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Defining the Basic Principles that Govern Systemic 

Immune Responses in Cancer 

Breanna M. Allen 

 

Abstract 

 Capitalizing on natural immune response capabilities to eradicate cancer holds great 

promise, but patient reach remains limited due to an incomplete understanding of how to 

effectively reorient immune responses to reject cancer. We are learning that effective therapeutics 

drive new systemic immune responses rather than relying on reinvigoration. The present body of 

work builds a systemic understanding of cancer immunology by defining both local and peripheral 

immune consequences of tumor development across a wide range of tumor models. This immune 

macroenvironment in cancer is universally disrupted by tumor burden, with distinct changes across 

cancer contexts impacted by both cancer cell type and anatomical location. Importantly, tumor 

disruption of the immune macroenvironment causes functional deficits in de novo adaptive 

immune responses to secondary immune challenges. Successful surgical tumor resection reverses 

the majority of changes in systemic immunity and restores functional capacity. PD-L1 checkpoint 

blockade or CD40 agonism immunotherapies can reorient systemic immune responses, but the 

preexisting immune macroenvironment influences their efficacy and immunological impact. PD-

L1 blockade succeeds in cancer settings with preexisting peripheral immune engagement, while 

CD40 agonism is sufficient to trigger new systemic immune responses that overcome tumor 

immune evasion. Thus, the immune macroenvironment is a critical, yet underappreciated, 

differentiator in cancer that can be used to rationally select immunotherapies across patients.  
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Chapter 1 Introduction 
 

1.1 Overview 

The goal of this thesis was to address a fundamental gap in the field of cancer immunology 

by asking how cancer reorients the systemic, not just local, immune landscape. The importance of 

this investigation has been demonstrated in very recent discoveries that: 1) peripheral immunity is 

essential to productive antitumor immune responses, 2) successful immunotherapies drive new T 

cell priming and tumor infiltration, and 3) conventional dendritic cells are the pivotal players in 

orchestrating productive immune responses by immunotherapy. This supports the theory that 

intentionally driving de novo systemic anti-tumor immune responses may be essential to extending 

currently limited immunotherapeutic efficacy, especially in patients lacking a strong preexisting 

immune response. But before we can deploy intervention strategies to this end, we must first 

understand how cancer burden itself may alter systemic immune integrity. 

 

The aims of this thesis were as follows: 

1) Determine the consequences of tumor development on systemic immune organization and 

functional capacity, described in chapter 2. 

2) Determine how the altered systemic immune landscape in cancer impacts efficacy and 

immune responses triggered by PD-L1 blockade or CD40 agonism immunotherapies, 

described in chapter 3. 
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1.2 Perturbations to the Immune System during Cancer Development 

 Cancer development from initial malignant transformation relies on evading a variety of 

immunosurveillance mechanisms1,2. Successful malignant outgrowth not only disengages both 

innate and adaptive immune arms, but also actually recruits and re-polarizes immune subsets 

within the tumor microenvironment toward pro-tumorigenic functions. Referred to as tumor-

associated macrophages (TAMs), altered myeloid cells in the tumor contribute to angiogenesis, 

promote cancer cell proliferation and survival, remodel the stroma to exclude cytotoxic immune 

cells and support malignant dissemination, and engage a variety of immunosuppressive 

mechanisms to impede adaptive immune responses3–8. Local immune remodeling away from 

tumor-killing and toward tumor support has been extensively characterized, and more recently our 

understanding has expanded to appreciate the wide heterogeneity in infiltrating immune types and 

cell states9,10. Furthermore, the constant pressure of potential immune eradication also selects for 

cancer cells with less and less immunogenicity, referred to as immunoediting11–13. 

 We are just beginning to appreciate that these tumor-induced alterations for self-

preservation extend beyond the tumor microenvironment (TME) into peripheral immune 

development and function. Various studies have described peripheral disruptions in the 

development and abundance of specific immune cell types in cancer, with myeloid and neutrophil 

expansion being the most well-described. Malignancy triggers an early hematopoietic skewing of 

stem cells in the bone marrow toward the myeloid linages, via cytokines including G-CSF14,15. 

