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ABSTRACT: Multiscale design of catalyst layers (CLs) is important to advancing hydrogen electrochemical
conversion devices toward commercialized deployment, which has nevertheless been greatly hampered by the
complex interplay among multiscale CL components, high synthesis cost and vast design space. We lack rational
design and optimization techniques that can accurately reflect the nanostructure-performance relationship and cost-
effectively search the design space. Here, we fill this gap with a deep generative artificial intelligence (AI) framework,
GLIDER, that integrates recent generative AI, data-driven surrogate techniques and collective intelligence to
efficiently search the optimal CL nanostructures driven by their electrochemical performance. GLIDER achieves
realistic multiscale CL digital generation by leveraging the dimensionality-reduction ability of quantized vector-
variational autoencoder. The powerful generative capability of GLIDER allows the efficient search of the optimal
design parameters for the Pt-carbon-ionomer nanostructures of CLs. We also demonstrate that GLIDER is
transferable to other fuel cell electrode microstructure generation, e.g., fibrous gas diffusion layers and solid oxide
fuel cell anode. GLIDER is of potential as a digital tool for the design and optimization of broad electrochemical
energy devices.
KEYWORDS: fuel cells, generative artificial intelligence, multiscale design, multiphysics, catalyst layer

A central quest in hydrogen electrochemical energy devices,
such as proton exchange membrane fuel cells and electrolysis
cells, is the efficient design of high-performance electrodes,
especially catalyst layers (CLs).1,2 The CL structures dictate
charge and mass transfer, hence influencing performance and
durability. The CL design generally involves an optimal
interplay between multiscale catalyst nanoparticles, carbon
supports and ionomer thin films.3 Nevertheless, we are limited
by the resolution of advanced imaging tomography and
prohibitive electrode synthesis cost to experimentally explore
CL design space.4,5 Therefore, we need different methods that
can cost-effectively scrutinize high-dimensionality design space
for optimal CL morphology. Current digital tools for CL

design are either low-fidelity or, if high-fidelity, typically are
inefficient because of tremendous cost for digital CL
nanostructure preparation and performance evaluation.6−8

Here, we combine recent advances in generative artificial
intelligence and data-centric surrogate modeling techniques to
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Figure 1. Overview of GLIDER. (a) 3D-VQ-VAE learns to transform high-dimensional CL nanostructures into low-dimensional latent space
through the learning of 3D encoder and 3D decoder. Two different kinds of input CL nanostructures are used to train the 3D-VQ-VAE
separately for different tasks. (b) An autoregressive generative mode is trained by the 3D latent from (a) and is used to generate 3D latent
which are then decoded into high-fidelity 3D CL nanostructures in (f) while the generation is low efficiency. (c) A data-driven CNN model
predicts the current density, J, of various generated 3D CL nanostructures which are decoded from generated 3D latent. Notably, physical
connectivity is embedded in the decoded CLs. (d) A generative adversarial learning model is employed to learn the data structure of the 3D
latent from (a) and then is employed to efficiently generate 3D latent which are decoded into high-dimensional 3D CL nanostructures as
well. (e) A pore-scale CL model predicts the J of a given 3D CL nanostructure by resolving a couple of multiphysics governing equations.
The predicted J values serve as labels in the training of the data-driven surrogate model in (c). (f) Demonstration of generated 3D CL
nanostructures for two different input data sets in (a). (g) Particle swarm optimization for global optimization of pore-scale CL backbone
nanostructures with various Pt/C and I/C ratios driven by the J from the surrogate model in (c).
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develop a unified generation and optimization framework that
can be applied jointly to design multiscale electrode
nanostructures beyond CLs.
Reasonable representation of multiscale CL nanostructures

and performance evaluation are the foundation for reliable
digital CL design and optimization.9−12 Regarding structure
representation, high-quality representation of multiscale CL
nanostructures suffers the “curse of dimensionality” since high
resolution is required to resolve the smallest-scale material
morphology among platinum particles (around 2−3 nm),
carbon supports (around 30−50 nm) and ionomer films
(thickness 3−7 nm).12 In addition, the region of interest
(ROI) needs to be sufficiently large to include relevant spatial
interactions among multiple components. For instance, the
nanostructures of a 200 nm × 200 nm × 200 nm CL require
one hundred million voxels to be resolved at 0.4 nm by
electron tomography at cryogenic temperature (cryo-ET).12

The high-dimensionality challenge is only mitigated slightly
even with the use of current stochastic digital generation
algorithms which apply reasonable assumptions to decrease the
necessary resolution.6−8 High dimensionality also prevents fast
performance evaluation due to massive iterations of partial
differential equations across complicated nanostructures.
Millions of time steps are required to resolve multiphysics
behaviors in multiscale multiphysics CL models, even when
accelerated by parallel computing.13,14 Therefore, it is critical
to seek for a method that can accelerate the nanostructure
representation and performance evaluation in high-throughput
design and optimization of CLs.
There is recent evidence that generative artificial intelligence

(AI) has accelerated the design and optimization of various
energy materials.15−18 Namely, autoregressive models and
multimodal transformers accelerated the design of functional
organic molecules and metal−organic frameworks by learning
the sequence of molecules;19,20 Generative adversarial neural
networks (GANs) could quickly generate realistic solid oxide
fuel cell (SOFC) electrode microstructures and allowed the
efficient search of the electrode design space.21−23 However,
these methods can only handle small and homogeneous nano/
microstructures with small ROI (e.g., 643 voxels for SOFC
anode, the voxel resolution 65 nm)23 and will suffer model
collapse and tremendous computational demands if applied to
design multiscale CLs. Thus, scalability to large ROI that
captures multiscale structural behaviors is crucial for generative
AI to practically design CLs.
We address this open challenge with GLIDER, a generative

AI framework named as ‘Generative Learning to Inform the
Design of Electrodes’. GLIDER is scalable to accept diverse
input nanostructure dimensions, which is achieved by
representing high-dimensional CL nanostructures with low-
dimensional latent space, underpinned by a vector quantized-
variational autoencoder (VQ-VAE).24 Hence, generative AI
can efficiently learn low-dimensional latent space and generates
latent variables which can be transformed back to high-
dimensional CL nanostructures. In addition, GLIDER is
tunable because it provides both high-fidelity and high-
efficiency generation options, allowing users to generate CL
nanostructures upon their specific demands. Moreover,
GLIDER is robust because it seamlessly integrates physical
domain knowledge, i.e., CL nanostructure connectivity into the
performance surrogate model, providing a solid foundation for
more accurate and interpretable predictions. Last, GLIDER is
transferable because it can be easily applied to design and

optimization of other electrode micro/nanostructures, such as
SOFC anode and fibrous gas diffusion layers (GDLs). In this
study, we particularly showcase how GLIDER successfully
designs and optimizes Pt−C-ionomer CLs for low-Pt-loading
proton exchange membrane fuel cells (PEMFCs).

GLIDER OVERVIEW
GLIDER is a three-stage AI machine which achieves
nanostructure generation and optimization by leveraging low-
dimensional latent representation space, which consists of six
modules in total, as shown in Figure 1. At the first stage,
GLIDER reduces the dimensionality of the input CLs with the
least information loss. A three-dimensional (3D) vector
quantized-variational autoencoder (3D VQ-VAE) transforms
multiscale CL nanostructures into a low-dimensional latent
space which retains similar meaningful properties of the
original input. Accurate transformation in 3D VQ-VAE is
enabled by the interactions among a 3D encoder, a 3D decoder
and a learnable codebook in between. 3D VQ-VAE can
transform CL nanostructures with various types (e.g., two CLs
with 224 × 384 × 384 and 512 × 128 × 128 voxels in Figure
1a) into low-dimensional 3D latent arrays (e.g., 16 × 24 × 24
and 32 × 16 × 16) with the least information loss. The main
difference between VAEs and VQ-VAEs is the way they
represent latent variables. VAEs employ continuous latent
variables, while VQ-VAEs use discrete latent space representa-
tion, which is achieved by vector quantization. The latent space
representation is constrained to be one of a small set of basis
vectors; the set of basis vectors are stored as the “codebook”.
At a latent space “location”, the representation is a single index
that identifies which basis vector is the most appropriate
representation; the representation is therefore quantized in the
basis vectors. Thus, the latent space representation becomes a
set of indices identifying the codebook’s embedding vectors,
and therefore enables a reduction in dimensionality. Both the
basis vectors and the indices at each latent space location are
learned by the model. The main advantage of VQ-VAEs over
VAEs is to learn discrete data like multiphase materials
distinguished by discrete voxel values, enabling more stable
and interpretable AI techniques.
At the second stage, GLIDER generates 3D CL nanostruc-

tures for various demands, i.e., high-fidelity or high-efficiency
generation, which are generally challenging to simultaneously
fulfill. Regarding high-fidelity generation, an autoregressive
gated pixel convolutional neural network (Gated PixelCNN)25

learns the data structure of the 3D latent from 3D VQ-VAE to
generate latent, as shown in Figure 1b. Generated 3D latent is
then reconstructed into CL nanostructures by the 3D decoder
in Figure 1a, see Figure 1f. High-efficiency generation in
GLIDER is achieved by a 3D Wasserstein generative
adversarial neural network with gradient penalty (3D
WGAN-GP).20−23 The adversarial learning between the
generator and critic in the 3D WGAN-GP enables the effective
learning of the 3D latent generated in the stage 1. The latent
from the trained generator is then reconstructed into 3D CL
nanostructures by the 3D decoder afterward.
At the last stage, GLIDER efficiently optimizes CL

nanostructures by tuning Pt/catalyst (Pt/C) and I/catalyst
(I/C) ratios. Here, GLIDER is underpinned by three modules,
i.e., the high-efficiency CL generator from the stage 2, a data-
driven surrogate model for the current density J of CLs, as well
as a global particle swarm optimization (PSO) algorithm,26 see
Figure 1c,f for the interaction between the modules. Notably,
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the training of J surrogate model takes the numerical data
simulated by a 3D pore-scale CL model in Figure 1e.

