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ABSTRACT OF THE THESIS

Navigation in Everyday Settings Using Semantics and Language

by

Srirangan Madhavan

Master of Science in Computer Science

University of California San Diego, 2023

Professor Henrik Christensen, Chair

Advancements in deep learning have catalyzed growth in robotic applications, extending

their utility beyond constrained settings. Nevertheless, a significant challenge remains in en-

abling robots to efficiently navigate and interact within unstructured and dynamic environments.

Existing methods in robot navigation require the use of dense geometric representations such as

high definition maps or full 3D reconstruction. But these methods are non trivial and consume

significant resources in both creation and usage. They also become stale for environments with

constant changes. To be able to scale in terms of size and novelty of the environment, new

algorithms that use representations accounting for semantics is required. Besides that, to be able

to interact and collaborate with humans, these representations need to be able to ground the
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visual information in other modalities such as text, while retaining a long term memory. This

thesis presents work on these directions, development of new approach and the discussion on

the experiments applying these methods to navigation and robot instruction following in home

environments.
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Chapter 1

Introduction

People have long sought to mechanize tasks that are tedious, dangerous or outright

humanly impossible. Natural progression of that search has been the developments in robotics

over the past five decades. Manufacturing and logistics have been one of the earliest and widest

adapters of robots. Unmanned vehicles both aerial and terrestrial are being developed for last

mile goods delivery. Besides these, due to COVID-19, [11] there has been faster adaptation of

robots in offices and shops for sanitation work. One of the areas in which robot adaptation has

been comparatively slow is inside our homes. The most common case of usage at homes has

been vacuum and floor cleaners. There has also been some adaption for assisting people with

reduced mobility and for educational support of children with different abilities. But most of

these applications are limited and rigid in the set of activities they can perform and are therefore

not able to scale to wider adaption. For true adaption in homes in helping elderly and children or

collaborative home keeping, there is a need for big strides in the ability of robots to be robust,

have increased awareness of the surroundings, act with common sense and be able to provide a

wider set of services from a single platform.

There have been tremendous advancements in statistical learning, natural language

processing, computer vision and other perception and control systems following the development

of deep learning based approaches. These have had direct impact on the growth of robotic

applications, leading to adaption outside of constrained environments. Yet, one of the most
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critical challenges hindering even wider adaption is the ability of the robots to navigate and

interact in highly unstructured and dynamic environments. The task of navigating in highly

dynamic scenarios requires understanding of the spatial details and the ability to take contextual

decisions to reach the destination safely and efficiently. This means, being able to understand the

causality between actions and changes in state and understanding semantics to an extent which

allows the agent to take actions that help discover new knowledge on the fly. To that extend,

one of the most easily available mode of information acquisition for the agent is through visual

inputs, such as images and videos. While traditional vision systems have been able to infer

details about the physical boundaries of the surroundings in which the agent operates, and even

semantics to some extent, these require significant computational and manual resources and do

not generalize to new scenarios.

The ability to interact with humans, adds significant complexities since it not only needs

to be able to navigate from a pre-programmed source to destination, it must be able to do so

by inferring these details from the data that is provided by human beings. Naturally, a very

easy and well established modality for interaction between humans is natural language. The

recent advancements in the field of natural language processing and language models have placed

this goal within reach. Some of the works in this direction can be categorized into Embodied

Instruction Following (EIF).

This thesis focuses on the above mentioned two directions of robotics in indoor scenarios:

visual navigation and embodied instruction following. It aims to present a combination of

theoretical analysis, algorithm development and experimental evaluations done in these two

domains. In Chapter 2, discussion on some recent works in visual navigation, theoretical

concepts utilized in the baseline works and the novel addition to the learning architecture have

been discussed. Similarly, Chapter 3 discusses the same in the context of embodied instruction

following.
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Chapter 2

Object Oriented Navigation in Indoor
Scenes

An integral component of any autonomous agent capable of performing tasks in the

physical world is the capability to appropriately navigate to the desired points of interaction.

Historical approaches to solve this problem involved planning based approaches and constructing

metric semantic maps. With the evolution of deep learning, latest approaches have leveraged these

techniques to develop algorithms that produce significantly generalizable results by addressing

the gaps in traditional methods. In this chapter, discussion has been conducted on the latest

approaches for navigation in indoor settings, tools and environments used for developing and

testing these approaches and our contribution to learning based navigation.

2.1 Background

Navigation and specifically visual navigation has a storied history. In this work, the

core navigation policy is learned as a deep neural network using the Actor-Critic model, under

the Reinforcement Learning Algorithms. In this section, we cover the overview of broad

categorization of navigation algorithms, some relevant work in these categories and background

of the theoretical concept behind the Actor-Critic model.
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2.1.1 Classification based on mapping

One way of broadly classifying navigation methods is map based vs map-less navigation

approaches. Much of the the traditional approaches can be categorized as map based approaches

[49][5][20][57]. In these, the navigation problem is formulated as obstacle avoidance problems,

where the agents aided by the maps of the operating environment identify a collision-free

trajectory using algorithms such as A∗. But these methods are limited by the requirement for

pre-computed maps of the environment, which may not be computationally feasible or even

possible. Other approaches in this category create a map on-the-fly, which still suffer from some

of the same drawbacks. These are further complicated by the need for including the semantics in

the maps for more meaningful task execution. One potential solution to this problem is the class

of approaches that are map-less [10][15][45]. In these methods, the agents learn representations

over time through interaction with the environment. These representations act as some form of

implicit maps that help the agent navigate.

2.1.2 Classifications based on goal type

Another classification criterion is what kind of goal the navigation algorithms require.

