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Abstract

Neural networks have the ability to serve as universal function approximators, but
they are not interpretable and don’t generalize well outside of their training region.
Both of these issues are problematic when trying to apply standard neural ordinary
differential equations (ODEs) to dynamical systems. We introduce the polynomial
neural ODE, which is a deep polynomial neural network inside of the neural ODE
framework. We demonstrate the capability of polynomial neural ODEs to predict
outside of the training region, as well as to perform direct symbolic regression
without using additional tools such as SINDy.

1 Introduction

Dynamical systems are mathematical equations written to describe the interactions of quantities that
change in time in many science and engineering applications. Traditionally, mechanistic models
describing these systems were obtained from the iterative process of deriving equations from first
principles and testing the models with physical experimentation. The power of mechanistic models
comes from the ability to directly explain the system at hand with known physical principles such
as the thermodynamics of the system, heat and mass transfer processes, chemical kinetics, and the
system’s forces. Reliable predictions can be made about the system behavior in different regimes from
mechanistic models due to the scientist’s knowledge of the assumptions governing the various first
principles and physical laws. Mechanistic models are preferred by scientists and engineers; however,
it can take years to develop a complete and accurate description of a system and we do not know the
underlying first principles describing all systems. Brunton et al. [2016] sped up the identification
of mechanistic models for nonlinear dynamical systems with the method Sparse Identification of
Nonlinear Dynamics (SINDy), which is a sparse regression problem of time derivatives obtained
by finite difference methods with a library of candidate terms appearing in the dynamical system.
SINDy has had great success with system identification for various applications such as plasma
physics [Alves and Fiuza, 2020], nonlinear optical communication [Sorokina et al., 2016], biological
chemical reaction networks [Mangan et al., 2016, Hoffmann et al., 2019], and fluid dynamics [Rudy
et al., 2016].

With the emergence of increased computational power from GPUs and CPUs, along with the
exponential growth of the amount of data gathered such as via automated experimentation in chemistry
and biology [Mayr and Bojanic, 2009, Szymański et al., 2011], sensor data from factories [Kalsoom
et al., 2020], satellite and in situ earth observations [Balsamo et al., 2018], and large-scale simulations
such as computational fluid dynamics (CFD) simulations [Calzolari and Liu, 2021] and climate
models [Randall et al., 2007, Maher et al., 2021], data-driven models such as deep learning have
emerged as a way to process and understand this large amount of data quickly.

Neural ordinary differential equations (ODEs) are a recent approach to data-driven modeling of
time-series data and dynamical systems in which a neural network is used to learn an approximation
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to an equation governing the dynamics of the system. Neural ODEs were first introduced in Chen
et al. [2018]’s seminal NeurIPS best paper. In the last few years, several other types of neural ODEs
have emerged such as latent ODEs [Rubanova et al., 2019], Bayesian neural ODEs [Dandekar et al.,
2020], and neural stochastic ODEs [Li et al., 2020]. Models describing the system can be created
solely from observed data without the need for expert domain knowledge, which Rackauckas et al.
[2020] term as the universal differential equation. These models can then be used to make predictions
of what the system will do for unobserved conditions. Traditional data-driven neural ODE models can
be obtained in a few hours as opposed to the many years required to develop complete and accurate
mechanistic models for dynamical systems. Neural ODEs integrate the neural ODE in time to obtain
predictions for the observed data, whereas SINDy uses finite difference methods with the data to
obtain numerical approximations for the time derivatives, which gives neural ODEs the advantage
of having less stringent requirements on the frequency of the observations [Champion et al., 2019].
However, neural ODEs have the well-known major problems that they are not directly interpretable,
and they do not make reliable predictions outside of the domain of their training region. [Lee et al.,
2021] were able to make the neural ODE interpretable by successfully recovering symbolic equations
from conventional neural ODEs by using SINDy with predictions for the time derivatives obtained
from the trained neural ODE.

Our work is motivated by the need to make neural ODEs directly interpretable without using
additional methods like SINDy after training. We address this problem by making the case to use
directly interpretable neural network architectures inside of the neural ODE framework rather than
the conventional neural network based on the standard multilayer perceptron (MLP) [Goodfellow
et al., 2016]. Nonlinear dynamical systems can be complex symbolic expressions. We chose to
address the class of dynamical systems described by polynomials first before tackling more advanced
expressions. Dynamical systems involving polynomials arise in a number of physical systems such as
gene regulatory networks [Sanguinetti and Huynh-Thu, 2018] and cell signaling networks [Gutkind,
2000] in systems biology, population models in ecology [Royle and Dorazio, 2008] and epidemiology
[Singh and Dhar, 2018], and atmospheric chemical kinetics [Brasseur and Jacob, 2017]. In the
process of this work, we developed a few deep polynomial neural network architectures, but had
the most success with [Chrysos et al., 2022]’s π-net. We are the first to use any deep polynomial
neural network for the purpose of direct symbolic regression, which we demonstrate on a fourth order
univariate polynomial. We are also the first to put a deep polynomial neural network into the neural
ODE framework, which we term the polynomial neural ODE, and use the polynomial neural ODE
to perform direct symbolic regression on nonstiff dynamical systems described by a polynomials
such as the Lotka-Volterra model, Damped Oscillatory System, and Van der Pol model. In addition,
we test the polynomial neural ODE on a model that does not involve polynomials, and demonstrate
its effectiveness as another form of a deep polynomial function approximator. This work, along
with future work, will allow the neural ODE to serve as a tool complementary to SINDy for system
identification.

