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Density Distribution for a Polymer Adsorbed at an Oil-Water Interface 

Jun Cai and John M. Prausnitz* 

Department of Chemical Engineering, University of California, Berkeley and 

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720 

Abstract 

The interaction between a polymer segment and an oil-water interface is represented 

by an asymmetric square-well potential where the well-depth on one side reflects water

polymer and the well depth on the other side reflects oil-polymer interactions. The 

polymer is represented by a Gaussian chain. The polymer's density distribution is 

calculated along a coordinate perpendicular to the interface. Results are obtained as a 

function of the well width, the well depth and its asymmetry and, most important, the 

polymer's length. For a symmetric well, the distribution shows a strong maximum at the 

interface provided that the polymer is sufficiently long. For an asymmetric well, the 

polymer is also strongly adsorbed at the int~rface provided that the polymer is sufficiently 

long and provided that the larger well-depth does not exceed a critical value that depends 

on the smaller well-depth. The calculations are in substantial agreement with 

experimental results that indicate nearly irreversible adsorption of long-chain molecules 

at an oil-water interface. 

I. INTRODUCTION 

Experimental results1
' 

2 show that when a long flexible polymer chain adsorbs on the 

oil-water interface, it is adsorbed so strongly that, essentially, it remains at the interface 

• to whom all correspondence should be addressed 



indefinitely; this phenomenon,'discussed byDe Gennes over 20 years ago3
, has received 

wide attention4
• One theory to explain this phenomenon is provided by Gaussian-chain 

theory that leads to a diffusion or Schroedinger-like equations. For the simplest case (no 

interaction between segments other than bond energy), we obtain the general solution of 

the diffusion equation6 that is a function of eigenvalues. For the more general case, 

perturbation methods or numerical methods must be used to obtain an asymptotic 

solution4
• 

7
' 

8 or numerical results9
• Most previous work has been confined to long.:.chain 

systems where the ground state is dominant. If there exist interactions between the 

segments, renormaliztion group theory4-s, 7
' 

10
-

11 is necessary to describe the correct 

scaling behavior in the case of a very long chain. For adsorption, the wall or interface 

usually are modeled as an effective well; e.g. Stepanow et. al.7 suggested art asymmetric 

delta well and calculated the mean square end-to-end distance of a single polymer 

molecule at an interface. 

In this work, we model the water-oil interface as an asymmetric square-well potential 

and use the Gaussian-chain model to show how the extent of adsorption is quantitatively 

related to the length of the polymer chain and to the strength of interaction between the 

polymer and the two sides of a liquid-liquid interface. 

II. MODEL AND THEORY 

Consider a linear polymer chain with N segments dissolved in a continuous 

medium. The configurational partition function of the polymers is given by 

(1) 
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where f3 =I I k8 T; T is temperature; k8 is B_oltzmann constant; rj is the coordinate of 

the j-th segment of the chain and {rj} represents the set of all position coordinates of the 

segments. vext is the external potential and uintra is the segment-segment potential 

including the segment-segment bonding energy. Because we want to examine adsorption 

of the polymer at the liquid-liquid interface, we do not consider details of the potential 

between the polymer segments. The polymer is represented by an ideal Gaussian chain 

without any interaction between the non-bonded segments; only the segment-segment 

bonding energy is considered. As shown elsewhere5
, it is given by 

exp[-fJUintra c{rj })] = f1 -- exp - J+ 
1 N-'( 3 )

3
'
2 

[ 3(r. 1 -r.)
2
] 

j;i 2Jdf).s 2/f).s 
(2) 

where I is the statistical segment length; polymer length L equals N · f).s . Because 

temperature does not appear in the right side of Eq. (2), the configuration of the polymer 

in the bulk is independent of temperature. The polymer is placed in a liquid system 

containing an oil-water interface. We calculate how the polymer is distributed in the 

liquid in the direction perpendicular to the surface. Since the oil is hydrophobic, 

molecules of oil and water are strongly repulsive. When the polymer goes into the oil-

water interface, some of the oil and water molecules at the interface do not contact 

directly, decreasing the surface energy. Thus, the oil-water surface is like a potential well 

for the polymer. Because only adsorption behavior is of interest here, we do not explicitly 

consider interactions among oil, water and polymer but consider only interactions of the 

interface with the polymer. We model this surface energy as an asymmetric square-well 

and the bulk phases oil and water as two continuous media. The oil-water interface is in 

3 



the x-y plane; coordinate z is perpendicular to that plane. The external potential of a chain 

segment of unit length is given by v(z): 

flv(z) = 

+oo; z<-H1 orz>H2 

fl(e,-& 0 ); -H1 ~z~-a/2 

- [Jc0 ; -a/2 < z < a/2 
(3) 

As shown in Fig. 1, &0 ,&1 ~ 0 are the well depths, one on the water side and the other on 

the oil side; a is the well width and H, + H 2 is the width of the system in the z 

direction. 