RESULTS AND DISCUSSION
Encoding and Reconstruction of Multiscale CL

Nanostructures. We initially showcase the capability of
GLIDER in effectively compressing real multiscale nanostruc-
tures obtained through electron tomography at cryogenic
temperatures (cryogenic-ET) into low-dimensional latent
representations. We explore the performance of GLIDER
under compression ratios of f = 8, 16, 32 along each dimension
of CLs. Here, CLs are equally compressed along the depth-
wise, vertical and horizontal directions. However, compression
can be heterogeneous on demand. The real CL nanostructures,
characterized by a size of 224 × 384 × 384 voxels as depicted
in Figure 2a, are encoded into 3D latent representations with
varying sizes corresponding to the three f values. A smaller
compression ratio, such as f = 8, leads to a larger 3D latent size
of 28 × 48 × 48, while a larger ratio like f = 32 results in a

smaller 3D latent size of 7 × 12 × 12, as illustrated in Figure
2b. Notably, under higher compression ratios ( f = 32),
associating latent distribution with real material voxels
becomes challenging, in contrast to the clearer identification
of large pores in the latent when using lower compression
ratios like f = 8. Furthermore, our observations reveal distinct
patterns in the utilization of vector codebooks, as depicted in
Figures 2d and S1a. The usage of the codebook generally
declines when the compression ratio f increases, especially
when f increases from very small to large values. This is
because many local structural features are preserved after light
compression and thus the model needs more types of vectors
in the codebook to represent diverse features. However, the
usage of the codebook drops under significantly large
compression because some minor local features are lost during
compression and thus the model requires fewer vectors in the
codebook. Specifically, when f = 8, nearly all 512 vectors in the
codebook are actively involved in reconstructing CLs,
showcasing a powerful capacity to represent high-dimensional

Figure 2. Encoding and decoding CL nanostructures under three compression ratios. (a) A cryogenic-ET CL nanostructure with 224 × 384
× 384 voxels for example (pore phase is hidden to show more inside details). (b) Encoded 3D latent colored by vector labels of the
codebook where 512 vectors were employed in total. (c) Reconstructed CL nanostructures by the 3D decoder. (d) Statistical frequency of
512 vector labels used in 100 test CL samples for f = 8, 16 and 32, respectively. Here, gray spots indicate frequency is far larger than 0.01,
indicating the intensive usage of the specific vector. The 512 vector labels are arranged into a 32 × 16 matrix for the three cases, respectively.
(e) The comparison between real and reconstructed volume fraction of ionomer, carbon and Pt.
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CLs in a low-dimensional latent space. Because each vector in
the codebook can represent a specific feature of the original
CLs. Conversely, a significant drop in vector engagement is
observed with higher compression ratios ( f = 16 and f = 32),
indicating a more selective use of vectors in these cases.
3D latent with various sizes are then reconstructed into high-

dimensional multiscale CL nanostructures by the 3D decoder.
It is seen from the 3D CL morphology in Figure 2c that
GLIDER visually reconstructed low-dimensional latent repre-
sentations to real CL nanostructures under three f values.
However, we observe Pt particles were lost somewhere,
especially in case f = 32. To quantify the reconstruction
accuracy, we further compare the volume fraction of ionomer,
carbon and Pt against the input, as show in Figure 2e. f = 8
shows good performance by reconstructing all components
accurately. As f increases, though ionomer and carbon phases
are reconstructed with reasonable accuracy, nearly half Pt
particles disappear in the reconstructed CLs. A series of slices
through the CL are shown in Figure S1b to highlight the Pt
loss under high f. It is seen that disappeared Pt particles tend to
have smaller equivalent diameters. The reason for significant Pt
loss under high f is attributed to the nature of CNNs which are
applied in the encoder and decoder to extract data features.
Information loss is inevitable after the input passes through

multiple convolution layers. The 3D distributions of the
reconstructed errors for the CLs under three f values are shown
in Figure S1c.
We further validate the transferability of GLIDER in

encoding and decoding various fuel cell electrode micro-
structures. Specifically, we apply GLIDER to compress and
reconstruct GDLs, characterized by randomly stacked fibers.
The reconstructed GDL morphologies under different
compression ratios are presented in Figure S2. The results
reveal that GLIDER maintains accurate reconstruction with
diminishing precision as f increases, consistent with observa-
tions in CLs. Notably, due to the relatively limited material
components in GDLs, such as fibers and pores, the
reconstruction process is less challenging compared to CL
reconstruction. This is evident in the achieved reconstruction
accuracy exceeding 90% for GDLs, as illustrated in Figure S2c.
Additionally, GLIDER is demonstrated in reconstructing
SOFC anode microstructures, showcasing accurate reconstruc-
tion of Nickel (Ni) and Yttria-stabilized zirconia (YSZ) as
depicted in Figure S3.

Generating Cryogenic-ET CL Nanostructures from
Low-Dimensional Latent Space. Our initial demonstration
focuses on the capacity of GLIDER to generate and high-
quality cryo-ET CL nanostructures. The generation process

Figure 3. Performance of GLIDER on generating CL nanostructures under high-fidelity generation mode using f = 16 in the depth-wise,
horizontal and vertical directions. (a) Generated CL nanostructures in cases f = 8, 16 and 32, respectively. (b) Generation efficiency of a
single CL in cases f = 8, 16, and 32 under high-fidelity generation mode. (c) Comparison of generated volume fraction of pore, ionomer,
carbon and Pt against real CLs in the case f = 16. Statistical analyses are conducted over 100 generated and real CLs, respectively. (d) Two-
point correlation coefficient curves of 100 real and 100 generated CLs in the case f = 16. The generated curve for Pt phase is mostly
overlapped by the training data curve.
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involves passing the index of low-dimensional latent output
from the 3D encoder to the high-fidelity generator, which, in
this case, is an autoregressive model known as 3D Gated
PixelCNN (as illustrated in Figure 1b). Following training, the
Gated PixelCNN exhibits the ability to generate realistic 3D
CL nanostructures across various compression ratios ( f = 8,
16, and 32). Notably, these f values are consistent across the
three dimensions of CLs in all cases of the section.
The visually aligned comparison between generated CLs and

real CLs is evident in Figures 2a and 3a. The synthetic CLs
exhibit Pt particles embedded into carbon clusters, predom-
inantly covered by a thin ionomer film, mirroring the
characteristics of real CLs depicted in Figure 2a. Moreover,
the representation includes a substantial proportion of pores
within CL regions, as expected. Critically, the ionomer film
demonstrates good connectivity, ensuring the presence of a
continuous proton transport path. Due to the inherent loss of
Pt particles during the preparation of the low-dimensional
latent, observations in CLs generated with higher compression
ratios (high f values) reveal fewer Pt particles, as illustrated in
CL slices in Figure 3a. This emphasizes the trade-off between
compression efficiency and the preservation of detailed features
in the generated nanostructures.
Next, we focus on the comparison of the generation speed of