2 Methods

2.1 Neural ODEs

Neural ordinary differential equations (ODEs) learn an approximate ODE, given data for the solution,
y(t) [Chen et al., 2018]. The ODE that we seek to approximate is given by

dy(t)

dt
= f (t, y(t), θ) , (1)

where t is the time, y(t) is the vector of state variables, θ is the vector of parameters, and f is the
ODE model. For many scientific problems, it can take years to discover the functional form of the
ODE described by f . Neural ODEs solve this problem by learning an approximation to the dynamics
described by f without learning the exact functional equation. The neural ode, which we denote by
NN , is a neural network that approximates the model f :

dy(t)

dt
≈ NN (t, y(t), θ) . (2)
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Once the neural ODE has been trained, it is treated exactly the same way as an ODE. To obtain
predictions for y(t), the neural ODE is integrated as an initial value problem (IVP) with an ODE
solver. Traditionally, neural ODEs have used the same architecture as a standard multilayer perceptron
(MLP)

NN(x) = (L1 ◦ L2 · · · ◦ Ll−1 ◦ Ll)(x), (3)

that is the composition of several neural network layers, Li

Li(x) = σ(x ∗ wi + bi), (4)

with nonlinear activation function σ, weights wi, and bias bi [Goodfellow et al., 2016].

2.2 Polynomial Neural ODEs

Mathematical models in numerous application areas including gene regulatory networks [Sanguinetti
and Huynh-Thu, 2018] and cell signaling networks [Gutkind, 2000] in systems biology, population
models in ecology [Royle and Dorazio, 2008] and epidemiology [Singh and Dhar, 2018], and
atmospheric chemical kinetics [Brasseur and Jacob, 2017] are expressed as differential equations
where the right hand side functions f are polynomials. For this class of problems we present the
polynomial neural ODE. While Andoni et al. [2014] have theoretically and experimentally shown
that conventional feedforward MLPs work as universal approximators for polynomials, we will make
the case for using polynomial neural ODEs instead of conventional neural ODEs for this application
space.

Polynomial neural networks are function approximators in which the output layer is expressed as
a polynomial of the input layer. There are several types of polynomial neural networks. Designing
polynomial neural networks that can be trained easily without an explosion of parameters is still
an active area of research [Chrysos et al., 2022, Fan et al., 2020, Du and Lee, 2018, Liang and
Srikant, 2016]. In this paper, we use the π-net architecture from Chrysos et al. [2022]. π-nets were
specifically designed to use skip connections to avoid the combinatorial explosion in the number of
parameters of polynomial activation functions, which make the network harder to train. Essentially,
these networks learn tensor decompositions of the polynomials. For our work we use π-net V1, for
which the architecture is shown in Fig. 2. The architecture is centered around Hadamard Products
[Horn et al., 1994] of linear layers without activation functions to form higher order polynomials.

Conventional neural networks are not interpretable, due to the complex arrangement of nonlinear
activation functions. Lee et al. [2021] have had success using Brunton et al. [2016]’s Sparse
Identification of Nonlinear Dynamics (SINDy) to recover symbolic forms of neural ODEs following
training. However, the polynomial neural ODE architecture has a unique advantage. Since the output
layer is a direct mapping of the input in terms of tensor and Hadamard products, symbolic tensor
math can be used to obtain a direct polynomial form of the polynomial neural network without using
additional tools such as SINDy. We use SymPy, the Python library for symbolic mathematics, to
obtain a symbolic form of the polynomial neural ODE following training [Meurer et al., 2017]. Since
we expect to see a plethora of new neural network architectures for symbolic regression beyond
polynomials, we anticipate the need for compatibility of symbolic computation with software such
as PyTorch, TensorFlow, and JAX, which would avoid the need to extract the network architecture,
weights, and biases into SymPy following training to obtain a symbolic equation.
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𝑑𝐴

𝑑𝑡
= −𝑘1𝐴𝑌 − 𝑘2𝑋𝐴 + 𝑘3𝑌

2

𝑑𝑋

𝑑𝑡
= 𝑘1𝐴𝑌 − 𝑘2𝑋𝐴

𝑑𝑌

𝑑𝑡
= −𝑘1𝐴𝑌 + 𝑘2𝑋𝐴 − 2𝑘3𝑌

2

𝐴 + 𝑌 → 𝑋
𝑋 + 𝐴 → 𝑌

2𝑌 → 𝐴

𝐴

𝑌

𝑋

𝐶1𝐴𝑌 + 𝐶2𝑋𝐴 + 𝐶3𝑌
2

𝐶6𝐴𝑌 + 𝐶7𝑋𝐴 + 𝐶8𝑌
2

𝐶4𝐴𝑌 + 𝐶5𝑋𝐴

Figure 1: Example polynomial neural ODE for a chemical reaction system with molecules A, X, and
Y. The neural network outputs a polynomial transformation of the input, which are the concentrations
of the chemical species.