This results in the systemic expansion of a heterogenous pool of immature and immunosuppressive 

monocytes and neutrophils, often referred to as myeloid-derived suppressor cells, which feed into 

TAM populations in the TME but also accumulate in peripheral tissues16–19. This systemic 

accumulation of immature immune cells also extends into the dendritic cell compartment. 
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Conventional dendritic cells (cDCs) are the main antigen-presenters during adaptive immune 

responses and are instrumental in priming antigen-specific T cell responses to eradicate malignant 

cells. The cDC compartment is dramatically dysregulated in patients with many cancer types, 

where abrogated developmental programs in the bone marrow culminate in reduced systemic 

abundance and maturation20–27. These studies show that cDCs in the peripheral blood and tumor 

draining lymph nodes (dLNs) lack appropriate maturation markers and are less functionally 

competent in response to classic stimuli, including the toll-like receptor 3 agonist poly (I:C)21,23. 

This fundamental breakdown in systemic antigen-presenting capacity is thought to be a key 

contributor to cancer outgrowth, with cDC dysfunction developing in the earliest stages of 

carcinogenesis26. Compromised antigen-presenting cell (APC) capacity is complimented by 

systemic lymphopenia in some cancer patients28, including a significantly reduced T cell receptor 

(TCR) repertoire compared to healthy individuals29. These studies together tell a story of a 

fundamentally compromised immune system, which bares direct consequences to the efficacy of 

attempted immune interventions.  

The interplay of the entire system ultimately determines whether the appropriate effector 

cells are activated, recruited, and supported until complete pathogenic clearance. This process fails 

during cancer development, and still fails in the majority of cancer patients treated with available 

immunotherapies. The field lacks a thorough and holistic investigation into how different cancer 

types disrupt systemic immunity, and how altered composition and functional abilities impact the 

tumor-burdened immune system’s overall capacity for generating new adaptive responses. 

 

1.3 Alterations to Systemic Immunity by Conventional Cancer Therapies 

Conventional therapeutic strategies in cancer, including chemotherapy, radiation, and 
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surgery, perturb the global immune landscape. Understanding these systemic immune 

consequences is important in design strategies that augment rather than impede antitumor immune 

responses, which can include optimal timing, dosing, or agent combinations.  

 

1.3.1 Chemotherapy and radiation remodel circulating immune populations.  

Chemotherapy and radiation are designed to target cancer cells by compromising cellular 

integrity during division; however, these agents can also induce a variety of pro-tumorigenic 

remodeling of immunity that impede overall treatment efficacy. Immune consequences of 

conventional cancer therapies was reviewed in Shaked et al. 2019, and includes expansion of 

immunosuppressive myeloid cells via elevated pro-inflammatory cytokines, such as IL-6, IL-8, 

and GM-CSF, and B cell release of systemic extracellular vesicles that impede anti-tumor 

cytotoxic immune functions30. One counterstrategy is to pair these therapies with agents that block 

immunosuppressive phenotypes, such as inhibiting CSF1R or CCR2. Chemotherapeutic 

cytotoxicity also leads to general lymphodepletion, and while CD8+ T cells fully recover within a 

year, an abnormal bias of CD4+ T cell memory toward inflammatory effectors persists for years in 

breast cancer patients31. Selecting agents that mitigate specific immune abnormalities would be 

optimal for generating the strongest antitumor effect. 

The immune impact of chemo- and radiotherapy depends highly on context, making it 

challenging but imperative to understand how each cytotoxic therapy may compromise immune 

function across cancer settings. In non-small cell lung cancer, standard fractionated radiotherapy 

but not chemotherapy leads to myeloid cell expansion, reduced APC function, and impaired T cell 

responses32. Similar immune impacts were observed after combination chemo- and radiotherapy 

in cervical cancer patients33. Neoadjuvant chemotherapy prior to surgical resection is a strategy 

often used in breast cancer, but patients show disparate immune effects depending on cancer stage 
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and therapeutic agent. In non-metastatic breast cancer patients, doxorubicin and 

cyclophosphamide chemotherapy led to elevated systemic granulocytic myeloid derived 