This categorization is specifically applicable in the indoor settings. In the case where the

agent is given a 2D/3D coordinate as the goal to reach, it can be categorized as pointgoal

navigation[1][22]. If the agent’s goal is to reach an object category while navigating around

obstacles, it can be categorized as objectgoal navigation[63][61][58]. Pointgoal navigation is still

not very well defined in realistic in indoor robotics tasks. Work discussed here, tackles objectgoal

navigation. These algorithms usually require some prior knowledge about the environment,

which aids in navigation.

2.1.3 Asynchronous Advantage Actor-Critic (A3C) Model

Deep reinforcement learning (DRL) has proved to be very successful in various tasks

that require human level expertise ranging from object recognition [3], solving control problems
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[18][26], to playing Atari games [36] and defeating champion Go-players [48]. Generally these

algorithms can be designed based on the action probability learning or action value estimation.

In policy based methods, the policy is parameterized as π(at |st ;θ) where θ are the weights of

the neural network, which get updated using gradient ascent on the estimated returns E[Rt ]. The

estimate of the value V (st ;θ)v is also modelled as neural network with weights θv Actor-Critic

algorithms combine the two approaches, where a of policy gradient model acts as the actor doing

action selection and the value estimation model acts as a critic evaluating the quality of the

actions. In case of A3C[35], there are two additional improvements. In a typical implementation

of policy gradient algorithms, the expected return E[Rt |st = s,a] is the value of the agent’s

actions, where Rt = ∑
∞
k=0 γktt+k is total accumulated return at time t with discount factor γ .

In A3C instead, to reduce the variance in the policy gradient (gradient of the expected

return), a learned function of the state bt(st)≈, called baseline is subtracted from the return at

time t. This difference can be seen as a measure of the advantage A(at ,st) in taking action at in

state st . This can be written as follows.

A(at ,st) = Q(at ,st)−V (st)

This equation gives us the mathematical perspective of how the actor critic architecture works,

since the policy π is the actor and the baseline bt is the critic. The A3C algorithm operates in the

forward view and uses a mix of n-step returns to update both the policy and the value function.

They are both updated after every tmax actions or when the termination stage is achieved. The

update performed can be written as:

∇θ ′ logπ(at |st ;θ
′) A(st ,at ;θ ,θv)

where,

A(st ,at ;θ ,θv) =
k−1

∑
i=0

γ
irt+i + γ

kV (st+k;θv) − V (st ;θv)
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Here, k can vary from state to state and is upper-bounded by tmax. Further information can be

found in [35].

2.2 Learning Stronger Semantic Contexts for Navigation
through Reward Shaping

Semantic understanding and contextual learning have been studied in depth in the com-

puter vision and robotics communities. But traditionally these have been approached within static

settings such as semantic segmentation, object detection, recognizing activity, etc. But interactive

navigation tasks require the visual input to be contextualized in terms of the current state and also

the past states through which the agent has travelled. In case of indoor navigation, this requires

the agent to learn the relationship between objects in the current and past frames with respect

to the actions that resulted in them. Knowledge graphs and object-object relationships [34][28]

have been utilized in computer vision tasks in the past but more recently, they are being used

in the interactive learning and RL settings [61]. In the RL based interactive learning settings,

reward is provided to the agent to act as a feedback for the success or failure of the set of action

it takes. This reward signal is usually highly sparse and is provided at the end of a success full

episode. This is partly due to the general non-trivial nature of crafting sub-goal or intermediate

rewards. But in the case of objectgoal navigation which is the focus of this work, less-sparse

intermediate goals can be crafted to aid the RL algorithm exploit the latent structure of the

environment to learn the object - object relationships better. This can be taken a step further and

the reward signal can be crafted as a dense, continuous function, resulting in improved success

in reaching the goal. The first part of this section describes the basic architecture developed in

[38] and the next part describes the continuous reward shaping mechanism.
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2.3 Navigation Environment and Task Setup

Experiments using robots are typically done in physical world in a lab or a restricted test

tracks. The inherently interactive nature of task like navigation and the data requirements of the

deep learning based approaches make direct training of robots in physical world prohibitively

tedious. There are also issues around generalization of the solutions and safety concerns

besides the scalability. To work around these issues, there are open source data sets based on

photorealistic 3D simulators such as AI2-THOR[23], Habitat[46], iGibson[27] etc. Depending

on the environment, these can produce photorealistic RGB images, provide navigable and

interactive actions as APIs that the agent can take, along with critical ground truth data points

such as semantic and instance segmentation of the environment, 3D and 2D bounding boxes,

depth information etc. This work is done on AI2-THOR [23].

The objectgoal navigation task setup for the iTHOR dataset of the AI2-THOR environ-

ment is as follows. The agent is tasked with navigating to a target object T. Here T is defines as a

set t1, t2, ...., tN . The agent does not have any access to the environment’s semantic or topological

map and the problem is defined as a purely vision based navigation. Within the boundaries of a

given environment, the agent start at a random location at the beginning of an episode. The agent

takes in as input the RGB image for the current time step t and the target object’s word embedding

rolled over the past time steps. As for the output, the agent then samples an action a from set

A, where a ∈ A = {MoveAhead, RotateLe f t, RotateRight, LookU p, LookDown and Done}.

When the MoveAhead action is sampled, the agent is moved forward by 0.25 meters in the

simulated environment, while the two Rotate actions rotate the agent view by 45 degrees. The

camera is tilted up or down by 30 degrees when the two Look actions are sampled. The end

of an episode is marked by two cases. First, the episode ends in a ”success” if at the final

location of the agent, the target object is in the current frame, and is within a 1.5m distance in

the environment. This criterion applies in the rest of this section whenever the object is called

visible. For the episode to be called to an end in this manner, either the agent must sample a
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”Done” action or there is an option in the simulator for the environment to sample this action

once the target object is visible. The episode can also unsuccessfully end, if after a maximum

number of actions, the object is never becomes visible to the agent.