𝑤1𝑥 + 𝑏1

𝑤2𝑥 + 𝑏2

𝑤4𝑥 + 𝑏4

𝑥 (𝑤2𝑥 + 𝑏2)(𝑤1𝑥 + 𝑏1)

𝑤3(𝑤2𝑥 + 𝑏2) 𝑤1𝑥 + 𝑏1 + 𝑏3

(𝑤3(𝑤2𝑥 + 𝑏2) 𝑤1𝑥 + 𝑏1 + 𝑏3)(𝑤4𝑥 + 𝑏4)

𝑤5(𝑤3(𝑤2𝑥 + 𝑏2) 𝑤1𝑥 + 𝑏1 + 𝑏3) 𝑤4𝑥 + 𝑏4 + 𝑏5

2nd Order 

3rd Order 

1st Order 

x L *

L

L

*

L

L

1st Order 

2nd Order 

3rd Order 

Figure 2: The network architecture of Chrysos et al. [2022]’s π-net V1 is shown (left) alongside a
worked example of a one layer input with variable name x (right). The boxes labeled L represent
standard linear layers, while the circles with the ∗ symbol represent a layer that is the Hadamard
product of the layer’s inputs. There are no standard activation functions such as tanh or ReLU in this
network architecture, which makes the architecture directly interpretable.

2.3 Training Neural ODEs

Prior to training the neural ODE, the architecture is defined and the parameters in the network
are initialized. For all of our neural ODEs, we initialized our weights and biases with a normal
distribution with mean of 0. We used a standard deviation of 0.00005 and 0.01 for the conventional
and π-net V1 neural ODEs respectively.

When training a neural ODE, the goal is to fit the neural ODE to observed data for the state variables,
yobs, as a function of time. The neural ODE is integrated with an ODE solver to obtain predictions

4



for yobs, which we will call ypred. We used gradient descent to minimize the normalized MSE loss
L(yobs, ypred) between yobs and ypred:

L(yobs, ypred) =
1

N

N∑
i

(
ypred,i − yobs,i

yscale

)2

, (5)

where yscale =| ymax − ymin | is the scale factor used to normalize the values in the loss function.
We batched our data intoN−1 samples consisting of IVPs between 2 adjacent known data points. For
each iteration of gradient descent, we simultaneously solve theN−1 initial value problems forward in
time to the next observed data point explicitly using the fourth order explicit Runge–Kutta–Fehlberg
method [Fehlberg, 1968]. Since we are only working with nonstiff ODEs, we are able to use an
explicit discretization method to solve the neural ODEs. The advantage of using this method to
solve the neural ODE is efficient direct backpropagation through the explicit ODE scheme, which the
popular continuous time sensitivity adjoint method from Chen et al. [2018] lacks.

3 Results

3.1 Univariate 4th Order Polynomial

Prior to looking at any dynamical systems with neural ODEs, the ability of π-net V1 to learn basis
polynomials was first tested. For the test case, we used the following fourth order univariate function:

f(x) = 3x4 + 16x3 + 5x2 (6)

The training data for the x-values consisted of 20 uniformly spaced data points in the range -5.3 to
2.2. The values of f(x) corresponding to the values of x were obtained by directly substituting the
x-values into the function.

Two neural networks were trained using the training data: (1) a conventional neural network with 5
layers consisting of 1x100x100x100x1 neurons in each layer with tanh activation functions and (2) a
π-net V1 polynomial neural network that outputs fourth order polynomials. Each neural network was
trained a total of 5 times and the best network was chosen based on the normalized MSE test loss,
L(yobs, ypred), as well as the visual fit of the neural network’s predictions against the known data.

Results from the neural networks with the best fit are shown in Fig 3. While not shown, conventional
neural networks with ReLU activation functions produced similar results. The fourth order π-net V1
polynomial neural network reliably reproduced the same model, due to the polynomial constraint
defined by its architecture, whereas there was some variability in the final conventional neural network
model. The conventional neural network exhibits Gibbs phenomenon, an oscillatory behavior around
the observed data usually caused by discontinuities, which is typical for approximation functions
such as Fourier series, orthogonal polynomials, splines, and wavelets [Wilbraham, 1848, Jerri, 2013].
Since a neural network is another type of approximation function, this behavior is not surprising.
Gibbs phenomenon was found every time the conventional neural network was fit to the data. The
model in Fig 3 was chosen because it exhibited the least amount of Gibbs phenomenon. Additionally,
we observed that ReLU activation functions produce Gibbs phenomenon to a lesser extent than tanh
activation functions. We suspect that this is because tanh functions bound the output between -1 and
1, whereas ReLU functions bound the output between 0 and∞, which leads to fewer discontinuities.

Neural networks are known to be poor at making predictions outside of their training region, which
Fig 3 also shows. When the prediction range is slightly extended, the conventional neural network is
completely unable to make an accurate prediction, whereas the polynomial neural network makes
accurate predictions in this range because it learned the functional form of the data.

The main advantage of polynomial neural networks is the ability to directly obtain a symbolic
representation of the network. As shown in Fig. 3, coefficients of the polynomial accurate to 7
significant figures were directly predicted from 20 observations. After performing equation recovery,
the extra terms can be systematically removed to simplify the model. In this case, the red terms are
small enough to be dropped after further analysis by the modeler.
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Conventional Neural Network 
(1x100x100x100x1 network with tanh activations)

4th Order Polynomial Neural Network
(π-net V1)

Training 
Region

Outside 
Training 
Region

Recovered Equation:

3.00000006090675 x4 + 16.0000001475446 x3 + 4.99999978151944x2 − 2.91250373002212 ⋅ 10−7x − 4.92012005206204 ⋅ 10−8

    

 

   

   

 

   

   

  
 
 

          

              

𝑓 𝑥 = 3𝑥4 + 16𝑥3 + 5𝑥2

Figure 3: Predictions inside and outside of the training region for a conventional neural network with
tanh activation functions, and a fourth order polynomial neural network after learning the fourth order
polynomial. The recovered symbolic equation from the polynomial neural network is shown below
the figures. The red terms indicate additional terms.

