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HOW CAN WE NATURALLY ORDER AND ORGANIZE GRAPH LAPLACIAN EIGENVECTORS?

Naoki Saito

University of California, Davis
Department of Mathematics

Davis, CA 95616 USA

ABSTRACT

When attempting to develop wavelet transforms for graphs
and networks, some researchers have used graph Laplacian
eigenvalues and eigenvectors in place of the frequencies
and complex exponentials in the Fourier theory for regular
lattices in the Euclidean domains. This viewpoint, however,
has a fundamental flaw: on a general graph, the Lapla-
cian eigenvalues cannot be interpreted as the frequencies
of the corresponding eigenvectors. In this paper, we dis-
cuss this important problem further and propose a new
method to organize those eigenvectors by defining and
measuring “natural” distances between eigenvectors using
the Ramified Optimal Transport Theory followed by em-
bedding them into a low-dimensional Euclidean domain.
We demonstrate its effectiveness using a synthetic graph as
well as a dendritic tree of a retinal ganglion cell of a mouse.

Index Terms— Graph Laplacian eigenvectors, ramified
optimal transport, multidimensional scaling

1. INTRODUCTION

For the theory and practice of discrete wavelets on regu-
lar lattices in Rd , Fourier analysis has played a significant
role. Hence, when attempting to develop wavelet theory for
graphs and networks, some researchers have used graph
Laplacian eigenvalues and eigenvectors in place of the
frequencies and complex exponentials, respectively; see,
e.g., the Spectral Graph Wavelet Transform of Hammond et
al. [1]. While tempting to do so, this viewpoint/strategy has
several fundamental problems. One of them is the intricate
relationship between the frequencies and the Laplacian
eigenvalues. For undirected and unweighted paths (or cy-
cles), the Laplacian eigenvectors are the discrete cosine (or
Fourier) basis vectors and the corresponding eigenvalues
are monotonically increasing functions of the frequency as
discussed in [2, 3, 4, 5, 6] among others. Consequently on
those simple graphs, one can precisely develop the classi-
cal wavelets using the Littlewood-Paley theory [7, Sec. 2.4].

This research was partially supported by the NSF grant DMS-1418779
and the ONR grant N00014-16-1-2255; the author also thanks Prof. Qinglan
Xia of UC Davis for the fruitful discussion and the Plots.jl community
for answering his many graphics questions.

However, as soon as a graph becomes even slightly more
complicated (e.g., a discretized rectangle in 2D), the situa-
tion completely changes: we cannot view the eigenvalues
as a simple monotonic function of frequency anymore
[5, 6]. Hence, a fundamental question is how to order and
organize Laplacian eigenvectors without using the eigen-
values, i.e., how to create a dual domain of a given graph.
In this paper, we investigate this important problem further
and propose a new method to order and organize those
eigenvectors using the idea from the Ramified Optimal
Transport (ROT) theory [8] to measure “natural” distances
between eigenvectors followed by embedding them into a
low-dimensional Euclidean domain.

2. PROBLEMS WITH ORDERING EIGENVECTORS
ACCORDING TO THE CORRESPONDING EIGENVALUES

Let G = G(V ,E) be a graph with its vertex set V and edge
set E . It is a well-known fact by now [2, 3, 4, 5, 6] that
if the graph G is a path with n nodes, i.e., G = Pn , then
the eigenvectors of the graph Laplacian matrix L(Pn) :=
D(Pn)− A(Pn), where D(Pn), A(Pn) are its degree and ad-
jacency matrices, respectively, are exactly the DCT Type
II basis vectors (used for the JPEG standard) while those
of the symmetrically-normalized graph Laplacian matrix

Lsym(Pn) := D(Pn)−
1
2 L(Pn)D(Pn)−

1
2 are the DCT Type I

basis vectors. In fact, the eigenpairs of L(Pn) are:

λk;n := 4sin2
(
πk

2n

)
, φk;n[x] := ak;n cos

(
πk

n

(
x + 1

2

))
, (1)

where k, x = 0 : n−1, and ak;n is a normalization constant to
have ‖φk;n‖2 = 1. It is clear that the eigenvalue is a mono-
tonically increasing function of the frequency, which is the
eigenvalue index k divided by 2 in this case.