2.4 Role of reward shaping in objectgoal navigation

In reinforcement learning based methods, reward shaping is a method used to provide

additional local signals to motivate the agent to develop a behaviour that is consistent with prior

knowledge of the domain [25]. In the task ob objectgoal navigation in indoor settings, frequent

auxillary signals based on surrounding objects are highly useful in helping the agent reach the

goal. This is even more important in case of large environments, where the number of steps

required to reach the goal are quite high. A key piece of implementing reward shaping in this

task setup is the hierarchical relationship between objects as noted in [38]. It can be observed

that, in common indoor settings, a natural relationship between objects exists. As an example, a

toaster is in a kitchen and is placed such that there are large salient objects such as microwave

or stove present close to it. Such salient objects can be called as parent objects for the target

object. To facilitate the learning of these contextual relationships by the RL algorithms, the

high dimensional embedding of each state must represent them. In the following section, the

architecture introduced in [38] and named Memory-utilized Joint hierarchical Object Learning

for Navigation in Indoor Rooms (MJOLNIR), is explained and in the subsequent section, the

reward shaping mechanism of [33] is explained.

2.4.1 Learning Heirarchical Relationships for Object-goal navigation

In the task definition it was established that target object T is a set t1, t2, ...., tN , when

each ti is an instance of target. In addition to these target objects, another set of objects called

parentsP = p1, p2.., pM is introduced. This set is made up of the salient objects that are spatially

and semantically related to the target object within a given room. This set is hand crafted and is

used in the knowledge graph construction. The intuition behind this is that the agent learns to
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start the search for ti ∈ T by exploring areas around p ∈ P.

The construction of knowledge graph is similar to the work done in [61]. The object

relationships are extracted by significantly pruning the image captions in Visual Genome(VG)

dataset [24] and constructed as adjacency matrix. This work also introduced a contextvectorc j for

each object o j ∈O. Here O is the set of all objects present in the iTHOR dataset. The cardinality

of O is 101. The context vector is a 5D vector that contains the information regarding the current

state of each object in the current frame. c j can be represented as [b,xc,yc,bbox,CS]. Here b

specifies whether the object is present in the current frame and is binary. The bounding box

center coordinates in the image and the size of the bounding box are the next three components.

And the consine similarity between GloVe embeddings [40] of the object names are captured in

the final component CS. This can be written as the following expression:

CS(go j ,gt) =
go j .gt

||go j ||.||gt ||

Figure 2.1. Architecture used to learn navigation policy as explained in [38].

The entire architecture contains two streams. The first stream titled Observation stream

encodes the current observation and the second stream titled Contextualized Graph Network

(CGN) is used for embedding the memory of the past frames using the knowledge graph

G = (V,E). There are further two variants of this architecture with modifications made to the

observation stream. In first variant, the resnet-18 [17] feature of the current RGB frame is

9



convolved with the word embedding and flattened to produce the vector used in observation

stream. This is called as MJOLNIR-r. In second variant, the instead of the resnet features,

the 5D context vector for every object is stacked to form a context matrix and is used for the

observation stream. This version is named MJOLNIR-o. The CGN helps in bridging the gap

between the information provided by knowledge graph and the domain difference between VG

and the iTHOR datasets. A graph convolution [21] network learns the embeddings of the nodes.

For a given graph G, each node vector X ∈ R|O|+|g| is concatenation of two vectors. The first part

is a 101-dimensional binary vector representing the objects in the current frame similar to one

hot encoding and the second vector is the glove embedding of that specific node object. Then,

this graph passes through two layers of graph convolution network which generates intermediate

embedding. The output of this is concatenated with the context vector and compressed through

another layer of graph convolution network to create final graph embedding. These combined

with the outputs of the observation through concatenation form the input embedding for the A3C

RL model.

2.4.2 Reward Shaping

A new reward shaping mechanism for indoor navigation was introduced in Pal et al. [38].

In this mechanism when the agent navigates to a position where a parent object is visible, it

receives a partial reward Rp. The partial reward is calculated as follows:

Rp = Rt ∗Pr(t|p)∗ k

where, Rt is the reward for the target object and Pr(t|p) is the probability distribution that gives

a measure of the relative closeness of the parent object to given target object. In this case, the Rt

is fixed at 5 for all target values. k is a scaling factor that is also fixed at 0.1. These rewards are

also provided only if the parent or the target object are within a distance of 1m from the agent in

the environment and present in the frame. Because of this setup, the reward is independent of the
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distance between the effort the agent takes to reach a particular parent or target object. That is,

the agent behavior that are aimed at reaching a parent or target object, but is unsuccessful due to

external factors, goes unrewarded. This can be improved by reformulating the reward function to

take in the distance between the object and the agent as a factor. Further, the new formulation for

Rp can be extended to both the parent and the target objects.

Two methods are proposed for this extension in [33]. (i) Utilizing metric depth: The

first approach is to use the metric depth information, in the form of depth maps φ obtained from

the AI2-THOR simulator. An RGB-D sensor or any other depth estimation mechanism can be

used in place of this depth map. In the depth map, the average value of the region bounded by

the bounding box for given object is a reasonable approximation for measuring how far away the

object is from the agent. Therefore, the scaling factor can be reformulated using the following

logic:

Rp = Rt ∗Pr(t|p)∗ k′(d

k′(d) = k ∗ (m∗d + c)

d = φ(i, j) ∀ i, j in bbox

The values for m and c are fixed in the experiments to -0.15 and 1 respectively. These values

were chosen empirically so that, the partial reward scales linearly with the decreasing distance

and k′ ∈ [0,1]. (i) Utilizing bounding box area: The approach using the metric depth is

intuitive and straight forward in theory. But in practice, it was observed that the computational

load, specifically during training increased significantly due to the added sensor input. The

dependence on additional sensor data for depth is also not desirable. A better alternative is

to utilize a heuristic for relative distance base on the bounding box of a given object. The

assumption here is that, as the agent moved closer to the object, it appears larger on the current

frame and hence the area of the bounding box increases. For this approach, the scaling factor is
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given as follows:

Rp = Rt ∗Pr(t|p)∗ k′(d

k′(d) = k ∗ (1− (A1/A2(d))0.5)

A1 is bounding box areas of a particular object at the first frame it was observed in and A2 is

the area of the bounding box in the current frame. The implementation also keeps track of the

observed/visible objects so as to provide a set of partial rewards for a given object only once.

