less than 2

seconds on current desktop computing hardware.

We first describe two key components of the algorithm – the false position search and the mapping from

(P1, P2) to edr(P1, P2) and ecr(P1, P2) – then we describe the algorithm.

False Position Search: For a scalar function f(x), the problem is to determine c such that f(c) = 0 given a

priori information that c ∈ [a0, b0] and sgn[f(a0)] = −sgn[f(b0)]. The update equation is

ck =
akf(bk)− bkf(ak)

f(bk)− f(ak)
(17)

If sgn[f(ak)] = sgn[f(ck)], then (ak+1, bk+1) = (ck, bk); otherwise, (ak+1, bk+1) = (ak, ck). The search is

initialized with k = 0 and continued until the iteration l when |f(cl)| < TOL is first satisfied, for a specified

tolerance TOL. This search only has linear convergence, but we have found it to perform reliably.

Mapping: (P1, P2) → edr(P1, P2) and ecr(P1, P2)

• Compute r(E), V (E), and γ(E), and L cos(σ) from D(E) and α(E) – r(E) from the second of Eqs. (2)

and the nominal models for CD and ρ, V (E) from E and r, γ(E) from the third of Eqs. (1) and a

finite-difference approximation of r′(E), and L cos σ from the fifth of Eqs. (1) with Cγ = 0.

• Integrate the first, second and fourth of Eqs. (1) using the D(E), α(E), r(E), γ(E), V (E), and L cosσ

profiles, with L cos σ corrected at each integration step to account for Cγ . The magnitude of the

lateral lift component is obtained as |L sin σ| = [L2 − (L cos σ)2]1/2; the initial sign of the lateral lift

component is selected so that the vehicle will turn toward the target, and a bank reversal is initiated

at the normalized energy P̃2 and handled as already described.

This procedure generates the complete entry trajectory; in particular it generates values of edr(P1, P2) and

ecr(P1, P2).

Planning Algorithm:
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• Compute Dminf
and Dmaxf

and use either Eq. (15) or Eq. (16) to establish the P1 parametrization.

If Eq. (15) is used, the parameters k and Ẽm must be specified.

• Outer-loop false position search for P1 such that edr(P1, P2) = 0: the initial bounding values are 0 and

1, i.e., (a0, b0) = (0, 1); subsequently P1 is updated according to Eq. (17) with f(P1) = edr(P1, P2).

The iterative search is stopped when |edr(P1, P2)| < TOLdr.

• Inner-loop search for P2 such that |ecr(P1, P2)| is minimized with P1 fixed at the current value in the

outer-loop search. If sgn[ecr(P1, 0)] = sgn[ecr(P1, 1)], then P2 = 1 is the minimizing value. Physically

this is the case where the initial bank angle sign, chosen such that the vehicle is turning toward the

target, remains appropriate for the whole trajectory. Because, with the given drag profile (determined

by the value of P1), the vehicle cannot achieve ecr = 0. If on the other hand, sgn[ecr(P1, 0)] =

−sgn[ecr(P1, 1)], then execute a false position search for the value of P2 that nulls f(P2) = ecr(P1, P2).

The search is initialized with (a0, b0) = (0, 1) and is stopped when |ecr(P1, P2)| < TOLcr.

Similarities and Differences with Shuttle Approach

This algorithm is drag-based like the Shuttle approach. This features eases the handling of path constraints

and limits the prediction sensitivity to phugoid-like motion. The vertical plane dynamics for r and γ are not

integrated, except in the pre-tracking procedure to generate Dminf
and Dmaxf

, and to shape the transient

following a bank reversal, where the phugoid-like motion is controlled by feedback. In contrast to the

Shuttle approach, (i) rather than assuming r is constant and γ = 0, r and γ are deduced from D, (ii) the

lateral motion is accounted for and a bank reversal is planned, (iii) a feasible trajectory is planned, and (iv)

trajectories to most points in the landing footprint can be planned.

Performance Demonstrations

In this section the performance of the planner is demonstrated: first for landing footprint generation

and second in the role of the planning function in EAGLE. For the purpose of these demonstrations, logic

for deciding whether the case is high or low energy, or high or low-medium crossrange and executing the

appropriate planning technique has not been automated in the planning algorithm we use. Development of

a stand alone algorithm and validation via extensive simulation testing is outside the scope of this paper.