As soon as a graph becomes even slightly more compli-
cated than unweighted and undirected paths/cycles, how-
ever, the situation completely changes: we cannot view the
eigenvalues as a simple monotonic function of frequency
anymore. For example, consider a thin rectangle in R2, and
suppose that this rectangle is discretized as Pm ×Pn (m >
n > 1). The Laplacian eigenpairs of this graph can be easily
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derived from Eq. (1) as:

λk =λ(kx ,ky ) := λkx ;m +λky ;n

φk [x, y] =ϕkx ,ky [x, y] := φkx ;m[x] ·φky ;n[y]

where k = 0 : mn −1; x,kx = 0 : m −1; and y,ky = 0 : n −1.
As always, let {λk }k=0:mn−1 be ordered in the nondecreas-
ing manner. Fig. 1 shows the corresponding eigenvectors
ordered in this manner (with m = 7, n = 3). Note that the
layout of 3×7 grid of subplots is for the page saving purpose:
the layout of 1×21 grid of subplots would be more natural if
we use only the eigenvalue size for eigenvector ordering. In
this case, the smallest eigenvalue is still λ0 = λ(0,0) = 0,
and the corresponding eigenvector is constant. The

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

Fig. 1. Laplacian eigenvectors of P7 × P3 sequentially or-
dered in terms of nondecreasing eigenvalues.

second smallest eigenvalue λ1 is λ(1,0) = 4sin2(π/2m),
since π/2m < π/2n, and its eigenvector has half oscilla-
tion (i.e., half period) in the x-direction. But, how about
λ2? Even for such a simple situation there are two pos-
sibilities for λ2, depending on m and n. If m > 2n, then
λ2 = λ(2,0) < λ(0,1). On the other hand, if n < m < 2n, then
λ2 = λ(0,1) < λ(2,0). More generally, if K n < m < (K + 1)n
for some K ∈ N, then λk = λ(k,0) = 4sin2(kπ/2m) for k =
0, . . . ,K . Yet we have λK+1 = λ(0,1) = 4sin2(π/2n) and
λK+2 is equal to either λ(K+1,0) = 4sin2((K + 1)π/2m) or
λ(1,1) = 4[sin2(π/2m)+ sin2(π/2n)] depending on m and n.
In Fig. 1, one can see this behavior with K = 2. Clearly, the
mapping between k and (kx ,ky ) is quite nontrivial. Notice
that φ(k,0) has k/2 oscillations in the x-direction whereas
φ(0,1) has only half oscillation in the y-direction. In other
words, all of a sudden the eigenvalue of a completely differ-
ent type of oscillation sneaks into the eigenvalue sequence.
Hence, on a general graph, by simply looking at its Lapla-
cian eigenvalue sequence {λk }k=0,1,..., it is almost impossi-
ble to organize the eigenvectors into physically meaningful
dyadic blocks and follow the Littlewood-Paley approach un-
less the underlying graph is of very simple nature, e.g., Pn

or Cn (the cycle consisting of n nodes). Therefore, for com-
plicated graphs, wavelet construction methods that rely

on the Littlewood-Paley theory by viewing the Laplacian
eigenvalues as the frequencies, such as the spectral graph
wavelet transform [1], may face unexpected problems. In
fact, not only the wavelet construction methods but also
any procedures and applications having that viewpoint
would become problematic on general graphs.

What we really want to do is to organize those eigen-
vectors as shown in Fig. 2 instead of Fig. 1. Then a natu-

0, 0 1, 0 2, 0 3, 0 4, 0 5, 0 6, 0

0, 1 1, 1 2, 1 3, 1 4, 1 5, 1 6, 1

0, 2 1, 2 2, 2 3, 2 4, 2 5, 2 6, 2

Fig. 2. Laplacian eigenvectors of P7×P3 ordered in terms of
their natural horizontal/vertical frequencies.

ral question is: how can we quantify the difference between
the eigenvectors? Note that the usual `2-distance does not
work since ‖φi −φ j ‖2 = p

2δi j where δi j is the Kronecker
delta. Here, we propose to derive a natural distance be-
tween eigenvectors using the ideas gained from the ram-
ified optimal transport theory [8], i.e., we view the cost to
“transport” one eigenvector to another eigenvector as the
natural distance between two such eigenvectors.