3.2 Lotka-Volterra Deterministic Oscillator

Our first demonstration of a polynomial neural ODE is on the deterministic Lotka-Volterra ODE
model, which describes the predator-prey population dynamics of a biological system [Lotka, 1925,
Volterra, 1926]. When written as a set of first order nonlinear ODEs, the model is given by

dx

dt
= 1.5x− xy, (7)

dy

dt
= −3y + xy, (8)

with initial conditions x = 1 and y = 1. Since the problem is nonstiff, we generate our training data
by integrating the IVP with SciPy and torchdiffeq using DOPRI5, a fourth order embedded method in
the Runge–Kutta family of ODE solvers, with the default settings at 200 points uniformly spaced in
time between 0 and 10 [Virtanen et al., 2020, Chen, 2021, Dormand and Prince, 1980]. As discussed
in the methods section, we batch our data into 199 training samples consisting of IVPs between 2
adjacent known data points, and simultaneously solve the 199 IVPs during each epoch using our own
code for the fourth order explicit Runge–Kutta–Fehlberg method, which allows us to directly perform
backpropagation through the ODE discretization scheme [Fehlberg, 1968].

Four neural networks were trained using the training data: (1) a conventional neural network with 5
layers consisting of 2x50x50x50x2 neurons in each layer with tanh activation functions and (2) three
separate π-net V1 polynomial neural networks of degree two, three, and four.

Following training, the performance of the neural networks was tested by integrating the neural ODE
from the initial conditions up to a time value of 40. As shown in Fig 4, both the conventional neural
ODE and the fourth order polynomial neural ODE are able to accurately predict the trajectory of the
dynamical system beyond the training region for the same initial values as the training data.
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3rd Order Polynomial Neural ODE
(π-net V1)

Conventional Neural ODE 
(2x50x50x50x2 network with tanh)

Recovered Equations:

Training 
Region

Model Prediction
Training 
Region

Model Prediction

𝑑𝑥

𝑑𝑡
= 1.5𝑥 − 𝑥𝑦

𝑑𝑦

𝑑𝑡
= −3𝑦 + 𝑥𝑦

𝑑𝑥

𝑑𝑡
=

𝑑𝑦

𝑑𝑡
=

3.4194 ⋅ 10−11𝑥4 + 1.4072 ⋅ 10−5𝑥3𝑦 − 2.1108 ⋅ 10−5𝑥3 + 4.723 ⋅ 10−7𝑥2𝑦2 − 0.00016652 𝑥2𝑦

+ 0.00024629 𝑥2 + 7.7497 ⋅ 10−6𝑥 𝑦3 − 2.6765 ⋅ 10−5𝑥 𝑦2 − 0.99943 𝑥 𝑦 + 1.4992 𝑥

− 1.2176 ⋅ 10−5𝑦4 + 6.2613 ⋅ 10−5𝑦3 − 8.9892 ⋅ 10−5𝑦2 − 0.00044922 𝑦 + 0.00072642

7.9197 ⋅ 10−6𝑥4 − 8.3261 ⋅ 10−5𝑥3𝑦 − 9.4844 ⋅ 10−5𝑥3 − 4.3513 ⋅ 10−5𝑥2𝑦2 + 0.00099306 𝑥2𝑦

+ 0.00025047 𝑥2 − 7.8538 ⋅ 10−5𝑥 𝑦3 + 0.00049348 𝑥 𝑦2 + 0.99683 𝑥 𝑦 + 9.7824 ⋅ 10−5𝑥

+ 7.9414 ⋅ 10−9𝑦4 + 0.00023555 𝑦3 − 0.0011899 𝑦2 − 2.9967 𝑦 − 0.00062845

𝑑𝑥

𝑑𝑡
=

𝑑𝑦

𝑑𝑡
=

2.74824297 ⋅ 10−7𝑥2 − 0.999999587 𝑥 𝑦 + 1.50000003 𝑥 + 1.78681046 ⋅ 10−7𝑦2

− 1.845536 ⋅ 10−7𝑦 − 1.2520218 ⋅ 10−7

− 1.40033118 ⋅ 10−7𝑥2 + 0.999999504 𝑥 𝑦 + 3.31838386 ⋅ 10−7𝑥 − 3.83711663 ⋅ 10−7𝑦2

− 3.00000001 𝑦 + 2.64783671 ⋅ 10−7

2nd Order Polynomial Neural ODE:

0.000622150308 𝑥3 + 9.35663293 ⋅ 10−5𝑥2𝑦 − 0.0076335955 𝑥2 + 0.00088482132 𝑥 𝑦2

+ 0.994316315 𝑥 𝑦 + 0.0289808339 𝑥 − 1.35700724 ⋅ 10−6𝑦3 − 0.00417627652 𝑦2

− 2.97960058 𝑦 − 0.03503826

−0.00062051619 𝑥3 − 0.000196569417 𝑥2𝑦 + 0.0056712571 𝑥2 − 0.00195043827 𝑥 𝑦2

− 0.989089717 𝑥 𝑦 + 1.48265138 𝑥 + 7.0167128 ⋅ 10−6𝑦3 + 0.00353786692 𝑦2

− 0.0149655014 𝑦 + 0.0144409231

𝑑𝑥

𝑑𝑡
=

𝑑𝑦

𝑑𝑡
=

3rd Order Polynomial Neural ODE:

4th Order Polynomial Neural ODE:

Figure 4: The conventional neural ODE and the π-net V1 polynomial neural ODE were integrated
from the initial conditions to a time of 40, to test the performance of the neural ODEs. The vertical
green line indicates where the training data ends and the neural ODE begins making a prediction.
The symbolic form of the π-net V1 polynomial neural network was obtained for each of the degrees
shown. The correct equation is shown above the recovered equations. The red terms indicate terms
that can be dropped.

7



0 1 2 3 4 5 6 7
x

0

1

2

3

4

5

6

7

y

Conventional Neural ODE

0 1 2 3 4 5 6 7
x

0

1

2

3

4

5

6

7

y

True Vector Field

0 1 2 3 4 5 6 7
x

0

1

2

3

4

5

6

7

y

Polynomial Neural ODE

0 5 10 15 20
x

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

y

0 5 10 15 20
x

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

y

0 5 10 15 20
x

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

y

0 20 40 60 80 100
x

0

20

40

60

80

100

y

0 20 40 60 80 100
x

0

20

40

60

80

100

y

0 20 40 60 80 100
x

0

20

40

60

80

100

y

Figure 5: The vector fields of the time derivatives of variables x and y are plotted for the conventional
neural ODE with tanh activations (left), the true ODE equation (middle), and the second order π-net
V1 polynomial neural ode (right). The top row shows the training region, while the remaining rows
show the region outside of the training region. The blue circles mark the training data.

Fig 4 doesn’t offer much insight about how the conventional neural ODE differs from the polynomial
neural ODE, so the vector fields of the time derivatives of x and y were also plotted. As shown in Fig
5, the second order π-net V1 neural ODE accurately learns the true vector field for the training region,
as well as outside of the training region. The conventional neural ODE learns a close approximation
to the training region’s vector field, which is why it was able to accurately predict the trajectory of
the dynamical system beyond the training region for the same initial values as the training data, as
shown in Fig 4. However, it doesn’t learn an accurate enough approximation to make predictions for
observations outside of its training region. This is clear just by looking at the difference in vector
fields for the region of space outside of the training region. On the other hand, the polynomial neural
ODE has no problem with the same task.

To show that the π-net V1 polynomial neural ODE learns the same equation regardless of the degree
of the polynomial output, three separate polynomial neural ODEs were trained with degrees of two,
three, and four. Following training, the symbolic form of each of the polynomial neural ODEs was
obtained, as shown in Fig 4. The second, third, and fourth order polynomial neural ODEs were able
to recover 6, 2, and 3 significant digits for the coefficients respectively. The values of the coefficients
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belonging to the terms not found in the original ODE differ each time, which serves as a clue to the
modeler that these terms can be dropped from the final equation.

3.3 Damped Oscillatory System

Our next demonstration of a polynomial neural ODE is on the deterministic damped oscillatory
system, a popular toy problem for Neural ODEs [Chen et al., 2018, Roesch et al., 2021]. Damped
oscillations are common in engineering, physics, and biology [Janson, 2012, Karnopp et al., 1990].
For our work, we refer to the following model as the damped oscillator:

dx

dt
= −0.1x3 − 2y3

dy

dt
= 2x3 − 0.1y3, (9)

with initial conditions x = 1 and y = 1. Since the problem is nonstiff, we generate our training data
by integrating the IVP with SciPy and torchdiffeq using DOPRI5, a fourth order embedded method in
the Runge–Kutta family of ODE solvers, with the default settings at 100 points uniformly spaced in
time between 0 and 25 [Virtanen et al., 2020, Chen, 2021, Dormand and Prince, 1980]. As discussed
in the methods section, we batch our data into 99 training samples consisting of IVPs between 2
adjacent known data points, and simultaneously solve the 99 IVPs during each epoch using our own
code for the fourth order explicit Runge–Kutta–Fehlberg method, which allows us to directly perform
backpropagation through the ODE discretization scheme [Fehlberg, 1968].

Three neural networks were trained using the training data: (1) a conventional neural network with
5 layers consisting of 2x50x50x50x2 neurons in each layer, with tanh activation functions, and (2)
two separate π-net V1 polynomial neural networks of degree three and four. Previous work has
demonstrated that this damped oscillatory system is challenging for traditional neural ODEs to learn
[Chen et al., 2018, Roesch et al., 2021]. Several authors have made the model easier to learn with
neural ODEs by making the first layer of the neural network a cubic function; however, this approach
requires a priori knowledge that the functional form of the equation is cubic [Chen, 2021, Roesch
et al., 2021]. Since the traditional neural network is supposed to learn the dynamics on its own, we
do not use this approach for any of our neural ODEs.

Following training, the performance of the neural networks was tested by integrating the neural ODE
from the initial conditions up to a time value of 70. As shown in Fig 6, the third order polynomial
neural ODE is able to accurately predict the trajectory of the dynamical system beyond the training
region, for the same initial values as the training data. The identical match of vector fields between
the third order polynomial and that of the true ODE model, as shown in Fig 7, indicates why the
polynomial neural network is able to accurately predict the trajectory.