GLIDER across three different compression ratios ( f values).
Figure 3b illustrates the time taken to generate a single high-
fidelity CL for cases where f equals 8, 16, and 32. Notably, f = 8
requires the most extended duration, approaching nearly 8 h,
while f = 32 exhibits the swiftest generation time, taking just
around 10 s. This considerable variation in generation speed is
attributed to the autoregressive nature of the process, where
the Gated PixelCNN generates each voxel sequentially, and the
generation of each voxel depends on all previously generated
voxels. Notably, the generation cost becomes notably

significant when dealing with larger input latent dimensions,
such as 28 × 48 × 48 in the case of f = 8.
To trade off efficiency and accuracy, we conduct a

quantitative assessment exclusively for the case of f = 16,
where the generation efficiency is deemed acceptable. Figure
3c provides a comparison between the volume fractions of Pt,
carbon, and ionomer in the generated CLs as opposed to the
training CLs. Notably, the volume fraction of carbon remains
nearly identical across over 100 generated samples, with slight
differences observed in the volume fraction of ionomer. As
anticipated, the generated volume fraction of Pt was lower due
to Pt loss during the dimensionality reduction in the 3D
encoder. To further validate the spatial fidelity of the generated
CLs, we investigated the two-point correlation curves for Pt,
ionomer, carbon, and pore regions across 100 generated CLs,
as shown in Figure 3d. The observed alignment between the
generated curves and those of real CLs suggests that the spatial
structures of the generated CLs closely resemble those of real
CLs.
The generation capability of GLIDER extends seamlessly to

other nanoscale and microscale electrode microstructures with
the simple substitution of the training data set. To illustrate
this transferability, we showcase the generation of GDLs and
SOFC anode microstructures, utilizing realistic GDLs and
SOFC electrode microstructures as the training data,27,28 see
Figure 4. Even when presented with microstructures exhibiting
different structural characteristics from CLs, GLIDER
consistently exhibits the ability to generate high-quality fibrous
GDLs and SOFC anode microstructures. This emphasizes the
versatility and adaptability of GLIDER across diverse nanoscale
electrode systems. However, unrealistic structural features are
occasionally observed in the generated microstructures, e.g., the
isolated YSZ particle in Figure 4b. This is caused by the
isolated YSZ regions existing in the training data sets. Because
hundreds of 3D SOFC anode training microstructures are

Figure 4. Transferability of GLIDER demonstrated in the generation of GDLs and microporous SOFC anode. (a) Real fibrous GDL and
SOFC anode microstructure in the training data set that were experimentally imaged by X-ray nano tomography and FIB-SEM, respectively.
The GDL size is 224 × 384 × 384 (resolution 1.33 μm). Regarding SOFC anode, it has a size of 128 × 256 × 256 (resolution 65 nm) (b)
Top: a generated GDL in high-fidelity mode under f = 16 along three directions. Bottom: a generated SOFC anode in high-fidelity mode
under fH = 8, f V = 8, and fd = 4. (c) Two-point correlation curves which are analyzed over 10 generated and training samples. Top: GDL;
Bottom: SOFC anode.
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sampled by randomly cutting a super large anode sample.
Thus, isolated material regions are possible to appear near the
domain edges. The check of the structural connectivity can
detect the microstructures without structural supports and thus
can potentially enhance physical realism of generated micro-
structures. In addition, reducing unrealistic structural features
in the training data sets is helpful to improve the generated
quality.
The high-quality electrode and CL nanostructures generated

by GLIDER offer significant value for educational purposes in
fuel cell manufacturing. GLIDER facilitates the exploration of
intricate interactions among multiple key material components

of CLs through virtual reality,29,30 providing users with a
diverse range of nanostructures. While the powerful generation
ability of GLIDER has been established, it is important to note
that the diversity in generation depends on the input diversity
of CL nanostructures. Unfortunately, achieving such diversity
requires access to specific experimental facilities for imaging
various CL samples, which is both cost-prohibitive and time-
consuming. Typically, diverse CL generation involves the
implementation of logic-based algorithms, which incrementally
introduce multiple material components into a CL domain
until the target fraction is satisfied. Additionally, despite
employing an intermediate compression ratio f, the high-

Figure 5. Performance of GLIDER for logic CL generation (512 × 128 × 128 voxels, resolution 3.5 nm). (a,b) The morphology of a CL
generated by a conventional logic CL generation algorithm. (c) Generated CL under high-fidelity mode (Gated PixelCNN). (d) Generated
CL under high-efficiency mode (WGAN-GP). (e) Generation cost under high-efficiency high-fidelity modes and using a conventional logic
generation algorithm. (f) Two-point correlation curves of generated CLs under high-fidelity and high-efficiency modes, as well as from a
conventional logic CL generation algorithm. (g) The comparison of generated Pt/C and I/C ratios under high-efficiency and high-fidelity
modes against training CLs, where the compression ratios along three dimensions are fd = 32, fh = 8 and f v = 8. The gray box indicates the
area with the Pt/C ratio ranging from 0.2 to 0.6 and the I/C ratio ranging from 0.5 to 1.6. Notably, the gray box represents the upper and
lower Pt/C and I/C ratios of the training CL nanostructures obtained from the stochastic algorithm.
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fidelity generation speed of GLIDER remains relatively slow.
This limitation hinders the efficiency of exploring a large
design space. Consequently, the application of GLIDER for the
digital design and optimization of cryo-ET CL nanostructures
presents a challenging endeavor. Addressing these challenges
would be crucial for leveraging the full potential of GLIDER in

advancing the digital design and optimization of complex CL
nanostructures efficiently.

Generating Algorithmic CL Nanostructures from
Low-Dimensional Latent Space. To further apply GLIDER
to generate algorithmic CLs, GLIDER incorporates another
generation mode, i.e., high-efficiency generative adversarial

Figure 6. GLIDER optimization of CL morphology based on Pt/C and I/C ratios. (a) Experimental validation of the pore-scale multiphysics
CL model under two Pt loadings. (b,c) The accuracy and error distribution of the J surrogate model of the CL based on two training data
sets: (i) training data set with J > 0.1 A cm−2 and (ii) training data set with J > 1.5 A cm−2. (d,e) The contour of J mapped (ηcathode = 0.2 V)
by the surrogated model under high-fidelity and high-efficiency generation modes, respectively. The crosses in Figure (e) refer to the
optimal Pt/C and I/C ratios identified by the PSO algorithm. (f) Optimized J−V curve screened by GLIDER under high-fidelity generation.
(g) Morphology of the optimal CL screened by GLIDER under high-fidelity generation. (h) Connected and isolated components in (g). (i,j)
Contour of oxygen distribution of the optimal CL operating under ηcathode = 0.2 V and the corresponding J = 2.64 A cm−2.
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learning, to accelerate the generation of CL nanostructures. In
this approach, we specifically targeted CL nanostructures from
logic generation algorithms, an example of which is shown in
Figure 5a,b. Notably, logic CL generation algorithms often
assume uniform diameters for Pt particles and discretize a Pt
particle by using a voxel. However, this assumption limits the
GLIDER to directly generate CLs with Pt particles fully
resolved, as substantial Pt loss during encoding and decoding
processes was observed as illustrated in Figure S4.
To efficiently generate diverse CLs with Pt particles,

GLIDER employs a two-stage method for logic CL
nanostructure generation. In the first stage, GLIDER generates
the backbones of logic CLs without Pt particles. This involves
transforming the original CL backbones with the size 512 ×
128 × 128 voxels (resolution 3.5 nm) into a low-dimensional
latent space of 16 × 16 × 16, utilizing heterogeneous
compression ratios along three directions ( fd = 32 and fh =
f v = 8). The generative adversarial learning, specifically using
WGAN-GP, then learns from the low-dimensional latent space
to generate latent representations, subsequently decoded into
3D CL backbones. In the second stage, GLIDER randomly
adds Pt particles to the CL backbone, similar to the same
assumptions as conventional logic CL generation algorithms.
Figure 5c,d showcase the logic CLs generated by GLIDER,
with dimensions large enough to allow for the observation of
reasonable spatial distribution of carbon, ionomer, and Pt. This
innovative two-stage approach effectively combines the
strengths of generative AI and logic generation algorithms to
enhance the accuracy and efficiency of CL nanostructure
generation.
GLIDER significantly leaps forward in the efficiency of logic

CL nanostructure generation. GLIDER only took 1 h to
generate 100 CLs, a task that would take the conventional logic
algorithm nearly 24 h, see Figure 5e. Beyond high generation
efficiency, GLIDER ensures the quality of the produced CLs
matches that of the training CLs. This is demonstrated by the
correlation curves among Pt, carbon, ionomer, and pore
regions across 100 samples, as depicted in Figure 5f. To further
investigate generation ability of GLIDER, we conduct a
comparison under high-fidelity and high-efficiency modes.
These modes leverage Gated PixelCNN and WGAN-GP to
learn low-dimensional latent representations, respectively.
Notably, even under high-fidelity mode, GLIDER maintains
an efficient generation pace, requiring only 7 h for 100 CLs.
Although slightly deviating from the training curves due to
varying Pt/C and I/C ratios in the generated CL distributions,
this mode still outperforms conventional high-fidelity methods
in terms of time efficiency. Figure 5g offers a comprehensive
analysis of the generated CLs under both modes against
training CLs, focusing on Pt/C and I/C ratios across 100
samples. Notably, training CLs span a region where Pt/C
ranges from 0.2 to 0.6 and I/C ranges from 0.5 to 1.6. In
contrast, high-efficiency mode concentrates CLs in the middle
of this spectrum, while high-fidelity mode produces more
diverse CLs, spanning a wider range of Pt/C and I/C ratios,
albeit with a notable absence in the top-left corner of the
distribution, as illustrated in Figure 5g.
We extend our exploration to assess the ability of GLIDER