The two mechanisms are explained visually in Figure 2.2 and 2.3. The following section explains

the experiments and the results.

2.4.3 Experiments and Results

The model was built on top of code made public by [58] using the PyTorch framework.

The model was trained on the data from AI2THOR-v1.0.1 for 3 million episodes. The data was

pre-collected and stored offline from the simulator to facilitate easier training. The evaluation

is conducted for each of the 4 room types in the environment for 250 episodes each, totalling

to a 1000 episodes. The floor plan, the target object and the initial stating state of the agent

were all randomized for each episode. We evaluate the reward shaping mechanism by using

GCN [61], SAVN [58], MJOLNIR-O and MJOLNIR-r [38] as baselines and using 4 different

reward mechanisms: rbin a binary reward mechanism, where upon successful navigation to

target, the agent receives a reward, rbase, the partial reward mechanism from [38], and the two

proposed dense partial rewards, rdepth and rarea using depth information and the bounding box

alone respectively. The evaluation metrics are adapted from Anderson et al. [1].

Success rate (SR) - Table shows the performance for this metric. Almost all of the models,

trained using the proposed reward mechanism end in better results. This is especially true for

episodes in which agent needs to take larger path lengths, i.e L≥ 5, since further exploration of

the environment might be needed for agent to discover the target.

Success weighted by Path Length (SPL) - In case of the SPL, as opposed to success rate, the
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Figure 2.2. Metric distance from depth map: Image shows depth map with a bounding box
around the object. Inset contains the RGB image of the object. d is obtained by finding the
average distance of each pixel in the bounding box.

Figure 2.3. Relative distance from bbox area: Image on the right shows the relative increase in
bounding box area of an object (A1 to A2) as the agent moves closer. d is object distance when
area is A2.

13



proposed method performs worse than the baseline models. This is shown in Table 2.2. An

intuitive way to explain this, as observed in the visualisations of test cases, would be that the

agent explores the areas around parent objects better compared to earlier. It proceeds to target

objects after more number of steps due to this. But, this need not necessarily be viewed as a

setback, because it is important for the agent to explore the environment in search oriented tasks

and specifically for larger environments.

Another caveat to be noted here is that, for the models that take into account the inter-

object relationships, the denser distance-based reward functions perform better. For example,

(like GCN [61], and the MJOLNIRs [38]). This firther solidifies the hypothesis that auxiliary

signal based on surrounding objects aid in the searching far-off target objects.

Table 2.1. Metric 1: Success rate (%). The mean score over 5 runs is provided with the standard
deviation as sub-scripts.

L≥ 1 L≥ 5
Models rbin rbase ours rbin rbase ours

[38] rdepth rbbox [38] rdepth rarea
GCN [61] 33.1(0.8) 33.3(1.4) 31.7(0.7) 35.3(0.5) 25.0(1.4) 23.5(1.6) 26.9(1.1) 24.6(0.8)
SAVN [58] 34.7(0.5) 40.7(1.4) 32.2(0.9) 39.6(0.8) 25.8(0.8) 30.0(1.4) 26.81.3 31.7(1.5)
M O [38] 58.8(1.0) 64.1(0.7) 66.4(0.3) 66.3(1) 40.6(0.6) 46.6(1.6) 50.5(0.7) 51.5(1.3)
M R [38] 65.5(0.6) 68(0.9) 77.1(0.7) 69.7(0.9) 52.3(0.8) 52.3(0.5) 69.2(0.8) 57.3(1.3)

Table 2.2. Metric 2: SPL (%). The mean score over 5 runs is provided with the standard
deviation as sub-scripts.

L≥ 1 L≥ 5
Models rbin rbase ours rbin rbase ours

[38] rdepth rbbox [38] rdepth rarea
GCN [61] 10.0(0.4) 10.8(0.5) 5.5(0.2) 8.2(0.1) 10.3(0.7) 11.20.7 7.3(0.3) 8.7(0.3)
SAVN [58] 11.0(0.2) 11.1(0.3) 6.6(0.3) 10.50.2 11.7(0.1) 12.4(0.5) 10.50.3 12.8(0.6)
M O [38] 18.5(0.3) 20.7(0.2) 11.6(0.1) 15.80.4 17.8(0.3) 20.0(0.6) 13.7(0.3) 17.3(0.5)
M R [38] 24.4(0.3) 26.50.2 15.0(0.3) 16.8(0.2) 26.2(0.4) 27.2(0.3) 20.3(0.4) 19.3(0.4)
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Chapter 3

Natural Language Guided Navigation and
Interaction

One of the ultimate goals of the robotics is a collaborative environment where a humans

can communicate using means that come naturally to us and in turn the agents take actions to

satisfy the requirements. With the foremost means of communication between human beings

being natural language, adding the capability to follow instructions given in this modality would

be highly beneficial in advancing the adoption of robots. Consequently, this is a very active area

of research. With recent advances in natural language processing and the usage of transformer

models, the current research in this area focuses on leveraging those advances to solve vision-

language navigation (VLN) and embodied instruction following (EIF) problems. In this chapter,

within the first section, background details on latest advancements and core ideas utilized in this

work are explained. In the sections following that, the problem setup, the architecture used to

solve the problem and the observations are explained.