From Eqs. (1) and (2), the configurational partition function of the system becomes 

Z = -- J exp --L ( r i+I - r i) 2 - !::.s L flv( z i) d {r i} ( 
3 ) 3

Nil [ 3 N-l . N ] 

27d!::.s 2/!::.s j=l j=l 

(4) 

where ri is the position vector ofthej-th segment ofthe polymer. To obtain the partition 

function Z in Eq. (4), we follow the method ofFreed5
• First we consider the case where 

the coordinates of both ends of the polymer are fixed. The partition function with two 

fixed ends G(r,r';L) is given by: 

( 

3 )3N/2 . 
G(r,r';L) = -- Jo(r, -r)o(rN -r')x 

2trl!::.s 

(5) 

where o(r) is the Dirac function. Since the x and y coordinates are of no concern, we 

. rewrite Eq. (5) in the form 

4 



( 
3 )N/2 

G(z,z';L)= 
2

;rd!::.s JdzN8(z1 -z)8(zN -z')x 

(6) 

G(z,z';L) represents the correlation between two end points of the polymer. In the 

flexible-chain limit, i.e. !::.s ~ 0, it can be shown4
-
6 that the function G(z,z';L) satisfies 

the differential equation: 

ac 1 d2G 
----+ fJv(z)G = 0. aL 6 dz 2 

The boundary condition is 

G(z,z';L) = 0; z, z' ~ Oor~ H. 

(7) 

(8) 

The initial condition when L tends to zero (similar to an ideal-gas particle) is given by 

limG(z,z';L) = b"(z- z'). 
L-+0 . 

(9) 

The general solution ofEq. (7) is well known6
• Eq. (7) is a diffusion equation equivalent 

to the Schrodinger equation. Details of the solution are given in the Appendix12
• 

The final solution of differential equation Eq. (7) is 

+«> 

G(z,z';L) = :L:Uk(z)uk(z')exp(-PLEk) (10) 
k=O 

where uk(z) is the normalized eigenfunction and Ek stands for the eigenvalues of 

energy satisfying £ 0 < £ 1 < · · ·. To obtain the density distribution of the segments in the 

z direction, it is convenient to separate the polymer chain into two parts: L1 and L - L1 • 

The density distribution is given by 

(11) 
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According to Eq. (6), the partition function Z is given by 

(12) 

Since the multiplier L-1 in Eq. (11), p(z) is defined as the density distribution ofthe unit 

polymer length. The integral of p(z) over the entire system is unity, i.e. 

(iz p(z)dz = 1. 1H1 

(13) 

If the chain length is very large, the only important term is the first term of Eq. (10), i.e. 

the lowest-energy state or the ground state. In the limit of an infinitely long chain, the 

density distribution p«> is given by 

(14) 

where subscript oo represents the infinitely long chain. Well depths &0 and &1 determine 

the choice of Eq. (A8) or Eq. {Al3) or Eq. {A16)12 for the ground state. If the ground 

state is expressed by Eq. (A8), the sufficiently long polymer adsorbs strongly at or near 

the interface. If the ground state is expressed by Eq. (A13) 12
, the sufficiently long 

polymer prefers to stay in one phase, partly adsorbs at the surface and distributes 

uniformly in the liquid phase of lower potential energy. Eq. (Al6) 12 indicates that the 

polymer distribution is more uniform than that given by Eq. (A8) or (A13), 12 throughout 

the entire two-phase system. 

III. RESULTS AND DISCUSSIONS 

We use Eq. (11) to investigate how the potential well affects adsorption of the 

polymer at the interface. (Equations for the configurational entropy and energy are given 

in the Appendix.) The statistical segment length l is chosen to be a length unit, i.e. l = 1. 

6 



The well is located at the center of the box in the z-axis direction such that the center of 

the well is at z = 0. We use a numerical method for finding the eigenvalues of Eq. (7). 