to generate logic CLs from latent with large dimension,
specifically employing a latent size 323. The rationale behind
utilizing larger latent dimensions is the potential reduction of
information loss during the encoding and decoding processes.
To begin this investigation, we initiate a comparison of the

generation performance of GLIDER under the high-efficiency
mode. Figure S5a depicts the morphological characteristics of
generated logic CLs, decoded from a larger latent size 323.
Despite capturing the interplay among the four material
components, the visual quality falls short when compared to
CLs generated from a smaller latent size 163, as illustrated in
Figure 5d. Notably, the ionomer film exhibits a wider spread in
the case of the latent size 323, a deviation from the expected
and established ionomer morphologies in logically generated
CLs. This visual inconsistency is further substantiated through
two-point correlation analysis and an examination of the
distributions of generated Pt/C and I/C ratios. The reason for
GLIDER not being able to generate high-quality CLs from
large latent size is because WGAN-GP is limited to capturing
spatial correlations among long-distance latent vectors, which
is the strength of autoregressive learning in high-fidelity mode
on the contrary. This is confirmed by employing GLIDER to
generate high-quality logic CLs by using a latent size of 323
under high fidelity, as shown in Figure S5b. However, the
computational efficiency (3 h for a CL) is still inferior to
traditional logic algorithms. This limitation can possibly be
lifted by optimizing the inference processes of Gated
PixelCNN in the future.

Optimizing Low Pt Loading CL Nanostructures.
Reducing the Pt loading without sacrificing performance is
highly desirable to meet the long-term sustainable target of 5
gPt per vehicle.

31 To reduce the oxygen-related mass transport
resistance which is deemed to be one main attribute of
performance scarification, identifying the optimal Pt/C and I/
C ratios are crucial for manufacturing CLs with low Pt
loadings. However, previous studies mainly employed macro-
scopic models as optimization tools, which are limited to
reflect nanoscale interplay between ionomer film and carbon
frameworks.32,33 Here, we demonstrate that GLIDER carried
out comprehensive exploration of design parameters of Pt/C
and I/C ratios for the CL with Pt loading of 0.05 mg cm−2 by
integrating their CL performance surrogate model and a PSO
algorithm.
The performance of a nano porous CL is governed by a

series of partial differential equations which generally take high
computational cost to resolve. To enable the fast prediction of
the CL performance, i.e., current density J under a given
voltage. GLIDER predicts the performance of generated CLs
quickly through a data-driven surrogate model of J under-
pinned by a pore-scale multiphysics CL model and a 3D CNN
which takes decoded CL nanostructures as input. The pore-
scale multiphysics CL model is validated against experimental
polarization curves34 under the Pt loading 0.1 and 0.2 mg
cm−2, respectively, see Figure 6a. The pore-scale CL model
aligns with the experimental curves well under the two Pt
loadings, ensuring the reliability of the training data collected
from the model.
We then train the 3D CNN with a range of CL

nanostructures labeled by their J. We found that embedding
the physical feature�connectivity of CL material components
into training CLs is crucial to improve the accuracy of the
surrogate model. Connectivity is embedded by highlighting
connected components with different voxel values, as shown in
Figure 6h. We employ two strategies to train the surrogate
model to trade off between the model accuracy and
generalization due to the wide range of complex training CL
microstructures.23 The first strategy that is employed takes
broad training CLs with J > 0.1 A cm−2. The accuracy of the
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surrogate model predicting the test data set and the training
data set are shown in Figures 6b and S6, respectively. We
observe that the surrogate model displays acceptable accuracy
under high J (J > 1.5 A cm−2) but deviates from the real under
low J (J < 1 A cm−2). The majority of predicted J show errors
within ±10% and big errors (>20%) happen to low J range.
This is resulted from the limited training data set (less than
200 CLs) which is significantly imbalanced across the whole J
range, as well as the significant different characters between
high-performance and poor CLs. Meanwhile, poor CLs could
play as noisy samples and impact the model prediction on
high-performance CLs. In the second strategy, we further train
the surrogate with training samples of a narrow J range which is
larger than 1.5 A cm−2. As shown in Figure 6c, the surrogate
model outperforms itself trained on the broader J data set,
showing much lower error than ±5% for more than 70% test
CLs. In both strategies, the trained surrogate model in
GLIDER can quickly predict the J of a generated CL less
than 1 s, enabling an efficient screening of broad CL design
space. Though the whole J training strategy does not show
good accuracy for low J range, which is irrelevant for the CL
global optimization, the diversity of the data set could enhance
the model generalization.
We evaluate the optimization performance of GLIDER

under two generation modes. Figure 6d shows the J map of
1,000 CLs generated under high-fidelity mode. The map
indicates that the high-performance CLs are attributed to good
alignment between Pt/C and I/C ratios. The J map reasonably
correlates Pt/C and I/C ratios because excessive ionomer
(high I/C ratio) and low fraction of carbon supports (low Pt/
C ratio) result in high mass and charge transport resistance. To
quantify the correlation between Pt/C and I/C ratios for high-
performance CLs, we fit CLs with J > 2.4 A cm−2. The optimal
area is depicted by two parallel functions as below

= ± + ×
+ ×

Pt/C ratio (0.22879 0.02) 0.03676 (I/C ratio)

0.0447 (I/C ratio)2 (1)

Furthermore, we identify the optimal CL from the top 10
which are analyzed by the pore-scale model again as shown in
Figure 6f,g. However, the optimization efficiency of GLIDER
under high-fidelity mode was low, which took around 70 h to
assess 1,000 generated CLs. In contrast, GLIDER performs fast
under high-efficiency mode. GLIDER only took 20 min to
sample 1,000 CLs under high-efficiency mode, as shown in
Figure 6e. The J map shows that both high Pt/C and I/C
ratios deteriorate CL performance significantly, which is
overlooked by high-fidelity optimization in Figure 6d.
Whereas, high J area predicted by GLIDER under high-
efficiency mode is away from the fitted curve. The different J
maps under different generation modes are caused by the
different sampling space learned by the Gated PixelCNN and
generative adversarial neural network, which was previously
compared in Figure 5g. Notably, the concentration loss under
high operating current density is slight in the polarization
curves of the modeled CLs, indicated by the linear drop of the
output voltage against J. This is because the top boundary of
the computational domain, as shown in Figure 1e, was set as
fixed oxygen concentration and thus can supply efficient
oxygen for the electrochemical reactions inside CLs.
Another advantage of GLIDER optimizing CLs under high-

efficiency mode is that it could intelligently search the optimal
instead of looping every possible CLs which are commonly

done by brute-force exploration. PSO successfully identifies
several optimal CLs which locate around the high J area, as
seen in Figure 6e. Though GLIDER shows strengths and limits
of optimization under two generation modes, they comple-
ment each other. A comprehensive understanding of the
correlation between various Pt/C and I/C pairs and J can be
achieved by the joint application of the two modes.
Fast and accurate multiscale CL design is among the most

desired needs of developing low Pt loading and durable fuel
cell technologies. Here we have demonstrated this need can be
addressed by GLIDER that seamlessly integrates multiple CL
generators and a performance surrogate model to efficiently
generate and optimize CL nanostructures from the perspective
of 3D morphology.
GLIDER achieves the generation of real CL nanostructures

by applying high-fidelity autoregressive learning. GLIDER was
also transferred to generate other relevant electrode micro-
structures in fuel cells, such as GDLs and SOFC anode. Finally,
GLIDER further accelerated the logic CL generation through
two generation modes and optimized the relevant manufactur-
ing parameters Pt/C and I/C ratios. We believe that these
results could soon have practical benefits to low-Pt-loading fuel
cell design and optimization.
GLIDER is enabled by several key innovations: advances in

CL nanostructure generation, transforming high-dimensional
CLs into low-dimensional latent representations; providing
high-fidelity and high-efficiency options for various CL
generation demands; robust prediction of CL performance,
enabled by a physics-embedded data-driven surrogate CNN;
efficient optimization of manufacturing parameters for low-Pt-
loading CLs, and providing both optimal parameters as well as
the correlated map among Pt/C, I/C and J.
A limitation of GLIDER is that it cannot reserve the super

small features, e.g., Pt particles resolved by one voxel, when
compressing high-dimensional CLs under extremely high
compression ratios. Though this limitation was addressed in
the study by a hybrid CL generation approach, an important
future step is to address the issue through hierarchical VQ-
VAE architecture which learns large- and small-scale features
individually.