3.1 Background

Embodied instruction following is a composition of multiple concepts including language

grounding, language based navigation, and the object interaction steps. Therefore complexity is

added due to the necessity to manage the compositionality of the sub-tasks and actions, besides

being able to understand the language. Research on systems to follow human instruction is not
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recent and has diverse background [9][6][4][52]. Variety of formats for language instructions

have been utilized ranging from structured commands [41] to natural language or a mix of

language and target state visual information[31]. Since the agent needs to be able to handle raw

inputs from sensors, the research expanded in to the direction of vision and language navigation

(VLN), where the agent is given unstructured input and needs to learn the contextualization

process between the language and visual inputs.

These tasks are also long in terms of the time and the number of individual actions

required to complete the instruction are quite high. This requires the agent to have memory

of past observations and corresponding actions and learn the causality between them. Recur-

rent architectures have been investigated [32][51][55] since they have the desired property of

maintaining track of past states in its internal state. But these also have the drawback of not

being able to capture long term dependencies [54]. With the introduction of Vaswani at al. [53],

these deficiencies could be addressed and that opened up the avenue for rapid advancements

in both language understanding [8][12] and multimodal learning [50]. Paschevich et al. [39]

successfully adapted this work recently for the case of vision and language instruction and act as

the main inspiration for the work presented in following sections.

3.1.1 Transformer architecture for multimodal learning

Lately, there has been substantial research conducted on a wide array of Transformers,

delving into various multimodal tasks. These studies have showcased the adaptability of Trans-

formers across diverse modalities, both in tasks of discrimination and creation. In this section,

we’ll take a brief glace at techniques and designs employed in existing multimodal transformer,

which is cruicial to the architecture presented in this report. We will look at two relevant aspects

of the multi modal transformers. One is the way they handle multimodal inputs and the second

aspect is how attention mechanism is implemented in the multimodal context.

The Transformer framework represents a versatile architectural paradigm that can be

conceptualized as a form of general graph neural network. Particularly, the self-attention
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mechanism facilitates the treatment of each input as a fully interconnected graph. This process

enables the identification of broader global patterns, thereby lending Transformers the capability

to function within a modality-neutral framework. This adaptability is achieved by considering

the embedding of each token as a distinct node within the graph.

When confronted with input from any given modality, users can take two primary tasks:

(1) breaking down the input into tokens, and (2) choosing a suitable embedding space for

token representation. These preparatory steps pave the way for the subsequent engagement

with Transformers. In practice, while both tokenization and embedding selection are pivotal

for Transformers, they offer considerable flexibility, accommodating various alternatives. For

instance, consider the scenario of an image. Determining how to tokenize and embed the image is

not a fixed process. Users can opt for or create tokenization strategies that operate across different

levels of granularity—ranging from coarse-grained to fine-grained. For example, choices include

employing regions of interest (ROIs) acquired through object detection, along with CNN features

for tokens and their corresponding embeddings [30]. Alternatively, one could select patches

along with linear projection for tokens and token embeddings [13]. Even the employment

of graph nodes from object detection and graph generation, paired with GNN features, is a

possibility for tokens and their embeddings [62]. With a tokenization plan in place, a wide array

of subsequent embedding techniques can be embraced.

In multimodal Transformers, interactions between different modes (like fusion and

alignment) are primarily managed through self-attention and its variations. Hence, this sec-

tion undertakes a comprehensive review of principal practices in multimodal modeling within

Transformers. Self-attention designs have multiple variations based on how the embeddings are

combined. Based on the classifications explained in [60], there are 6 varieties. (1) early summa-

tion (weighted or token-wise), (2) early concatenation, (3) hierarchical attention (multi-stream

to one-stream), (4) hierarchical attention (one-stream to multi-stream), (5) cross-attention, and

(6) cross-attention leading to concatenation. In this work, keeping relevance in sight, we only

look at summation and concatenation as they have been adapted to the proposed architecture.
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It’s worth noting that all discussed self-attention and its variations are remarkably adaptable,

extending readily to scenarios with multiple modalities.

Given inputs XA and XB from two modalities, Z(A) and Z(B) respectively represent their

token embeddings. Z signifies the token embedding (sequence) resulting from multimodal

interactions. T f () denotes Transformer model. In practical terms, early summation represents a

straightforward and effective multimodal interaction. Token embeddings from various modalities

can be combined using weighted-sum at each token position and subsequently processed by

Transformer layers. As summarized in [60]:

Z← T f (αZ(A)⊕βZ(B)) = MultiHeadSel f Attention(Q(AB),K(AB),V(AB)),

where ⊕ denotes element-wise sum, and α and β are weights. Expanding further,

Q(AB) = (αZ(A)⊕βZ(B))W
Q
(AB),

K(AB) = (αZ(A)⊕βZ(B))WK
(AB),

and

V(AB) = (αZ(A)⊕βZ(B))WV
(AB).

Its key advantage lies in its computational efficiency, yet its main drawback arises from

manually determined weightings. The summation of position embeddings inherently represents

a form of early summation.

The other straightforward approach is early concatenation, where token embedding

sequences from various modalities are concatenated and fed into Transformer layers as:

Z← T f (C(Z(A),Z(B))).

Hence, all positions of multimodal tokens are collectively attended to as a unified sequence,
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enabling thorough encoding of each modality’s positions through the context of other modalities.

3.1.2 Scene Representation for Navigating Agent

As mentioned in the previous section, it is vital to adapt a good strategy to tokenize the

input modalities to the the transformer model. In case where the two modalities are language

and images, it is easier for the language part to be tokenized based on the words or character

sequences. For the image part, creating good representations that capture the spatial and semantic

information is goes a long way in improving the performance of the autonomous agent. These

representations can be anywhere from CNN embeddings, to region proposal patches, to graphs

constructed from the object detection. In this work, we use a graph based tokenization strategy.