In contrast, the conventional neural ODE is able to make an accurate prediction only up to about 15
time units past the training region. The conventional neural network’s predictions do not preserve
the general shape of the solution to the ODE, whereas the polynomial constraint on the polynomial
neural ODE ensures that the functional shape is preserved for the prediction task. Looking at the
vector field for the conventional neural ode between -0.5 and 0.5, which is the zoomed in portion of
the training region, since the training data does not have many values in this range, the neural ode
was unable to learn the center of the vector field’s spiral well. We observe and hypothesize that this is
the reason why the conventional neural ODE is known to struggle with learning the damped oscillator
model: the errors from the center of the spiral increase over the trajectory as it dampens. Additionally,
the zoomed out vector field in the range -1000 to 1000 shows that the conventional neural ODE’s
vector field undergoes major distortion outside of its training region. This effect is not observed in
the polynomial neural network.

Fig 6 shows the symbolic equations recovered from the third and fourth order polynomial neural
ODEs. Five significant figures were recovered from both of the neural odes, and the remaining
coefficients are small enough to be dropped.
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Recovered Equations:

𝑑𝑥

𝑑𝑡
= −0.1𝑥3 −2𝑦3

𝑑𝑦

𝑑𝑡
= 2𝑥3 −0.1𝑦3

3rd Order Polynomial Neural ODE:

𝑑𝑥

𝑑𝑡
=

𝑑𝑦

𝑑𝑡
= 2.00005𝑥3 + 0.00107560𝑥2𝑦 − 4.00052 ⋅ 10−5𝑥2 − 1.14539 ⋅ 10−5𝑥𝑦2 − 1.50010 ⋅ 10−5𝑥𝑦

+ 2.30207 ⋅ 10−6𝑥 − 0.0999697𝑦3 − 7.32182 ⋅ 10−7𝑦2 − 8.47415 ⋅ 10−7𝑦 − 3.30187 ⋅ 10−11

−0.10002𝑥3 − 5.84862 ⋅ 10−5𝑥2𝑦 − 1.17748 ⋅ 10−5𝑥2 − 0.000606360𝑥𝑦2 − 3.08590 ⋅ 10−5𝑥𝑦
+ 5.28689 ⋅ 10−6𝑥 − 1.99985𝑦3 − 1.58209 ⋅ 10−5𝑦2 + 1.43468 ⋅ 10−5𝑦 + 4.49479 ⋅ 10−11

4th Order Polynomial Neural ODE:

−9.55747 ⋅ 10−7 𝑥4 + 9.47718 ⋅ 10−7 𝑥3 𝑦 − 0.099997 𝑥3 + 1.22464 ⋅ 10−5 𝑥2 𝑦2 + 1.49426 ⋅ 10−5 𝑥2 𝑦
+ 1.31981 ⋅ 10−6 𝑥2 + 9.02115 ⋅ 10−6 𝑥 𝑦3 + 2.69115 ⋅ 10−5 𝑥 𝑦2 + 2.70065 ⋅ 10−5 𝑥 𝑦 + 1.69208 ⋅ 10−5𝑥
+ 5.09480 ⋅ 10−6 𝑦4 − 1.99996 𝑦3 + 7.07770 ⋅ 10−5 𝑦2 + 4.59301 ⋅ 10−5 𝑦 − 5.50757 ⋅ 10−11

3.70538 ⋅ 10−6 𝑥4 − 4.10939 ⋅ 10−6 𝑥3 𝑦 + 1.99997 𝑥3 − 9.08214 ⋅ 10−7 𝑥2 𝑦2 + 6.62073 ⋅ 10−7 𝑥2 𝑦
+ 7.36576 ⋅ 10−6 𝑥2 + 7.88325 ⋅ 10−8 𝑥 𝑦3 − 1.61711 ⋅ 10−6 𝑥 𝑦2 − 1.62498 ⋅ 10−5 𝑥 𝑦 − 3.02663 ⋅ 10−5 𝑥
+ 2.31439 ⋅ 10−7 𝑦4 − 0.0999993 𝑦3 + 4.73148 ⋅ 10−6 𝑦2 + 1.11502 ⋅ 10−5 𝑦 + 9.48903 ⋅ 10−12

𝑑𝑥

𝑑𝑡
=

𝑑𝑦

𝑑𝑡
=

Figure 6: The conventional neural ODE and the π-net V1 polynomial neural ODE were integrated
from the initial conditions to a time of 70, to test the performance of the neural ODEs. The vertical
green line indicates where the training data ends and the neural ODE begins making a prediction. The
symbolic forms of the polynomial neural ODEs were also obtained for each of the degrees shown.
The red terms indicate additional terms that can be dropped.
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Figure 7: The vector fields of the time derivatives of variables x and y are plotted for the conventional
neural ODE with tanh activations (left), the true ODE equation (middle), and the third order π-net V1
polynomial neural ode (right). The top row shows the entire training region, the middle row shows a
smaller subset of the training region where oscillations dampen, and the bottom row shows the region
outside of the training region. The blue circles mark the training data.
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3.4 Van der Pol Deterministic Oscillator