3. A BRIEF REVIEW OF RAMIFIED OPTIMAL
TRANSPORT THEORY

The Ramified Optimal Transport (ROT) theory [8] is a
branch of more general optimal transport theory [9]: it
studies transporting “mass” from one probability mea-
sure µ+ to another µ− along ramified transport paths with
some specific transport cost functional, and has been
used to analyze various branching structures, e.g., trees;
veins on a leaf; cardiovascular systems; river channel
networks; electrical grids; communication networks, to
name a few. For simplicity, we only consider the discrete
case: two probability mass functions (pmfs) in Rd . Let
f := ∑k

i=1 fiδx i and g := ∑l
j=1 g jδy j

be two such pmfs on

the points {x i }k
i=1, {y j }l

j=1 ⊂ Rd with
∑k

i=1 fi = ∑l
j=1 g j = 1.

Let Path( f , g ) be all possible transport paths from f to
g without cycles, i.e., each G ∈ Path( f , g ) is a weighted
acyclic directed graph with {x i }i ∪ {y j } j ⊂ V (G), whose
edge weights (> 0) satisfy the Kirchhoff law at each node



v ∈V (G):

∑
e∈E(G)
e−=v

w(e) = ∑
e∈E(G)
e+=v

w(e)+


fi if v = x i for ∃i ∈ 1 : k

−g j if v = y j for ∃ j ∈ 1 : l

0 otherwise.

Define the cost of a transport path G ∈ Path( f , g ) as:

Mα(G) := ∑
e∈E(G)

w(e)α length(e), α ∈ [0,1].

Xia proved that the minimum transportation cost

dα( f , g ) := min
G∈Path( f ,g )

Mα(G)

is a metric on the space of pmfs and of homogeneous of de-
gree α; and moreover he derived numerical algorithms to
generate the α-optimal path for a given pair ( f , g ); see [8]
and the refereces therein for further information.

4. OUR PROPOSED METHOD

We propose the following:

Algorithm 4.1 (LapEigPort).

Step 0: Convertφi to a pmf p i over a graph G, i = 0 : n −1.

Step 1: Compute the cost to transport p i to p j optimally, for
all i , j = 0 : n −1, which results in a “distance” matrix
D = (Di j ) ∈Rn×n

≥0 .

Step 2: Use some embedding technique, e.g., Multidimen-
sional Scaling (MDS), to embed D into a low dimen-
sional Euclidean space Rn0 , n0 ¿ n (e.g., n0 = 2 or 3).

Step 3: Examine how eigenvectors are placed and organized
in that embedding space Rn0 .

In Step 0, we set p i := (
φ2

i [0], . . . ,φ2
i [n −1]

)T
in this pa-

per; note that ‖φi‖2 = 1, i = 0 : n−1. This is the most natural
and obvious way to convert φi to a pmf; however, this may
have some drawbacks and is certainly not the only way to
convertφi to a pmf as we will discuss later.

The key step of Algorithm 4.1 is Step 1, which needs
further explanation. Unlike the general ROT setting, a
graph G is fixed and given in our case. On the other hand,
our graph G is undirected while the ROT requires directed
graphs. Hence, we turn an undirected graph G into the

bidirected graph ˜̃G , a special type of directed multigraphs,
i.e., each edge of G joining two nodes, say, i and j , becomes

two directed edges (i , j ) and ( j , i ) in ˜̃G . To do so, we first
compute the incidence matrix Q = [

q 1| · · · |q m

] ∈ Rn×m of
the undirected graph G = G(V ,E) with n = |V |, m = |E |.
Here, q k represents the endpoints of the kth edge ek : if ek

joins nodes i and j , then q k [l ] = 1 if l = i or j ; otherwise
q k [l ] = 0. Then we orient each edge of G in an artibrary

manner to form a directed graph G̃ and its incidence ma-
trix Q̃ = [

q̃ 1| · · · |q̃ m

] ∈ Rn×m where q̃ k is defined as follows:
if ek = (i , j ) for some i , j , then q̃ k [i ] = −1, q̃ k [ j ] = 1, and

q̃ k [l ] = 0 for l 6= i , j . Finally, form the bidirected graph ˜̃G

with ˜̃Q := [
Q̃ | −Q̃

] ∈Rn×2m .