But the methods used for traditional scene graph constructions [19][29][59] do so as discrete

connections and are static in time. But for an agent that moves through a house, we require

a more robust scene graph representation that a) do not change when viewed from a different

agent position and b) has changes in part of the graph that correspond to a displaced object. To

facilitate that we adapt the pre-trained model from Gadre et al. [14].

Figure 3.1. Comparison of graph features of same scene under rearrangement of single object.
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The primary objective is to encapsulate object relationships through continuous vectors,

updating this representation dynamically as the agent navigates. For seamless execution of

interactive tasks without further training, we propose a straightforward planning strategy linked

to this representation. Constructing such an interactive scene representation presents numerous

challenges. The graph structure must accommodate new objects, inferring their relationships with

existing ones. Furthermore, the algorithm must determine object correspondence across diverse

perspectives. Addressing these complexities, our approach involves acquiring object relational

embeddings using a contrastive loss. These embeddings serve to portray scene representation

nodes and edges. Notably, this approach doesn’t confine modeling to predefined symbols. The

agent maintains a memory of previous embeddings, leveraging it to contrast newly extracted

embeddings from egocentric observations, thus distinguishing new from existing embeddings.

In conventional scene representations, nodes are typically denoted by class labels, and

edges are characterized by attributes linking these classes. In contrast, the CSR[14] approach

employs continuous attributes for both nodes and edges. To derive nodes, a detector processes the

current image (It) to obtain n detections. Employing the CSR encoder fCSR, all n2 region pairs

are mapped to a latent space, forming the local scene representation Gt
CSR with n node features

and n2−n edge features. The main concern is defining an effective objective for training the

CSR encoder fCSR. Here, the desired result is to ensure that the same relationship across different

viewpoints converges to the same embedding location in the space. This stability assumption

aligns with stable object trajectories. For instance, a kettle’s relationship with a stove remains

consistent across various angles, regardless of background objects. To create features capable of

capturing relations from diverse viewpoints, CSR draws inspiration from momentum contrast

strategies [16]. Using two views of an object pair, CSR extracts representations using fCSR and a

momentum encoder. This encoder, with architecture and initialization akin to fCSR, updates via

a slow-moving average of fCSR weights. The InfoNCE loss [37] enforces relation similarity in
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feature space, expressed as

LCSR =−log
exp(CosSim(q,k+)/τ)

∑
i=0
K exp(CosSim(q,ki)/τ)

Here, q denotes the fCSR output for a node or edge, k+ signifies the momentum encoder’s

second view representation of the same relationship, each ki represents a negative sample from

K other momentum-encoded relationships, τ is a softmax temperature scaling parameter, and

CosSim is the dot product of L2 normalized features. This objective encourages features to (1)

exhibit high CosSim for the same relationship, (2) maintain multi-view consistency, and (3)

differ from other relationships. In 3.1, a comparison between two sets of graph features are

displayed where a single object has transition in space.

3.1.3 Dynamic Graph Attention

As the main architecture is based on a multimodal transformer, the generated scene graphs

need to be further compressed into an embedding space where each scene graph corresponding to

each frames can be viewed as tokens for the input to transformer model. These embeddings must

have enough expressivity to compress the graphs, while also being able to distill the essence of

the inter object relationships captured by the CSR. The version of Graph attention (GAT) layers,

GATv2 developed in Brody et al. [7] are excellent at satisfying these requirements. GATv2

offers a dynamic mechanism for processing graph-structured data. By assigning attention scores

to neighboring nodes, this layer selectively emphasizes pertinent information during aggregation,

effectively focusing on the most relevant connections. Such adaptability enables more effective

feature representation and information propagation, enhancing the overall performance of graph-

based models in various tasks. In the standard GAT model, the linear layers are consecutively

applied, without considering the sequence of attended nodes in relation to the query node. In

contrast, GATv2 takes a distinct approach, enabling each node to potentially attend to any other

node, breaking free from the constraint of fixed node rankings. The formulation can be written
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as follows. For each node vector:

x′i = αi,iΘxi + ∑
j∈N(i)

αi, jΘx j

the attention coefficients αi, j are computed as:

αi, j =
exp(aT LeakyReLU(Θ[xi||x j]))

∑k∈N(i)Ui exp(aT LeakyReLU(Θ[xi||xk]))

In cases where the edge features are multi-dimensional, which is our case, the attention coeffi-

cients are calculated as follows by taking the edge vector ei, j into account.

αi, j =
exp(aT LeakyReLU(Θ[xi||x j||ei, j]))

∑k∈N(i)Ui exp(aT LeakyReLU(Θ[xi||xk||ei,k]))

3.2 Interaction Environment and Task Setup

As mentioned in previous chapter, since the task is interactive and involves robot navi-

gation and rearrangement of objects in the environment, it is restrictive to train a deep learning

based model in physical world. Doing so, raises concerns in terms of logistics, safety, solution

quality, etc. Therefore, the need for workarounds, in the form of simulated environments arises.

In the case of navigation the basic datasets provided by 3D simulators such as AI2-THOR[23],

Habitat[46], iGibson[27] etc. were sufficient. But in the case of embodied instruction following,

the agent needs to understand the context of the language in terms of the task, as illustrated

in 3.2. This prompted the development of datasets such as TACoS[43], R2R[2], Matterport

EQA[56], VirtualHome[42], etc. In this work, the ALFRED dataset [47] structured on the

AI2THOR environment has been utilized. This is due to some of the advantages it provided such

as, two-level instructions for trajectories, a semi-continuous grid based movement compared to

either a lack of option or a navigation graph based movements in other datasets. ALFRED also

requires the agent to locate the object that it wishes to interact with spatially using a mask. This
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adds another level of complexity which makes the problem non-trivial and more representative

of real world scenarios.