suppressor cells (MDSCs) and no changes in monocytic MDSCs34. However, in metastatic breast 

cancer patients treated with FEC (5-fluorouracil [5-FU], epirubicin, cyclophosphamide) 

or docetaxel chemotherapies, monocytic MDSCs were dramatically reduced in six out of ten 

patients35. In Her2 receptor positive (Her2+) breast cancer patients specifically, a recent study 

suggests that higher circulating IL-10 and classical monocytes associates with reduced 

pathological complete responses after chemotherapy36. Future work is needed to parse how disease 

type and stage affect the immune consequences of cytotoxic therapies. 

When demonstrably effective, chemotherapy augments systemic antitumor immunity in 

conjunction with disrupting cancer cell division. Recent work showed that effective responses to 

pre-surgical neoadjuvant chemotherapy in triple-negative breast cancer (TNBC) induces the 

recruitment of new T cell clones to the tumor microenvironment, rather than expanding those 

already present37. Importantly, different subtypes of breast cancer showed differential immune 

responses to this therapeutic strategy, reflected in the functionality of peripheral CD8+ T cells. 

Estrogen receptor positive (ER+) patients had a drop or stasis in the polyfunctionality of circulating 

PD1+ CD8+ T cells, measured by cytokine production after TCR stimulation. Estrogen and Her2 

receptor positive (ER+Her2+) patients showed a complete loss of functionality in this subset. TNBC 

patients, conversely, showed elevated PD1+ CD8+ T cells with high functionality, producing 

effector cytokines including granzyme B, IFNg and TNFa, and evidence of clonal expansion. 

Ultimately, tumor-infiltrating T cells were only prognostic for overall survival in TNBC. They 

also found that a cytolytic, but exhausted, CD8+ T cell signature in the blood of TNBC patients 

following chemotherapy was evident of ongoing disease, and predictive of recurrence or metastasis 
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post-surgery.  

With the advent of immunotherapy, our strategies are shifting toward using toxic 

therapeutic agents to augment anti-tumor immunity via disrupting the tumor stroma or releasing 

tumor antigens for new adaptive immune activation38–40. 

 

1.3.2 Tumor resection can disrupt immunological control of metastasis.  

We are gaining a deeper understanding of the impact of surgical tumor resection on the 

systemic immune state and immunological control of dormant metastases. Surgical acceleration of 

metastasis has been documented in several cancer types, where previously controlled micro-

metastases regained aggressive proliferation following resection of the primary tumor41. Several 

recent studies implicate myeloid immune cell remodeling induced by systemic wound healing 

programs. Resection, or wounding independent of primary tumor removal, triggers healing 

programs that elevate circulating IL-6, G-CSF, and CCL2 and ultimately drive myeloid subsets 

toward immunosuppressive states42. While resection massively reduces systemic MDSCs in the 

4T1 breast cancer model, functional immunosuppressive granulocytic MDSCs can persist in the 

spleen, blood, primary tumor dLNs, and the lung for 2 weeks43. Persistent immunosuppressive 

myeloid cells were shown to support pro-tumorigenic niches in the lungs in both breast cancer and 

osteosarcoma models43,44. Depleting myeloid subsets can prevent post-surgical metastases, 

including adjuvant gemcitabine chemotherapeutic depletion of granulocytic MDSCs, or gefitinib, 

a receptor interacting protein kinase 2 inhibitor that promotes inflammatory macrophage states. 

Appropriate pairing of conventional therapies with immune modulation can be a powerful tool to 

dislodge cancer but should be based on and reactive to the systemic immune context. 
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1.4 Systemic Immune Responses in Cancer Immunotherapy 

Cancer immunotherapy has radically expanded our toolkit against cancer, with current 

FDA approval of 7 checkpoint inhibitors (CPIs) across 19 different cancer types, in addition to 

chimeric antigen receptor T-cell (CAR-T cell) and bispecific T-cell engager (BiTE) therapies, and 

vaccines. Using the immune system to kill cancer centered around the notion of de-restricting 

cytotoxic effectors within the tumor microenvironment, but appreciation is growing in the field for 

the fundamentally systemic nature of effective antitumor immunity. Recent studies demonstrate 

that CPIs, including blockade of the PD-1/PD-L1 axis, rely on systemic immune mechanisms 

during effective antitumor responses. Moreover, adaptive immune responses that include new T 

cell priming by cDCs, referred to as de novo responses, are required to achieve therapeutic impact. 