Given ˜̃Q, we solve the balance equation that forces the
Kirchhoff law:

˜̃Qw i j = p j −p i , w i j ∈R2m
≥0 . (2)

The weight vector w i j describes the transportation plan
from p i to p j . Note that w i j [k] = 0, ∃k ∈ [0,2m) implies
that the transportation plan does not use the correspond-
ing directed edge represented by the kth column of ˜̃Q. Let
˜̃Gi j be the bidirected graph ˜̃G with these edge weights; then
˜̃Gi j ∈ Path(p i , p j ). We caution here that Eq. (2) may have

multiple solutions. Hence, we propose to solve the follow-
ing Linear Programming (LP) problem (see, e.g., [10]):

min
w i j ∈R2m

‖w i j ‖1 subj. to:

{
˜̃Qw i j = p j −p i ;

w i j [l ] ≥ 0, l = 0 : 2m −1,
(3)

to obtain one of the sparse solutions of Eq. (2), which turned
out to be much faster to compute than using the nonnega-
tive least squares (NNLS) solver [11, Chap. 23], which tends
to generate denser solutions.

Finally we fill the distance matrix D = (Di j ) by

Di j = Mα( ˜̃Gi j ) = ∑
e∈E( ˜̃Gi j )

wi j (e)α length(e), α ∈ [0,1].

Note that Eq. (3) may still have multiple solutions, and cur-
rently we are not examining all possible solutions of Eq. (3)

to search argmin ˜̃Gi j ∈Path(p i ,p j )
Mα( ˜̃Gi j ). We plan to investi-

gate how to handle such multiple solutions in LP, e.g., the
method proposed in [12].

5. NUMERICAL RESULTS

In this section, we will demonstrate the effectiveness of our
proposed method using the same 2D lattice graph we dis-
cussed earlier as well as a dendritic tree of a retinal ganglion
cell (RGC) of a mouse. We note that we used the JuMP op-
timization package [13] written in Julia [14] in order to
solve the optimization problem Eq. (3).

5.1. The 2D lattice graph P7 ×P3

Fig. 3 shows the embedding of these 21 eigenvectors into
R2 using Algorithm 4.1 where we set α = 0.5 and used the
classical MDS [15, Chap. 12] for embedding. Of course, in
general, when a graph is given, we cannot assume the best
embedding dimension n0 a priori. Here we simply used
n0 = 2 because the top two eigenvalues of the Gram ma-
trix of the configurations (i.e., the outputs of the MDS) were
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Fig. 3. Embedding of the Laplacian eigenvectors of P7 ×P3

into R2 using Algorithm 4.1 with α= 0.5.

more than twice the third eigenvalue. Fig. 3 clearly reveals
the two-dimensional organization of the eigenvectors, and
is somewhat similar to a rotated version of Fig. 2, but the de-
tails are different. For example, the eigenvectors with even
and odd oscillations are mapped in a symmetric manner
around the “DC” vector ϕ0,0 located at the center of Fig. 3.
This symmetry is due to the use of the energy of the eigen-
vector components in Step 0 of Algorithm 4.1: from Eq. (1),
we have φ2

k;n[x]+φ2
n−k;n[x] ≡ a2

k;n , k = 1 : n −1, x = 0 : n −1.
We also examined the case of α= 1, which gave us more

congested embedding aroundϕ0,0.