Figure 3.2. Metric distance from depth maps

The tasks are divided into 7 categories as follows: 1) Pick & Place 2) Stack & Place

3) Pick two & place 4) Clean & Place 5) Heat & Place 6) Cool & Place 7) Examine in light.

Many of these tasks require the agent to identify the one or more objects that it needs to move or

interact with and the receptacles that these objects go into or need to be picked from. For example

a f ruit from re f rigerator. Simultaneously the agent also needs to identify the intermediate

state change in tasks that require heating, cooling etc. ALFRED dataset provides the instruction

during test scenarios and also provides ground truth supervision trajectories to support supervised

training approaches. This includes the state of the room at the beginning of simulation, language

instructions corresponding to each episodes, planner goals, and expert demonstration of the task,

in the form of step by step actions that were annotated by expert. This works mainly utilizes

the instructions and the expert demonstrations. The instructions are provided in two levels. A

high-level goal instruction Ig for each trajectory which briefly encapsulates the objective of the

task. For example, in 3.2, Ig is ”Rinse off a mug and place it in the coffee maker”. The second

stage of instructions is made up of set of step by step instructions Il . Following the same example,

these instructions would be shown in the 3.2 as ”walk to the coffee maker on the right”, ”pick up

the dirty mug from the coffee maker”, etc.

In a typical episode, the agent at time t = 0 receives the set of instructions Ig and Il . The

instruction can be viewed as a constitution of words x1:L. Besides that, at every time step t, the

agent’s only other input modality is the RGB images viewed from current position, vt . The agent
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can, at every step choose one out of 13 actions which can be either from the navigation category

or the manipulation category. There are 5 navigation actions (Turn Left/Right, Move Forward,

Look up/down) and 7 manipulation actions (Pickup, Put, Open, Close, Toggle On/Off and Slice).

As mentioned earlier, to manipulate a specific object, the agent needs to navigate such that the

object is visible in the current frame and is within the manipulatable distance, and provide a

manipulation mask Mt of the target object. The expert demonstrations also contain the actions

taken at each time step at ∈ 1, ...,A, where A is the cardinality of the action set in ALFRED

dataset.

The goal of the task is to learn a policy that can approximately mimic the expert policy.

3.3 Learning language grounded scene graphs for instruc-
tion following

The model used to learn the policy is a multimodal transformer as described in earlier

section covering the background. This model has full visibility to the history. That is, it has

access to all the visual frames v1,...,t and the actions a1,...,t the agent takes in the given episode.

The model predicts the action to be taken for the current step as:

ât = f (x1,...,L,v1,...,t , â1,...,t−1)

The proposed architecture is inspired from [39] and has 3 encoders for the language,

visual and action inputs. The output of these encoders then act as the input to the multimodal

encoder, where attention is paid between the different input modalities, therefore grounding the

language in the visual inputs and past actions.

As specified earlier, the words in the instructions, the frames and the actions are trans-

formed into an embedding space to act as the tokens for the transformer encoders. The encoder

for the language stream shown in 3.3 comprises of a look up table to vectorize the text strings

and a multi-layer transformer encoder. This takes in the words in the language instruction x1:L
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Figure 3.3. A focused view of the language stream in the proposed architecture.

and output the language embeddings hx
1:L. These tokens need information about their ordering

in the sequence introduced. In the baseline version as illustrated in 3.3 sinusoidal encoding is

added, which acts as the positional encoding for the language stream and temporal encoding

for the action and visual streams. In the proposed version similar to the embedding proposed

in [12], we add learned embedding to every token corresponding to words, to indicate which

sentence in the low level instruction it belongs to. This is done as as to differentiate each part of

the low level instruction into separate subgoals that the agent can learn to complete.

In the baseline model, in the visual stream, the images are transformed using the pre-

trained ResNet-50 backbone [17] followed by convolution and fully connected layers, into the

embedding space. Similar to the language stream, this can be notated as transforming image

inputs v1:t into embeddings hv
1:t . These primitive embeddings transform raw images into the

vector embeddings and may not therefore capture the entire information available visually,

including physical scene properties, context of the object relationships, etc. In order to better

represent these, the proposed architecture additionally constructs a dynamic scene graph and

learns representations from the graph to form the visual embeddings. This is done in two stages.

First, the based on the detections masks from a Faster R-CNN object detector, [44] we use the
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CSR network, fCSR described in prior section to create the local CSR graph, g1:t . Once we obtain

the nodes, edges and edge features for the CSR graph, we use a graph attention module [7],

again described in prior section to create the graph embedding hg
1:t . The second step is to fuse

the features obtained from the ResNet backbone with the graph embeddings. The hypothesis

here is that while the ResNet features provide global information of the current frame, the graph

feature provide the context missing from the former. To fuse these two features, we employ a

simple concatenation followed by a fully connected layer to reduce the dimension.

Figure 3.4. Complete proposed architecture showing the 3 different input streams, their encoders
and the multimodal transformer encoder used to learn the agent policy.
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The actions are encoded using simple look up tables to vectorize the raw actions a1:t−1

into their corresponding embeddings ha
1:t−1. Finally, the embeddings from the modality specific

encoders are concatenated and passed as the input to multimodal encounter that attend between

different modalities using a causal attention mask [53]. This produces the output embeddings

(zx
1:L, zv

1:t , za
1:t). Since the output embeddings of the visual features attend to the other modalities,

zv
1:t is used as the input for a fully connected layer that predicts the action sequence till time

t, â1:t Since the transformer architecture is sequential, the output prediction is the sequence of

actions from the beginning of the episode till current time step t. During training, these actions

are compared with the actions from ground truth trajectory to compute a cross entropy loss,

which guides the model update.