The results presented here are based on the vehicle model and initial entry conditions from the Advanced

Guidance and Control (AGC) Project,10 but using our own simulation rather than the one used in the AGC

Project. The vehicle model is an enhanced model of the X-33. In the AGC testing for entry guidance, there

were 9 orbital entry cases, labeled EG13 to EG21, and 19 suborbital cases labeled EG1 to EG12 and EG22
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Figure 2. Trajectories from the new planner
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to EG28. Six of the 9 orbital cases test the high-crossrange guidance capability of the algorithms involved

with respect to the baseline guidance algorithm, which was modeled after the Shuttle entry guidance.2 The

suborbital cases test the ability of the algorithms to deal with abort situations, including several involving

mis-modeling and actuator failures. EAGLE, with its original planner, was submitted for testing in the AGC

project and scored well overall.9,10,21 Though EAGLE tested exceptionally well for all of the orbital cases,

the scores were lower for several of the suborbital cases. This is due in large part to the factors that have

motivated the development of the new planner.

The new planner is first demonstrated by using it for landing footprint generation. The set of final

downrange and crossrange points that a planner can target for a given entry state is an approximation of

the vehicle’s landing footprint. The accuracy of the approximation depends on the planner that is used. By

comparing the planner-generated footprints with the actual footprints, computed by trajectory optimization,

one can determine how much of the actual footprint the planner is capable of covering.

To create a landing footprint, the mapping function of the new EAGLE planner is called repeatedly with

varying values specified for P1 and P2. (No iteration to determine P1 and P2 is required, since there is

no pre-specified target.) The endpoints of the resulting trajectories serve as the vertices of a polygon that

represents the footprint approximation. The footprint has four basic sides, each a constant P1 or P2 curve (a

piecewise linear curve due to the finite number of vertices), as diagrammed in Fig. 3. In the figure, sides B

and D correspond to maximum crossrange (P2 = 1), side C corresponds to maximum downrange (P1 = 1),

and side A corresponds to minimum downrange (P1 = 0). Positive-crossrange trajectories are generated

with a positive initial bank sign and negative-crossrange trajectories are created with a negative initial bank

sign. (For entry guidance, only one initial bank sign is used – the one that initially turns the vehicle toward

the target.)
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Figure 2a and Fig. 2b show EAGLE-generated landing footprints for the EG3 and EG16 initial condi-

tions. Ground tracks are shown in Fig. 2a and Fig. 2b for every third vertex of those that make up the

footprint border polygons. Figure 2c and Fig. 2d show the drag profiles that correspond to the side boundary

trajectories shown in Fig. 2a and Fig. 2b, respectively. In Fig. 2c, the drag profile just below Dmax is Dmaxf ,

and the profile just above De.g. is Dminf . The interior profiles are obtained by interpolation according to

Eq. (15) with the substitutions for P1 and Ẽm described in the previous section. In Fig. 2d, the drag profile

just below Dmax is Dmaxf , and the lowest profile is Dminf . De.g. is not shown since Dminf was obtained

from σ = σmin. The interior profiles are obtained by interpolation according to Eq. (16). Note that all of

the drag profiles of the same plot start at the same value and slope and end at the same value, which comes

from the planner matching V0, h0, γ0, Vf , and hf . In Fig. 2c, Dminf is slightly above De.g. once it levels out.

This is because De.g. was calculated with an exaggerated lift coefficient, for reasons that were explained in

the previous section.

Figure 2e and Fig. 2f show the bank profiles that are associated with the trajectories to the side boundary

shown in Fig. 2a and Fig. 2b, respectively. The highest-magnitude bank profile in each subfigure corresponds

to the Dmaxf profile, and the lowest-magnitude bank profile in each subfigure corresponds to the Dminf

profile. The drop in |σ| that is seen in the Dmaxf bank profiles of Figure 2f occurs because Dmaxf is

obtained through the pre-tracking of Dmax by the planner. When Dmaxf gets near Dmax, the reduction in

|σ| causes Dmaxf to level out. The bank profiles indicate the feasibility of the trajectories. They observe the

limits on |σ̇| and |σ̈| of 10 deg/s and 2 deg/s2, respectively, and match σ0 = 0, the initial bank angle.