Our final demonstration of the performance of polynomial neural ODEs is on the Van der Pol
oscillator, a nonconservative oscillator with nonlinear damping [van der Pol, 1926]. The Van der Pol
equation describes several processes of relaxation-oscillations in the physical and biological sciences.
For example, it has been used to model action potentials of neurons, tectonic plates in a geological
fault, and oscillations of the left and right vocal cords during speech [FitzHugh, 1961, Nagumo et al.,
1962, Cartwright et al., 1999, Lucero and Schoentgen, 2013]. The Van der Pol oscillator is described
by the following second order ordinary differential equation:

d2x

dt2
− µ(1− x2)dx

dt
+ x = 0 (10)

and can be rewritten as a system of first order ODEs:

dx

dt
= y

dy

dt
= µy − µx2y − x. (11)

We chose to assign µ = 5 and use initial conditions x = 2 and dx
dt = y = 0. Since the problem

is nonstiff, we generate our training data by integrating the IVP with SciPy and torchdiffeq using
DOPRI5, a fourth order embedded method in the Runge–Kutta family of ODE solvers, with the default
settings at 200 points uniformly spaced in time between 0 and 25 [Virtanen et al., 2020, Chen, 2021,
Dormand and Prince, 1980]. As discussed in the methods section, we batch our data into 199 training
samples consisting of IVPs between 2 adjacent known data points, and simultaneously solve the 199
IVPs during each epoch using our own code for the fourth order explicit Runge–Kutta–Fehlberg
method, which allows us to directly perform backpropagation through the ODE discretization scheme
[Fehlberg, 1968]. Three neural networks were trained using the training data: (1) a conventional
neural network with 5 layers consisting of 2x50x50x50x2 neurons in each layer with tanh activation
functions, and (2) two separate π-net V1 polynomial neural networks of degree three and four.

Following training, the performance of the neural networks were tested by: (1) integrating the neural
ODEs from the training data’s initial conditions up to a time value of 80 and (2) plotting the vector
fields of the time derivatives of the variables x and y. As shown in Fig 8 and 10, the third order
π-net polynomial neural ODE was able to successfully learn the dynamics of the system. When the
equations were recovered from the polynomial neural ODEs, as shown in Fig 8, the coefficients of
the original Van der Pol ODE model were successfully recovered to 7 significant digits.

The conventional neural ODE with tanh activation functions was able to correctly predict the dynami-
cal system’s trajectory starting at the training data’s initial conditions, as shown in Fig 8; however, the
vector fields in Fig 10 demonstrate that it learned slightly different dynamics from the original Van
der Pol ODE the data was generated from. The vector field of the traditional neural ODE does not
show the limit cycle found in the Van der Pol ODE. We can show this by integrating the neural ODEs
and Van der Pol ODE forward in time starting at a different set of initial conditions. Fig 9 integrates
the ODEs forward in time starting at x = 4 and y = dx

dt = 4. It can be seen that the conventional
neural ODE fails to learn the limit cycle, whereas the polynomial neural ODE does not have the same
issue.
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Recovered Equations:
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𝑑𝑥

𝑑𝑡
= 𝑦

𝑑𝑦

𝑑𝑡
= 5𝑦 − 5𝑥2𝑦 − 𝑥

3rd Order Polynomial Neural ODE:

𝑑𝑥

𝑑𝑡
=

𝑑𝑦

𝑑𝑡
=

7.2012814 ⋅ 10−9𝑥3 − 4.4566047 ⋅ 10−8𝑥2𝑦 − 6.7257892 ⋅ 10−9𝑥2 + 1.9197007 ⋅ 10−8𝑥 𝑦2

+ 3.8386451 ⋅ 10−8𝑥 𝑦 + 1.9028246 ⋅ 10−8𝑥 − 1.0600239 ⋅ 10−9𝑦3 + 2.5864009 ⋅ 10−8𝑦2

+ 1.0000002 𝑦 − 9.6208355 ⋅ 10−9

− 2.2990156 ⋅ 10−7𝑥3 − 5.0000006 𝑥2𝑦 − 1.3328585 ⋅ 10−7𝑥2 − 1.6160624 ⋅ 10−7𝑥 𝑦2

− 4.4998796 ⋅ 10−8𝑥 𝑦 − 0.99999996 𝑥 − 5.6293068 ⋅ 10−9𝑦3 + 7.2424686 ⋅ 10−8𝑦2

+ 5.0000002 𝑦 + 2.261526 ⋅ 10−7

4th Order Polynomial Neural ODE:

𝑑𝑥

𝑑𝑡
=

𝑑𝑦

𝑑𝑡
=

−0.00038938068 𝑥 𝑦 − 5.490018 ⋅ 10−7𝑥 − 1.5044485 ⋅ 10−9𝑦4 − 3.5699984 ⋅ 10−10𝑦3

+ 3.8001216 ⋅ 10−5𝑦2 + 1.0000001 𝑦 − 0.00059056922

− 5.7890282 ⋅ 10−5𝑥4 + 8.2630814 ⋅ 10−5𝑥3𝑦 − 2.7629706 ⋅ 10−8𝑥3 + 7.2781275 ⋅ 10−6𝑥2𝑦2

−4.1394224 ⋅ 10−7𝑥2𝑦 + 0.00036728121 𝑥2 + 2.8932511 ⋅ 10−8𝑥 𝑦3 + 1.1002618 ⋅ 10−8𝑥 𝑦2

2.3800507 ⋅ 10−5𝑥4 − 2.5142894 ⋅ 10−5𝑥3𝑦 − 6.0889057 ⋅ 10−7𝑥3 − 4.8105897 ⋅ 10−6𝑥2𝑦2