3.4 Experiment details and Results

Alfread Dataset: The dataset consists of expert deomstrations using 58 unique object

classes and 26 receptacle object classes distributed over 120 different indoor scenes. In total

there are 119 object categories in the environments. The scenes are divided into 30 each of the

4 available room types in AI2THOR simulator: kitchens, bathroom, bedroom and living room.

There are 8055 expert trajectories and 25743 language instructions associated with them. This is

divided into splits of 21023 training samples, 1641 validation and 3062 testing samples. Both

the validation and the test splits are further divided into seen and unseen folds. Here the seen

terminology denotes that the environment in which the agents acts has been observed among the

samples in the training fold.

Architectural Details: The visual inputs are RGB images of size 224 X 224. The visual

encoder and the mask generator are adapted from [39] and trained on 325K frames from train

fold. The weights of the Faster R-CNN and the Mask R-CNN networks are frozen. The visual

encoder features are reduced to a size of 512x7x7. The embedding for the language encoder,

action encoder and the graph encoder are of length 768. The main transformer encoders have 2
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blocks, 12 self attention heads and a hidden size of 768. The network is trained with an Adam

optimizer for 20 epochs. The batch size for every epoch is 8 trajectories each, which means,

3750 batches per epoch.

The evaluation metrics are adapted from [47] and are aimed at measuring both the success

of the overall task and the sub goals on a more fine grained level. When the agent creates the

state changes and object positions corresponding to the expected goal conditions for the task,

the end is considered to be in success and failed otherwise. This is marked by binary count

of 1 or 0 respectively. In addition to the success of the task, the goal-condition success is also

measured. GC success is the ratio of goal conditions completed at the end of the episode to those

necessary to have the task completed. The tasks success can be 1 only if the GC success is 1.

[47] also specifies the path length weighted version of both the metrics. Using these metrics, we

compare the baseline model without any segment embedding or changes to the visual stream, to

the model after incorporating the proposed changes. The results are presented in ??. It can be

inferred from the table that the segment embedding alone results in 14.9% increase in success

rate, 12% increase in GC success and 14.2 and 10% increase in their path weighted counterparts.

The introduction of the graph stream results in a slight decrease in the success metrics. One

possible explanation for this is that while the additional modality is expected to increase the

contextualized learning, more training data and sophisticated loss signals might be required to

actually realize the gains.

Table 3.1. Metrics (%). .

S.R. G.C. Path Length Weighted S.R. P.L.W G.C.

Baseline 31.4 39.2 23.2 30.5
Segment Embedding 36.1 43.0 26.5 33.0

Graph Stream + Seg E 34.9 41.8 25.6 33.1
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Chapter 4

Conclusion

In this report we discuss methods addressing the problem of building intelligent au-

tonomous agents for indoor use cases. This is tackled by creating end-to-end learning models

that map visual and text inputs to the actions space for different task setups. Chapter 2 presents

the discussion on an Reinforcement Learning based approach to the task of object goal naviga-

tion in simulated household environment. Previous work on utilizing an end-to-end RL model

introduced the logic that there exists spatial relationships between objects in houses. And that a

salient object can be treated as a parent object to identify smaller objects that frequently occur

together. Building on that, this work developed a continuous function for rewarding the RL

model based on object relationships, and the distance of the target and its related objects from

agent. This helps the agent make meaningful connections between the state, the objects in current

state and actions. As a result, when searching for a target object, the agent focuses the search

in areas that are logically most likely to contain them. Experiments with multiple RL based

models show that the success rate of reaching the target object improves significantly when

adapting the reward functions, accompanied by increase in the path length due to the added

exploration. Chapter 3 presents work on end-to-end learning model for Embodied Instruction

Following, the natural evolution of an agent capable of autonomous navigation. As earlier, this is

structured in the form of a simulated indoor environment where agent takes navigation actions

and manipulation actions as instructed by human language. This chapter provides the detailed
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explanation of the proposed multimodal transformer model for taking in human language and

grounding them in visual inputs and agent actions. The proposed changes involve different

embedding mechanism for the language and a new pipeline for processing visual inputs. To help

the transformer model in better understanding the spatial organization of the objects in the scene,

vectorized representations of scene graphs are extracted and a graph attention model attends to

them before being processed by the multimodal transformer.

While the results are promising, due to the limited availability of time, some areas of

further experimentation could not be addressed within this work. One of the issues with the

end-to-end learning system is the limited availability of the signals guiding the optimization of

network. Although the cross entropy loss for the predicted actions captures the core objective of

the model, it may not be sufficient. Other supplementary signals like predicting the sub-goal stage

prediction are not robust enough and the model overall will benefit from better loss functions

such as generative losses, guiding the training. This also applies for the graph attention module in

the visual stream. This stage compresses high dimensional tensors of the scene graphs into lower

dimensional representation and takes place independent of the language instructions. Recent

works have shown potential of contrastive losses for learning tasks such as visual question

answering, which could be scene as a counterpart for the instruction following task. Another

line of investigation that will be included in future work is incorporating the latest advances

in the large language models for understanding the instructions. Pre-trained variants of LLMs

such as BERT are being investigated currently to augment the language streams but this involves

addressing practical concerns in bridging domain gaps and architectural differences. On the

other hand, an entirely different and exciting line of investigation for the visual stream is utilizing

recent advances in neural scene reconstructions and image-language contrastive representations

such as CLIP to enable the agent to understand the environment in 3D.

In conclusion, the works presented here take some small steps in achieving the goal

of intelligent autonomous agents collaborating with humans and identify gaps that need to

be addressed in future work. While there are rapid advancements towards this goal everyday,
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potential for drastic improvement both in terms of model capabilities and efficiently executing

them in constrained on-board compute devices do exist.
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