 

1.4.1 Intact peripheral immunity is critical to immunotherapeutic efficacy.  

Intact peripheral immune function, communication and trafficking are required for CPI 

efficacy. Disruption of peripheral immune integrity by systemic chemotherapy can impede 

therapeutic benefit by PD-1 blockade, causing systemic lymphodepletion and abrogating long-

term immune memory45. Local chemotherapy spares peripheral immunity, collaborating with PD-

1 blockade to induce DC infiltration into the tumor and clonal expansion of antigen-specific 

effector T cells. Further evidence of continuous systemic reliance, blockade of lymphocyte egress 

from lymphoid organs or surgical resection of tumor dLNs abrogates immunotherapeutic 

efficacy46,47. The eradication of systemic disease also heavily relies on global immune responses. 

Strong adaptive immune responses confer peripheral memory, where the transfer of T cells from 

secondary lymphoid organs (including the spleen, lymph node, and blood) after productive 

antitumor responses is sufficient to protect naïve animals48. This same study showed that systemic 
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PD-L1 blockade can break tolerance of distant tumors when paired with local therapeutic delivery 

at one site. 

It is clear that inhibiting the PD-1/PD-L1 axis extends beyond removing local 

immunosuppressive cues, and recent work has clarified key peripheral immune cells driving 

responses in these settings.  First, therapeutic benefit of checkpoint inhibition is only observed in 

models with intact host PD-1/PD-L1 expression, and is less dependent on cancer cell expression 

of PD-L149–51. The main non-tumor expressors of PD-L1 are antigen-presenting cells, including 

macrophages but most highly on cDCs. In melanoma patients, intratumoral macrophage and cDC 

PD-L1 expression levels correlate with clinical complete responses to anti-PD-L1 and anti-CTLA-

4 combination therapy. Moreover, several groups have recently demonstrated that DCs are the 

critical mediator of PD-L1 blockade efficacy52,53. Targeted depletion of PD-L1 in cDCs, but not 

macrophages, greatly reduced CD8+ T cell responses and tumor shrinkage with PD-L1 blockade 

in the subcutaneous MC38 cancer model52. The critical location for this interaction appears to be 

the dLNs. Tumor specific PD-1+ T cells in the dLN showed high co-localization with PD-L1 

expressing cDCs. Low-dose selective targeting of PD-L1 engagement in the dLNs was sufficient 

to induce effective anti-tumor responses in two syngeneic models, albeit to a lesser extent than 

systemic PD-L1 blockade53. Interactions between PD-L1+ cDCs and PD-1+ T cells in dLNs is also 

indicative of disease dissemination status in melanoma patients.  Frequent dLN PD-1/PD-L1-

interactions observed in metastatic melanoma patients were predictive of early disseminated 

disease recurrence in non-metastatic patients53. Augmenting T cell effector and memory 

development in the dLN via mitochondrial activation further improves PD-1 blockade efficacy54, 

highlighting the need to optimize systemic immune engagement for tumor eradication.  
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1.4.2 Effective immunotherapies drive de novo immune responses.  

Productive antitumor responses ultimately necessitate functional effector T cells within the 

TME to mediate cancer cell killing. However, recent studies revealed that intratumoral T cells 

acquire terminally exhausted states over time rendering them incapable of reinvigoration. 

Preclinical and patient assessments of CD8+ T cell epigenetic landscapes showed that intratumoral 

T cells undergo massive chromatin remodeling locking in dysfunctional states, with lost ability to 

produce TNFa and IFNg55. This process was biphasic in preclinical models, where early T cell 

remodeling was reversible upon removal from the tumor context, but a second wave of epigenetic 

remodeling led to irrecoverable dysfunction marked by CD101 and CD38 co-expression. 