5.2. The dendritic tree of an RGC of a mouse

For the details on the data acquisition and the conver-
sion of dendritic trees of RGCs to graphs (in fact, literally
“trees”), see [2]. As discussed in [3, 4] in greater detail,
the graph Laplacian eigenvectors of these trees exhibit
a very peculiar phase transition phenomenon: φk ’s with
λk < 4 oscillate semi-globally while those with λk > 4 are
concentrated around junctions (i.e., nodes whose degrees
are greater than 2). Fig. 4 shows 2D projections of two of
the eigenvectors of a particular dendritic tree demonstrat-
ing this phenomenon. Fig. 5 shows the embedding of the
Laplacian eigenvectors of this dendritic tree into R3 using
Algorithm 4.1 with α = 0.5. We used n0 = 3 because of the
size difference between the top three eigenvalues and the
rest. These 3D point clouds form a upside-down bowl-like
shape with three legs (or a shape partly joining two crois-
sants). The magenta circle indicates the DC vector, φ0,

-100 0 100 200
X( m)

-200

-100

0

100

200

Y(
m

)

(a)φ1141 with λ1141 = 3.9994

-100 0 100 200
X( m)

-200

-100

0

100

200

Y(
m

)

(b)φ1142 with λ1142 = 4.3829

Fig. 4. Laplacian eigenvectors before and after the phase
transition. The yellow and purple circles indicate larger
positive and negative components while those on thin blue
lines are negligible. This tree has n = 1154 nodes in total.

while the cyan circle is the Fiedler vector, φ1. The red cir-
cles located around the bottom are the eigenvectors φk ,
k > 1141, i.e., those localized around the junctions. The
larger colored circles located in the lower right region are
the eigenvectors supported on one of the branch indicated
in Fig. 4(a). The gray scale colors of the other points in-
dicate the magnitude of the corresponding eigenvalues.

Fig. 5. Embedding of the Laplacian eigenvectors of the RGC
tree into R3 using Algorithm 4.1 with α= 0.5.

6. DISCUSSION

Although Algorithm 4.1 allows us to see interpretable orga-
nizations of the graph Laplacian eigenvectors, there remain
several questions that need to be answered: 1) How can
we choose optimal value of α ∈ [0,1]? 2) Why the Fiedler
vectors tend to be mapped far from the DC vectors? 3)
How can we find the true cost-minimizing transportation
path among Path(p i , p j )? 4) What other ways to turn φi
into p i should we consider? 5) How can we develop the
true Littlewood-Paley theory on graphs and most “natural”
wavelets on graphs once the above embedding is done?
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Rohde, “Optimal mass transport: Signal processing
and machine-learning applications,” IEEE Signal Pro-
cessing Magazine, vol. 34, no. 4, pp. 43–59, 2017.

[10] C. H. Papadimitriou and K. Steiglitz, Combinatorial
Optimization: Algorithms and Complexity, Prentice-
Hall, Inc., Upper Saddle River, NJ, 1982, Republished
by Dover Publications, Inc. in 1998.

[11] C. L. Lawson and R. J. Hanson, Solving Least Squares
Problems, Prentice-Hall, Inc., Upper Saddle River, NJ,
1974, Republished by SIAM in 1995.

[12] M. E. Dyer and L. G. Proll, “An algorithm for determin-
ing all extreme points of a convex polytope,” Math.
Program., vol. 12, no. 1, pp. 81–96, 1977.

[13] I. Dunning, J. Huchette, and M. Lubin, “JuMP: A mod-
eling language for mathematical optimization,” SIAM
Review, vol. 59, no. 2, pp. 295–320, 2017.

[14] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah,
“Julia: A fresh approach to numerical computing,”
SIAM Review, vol. 59, no. 1, pp. 65–98, 2017.

[15] I. Borg and P. J. F. Groenen, Modern Multidimensional
Scaling: Theory and Applications, Springer, New York,
2nd edition, 2005.


	1  Introduction
	2  Problems with Ordering Eigenvectors According to the Corresponding Eigenvalues
	3  A Brief Review of Ramified Optimal Transport Theory
	4  Our Proposed Method
	5  Numerical Results
	5.1  The 2D lattice graph P7 P3
	5.2  The dendritic tree of an RGC of a mouse

	6  Discussion
	7  References