CONCLUSIONS
We have introduced GLIDER, a generative AI machine that is
readily applied to generate and design multiscale catalyst layers
(CLs). GLIDER provides multiple generation capabilities to
meet various demands for nanostructure generation. The
efficient generation of GLIDER further enabled the efficient
optimization of two CL design parameters, Pt/C and I/C
ratios, underpinned by a surrogate performance model which is
driven by a multiphysics, multiscale CL model. More broadly,
GLIDER is an AI machine that can be transferred to various
micro/nano porous electrode structures. We have shown this
transferability by using fibrous gas diffusion layers and solid
oxide fuel cell anode. GLIDER also keeps evolutionary by
reserving the interface to connect more powerful generative AI
emerging in the future. This deep learning model can be a
promising efficient tool to accelerate the research and
development beyond fuel cell CLs.
Owing to the rapid development of generative AI, the

application of hierarchical VQ-VAEs could possibly address the
challenges of high-fidelity multiscale nanostructure generation,
e.g., VQ-VAE-235 and latent diffusion models.36 These models
adopt a multiscale autoencoder to capture global and local
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features and could encode structures into two hierarchical
latent spaces. Then, the high-fidelity nanostructures can finally
be generated by the global latent representation conditioned
on local latent representation. However, their computational
costs and performance have not been fully investigated yet and
could be a future direction for the multiscale generation of
nanostructures.

METHODS
3D VQ-VAE. 3D VQ-VAE is a variant of variational autoencoder

that transforms high-dimensional 3D nanostructures into a low-
dimensional and discrete latent space by using vector quantization.
The codebook is denoted as ×e K D, where K is the number of
discrete code vectors and D is the dimension of the code vectors. K
and D are set as 512 and 64, respectively. The 3D encoder and
decoder consist of a series of 3D convolutional layers and transposed
convolutional layers, respectively. The number of convolutional layers
depends on the compression ratio f. f is defined as the ratio of the
original dimensional size and the latent size along each dimension
after compression. The detailed architecture of a 3D VQ-VAE is
shown in Figure S7. During the model training, an original high-
dimensional 3D nano CL, denoted as x, is first encoded into ze(x) by
the 3D encoder. ze(x) is further discretized into zq(x) by looking up
the codebook. Afterward, ze(x) passes through the 3D decoder and is
decoded into the high-dimensional nano CL. The model parameters
of the 3D encoder and decoder are updated by the backpropagation
of the following loss

= +L x z x sg z x z xdecoder( ( ) ( ( ) ( )))reconstruct e q e 2

2

(2)

where sg represents the operation of stop gradient. Lreconstruct measures
the error between the input and reconstructed 3D nano CLs. Apart
from updating the 3D encoder and decoder, the codebook is updated
simultaneously according to the codebook loss

= +L sg z x z x z x sg z x( ( ) ( )) ( ) ( ( ))e e q 2

2
e q 2

2

(3)

where β is a hyperparameter, which is 0.25 in the study.
1,100 3D cryogenic CL nanostructures were sampled from a large

cryogenic-ET CL data set.12 Each sample has a size of 224 × 384 ×
384 voxels (resolution 0.4 nm). The split ratio for training and
validation data sets is 10:1. When training the 3D VQ-VAE with 3D
algorithmic CL backbones, 600 3D CL backbones (without Pt
particles) were synthesized by a conventional pore-scale CL synthesis
algorithm as described in Supporting Information Note S1. The split
ratio for training and validation data sets is 5:1. Each sample has a size
of 512 × 128 × 128 voxels (resolution 3.5 nm). Notably, the number
of convolutional layers were adjusted accordingly for different
demands of compression along three dimensions. The whole data
set was split according to the ratio 5:1 for the training and validation.
One hot encoding is applied to enable the voxel value types align with
the training data. An Adam optimizer with default settings was
employed to optimize model parameters. The batch size and learning
rate were set as 8 and 3 × 10−4, respectively. The 3D VQ-VAE was
trained for 400 epochs before applied to subsequent latent generation.
The training of VQ-VAE for two types of CLs were implemented on
an A100 GPU and each case takes around 24 h.

Autoregressive Learning. 3D Gated PixelCNN is a typical
autoregressive generative model which learns the joint distribution of
the vector labels of the 3D latent from the encoder in 3D VQ-VAE.
The reason of applying PixelCNN here is that PixelCNN performs
well in capturing long-range dependencies and correlations among
elements in latent space. The joint distribution p(e) of vector labels
over the 3D latent space em×n×k is expressed as follows

= | ···
=

× ×
p e p e e e( ) ( , , )

i

m n k

i i
1

1 1
(4)

where e represents the input 3D latent. ei is an arbitrary vector label in
the input. m, n and k are the dimensions of e, which is decided by the
size of 3D input nanostructures and scaling factor f. The label of ei
varies between 0 and the size of codebook N, e.g., 512 in the study.
Then, the Gated PixelCNN was developed to estimate the probability
of a given position of the 3D latent space in N classes. A masked 3 × 3
× 3 convolutional kernel is designed to enable causal convolution,
which means the masked kernel cannot access the vector information
below, to the back and the right of a given vector position, as depicted
in Figure 1b. The masked convolutional kernel consists of three
kernels with different masks, leading to three different kernel sizes of 1
× 3 × 3 in the depth-wise direction, 1 × 1 × 3 in the vertical direction
and 1 × 1 × 1 in the horizontal direction. The output of masked
convolutional layers then flows through a gated unit which consists of
tanh and sigma activation functions, as shown in Figure 1b. The
multiple active units in the gated unit allow the model to create highly
complex representations of the input.

The loss function of Cross-Entropy is chosen for gradient
propagation. An Adam optimizer with default settings was employed
for model parameters optimization. The batch size and learning rate
are set as 32 and 1 × 10−3, respectively. The Gated PixelCNN was
trained for 400 epochs in total. Since the computational cost is
proportional to O (m × n × k), the Gated PixelCNN was trained on
an A100 GPU for the case f = 8 (latent size 28 × 48 × 48) and a RTX
3090 for the case of f = 16 and 32 (14 × 24 × 24 and 7 × 12 × 12,
respectively). The trained model is then able to generate 3D latent by
sampling every vector position in sequence. 3D CL nanostructures are
eventually obtained by decoding the generated latent. Notably, only
the pretrained decoder in Figure 1a is engaged with the Gated
PixelCNN.

Adversarial Learning. 3D WAN-GP is a popular generative
adversarial learning model. It consists of a 3D generator and a 2D
critic. The 3D generator network maps a 16 × 4 × 4 × 4 Gaussian
noise latent into the input space. The 2D critic receives either a
generated 3D sample or a true 3D nanostructure and minimizes the
difference of generated samples with respect to real samples. Here, the
generator is trained to fool the critic. Notably, to accurately learn the
spatial distributions of latent along three dimensions, fake 3D samples
were cut into a series of 2D slices along three dimensions, which were
subsequentially discriminated by three 2D critics, respectively. To
model the above adversarial behaviors, the generator and the critic
networks are trained by applying the following two loss functions
respectively

= [ ]L C x( )xG g (5)

= [ ] [ ] + [ ]L C x C x C x( ) ( ) ( ( ) 1)x x x xG 2
2

xg r

(6)
where x is the real data space, which indicates 3D nanostructures for
training. x̃ = G(z) defines the generated 3D samples from the
generator, where z is the Gaussian noise latent space. C denotes the
critic. g and r denote the generated and real (training) data
distributions, respectively. To stabilize the training of WGAN-GP, a
gradient penalty is introduced in the model, expressed as the second
term in eq 5. Here, x x is a random sample with identical
dimensional size with x̃̃. A hyperparameter ξ = 10 is applied to tune
the contribution of the gradient penalty term to the model training.
The training data for the 3D WGAN-GP is prepared by the trained
3D encoder in the 3D VQ-VAE, where the original high-dimensional
3D CL nanostructures are encoded into low-dimensional 3D latent
space (32 × 32 × 32). The batch size is 8 and 256 for the 3D
generator and the 2D critic, respectively. The model is trained for 100
epochs with Adam optimizer. The learning rate, β1 and β2, were set to
1 × 10−4, 0.5 and 0.9, respectively. Detailed model architecture is
shown in Figure S8.

Pore-Scale CL Model. In the following, the governing equations
and correlations accounted in the study is presented. We summaries
the governing equations for electrochemical reaction kinetics, oxygen
diffusion and charge transfer considered in the pore-scale CL model,
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as well as the boundary conditions and numerical implementation.
Model parameters and constants associated with the model are listed
in Supporting Information Table S1.

Electrochemical reaction kinetics: The electrochemical reaction
rate of oxygen reduction (ORR) in the cathode CL is approximated
by the Bulter−Volmer (BV) equation37
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where Jref (A m−2) is the ORR exchange current density, CO
Pt

2
(mol

m−3) the molar concentration of oxygen around Pt surface, CO
ref

2
(mol

m−3) the reference molar concentration of oxygen, α the charge
transfer coefficient, R (J K−1 mol−1) the ideal gas constant, F (C
mol−1) Faraday constant, and T (K) the local temperature. As the
model is assumed isothermal, a constant T = 353.15 K is applied in all
cases. η (V) is local overpotential, calculated as follows

= ion ele (8)

where φion (V) and φele (V) are the ionic and electronic potentials,

respectively. A correction term ( )1 J
Jlim

is introduced in eq 7 to

mimic limiting current behaviors which enables the model to account
for the effects of concentration overpotential under high operating
current density.31 Here, J (A cm−2) is the operating current density of
the CL. The limiting current density Jlim (A cm−2) is calculated as
below
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where RCL (s m−1) is the mass transport resistance at the interface
between Pt surface and ionomer.