Additional studies have identified the TOX transcription factor as a critical regulator in exhaustion 

transcriptional and epigenetic reprograming in response to chronic T cell stimulation56,57. 

Microenvironmental stressors in the TME complement chronic stimulation and checkpoint 

receptor signaling to drive T cell dysfunction. A study recently showed that metabolic challenges 

within the tumor cause T cells to accumulate structurally damaged mitochondria with high reactive 

oxygen species and overall compromised membrane potential58. Importantly, mitochondrial 

dysregulation was sufficient to induce epigenetic reprogramming toward terminal dysfunction and 

was not observed in peripheral T cells from the spleen or dLN. Clinical responses to CPIs associate 

with the presence of a second, stem-like CD8+ T cell state with reduced co-inhibitory molecules 

and elevated memory, activation, and cell survival transcriptional and epigenetic programs59. 

These productive intratumoral CD8+ T cells can be identified by expression of transcription factor 

TCF-1, important for for WNT signaling in stem cell-like memory programs, and notable lack of 

CD39 and TIM3. Thus, immunotherapies rely on the quality of effector CD8+ T cells within the 

TME, but persistence in this toxic microenvironment rapidly drives dysfunction. 
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To overcome local immune dysfunction, effective immunotherapies drive de novo 

peripheral immune responses culminating in new effector T cell infiltration. Several reports have 

now shown that PD-1 and PD-L1 blockade drive novel T cell clones into the tumor that were not 

present locally prior to therapy60,6162. In basal cell carcinoma, 68% of all intratumoral clones after 

PD-1 blockade were novel, 84% of which displayed exhaustion markers indicative of high 

activation and represented novel TCR specificity groups suggesting new antigen targets. Further, 

35.5% of these novel clones were also detected in the blood, whereas only 11.8% were detected in 

circulation pre-treatment. Non-functionally exhausted clones in the tumor were more likely to be 

blood-associated and expanded compared to non-blood associated clones after treatment. 

Correlation between blood and tumor clones was also demonstrated in metastatic melanoma, renal, 

lung, and colon cancers61,62. Cell-intrinsic CD28 signaling in CD8+ T cells is critical in  PD-1 

blockade efficacy63, providing necessary costimulation in naïve T cell priming. Impressively, in 

classical Hodgkin lymphoma, the peripheral T cell clonal diversity at baseline was associated with 

PD-1 blockade efficacy, illustrating how individual systemic immune contexts dictate the impact 

of immunotherapeutic intervention29. This signature was complimented by greater expansion of 

singleton clones in the blood in patients with complete response, likely representing peripheral T 

cells that had not encountered antigen pre-treatment. This cancer context was more reliant on CD4+ 

T cells, with expanded CD4+ T cell TCR diversity, and concordant associations with circulating B 

cell abundance and a novel innate effector population capable of antibody-dependent cellular 

cytotoxicity. Together, these results strongly support not only the involvement of peripheral 

immunity in renewed antitumor responses, but also de novo priming of additional naïve T cell 

subsets rather than the classically held theory of reinvigorating existing responses. 

Intentional strategies for driving de novo immune responses are gaining traction in clinical 
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trials, including stimulation of DC activity through agonistic CD40 antibodies64,65. The field has 

demonstrated that checkpoint blockade relies on derestricting cDCs to allow for effective T cell 

priming, but this strategy fails in cases where there is a poor or absent preexisting activation of 

APCs. Pancreatic cancer is resistant to CPI, but preclinical models demonstrate that combination 

with CD40 agonism can produce complete tumor regression and extend survival independent of 

TLR, STING, or IFNAR signaling66. Efficacy was dependent on host Batf3 and CD40, as well as 

effector CD4+and CD8+ T cells that were massively expanded in the blood and dLN. An early 

clinical trial in metastatic pancreatic cancer patients shows over a 50% objective response rate to 

the combination of CD40 agonism with PD-1 blockade and gemcitabine and nab-paclitaxel 

chemotherapy67. CD40 activation is just one strategy to intentionally drive de novo antitumor 

immune responses, particularly critical in converting immunologically “cold” tumor contexts into 

“hot” immune involvement. 