We use the first 1000 terms to approximate the infinite series in Eq. (10). Since the 

exponential term in Eq. (10), 1000 terms are enough to ensure the accuracy. To ensure 

that the walls of the container do not influence the density distribution near the interface, 

the width of the system is set to a large number 200/ where H 1 = H 2 = 100/ . Our results 

indicate that this value of width is sufficiently large; larger values of H 1 and H 2 do not 

affect the density distribution close to limiting distribution but make the value of density 

distribution of short chain smaller. Fig. 2 shows how the width ofthe container influences 

the density distribution. The potential well is symmetric, {J&1 = {J&0 = 1. The width of the 

well a = 21 . The width of the system in the z direction varies from 100/ to 400/. When 

the walls of system is far from the interface, the system is large, a short chain distributes 

uniformly in the system. But for a sufficiently long chain, it adsorbed strongly at the 

surface, the distribution is not affected by the distance between walls and interface. 

If the potential well is symmetric, i.e. & 1 = &0 , there always exists at least one 

solution ofEq. (AS) 12 when the energy is less than zero, no matter how shallow the well, 

because in this case there is at least one root of Eq. (A7) 12
• For a sufficiently long 

polymer, the density distribution function is like an exponential function [see Eq. (AS) 12
] 

that decreases quickly when· far from the well. The polymer adsorbs so strongly that it 

tends to remain at the interface. If the polymer is short, the effects of the second and the 

. following terms in the infinite series of Eq. (10) cannot be omitted. According to Eq. 

(A16) 12
, the eigenfunctions are periodic, indicating that the finite-length polymer tends to 

distribute more uniformly in the entire system than the infinitely long polymer. Fig. 3 
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shows the dependence of the distribution on polymer length. In Fig. 3a, for a symmetric 

well, the width and depth of the well are aIl= 2 and j3E0 = 1. Fig. 3b shows a local 

enlargement of Fig. 3a. When the chain length is very short, the distribution tends to be 

nearly flat. But for intermediate and long chains, Figs. 2 and J show that the distribution 

function is nearly zero outside the well; in other words, for such chains, adsorption at the 

interface is very strong. 

If the potential well is asymmetric i.e. E1 > E0 , we first consider the limit E1 = oo, 

that is, a hard wall at z = -a I 2 . This case corresponds to the condition that the polymer 

is insoluble in one of the two liquid phases; in contrast to the symmetric case where 

E 1 = E0 described in Figs. 2 and 3, the existence of a solution of Eq: (A7) 12 depends on 

the depth of the square well E0 • This is because of the strongly repulsive interaction due 

to the hard wall. The transition from the case where a solution to Eq. (A7) 12 exists to one 

where it does not, occurs where the ground state ·energy E0 = 0 . The value of E0 

corresponding to E0 = 0, denoted by Eo,tran, is the zero point of the equation: 

~6f3Eo,tran ll cos(a~6f3Eo,tran //) + sin(a~6f3Eo,tran ll)I(H2 -a I 2) = 0. (15) 

When E0 is smaller than Eo,tran, there is no solution of Eq. (A7) 12 indicating that the 

polymer distributes uniformly in the system. Fig. 4 shows the dependence of the density 

distribution for a very long chain on the depth of the square well closed to a hard wall. 

The value of Eo,tran is ftEo,tran = 0.104485 for a I I = 2 . When E0 is larger than Eo,iran , the 

chain tends to stay in the well. Figure 5 shows how the distribution functio~ is related to 

the well width. For clarity, the results of Fig. 5 are translated by a I 2 along the z-axis 
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such that the hard wall is at z = 0. When the width increases, the polymer tends to stay in · 

the well. 

For the intermediate condition & 0 < "s, < +oo, the existence of a solution of Eq. (A 7) 12 

depends on &1 when &0 is given. The transition value of &1 denoted by &1 tran, similar to 

Eq. (15), is the solution of the equation 

~6/3&0 I l tanh[(H1 -al2)~6/3(&1 ,tran -&0 )1 l]+ ~6/3(&1 ,tran -&0 )1 l tan(a~6/3&0 I l) 
-~6/3&0 II tanh[(H1 -al2)~6/3(&1 ,tran -&0 )//]tan(a~6/]&0 //)+~6/3(&1 ,tran -&0 )11 

(16) 

When &1 is larger than &1,tran, there is no solution of Eq. (A7)12 indicating that the 

polymer adsorbs partly at the interface. Fig. 6 shows how the well depth of left-hand side 

&1 affects the density distribution of a very long polymer. The well width is aIl = 2 ; the 

well depth of the right-hand side /3&0 = 0.1; and chain length L = +oo. When &1 is larger 

than &1 tran , the density distribution is nearly flat indicating that the polymer distributes 

uniformly in the system. 