Oxygen diffusion: To accurately predict the oxygen diffusion in
nano porous CLs, it is imperative to take into account Knudsen
diffusion. The local oxygen diffusivity Dp (m2 s−1), including Knudsen
diffusion, is calculated as follow38
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where Db (m2 s−1) and Dkn (m2 s−1) are the bulk and Knudsen oxygen
diffusivities, respectively, P (Pa) the operating pressure, dp (m) the
diameter of local pore, π the mathematical constant, and MOd2

(kg
mol−1) the molar mass of oxygen. As oxygen dissolves variously in air
and ionomer, the concentration drop at the air-ionomer interface is
described by Henry’s law, which correlates the oxygen concentration
CO

p
2
(mol m−3) in pores and CO

I
2
(mol m−3) in ionomer via Henry’s

coefficient He as follows6
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To unify the oxygen transport in both pores and ionomer, a scalar
Ce (mol m−3) is introduced as the global effective oxygen
concentration as below39−41
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where De (m2 s−1) is the effective diffusion coefficient calculated as
follows
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where γ is an indicator which is only applied to diffusion regions (0 in
pores and 1 in ionomer, respectively). Dion (m2 s−1) is the oxygen
diffusivity in ionomer, calculated by6,42

= ×D 1.14698 10ion
10 0.708 (18)

It is seen from eq 18 that Dion depends on the water content λ,
which is assumed constant in the study.

Charge transfer: The transport of proton and electron in the CL is
governed by the following two equations

+ × =
t

k( ) 0c
ele

ele ele (19)

+ × =
t

k( ) 0c
ion

ion ion (20)

where kele (S m−1) and kion (S m−1) are the electronic and ionic
conductivities in carbon and ionomer, respectively. It is noted that in
eqs 19 and 20, the constant τc is introduced in the unsteady term to
stabilize numerical iterations through the pseudotransient method.
The choice of τc has no effect on the steady solution of the equation.
Since water content λ significantly impacts ionic conduction, kion is
correlated with λ by the following43

= × ( )( )k (0.5139 0.326) e Tion
1268 1

303.15 K
1

(21)

Boundary conditions: In terms of oxygen transport, the top of the
buffer (see Figure 1e) is set as Dirichlet boundary condition where Ce
= 10.93 mol m−3. The interface between ionomer and carbon is set as
the fixed flux JOd2

(mol m−2), calculated by

=J
J
F4O2 (22)

Regarding charge transfer, a cathode overpotential ηc (V) is applied
across the CL (see Figure 1e) by setting φion,bottom = ηc and φele,top = 0.
The consumption of proton and electron is considered by applying
the fixed flux Jion (A m−2) and Jele (A m−2) at the Pt-ionomer and Pt-
carbon interfaces, respectively. Jion and Jele are correlated with JORR as
follows

=J Jion (23)

=J Jele (24)

Notably, the cell output voltage Vout (V) is calculated as follows

=V V JRout OCV c t (25)

where VOCV (V) is the open circuit voltage of the cell, and Rt (Ω m2)
the total charge transfer resistance of the cell except the cathode CL.

Numerical implementation: The computational domain of CLs was
prepared by a logic CL generation algorithm, as described in
Supporting Information Note S1. The pore-scale model was
implemented in an open-source platform OpenFOAM. The
architecture of multiregion solvers in our previous work44 is
transferred to the current CL model. In the model, pore and ionomer
phase are integrated into one region and carbon is assigned to the
other region. Since the transfer of electrons in Pt is not considered, Pt
particles are removed from the computation, while the interface
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created between Pt and the other two phases (carbon and ionomer)
highlights the reaction interface in the CL. The parameters for various
simulations are listed in Table S1. The governing equations are
discretized by second-order schemes. All simulations were imple-
mented in parallel by using 128 processors (160 Intel Xeon@2.53
GHz/processor) in parallel. Detailed computational cost is listed in
Table S1.

CL Surrogate Model. The CL surrogate model is a data-driven
3D CNN model which consists of a series of 3D convolutional layers
and is trained on the 3D latent space generated by the 3D encoder, as
shown in Figure 1c. The model architecture is shown in Figure S9.
The labels for training the surrogate model are J of the high-
dimensional CL nanostructures. J labels are calculated by the pore-
scale CL model in Figure 1e. L1 loss function in Pytorch was
employed as follows

= | |
=

L
N

J J1
( )

i

N

1
1

pred real
(26)

where Jpred is the current density predicted by the 3D CNN and Jreal
the label current density. 400 3D latent were split into training and
validation data sets at a ratio of 8:2. The batch size is 16. The model is
trained 200 epochs with default Adam optimizer.

PSO Algorithm. PSO is a typical bioinspired optimization
algorithm which employs particle swarm to explore the design
space. The location of particles is initialized randomly and then
evolves based on the gradient of the objective function that is to
maximize the J of the generated nanostructure. The location of
particles corresponds to the Gaussian noise latent in the 3D generator
of WGAN. The cognitive and social parameters are chosen as c1 = 2
and c2 = 2, respectively. The constant inertia weight w is 0.8. Ten
particles were set for PSO. The initialized random numbers for
particles were sampled from 0 to 1. Generally, PSO reaches steady
convergence in 200−300 iterations regardless of the initial particle
locations. The convergence is concluded when the optimal J remains
the same in 200 iterations.

ASSOCIATED CONTENT
Data Availability Statement
The data set of Cryogenic-ET CL nanostructures is from ref
12. GDL and SOFC anode microstructures are from refs 27
and 28. The code is available from the corresponding author
upon request.
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsnano.4c04943.

Additional analyses for the reconstructed and generated
CLs, SOFC anodes and GDLs; the prediction accuracy
of the surrogate CNN model on the training data set;
the stochastic algorithm for the CL generation; model
architectures for the deep learning models involved in
GLIDER; the model parameters for the multiphysics
model of CLs (PDF)

AUTHOR INFORMATION
Corresponding Authors

Zhiqiang Niu − Department of Aeronautical and Automotive
Engineering, Loughborough University, Loughborough LE11
3TU, U.K.; orcid.org/0000-0001-9220-282X;
Email: z.niu@lboro.ac.uk

Yun Wang − Renewable Energy Resources Lab, Department of
Mechanical and Aerospace Engineering, The University of
California, Irvine, California 92697, United States;
orcid.org/0000-0003-2035-3148; Email: yunw@uci.edu

Authors
Wanhui Zhao − College of Aeronautical Engineering, Civil
Aviation University of China, Tianjin 300300, China

Hao Deng − Shanghai Hydrogen Propulsion Technology
Company Limited, Shanghai 201800, China

Lu Tian − Department of Aeronautical and Automotive
Engineering, Loughborough University, Loughborough LE11
3TU, U.K.

Valerie J. Pinfield − Department of Chemical Engineering,
Loughborough University, Loughborough LE11 3TU, U.K.

Pingwen Ming − Clean Energy Automotive Engineering
Centre, School of Automotive Studies, Tongji University,
Shanghai 201804, China

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsnano.4c04943

Author Contributions
Z.N. conceptualization, methodology, software, data acquis-
ition, data curation, formal analysis, investigation, validation,
visualization, supervision, writing�original draft, writing�
review and editing. W.Z. funding acquisition, methodology,
writing�original draft, writing�review and editing. H.D.
methodology, writing�review and editing. L.T. methodology,
review and editing. V.J.P. writing�methodology, review and
editing. P.M. resources, writing�review and editing. Y.W.
conceptualization, methodology, supervision, formal analysis,
investigation, resources, methodology, writing�original draft,
review and editing.
Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
The authors would like to acknowledge the support of
National Natural Science Foundation of China (grant no.
52206187).