As the field moves towards a systemic perspective on antitumor immune responses, 

comprehensive examinations of the tumor-burdened systemic immune state become essential. To 

that end, the present body of work investigates changes in systemic immune organization and 

function in cancer, and the direct consequence on mechanisms and efficacies of immunotherapies. 

The working hypothesis is that successful immunotherapies drive new T cell priming by cDCs in 

the dLNs leading to activated T cell accumulation in the periphery, infiltration into the tumor, and 

eventual tumor eradication. Checkpoint blockade achieves this by removing a negative signal 

between cDCs and naïve T cells, promoting interaction, while CD40 agonism massively increases 

cDC activation and thereby total priming capacity. We hope that these studies will ultimately lead 

to therapeutic strategies that drive de novo antitumor immune responses based on the present 

systemic immune state in each patient.   
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2.1 Abstract 

Our understanding of the factors governing immune responses in cancer remains 

incomplete, limiting patient benefit. Here, we use mass cytometry to define the systemic immune 

landscape in response to tumor development across five tissues in eight mouse tumor models. 

Systemic immunity was dramatically altered across models and time, with consistent findings in 

the peripheral blood of breast cancer patients. Changes in peripheral tissues differed from those in 

the tumor microenvironment. Mice with tumor-experienced immune systems mounted dampened 

responses to orthogonal challenges, including reduced T cell activation during viral or bacterial 

infection. Antigen-presenting cells (APCs) mounted weaker responses in this context, while 

promoting APC activation rescued T cell activity. Systemic immune changes were reversed with 

surgical tumor resection, and many were prevented by IL-1 or G-CSF blockade, revealing 

remarkable plasticity in the systemic immune state. These results demonstrate that tumor 

development dynamically reshapes the composition and function of the immune 

macroenvironment. 

  



 14 

2.2 Introduction 

Immunotherapy has rapidly expanded our toolkit against cancer, but a broader 

understanding of factors governing immune responses in cancer is required to extend clinical 

efficacy to all patients. Intratumoral CD8+ T cells have been the main focus of cancer 

immunotherapies, yet recent studies demonstrate that cytotoxic T cells within the TME are 

irreversibly dysfunctional55. Several studies have shown that a systemic anti-tumor immune 

response is essential for immunotherapeutic efficacy45,46,50,54,60,68–70. However, we lack a 

comprehensive definition of how cancer development impacts the systemic immune state.  

 Several lines of evidence suggest that systemic immune perturbations occur with cancer. 

Peripheral granulocytic and monocytic expansion and impaired differentiation accompany tumor 

progression14,71,72 along with a reduction in conventional dendritic cells20. Systemic effects on 

lymphocytes remain poorly understood. Most studies have explored anti-tumor immune responses 

at a single, static time point, leaving the dynamicity of the immune system during cancer 

development an open question. Prior immune experiences can impact responses to new stimuli by 

shifting basal cytokine levels, innate immune activation states, and cellular composition73–75. 

While many immunotherapies and vaccines seek to elicit new immune responses in cancer 

patients, it remains uncertain how tumor burden impacts these processes. It is also unclear whether 

there are lasting immune impacts after successful primary tumor clearance, though studies have 

associated tumor resection with a reduction in myeloid-derived suppressor cells76,77. Defining the 

functional capacity and stability of the tumor-experienced immune macroenvironment is critical 

for improving immunotherapies. 

We used high content single-cell analysis and corresponding analytical methods to characterize 

the systemic immune landscape across eight commonly used mouse tumor models. These data, 
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which are publicly available, provide a rich resource. While each tumor has unique immunological 

consequences, we found that three distinct breast cancer models converged on similar systemic 

changes. Tumors drove dynamic shifts in the organization and functional capacity of immune cells 

across the organism, culminating in attenuated responses to new immune challenges, while tumor 

resection was sufficient to revert the systemic immune landscape. These findings have implications 

for how and when we apply immunomodulatory agents in cancer, emphasizing the importance of 

strategies that are informed by preexisting alterations in the immune macroenvironment. 