Fig. 7 shows the effect of polymer length on density distribution. The- width of the 

well is aIl = 2 and the depth of the well is /3&0 = 0.1 and /3&1 = 0.6. Figs. Sa and 8b 

show a local enlargement of Fig. 7. A short polymer prefers to stay in the liquid phase of 

lower energy but a sufficiently long polymer prefers to stay in the well provided that the 

ground state can be expressed by Eq. (A8)12
• In this case, when the chain length is larger 

than 4096, the density distribution is essentially the same as that of the infinitely long 

chain. 
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Fig. 9 is similar to Fig. 7 but with a deeper well, {3&0 = 1. Fig. 10 is a local enlarged 

view of Fig. 9. In this case, when the chain length is larger than 64, the density 

distribution is almost the same as that for a chain of infinite length. But in Fig. 7, this 

case occurs when the chain length is larger than 4096. The difference between Fig. 7 and 

Fig. 9 shows that in a deeper well, the limiting ( L = oo) distribution is realized for shorter 

chains. 

According to the discussion above, we obtain insight into adsorption behavior at an 

oil-water interface. When the liquid-liquid interface is modeled as a square well, 

calculated results are in good qualitative agreement with experiment1
' 

2
• Adsorption of a 

polymer at the interface depends on the chain length and on the depth and width of the 

potential well. A short chain distributes more uniformly than a long chain. When the 

well-depth is larger than a certain value, a sufficiently long chain prefers to stay in the 

well indicating that a sufficiently long polymer adsorbed at the oil-water interface is 

essentially adsorbed irreversibly. Because the oil is a strongly hydrophobic liquid, the 

water-oil interface corresponds to a deep well. Because a polymer adsorbed at the water

oil interface decreases the surface energy, a sufficiently long polymer molecule adsorbs 

at the interface strongly and cannot be washed out as experiments1
• 

2 show. Our numerical 

results show that the density distribution of a sufficiently long chain is confined near the 

interface of several segment-lengths width. It implies that the configuration of a polymer 

chain is similar to that of a plate parallel to the surface. This result is similar to Monte 

Carlo results13
• For a quantitative comparison with experiment, we must consider 

interactions between the segments of a polymer chain to be investigated in our future 

work. 
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Fig. 2 J Cai, J. Chern. Phys. 

0.8 ,..-----------------, 

0.7 

0.6 

0.5 

0.3 

0.2 

I 

(1, 

'"v2 

0.1 ~3 
0.0 +---_,...."""""...:o.t:::---,-~""=-~----1 

-10.0 -5.0 0.0 
z/1 

5.0 10.0 

l3 



Fig. 3a J Cai, J. Chern. Phys. 
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Fig. 4 J Cai, J. Chern. Phys. 
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Fig. 5 J Cai, J. Chern. Phys. 
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Fig. 6 J Cai, J. Chern. Phys. 
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Fig. 8a J Cai, J. Chern. Phys. 
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Fig, 8b J Cai, J. Chern. Phys. 

0.030 

0.025 

0.020 

....... 
0.015 ~ 

~ 

0.010 
5 

0.005 

0.000 

7 10 13 16 19 
z/1 

21 



,....., 
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Fig. 10 J Cai, J. Chern. Phys. 

0.05 -r----.-------,r-------, 

0.04 

0.03 

Cl.. 0.02 

0.01 
3 

-3 -I 3 5 
z/1 

23 



Figure Captions 

Fig. 1 The potential of the system 

Fig. 2 Effect of the width of system on polymer-density distribution in the symmetric 

well with a I I = 2, /3&0 = jJ&1 = 1. For a short chain (L=4l), the density distribution is 

affected by the distance between the wall and the interface, but for a long chain (L=64l), 

the effect is negligible. 1. L = 641, H 1 + H 2 = 100/ or 400/; 2. L = 41, H 1 + H 2 = 100/; 3. 