REFERENCES
(1) Chong, L.; Wen, J.; Kubal, J.; Sen, F. G.; Zou, J.; Greeley, J.;
Chan, M.; Barkholtz, H.; Ding, W.; Liu, D.-J. Ultralow-loading
platinum-cobalt fuel cell catalysts derived from imidazolate frame-
works. Science 2018, 362, 1276−1281.
(2) Wang, Y.; Pang, Y.; Xu, H.; Martinez, A.; Chen, K. S. PEM Fuel
cell and electrolysis cell technologies and hydrogen infrastructure
development - a review. Energy Environ. Sci. 2022, 15, 2288−2328.
(3) Suter, T. A. M.; Smith, K.; Hack, J.; Rasha, L.; Rana, Z.; Angel,
G. M. A.; Shearing, P. R.; Miller, T. S.; Brett, D. J. L. Engineering
Catalyst Layers for Next Generation Polymer Electrolyte Fuel Cells: A
Review of Design, Materials, and Methods. Adv. Energy Mater. 2021,
11, 202101025.
(4) Lang, J. T.; Kulkarni, D.; Foster, C. W.; Huang, Y.; Sepe, M. A.;
Shimpalee, S.; Parkinson, D. Y.; Zenyuk, I. V. X-ray Tomography
Applied to Electrochemical Devices and Electrocatalysis. Chem. Rev.
2023, 123, 9880−9914.
(5) Niu, Z.; Pinfield, V. J.; Wu, B.; Wang, H.; Jiao, K.; Leung, D. Y.
C.; Xuan, J. Towards the digitalisation of porous energy materials:
evolution of digital approaches for microstructural design. Energy
Environ. Sci. 2021, 14, 2549−2576.
(6) Li, X.; Hou, Y.; Wu, C.; Du, Q.; Jiao, K. Interlink among catalyst
loading transport and performance of proton exchange membrane fuel
cells: a pore-scale study. Nanoscale Horiz. 2022, 7, 255−266.
(7) Chen, L.; Zhang, R.; Kang, Q.; Tao, W.-Q. Pore-scale study of
pore-ionomer interfacial reactive transport processes in proton
exchange membrane fuel cell catalyst layer. Chem. Eng. J. 2020, 391,
123590.

ACS Nano www.acsnano.org Article

https://doi.org/10.1021/acsnano.4c04943
ACS Nano 2024, 18, 20504−20517

20516

https://pubs.acs.org/doi/suppl/10.1021/acsnano.4c04943/suppl_file/nn4c04943_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnano.4c04943/suppl_file/nn4c04943_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnano.4c04943/suppl_file/nn4c04943_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsnano.4c04943?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acsnano.4c04943/suppl_file/nn4c04943_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zhiqiang+Niu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-9220-282X
mailto:z.niu@lboro.ac.uk
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yun+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-2035-3148
https://orcid.org/0000-0003-2035-3148
mailto:yunw@uci.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Wanhui+Zhao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hao+Deng"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Lu+Tian"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Valerie+J.+Pinfield"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pingwen+Ming"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.4c04943?ref=pdf
https://doi.org/10.1126/science.aau0630
https://doi.org/10.1126/science.aau0630
https://doi.org/10.1126/science.aau0630
https://doi.org/10.1039/D2EE00790H
https://doi.org/10.1039/D2EE00790H
https://doi.org/10.1039/D2EE00790H
https://doi.org/10.1002/aenm.202101025
https://doi.org/10.1002/aenm.202101025
https://doi.org/10.1002/aenm.202101025
https://doi.org/10.1021/acs.chemrev.2c00873?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.2c00873?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/D1EE00398D
https://doi.org/10.1039/D1EE00398D
https://doi.org/10.1039/D1NH00501D
https://doi.org/10.1039/D1NH00501D
https://doi.org/10.1039/D1NH00501D
https://doi.org/10.1016/j.cej.2019.123590
https://doi.org/10.1016/j.cej.2019.123590
https://doi.org/10.1016/j.cej.2019.123590
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.4c04943?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(8) Inoue, G.; Kawase, M. Effect of porous structure of catalyst layer
on effective oxygen diffusion coefficient in polymer electrolyte fuel
cell. J. Power Sources 2016, 327, 1−10.
(9) Normile, S. J.; Zenyuk, I. V. Imaging ionomer in fuel cell catalyst
layers with synchrotron nano transmission x-ray microscopy. Solid
State Ionics 2019, 335, 38−46.
(10) Peng, X.; Kulkarni, D.; Huang, Y.; Omasta, T. J.; Ng, B.; Zheng,
Y.; Wang, L.; LaManna, J. M.; Hussey, D. S.; Varcoe, J. R.; et al. Using
operando techniques to understand and design high performance and
stable alkaline membrane fuel cells. Nat. Commun. 2020, 11, 3561.
(11) Steinbach, A. J.; Allen, J. S.; Borup, R. L.; Hussey, D. S.;
Jacobson, D. L.; Komlev, A.; Kwong, A.; MacDonald, J.; Mukundan,
R.; Pejsa, M. J.; et al. Anode-Design Strategies for Improved
Performance of Polymer-Electrolyte Fuel Cells with Ultra-Thin
Electrodes. Joule 2018, 2, 1297−1312.
(12) Girod, R.; Lazaridis, T.; Gasteiger, H. A.; Tileli, V. Three-
dimensional nanoimaging of fuel cell catalyst layers. Nat. Catal. 2023,
6, 383−391.
(13) Sadeghi, M. A.; Khan, Z. A.; Agnaou, M.; Hu, L.; Litster, S.;
Kongkanand, A.; Padgett, E.; Muller, D. A.; Friscic, T.; Gostick, J.
Predicting PEMFC performance from a volumetric image of catalyst
layer structure using pore network modeling. Appl. Energy 2024, 353,
122004.
(14) Ishikawa, H.; Sugawara, Y.; Inoue, G.; Kawase, M. Effects of Pt
and ionomer ratios on the structure of catalyst layer: A theoretical
model for polymer electrolyte fuel cells. J. Power Sources 2018, 374,
196−204.
(15) Sanchez-Lengeling, B.; Aspuru-Guzik, A. Inverse molecular
design using machine learning: Generative models for matter
engineering. Science 2018, 361, 360−365.
(16) Yang, T.; Zhou, D.; Ye, S.; Li, X.; Li, H.; Feng, Y.; Jiang, Z.;
Yang, L.; Ye, K.; Shen, Y.; et al. Catalytic Structure Design by AI
Generating with Spectroscopic Descriptors. J. Am. Chem. Soc. 2023,
145, 26817−26823.
(17) Schilter, O.; Vaucher, A.; Schwaller, P.; Laino, T. Designing
catalysts with deep generative models and computational data. A case
study for Suzuki cross coupling reactions. Digital Discovery 2023, 2,
728−735.
(18) Yao, Z.; Sánchez-Lengeling, B.; Bobbitt, N. S.; Bucior, B. J.;
Kumar, S. G. H.; Collins, S. P.; Burns, T.; Woo, T. K.; Farha, O. K.;
Snurr, R. Q.; et al. Inverse design of nanoporous crystalline reticular
materials with deep generative models. Nat. Mach. Intell. 2021, 3, 76−
86.
(19) Westermayr, J.; Gilkes, J.; Barrett, R.; Maurer, R. J. High-
throughput property-driven generative design of functional organic
molecules. Nat. Comput. Sci. 2023, 3, 139−148.
(20) Kang, Y.; Park, H.; Smit, B.; Kim, J. A multi-modal pre-training
transformer for universal transfer learning in metal-organic frame-
works. Nat. Mach. Intell. 2023, 5, 309−318.
(21) Kench, S.; Cooper, S. J. Generating three-dimensional
structures from a two-dimensional slice with generative adversarial
network-based dimensionality expansion. Nat. Mach. Intell. 2021, 3,
299−305.
(22) Dahari, A.; Kench, S.; Squires, I.; Cooper, S. J. Fusion of
Complementary 2D and 3D Mesostructural Datasets Using
Generative Adversarial Networks. Adv. Energy Mater. 2023, 13,
202202407.
(23) Niu, Z.; Zhao, W.; Wu, B.; Wang, H.; Lin, W.; Pinfield, V. J.;
Xuan, J. π Learning: A Performance Informed Framework for
Microstructural Electrode Design. Adv. Energy Mater. 2023, 13,
202300244.
(24) Van Den Oord, A.; Vinyals, O.; Kavukcuoglu, K. Neural
Discrete Representation Learning. Adv. Neural Inf. Process. Syst. 2017,
30, 6306−6315.
(25) Van Den Oord, A.; Kalchbrenner, N.; Espeholt, L.;
Kavukcuoglu, K.; Vinyals, O.; Graves, A. Conditional image
generation with PixelCNN decoders. Adv. Neural Inf. Process. Syst.
2016, 29, 4790−4798.