 

 

2.3 Results 

 
2.3.1 Systemic immune organization is altered across multiple tumor types 

We began by examining the TME across several common mouse tumor models, including 

genetically-engineered and transplantable syngeneic models across different mouse strains with 

different mutational loads, metastatic potential, variability and latency in tumor growth78–81. We 

characterized well-established, but pre-terminal tumor stages to reflect the patient populations 

most often treated with immunotherapies, but also to avoid the confounding impact of end-of-life 

processes. We utilized mass cytometry to quantify the abundance and activity state of immune cell 

subsets in the tumor as well as the blood, spleen, bone marrow and tumor-draining lymph nodes 

(dLNs) (Table 2.1and Figure 2.1). 

The immune composition of the TME was distinct between models, varying in the degree 

of immune infiltration and diversity (Figure 2.2a and Figure 2.3). The predominant immune cell 

types were tumor-associated macrophages and other CD11bhigh myeloid subsets, particularly in the 

transplantable MC38 colorectal cancer and SB28 glioblastoma models, with relatively fewer 
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adaptive immune cells as reported in many human tumors82. Both transplantable LMP pancreatic 

cancer and genetically induced Braf-Pten melanoma models showed extensive eosinophil 

infiltration. B16-F10 syngeneic melanoma and three models of breast cancer (transplantable cell 

lines 4T1 and AT3 and autochthonous MMTV-PyMT) showed less relative abundance but greater 

diversity in local immune cells, including B, T, and NK cell infiltration (Figure 2.2a and Figure 

2.3a). Unique immune profiles were apparent across tumor types (Figure 2.2b and Figure 2.3g). 

We next asked whether these tumor models also resulted in altered systemic immune states. 

The immune compositions of the tumor dLN, bone marrow, blood, and spleen were indeed altered, 

with nuance in the extent of alteration and immune cell types affected (Figure 2.2c and Figure 

2.3g). There was striking concordance among different models of the same tumor type (breast 

cancer and melanoma), shifting together across principal components. Surprisingly, SB28 

glioblastoma extensively altered systemic immunity despite localization in the brain. Reporter 

protein expression was not responsible for systemic immune remodeling, as both the AT3 parental 

cell line and a derivative expressing GFP and luciferase exhibited strongly correlated systemic 

alterations (Figure 2.3h, r = 0.9, p = 2.2e-16). Systemic alterations also occurred in mice both with 

and without metastases (Figure 2.4a-e) and were tightly correlated with primary tumor size in the 

MMTV-PyMT model (r = 0.8527, p <0.0001). While the majority of systemic immune remodeling 

could be explained by primary tumor size (78.4%), the residual values were correlated with both 

lung and lymph node metastases (r = 0.5794, p = 0.0207 for lung, and r = 0.5882, p = 0.0185 for 

lymph node). Compositional alterations in these peripheral sites did not correspond with the local 

immune infiltrate. Thus, tumor burden drives distinct changes in peripheral immune organization, 

dependent on the identity of the tumor. 

We next performed Statistical Scaffold Analysis46,83 to interrogate the impact of tumor 
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burden in a more detailed manner, focusing initially on the spleen as a secondary lymphoid organ 

distal from the tumor (Figure 2.2d and Figure 2.3b-f, Methods). All models exhibited expansions 

in the splenic myeloid compartment, which was dominant in some, such as the three breast cancer 

models (Figure 2.2d and  

Table 2.2) but less dramatic in others, such as the two melanoma models (Figure 2.3e-f). 

Splenic remodeling in breast cancer was specifically characterized by increases in frequencies of 

neutrophils, eosinophils, and monocytes and reductions in B and T cells (Figure 2.2d). Consistency 

was observed across breast cancer models, which span three mouse strain backgrounds (BALB/c 

for 4T1, C57BL/6 for AT3, and FVB/N for MMTV-PyMT), orthotopic and autochthonous models, 

and a range of metastatic potential (AT3 – weakly metastatic, MMTV-PyMT – moderately 

metastatic, 4T1 – highly metastatic). Consistency despite model differences argues for a tumor 

and/or site-specific bias in systemic immune responses. Gene expression analysis of whole blood 

from untreated breast cancer patients and matched controls from the Norwegian Women and 

Cancer Study also demonstrated a marked shift in the immune state (PC1 Wilcoxon rank-sum p-

value = 5.0 x 10-12, PC2 p-value = 1.6 x 10-6) (Figure 2.2e). Cellular enrichment analysis 

demonstrated increased neutrophils and decreased Th1 and CD8+ T cells (Figure 2.2f). Altogether, 

these data suggest that tumor burden broadly disrupts immune macroenvironments, providing 

context to inform therapeutic manipulations designed to activate local versus systemic responses. 