L = 41, H 1 +H2 = 4001 

Fig. 3a Effect of polymer length on polymer-density distribution in the symmetric well 

with a II= 2, /3&0 = /3&1 = 1. 1. L = 641 or oo; 2. L = 16/; 3. L = 41; 4. L = l. 

Fig. 3b Local enlarged view of Fig. 3a. 

Fig. 4 Effect of energy &0 on the density distribution of a polymer in the square well. 

Chain length L = oo; width of the well aIl = 2; &1 = +oo (hard wall). 1. /3&0 = 1 ; 2. 

/3&0 = 0.3; 3. /3&0 = 0.15; 4. /3&0 = 0.1. 

Fig. 5 Effect of well width on the density distribution of a polymer in the square well. 

Chain length: L = oo; potential of the well /3&0 = 0.15; &1 = +oo (hard wall). 
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Fig. 6 Effect of &1 on the density distribution of a polymer in an: asymmetric square well. 

Well width a If = 2 , potential of the well /]&0 = 0.1, chain length L = +oo. 1. f3c:1 = 0.1 ; 

2. f3c:1 = 3; 3. f3c:1 = 10; 4. f3c:1 = oo, hard wall. 

Fig. 7 Effect of polymer length on its density distribution in an asymmetric square well. 

Width of well: a If= 2, potential of well: f3c:0 = 0.1, f3c:1 = 0.6. 

1. L = oo; 2. L = 40961; 3. L = 512f; 4. L = 64f; 5. L =f. 

Fig. 8a Local enlarged view of Fig. 7 for small z If. 

Fig. 8b Local enlarged view of Fig. 7 for larg~ z II. 

Fig. 9 Density distribution in an asymmetric well. 

Width of well: a If= 2, potential of well: f3c:0 = 1, jJc:, = 1.5. 1. L = 64f or oo; 2. L =Sf; 

3. L = l. 

Fig. 10 Local enlarged view ofFig. 9. 
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Appendix: 

Derivation ofEg. (10) 

Eq. (7) can be variable-separated. First let 

G(z,z';L) = g(z,z')f(L) (Al) 

where g(z,z') is a function of z and z' only, while f(L) is a function of L only. We 

then obtain 

_1_. 8f(L) = -f3E = l d
2
g(z,z')_ fJv(z) 

f(L) 8L 6g(z,z') dz 2 
(A2) 

where E is a constant with dimensions of energy per unit polymer length. An integration 

ofthe first equality ofEq. (A2) shows that the function f(L) is given by 

f(L) = exp(-jJLE). (A3) 

The second equality of Eq. (A2) is a 2nd -order linear differential equation. First we must 

find its eigenvalues of energy E and eigenfunctions. For E less than zero, for the sake of 

convenience, let 

(A4) 

The solution for the second equality of Eq. (A2) in the external potential of Eq. (3) is 

given by 

{

a1 exp(k1z) + a 2 exp( -k1z) 

u(z) = b1 sin(k0 z) + b2 cos(k0 z) 

· c1 exp(k2z) + c2 exp(-k2z) 

-H1 ~ z ~ -a/2 

-al2<z<al2 (AS) 

a/2~z~H2 

where u(z) is the eigenfunction of Eq. (A2); al'a2 ,bl'b2 ,c1 and c2 are constants to be 

determined by the boundary condition and the continuity of u(z) and its first-order 

derivative. The boundary condition is given by 

(A6a) 



The continuity of u(z) and its first-order derivative require that 

c1k 2 exp(k2al2)- k2c2 exp(-k2a 12) = k0 b1 cos(k0al2)- k0b2 sin(k0a 12). (A6b) 

Eq. (A6) yields 

k 0 tanh[k1(H1 -al2)]cos(k0a)+k1 sin(k0 a) =- tanh[k2 (H2 -al2)] ko. (A?) 
-k0 tanh[k1(H1 -al2)]sin(k0a)+k1 cos(k0a) k2 

From Eq. (A7), we can obtain the eigenvalues of energy E in the region (-&0 ,0). The 

eigenfunction is given by 

{

a'sinh[k1(H1 +z)]lcosh[k1(H1 -al2)] -H1 ::;;z ::;;-al2 

u(z) = b; sin(k0 z) + b; cos(k0 z) -a I 2 < z <a I 2 

c'sinh[k2 (H2 -z)]lsinh[k2 (H2 -al2)] al2::;; z::;; H 2 

(A8) 

where 

(A9) 

The unknown coefficient a' can be calculated from the normalization condition of the 

eigenfunction 

(AlO) 

Similarly, for energy E between zero and &1 - &0 , let 

(All) 

We canfind another equation for eigenvalues similar to Eq. (A7) 

k 0 tanh[k1(H1 -al2)]c~s(k0a)+k1 sin(k0a) = _ tan[k2 (H2 -al2)] ko· (Al2) 
-k0 tanh[k1(H1 -al2)]sm(k0a)+k1 cos(k0 a) k 2 . 
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From Eq. (All), we can obtain the eigenvalues of energy E in the region [0,&1 -&0 ). 