− 4.9999998 𝑥2𝑦 − 0.00013980035 𝑥2 − 3.5792187 ⋅ 10−8𝑥 𝑦3 − 3.0740606 ⋅ 10−7𝑥 𝑦2

+ 0.00013637068 𝑥 𝑦 − 0.99999866 𝑥 + 1.967098 ⋅ 10−9𝑦4 + 1.0625662 ⋅ 10−8𝑦3

− 1.0153587 ⋅ 10−5𝑦2 + 5.0000002 𝑦 + 0.00021566005

Figure 8: The conventional neural ODE and the π-net V1 polynomial neural ODE were integrated
from the initial conditions to a time of 80 to test the performance of the neural ODEs. The vertical
green line indicates where the training data ends and the neural ODE begins making a prediction. The
symbolic forms of the polynomial neural ODEs were also obtained for each of the degrees shown.
The red terms indicate additional terms that can be dropped.
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Figure 9: To test the ability of the neural ODEs to learn the limit cycle of the Van der Pol oscillator,
the various models were integrated forward in time from initial conditions x = 4 and y = dx

dt = 4.
The conventional neural ODE with tanh activation functions did not learn the limit cycle from the
data, whereas the third order polynomial neural ODE successfully did.
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Figure 10: The vector fields of the time derivatives of variables x and y are plotted for the conventional
neural ODE with tanh activations (left), the true ODE equation (middle), and the third order π-net V1
polynomial neural ode (right). The top row shows the entire training region, while the bottom row
shows the region outside of the training region. The blue circles mark the training data.
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3.5 Learning Other Types of Equations with Polynomial Neural ODEs

All of our previous demonstrations were on ODEs with equations defined by polynomials, so our last
demonstration is on a dynamical system which is not a polynomial:

dx

dt
= cos(y)

dy

dt
= − sin(x). (12)

with initial conditions x = 0.5 and y = 1. Since the problem is nonstiff, we generate our training
data by integrating the IVP with SciPy and torchdiffeq using DOPRI5, a fourth order embedded
method in the Runge–Kutta family of ODE solvers, with the default settings at 200 points uniformly
spaced in time between 0 and 40 [Virtanen et al., 2020, Chen, 2021, Dormand and Prince, 1980].
As discussed in the methods section, we batch our data into 199 training samples consisting of
IVPs between 2 adjacent known data points, and simultaneously solve the 199 IVPs during each
epoch using the fourth order explicit Runge–Kutta–Fehlberg method [Fehlberg, 1968]. The following
neural networks were trained using the training data: (1) a conventional neural network with 5 layers
consisting of 2x50x50x50x2 neurons in each layer with tanh activation functions, and (2) separate
π-net V1 polynomial neural networks of degrees 4, 5, 6, and 15.
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Figure 11: The vector fields of the time derivatives of variables x and y are plotted for the conventional
neural ODE with hidden layers 2x50x50x50x2 and tanh activations (left), the true ODE equation
(middle), and the sixth order π-net V1 polynomial neural ode (right). The blue circles mark the
training data.

Following training, the performance of the neural networks were tested by plotting the vector fields
of the time derivatives of the variables x and y. As shown in Fig 11, the polynomial neural ODE was
able to learn a better approximation to the true vector field than the conventional neural ODE. While
the polynomial neural ODE does not learn a perfect approximation to the field, it is better able to
predict a rough approximation of the structure of the true vector field, including where additional
spirals in the vector field would be, whereas the conventional neural ODE only learned one spiral.

4 Discussion/Conclusion

This work introduced (1) symbolic regression with deep polynomial neural networks and (2) the
polynomial neural ODE, which is a deep polynomial neural network implemented into the neural
ODE framework. Deep polynomial neural networks directly output a polynomial transformation of
the input, which makes them directly interpretable. We are the first to show that symbolic computing
can be used to directly recover a symbolic representation of deep polynomial neural networks.
We demonstrated successful symbolic regression with a deep polynomial neural network on data
generated from a univariate fourth order polynomial. We also successfully demonstrated symbolic
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regression of dynamical systems governed by ODEs with the polynomial neural ODE on data from
the Lotka-Volterra deterministic oscillator, damped oscillatory system, and Van der Pol deterministic
oscillator.

We understand that real world experimental data will be noisy, but we have chosen to devote an
analysis on experimental noise to a future study. We have a follow up paper on the data requirements
for training conventional and polynomial neural ODEs such as noise, sampling frequency, and training
size. Additionally, most chemical kinetics systems are stiff ODEs [Shampine and Gear, 1979], which
arise from reaction rates that differ by many orders of magnitude, so neural ODEs need to be able to
handle stiffness for this application space. This work only shows examples for nonstiff ODEs. Stiff
ODEs require special treatment [Kim et al., 2021], which we will show in a follow up paper.

Traditional deep learning approaches from the field of computer science can be used on scientific
problems, but this paper makes the case for developing deep learning techniques specifically tailored
for scientific applications. Rather than using "black box" data-driven approaches to describe physical
phenomenon, we should be creating a suite of mechanistic data-driven approaches. The polynomial
neural ODE is one such approach; however, mathematical models usually have additional types
of functions such as trigonometric functions and exponential functions. The scientific machine
learning community will need to work on developing more interpretable neural network architectures
including more complicated functions such as these.
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