(26) Lai, C.-H.; Sun, J.; Wu, X.-J. Particle Swarm Optimization:
Classical and Quantum Perspectives; CRC Press, 2016.
(27) Zenyuk, I. V.; Parkinson, D. Y.; Connolly, L. G.; Weber, A. Z.
Gas-diffusion-layer structural properties under compression via X-ray
tomography. J. Power Sources 2016, 328, 364−376.
(28) Hsu, T.; Epting, W. K.; Mahbub, R.; Nuhfer, N. T.;
Bhattacharya, S.; Lei, Y.; Miller, H. M.; Ohodnicki, P. R.; Gerdes,
K. R.; Abernathy, H. W.; et al. Mesoscale characterization of local
property distributions in heterogeneous electrodes. J. Power Sources
2018, 386, 1−9.
(29) Franco, A. A.; Chotard, J.; Loup Escande, E.; Yin, Y.; Zhao, R.;
Rucci, A.; Ngandjong, A. C.; Herbulot, S.; Beye, B.; Ciger, J.; et al.
Entering the Augmented Era: Immersive and Interactive Virtual
Reality for Battery Education and Research. Batteries Supercaps 2020,
3, 1147−1164.
(30) Denisart, L.; Zapata Dominguez, D.; David, X.; Leclere, A.;
Lelong, R.; Liu, C.; Xu, J.; Loup Escande, E.; Franco, A. A. Combining
Virtual Reality with Mixed Reality for Efficient Training in Battery
Manufacturing. Batteries Supercaps 2023, 7, No. e202300268.
(31) US DRIVE Partnership. Fuel Cell Technical Team Roadmap.
https://www.energy.gov/sites/prod/files/2014/02/f8/fctt_
roadmap_june2013.pdf (accessed June 1, 2024).
(32) K.P, V. B.; Varghese, G.; Joseph, T. V.; Chippar, P.
Optimization of graded catalyst layer to enhance uniformity of
current density and performance of high temperature-polymer
electrolyte membrane fuel cell. Int. J. Hydrogen Energy 2022, 47,
4018−4032.
(33) Ebrahimi, S.; Ghorbani, B.; Vijayaraghavan, K. Optimization of
catalyst distribution along PEMFC channel through a numerical two-
phase model and genetic algorithm. Renewable Energy 2017, 113,
846−854.
(34) Schneider, P.; Batool, M.; Godoy, A. O.; Singh, R.; Gerteisen,
D.; Jankovic, J.; Zamel, N. Impact of Platinum Loading and Layer
Thickness on Cathode Catalyst Degradation in PEM Fuel Cells. J.
Electrochem. Soc. 2023, 170, 024506.
(35) Razavi, A.; Oord, A.; Vinyals, O. Generating Diverse High-
Fidelity Images with VQ-VAE-2. 2019, https://arxiv.org/abs/1906.
00446 (accessed June 17, 2024).
(36) Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; Ommer, B.
High-resolution image synthesis with latent diffusion models.
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition; IEEE, 2022; pp 10684−10695.
(37) Tsukamoto, T.; Aoki, T.; Kanesaka, H.; Taniguchi, T.;
Takayama, T.; Motegi, H.; Takayama, R.; Tanaka, S.; Komiyama,
K.; Yoneda, M. Three-dimensional numerical simulation of full-scale
proton exchange membrane fuel cells at high current densities. J.
Power Sources 2021, 488, 229412.
(38) Zheng, W.; Kim, S. H. The Effects of Catalyst Layer
Microstructure and Water Saturation on the Effective Diffusivity in
PEMFC. J. Electrochem. Soc. 2018, 165, 468−478.
(39) Lu, J. H.; Lei, H. Y.; Dai, C. S. Analysis of Henry’s law and a
unified lattice Boltzmann equation for conjugate mass transfer
problem. Chem. Eng. Sci. 2019, 199, 319−331.
(40) Lu, J. H.; Lei, H. Y.; Dai, C. S. Lattice Boltzmann equation for
mass transfer in multi solvent systems. Int. J. Heat Mass Transfer 2019,
132, 519−528.
(41) Niu, Z.; Wu, J.; Wang, Y.; Jiao, K. Investigating the In-/
Through-Plane Effective Diffusivities of Dry and Partially-Saturated
Gas Diffusion Layers. J. Electrochem. Soc. 2018, 165, 986−993.
(42) He, Y.; Bai, M.; Hao, L. Pore-Scale Simulation of Effective
Transport Coefficients in the Catalyst Layer of Proton Exchange
Membrane Fuel Cells. J. Electrochem. Soc. 2023, 170, 044501.
(43) Wang, Y.; Wang, C.-Y. Transient analysis of polymer electrolyte
fuel cells. Electrochim. Acta 2005, 50, 1307−1315.
(44) Zhao, W.; Pinfield, V. J.; Wang, H.; Xuan, J.; Niu, Z. An open
source framework for advanced Multi-physics and multiscale
modelling of solid oxide fuel cells. Energy Convers. Manag. 2023,
280, 116791.

ACS Nano www.acsnano.org Article

https://doi.org/10.1021/acsnano.4c04943
ACS Nano 2024, 18, 20504−20517

20517

https://doi.org/10.1016/j.jpowsour.2016.07.037
https://doi.org/10.1016/j.jpowsour.2016.07.037
https://doi.org/10.1016/j.jpowsour.2016.07.037
https://doi.org/10.1016/j.ssi.2019.02.017
https://doi.org/10.1016/j.ssi.2019.02.017
https://doi.org/10.1038/s41467-020-17370-7
https://doi.org/10.1038/s41467-020-17370-7
https://doi.org/10.1038/s41467-020-17370-7
https://doi.org/10.1016/j.joule.2018.03.022
https://doi.org/10.1016/j.joule.2018.03.022
https://doi.org/10.1016/j.joule.2018.03.022
https://doi.org/10.1038/s41929-023-00947-y
https://doi.org/10.1038/s41929-023-00947-y
https://doi.org/10.1016/j.apenergy.2023.122004
https://doi.org/10.1016/j.apenergy.2023.122004
https://doi.org/10.1016/j.jpowsour.2017.11.026
https://doi.org/10.1016/j.jpowsour.2017.11.026
https://doi.org/10.1016/j.jpowsour.2017.11.026
https://doi.org/10.1126/science.aat2663
https://doi.org/10.1126/science.aat2663
https://doi.org/10.1126/science.aat2663
https://doi.org/10.1021/jacs.3c09299?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.3c09299?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/D2DD00125J
https://doi.org/10.1039/D2DD00125J
https://doi.org/10.1039/D2DD00125J
https://doi.org/10.1038/s42256-020-00271-1
https://doi.org/10.1038/s42256-020-00271-1
https://doi.org/10.1038/s43588-022-00391-1
https://doi.org/10.1038/s43588-022-00391-1
https://doi.org/10.1038/s43588-022-00391-1
https://doi.org/10.1038/s42256-023-00628-2
https://doi.org/10.1038/s42256-023-00628-2
https://doi.org/10.1038/s42256-023-00628-2
https://doi.org/10.1038/s42256-021-00322-1
https://doi.org/10.1038/s42256-021-00322-1
https://doi.org/10.1038/s42256-021-00322-1
https://doi.org/10.1002/aenm.202202407
https://doi.org/10.1002/aenm.202202407
https://doi.org/10.1002/aenm.202202407
https://doi.org/10.1002/aenm.202300244
https://doi.org/10.1002/aenm.202300244
https://doi.org/10.1016/j.jpowsour.2016.08.020
https://doi.org/10.1016/j.jpowsour.2016.08.020
https://doi.org/10.1016/j.jpowsour.2018.03.025
https://doi.org/10.1016/j.jpowsour.2018.03.025
https://doi.org/10.1002/batt.202000120
https://doi.org/10.1002/batt.202000120
https://doi.org/10.1002/batt.202300268
https://doi.org/10.1002/batt.202300268
https://doi.org/10.1002/batt.202300268
https://www.energy.gov/sites/prod/files/2014/02/f8/fctt_roadmap_june2013.pdf
https://www.energy.gov/sites/prod/files/2014/02/f8/fctt_roadmap_june2013.pdf
https://doi.org/10.1016/j.ijhydene.2021.11.006
https://doi.org/10.1016/j.ijhydene.2021.11.006
https://doi.org/10.1016/j.ijhydene.2021.11.006
https://doi.org/10.1016/j.renene.2017.06.067
https://doi.org/10.1016/j.renene.2017.06.067
https://doi.org/10.1016/j.renene.2017.06.067
https://doi.org/10.1149/1945-7111/acb8df
https://doi.org/10.1149/1945-7111/acb8df
https://arxiv.org/abs/1906.00446
https://arxiv.org/abs/1906.00446
https://doi.org/10.1016/j.jpowsour.2020.229412
https://doi.org/10.1016/j.jpowsour.2020.229412
https://doi.org/10.1149/2.0711807jes
https://doi.org/10.1149/2.0711807jes
https://doi.org/10.1149/2.0711807jes
https://doi.org/10.1016/j.ces.2019.01.021
https://doi.org/10.1016/j.ces.2019.01.021
https://doi.org/10.1016/j.ces.2019.01.021
https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.010
https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.010
https://doi.org/10.1149/2.1191811jes
https://doi.org/10.1149/2.1191811jes
https://doi.org/10.1149/2.1191811jes
https://doi.org/10.1149/1945-7111/acc551
https://doi.org/10.1149/1945-7111/acc551
https://doi.org/10.1149/1945-7111/acc551
https://doi.org/10.1016/j.electacta.2004.08.022
https://doi.org/10.1016/j.electacta.2004.08.022
https://doi.org/10.1016/j.enconman.2023.116791
https://doi.org/10.1016/j.enconman.2023.116791
https://doi.org/10.1016/j.enconman.2023.116791
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.4c04943?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as