The eigenfunctions are given by 

{

a'sinh[k1(H1 +z)]lcosh[k1(H1 -al2)] -H1 ~z~-a12 

u(z) = b: sin(k0 z) + h; cos(k0 z) -a I 2 < z <a I 2 

c'sin[k2 (H2 -z)]lsin[k2 (H2 -a/2)] al2 ~ z ~ H 2 

(A13) 

where the expressions for b: ,b; and c' are the same as those in Eq. (A9). For energy 

larger than &1 - &0 , let 

(Al4) 

The equation for eigenvalues is given by 

k0 tan[k1(H1 -a/2)]cos(k0a)+k1 sin(k0 a) = tan[k2 (H2 -a/2)] ko. 

-k0 tan[k1(H1 -al2)]sin(k0 a)+k1 cos(k0a) k 2 

(A15) 

From Eq. (A15), we can obtain the eigenvalues of energy E larger than &1 - &0 • The 

eigenfunctions are given by 

{ 

a' sin[k1 (H1 + z)] 

u(z) = h; cos(k0 z) + h; sin(k0 z) 

c'sin[k2 (H2 -z)]lsin[k2 (H2 -a/2)] 

where 

-H1 ~ z ~-a/2 
-al2<z<al2 

a/2~z~H2 

b; ~a·{:: cosH H,- ~)}o{k;a)-sinH H, _ ~)}m(k;a)} 

h; ~a'{:: cosH H,- ~)}in( k;a)+sinH H, _~)]cos( k;a )} 

Energy and Entropy 

(A16) 

(A17) 

To calculate the energy U and entropy S of the system, we need to calculate the 

derivative of the partition function with respect to the reciprocal of Boltzmann factor p . 
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To calculate the thermodynamic potential of the infinitely long polymer, we derive 

expression for the energy and entropy per unit polymer length. The energy and entropy 

are given by 

pu = _ _!!_ az 
ZL 8/3 

(A18) 

(A19) 

From the partition function Eq. (1) and the bonding energy Eq. (2), we know that the zero 

point of the free energy i.e. Z = 1 is obtained when the system is in the bulk, i.e., when 

external potential vanishes. This means that. the free energy F consists of two parts, one 

is from the bulk system and the other is from the contribution of the external potential. 

F(T) = Fbutk (T) + Fext (T) = Fbutk (T)- k8 Tr' lnZ. (A20) 

where Fbulk and Fext are the free energy in bulk and in external field respectively. Eqs. 

(A18, A19) gives the variations of energy and entropy that result from the external 

potential including the oil-water inte~face and walls of the container. 

For an infinitely long polymer, the free energy per polymer length is given by 

(A21) 

where £ 0 is the eigenvalue of the ground state. Thus the energy and entropy of an 

infinitely long polymer are 

fJU = f3 8f3Eo . 
"' ap 

(A22) 

S = - 8Fext,"' = k fJ 8f3Eo - k j1r£ . 
"' ar s ap s o 

(A23) 

For a system without interface, the derivation IS similar and simpler. When 

H 1 = H 2 = H , the .eigenfunctions are given by 
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1 . (n+1)JZZ 
,-;-;- sm , k = 2(n + 1); 

vH H 
1 (n + f)JZZ 

,-;-;- cos , k = 2n + 1; 
vH H 

n = 0,1,2, .... (A24) 

The eigenvalues are given by 

(A25) 

The partition function is then given by 

(A26) 

The, configurational partition function with no interface is independent of temperature. 

Thus walls of the container will not influence the energy according to Eqs. (A18, A19) 

but they influence the entropy. The entropy of an infinitely long polymer with no 

interface is given by 

(A27) 

If the width of the system is very large, the effect of the container walls becomes 

negligible. 
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