Figure 4 shows the boundary of the optimal landing footprint for the EG16 initial entry state. The

EAGLE footprint is shown in the figure as a transparent filled polygon. The EAGLE footprint is a close

approximation of the optimal footprint. The optimal footprint achieves slightly greater downrange, due to

the phugoid-like oscillatory motion that is seen in the optimal minimum drag profile (not shown here), in

which D oscillates around De.g.. The initial undershooting of De.g. is the main explanation for the extra

range. Phugoiding after the initial undershoot does not completely balance out the extra range because the

magnitude of the oscillation decreases steadily with time.

Due to the ability to plan feasible reference trajectories, the suborbital guidance performance of EAGLE

with the new planner has improved considerably. Figure 5 shows a tracking simulation for the EG3 initial

condition. The vehicle starts relatively close to the target, providing little time for the drag tracking to

eliminate transients that would occur from the infeasibilities associated with the previous trajectory planner.

As such, EG3 is a good case for demonstrating EAGLE with its new trajectory planner. Modeling errors

are added to CL, CD, and ρ. EAGLE uses the nominal models, while perturbed versions are used in the

simulation. A sinusoidal multiplicative error with low frequency is applied to CD and CL, with Mach number
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as the independent variable. In the simulation, the nominal CD is multiplied by 1.025+0.025 sin(M +4.57),

CL is multiplied by 0.975 + 0.025 cos(M + 4.57), and ρ is multiplied by 0.95. The simulation is 3-DOF, and

the commanded control values are low-pass filtered to simulate the presence of an entry flight control system.

The filter delays the bank angle and angle of attack commands by about one second. Figure 5a shows the

drag tracking response. D starts below Dref because α starts below αref (Fig. 5c). A discontinuous jump

in the Dminf boundary occurs at 50 sec, indicating that the reference trajectory was updated at that time.

This is expected since updates were scheduled to occur automatically every 50 sec. The discontinuity occurs

because Dminf starts from the current reference state at a trajectory update. The tracking proves to be

close enough for the final condition error tolerances. A three-segment linear-in-energy drag profile could not

have been followed as closely. Figure 5b shows the commanded and reference bank angle profiles. One bank

reversal can be seen to start at t = 80 s. Figure 5d shows approximately the second half of the ground

track. The final range-to-HAC error is −2.2 n miles, which falls within the 3 n mile AGC project tolerance.

The final heading-to-HAC error is −2.8 deg, which falls within the 5 deg AGC project tolerance. The final

altitude error is -1300 ft, which falls within the 3000 ft AGC project tolerance. It should be noted that,

though the final conditions fall within AGC tolerances, the test environment that we used was not the same

as in the AGC study; and thus our results do not necessarily indicate how the algorithm would perform in

that test environment.

Orbital tracking results are not shown due to space limitations, but the use of the new planner does not

have a large impact on EAGLE’s performance for the 9 orbital AGC cases, which was already very good. The

previous planner produced trajectories that were sufficiently close to being feasible for AGC13 to AGC21,

so the tracking function was able to compensate in those cases. For orbital entry, the new planner will have

the largest impact on entry scenarios involving extreme downrange or crossrange targets that it can reach

but the previous planner could not, and on scenarios where the previous planner would have created drag

profiles that require unattainable values for γ′.

In all cases, landing footprint computation and trajectory planning took between 1 and 2 seconds (coded

in C) on a Pentium 4, 2.8 GHz personal computer. For the trajectory planning results in this paper, the

tolerances for terminating the successive approximation iterations were 3000 feet for downrange and 1000

feet for crossrange. Because much of the computation time is associated with determining Dmaxf and Dminf ,

the computation time is not strongly dependent on the values of the tolerances. For example, tightening the

downrange tolerance to 0.03 feet doubled the number of iterations required but the total computation time

only increased from 1.63 s to 1.95 s.
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Figure 4. EG16 landing footprint shown inside of optimal footprint
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Figure 5. EG3 guidance simulation
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Conclusions

An atmospheric entry trajectory planner has been developed that generates a feasible trajectory and

associated bank angle profile. Feasibility ensures that the initial and final state conditions, the path and

control constraints, and the nominal equations of motion are all satisfied. Feasible trajectories are easier to

track; control saturation is less likely, as are path constraint violations. Guidance simulation results using

an algorithm based on the planner demonstrated the performance improvements. Insights from computing

maximum crossrange trajectories were factored into the design of the planner. Comparisons of trajectories

created by the planner and optimal trajectories demonstrated that the planner can generate trajectories to

most of the landing footprint. This result is especially significant considering the planner’s fast computation

time.
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