 

2.3.2 Tumor growth drives non-linear changes in immune cell frequencies over time 

Tumors develop gradually, yet tumors are sampled at one developmental point in the clinic 

to provide prognostic information related to the immune response. We explored the dynamics of 

global immune remodeling during breast tumor growth, beginning with the predictable orthotopic 
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4T1 model before confirming results in an unrelated spontaneous model (MMTV-PyMT). 

Absolute cell counts of tumor-infiltrating leukocytes positively correlated with tumor size, 

supporting a progressive immune response (Figure 2.4f, r = 0.6, p = 0.0256). Absolute spleen cell 

counts also increased, but cell frequencies as a percent of total leukocytes were comparable to 

absolute numbers per milligram of spleen (Figure 2.4g). Deep profiling of both the tumor and 

splenic immune compositions by mass cytometry revealed nonparametric correlations in 

individual cluster frequencies with time (Figure 2.5a-b), demonstrating at the single cell level that 

immune changes are indeed progressive. PCA of immune cell frequencies showed progressive 

changes across tissues over tumor growth in both 4T1 (Figure 2.5c-d) and MMTV-PyMT tumors 

(Figure 2.4h). Importantly, the immune profile within the TME remained distinct from those 

observed in peripheral sites. The dLN immune composition was unique, while the spleen, blood, 

and bone marrow were more coordinated. Neutrophil expansion in the spleen and bone marrow, 

culminating in elevated circulation in blood, but lack of accumulation within the lymph node or 

tumor, is one feature contributing to these unique profiles (Figure 2.5d). 

 Progressive systemic immune responses to tumor burden were not strictly linear. The 

magnitude of change was non-uniform between each time point as evident by the PCA (Figure 

2.5c and Figure 2.4h). While some population changes were relatively continuous, such as 

increasing neutrophils or decreasing CD4+ T cells, many others were dynamic, like CD8+ T cells 

and Tregs, which reciprocally expanded and contracted at distinct times in the tumor and dLN 

(Figure 2.5d). In the spleen, myeloid expansion began by day 7 and continued to day 14, preceding 

the progressive decline in the T and B cells that began by day 14 (Figure 2.4i). The lymph node 

also changed most dramatically by day 14 (Figure 2.6a), while changes in blood were more 

continuous (Figure 2.6b). The bone marrow and tumor contained less mature and clearly defined 
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cell types, with many more inter-cluster connections and individualized patterns of change over 

tumor growth (Figure 2.6c-d). These data demonstrate that the tumor immune response is a highly 

dynamic process.  

 

2.3.3 Immune cell states are dynamically altered across immune organs with tumor growth 

To understand the extent of systemic impacts on T cells, we leveraged unsupervised cell 

clustering to identify changes in T cell subsets, cell states, and potential cross-organ coordination 

of responses during tumor growth. Indeed, the T cell compartment was dramatically reorganized 

over both 4T1 and MMTV-PyMT tumor development (Figure 2.7a, Figure 2.8a-b). Tissues 

contained both unique and shared T cell subsets shifting with tumor growth (Figure 2.7b-c, Figure 

2.8c-e). Blood and spleen profiles were more similar, dominated by CD4+ T cells. In contrast, the 

tumor T cell pool had more shared subsets with the bone marrow, including an increasing double 

negative population and a decreasing NKT cell population (Figure 2.7c). 

Demonstrating the breadth of immune reorganization in cancer, all T cell clusters changed 

in abundance across multiple tissues between early and late disease time points (Figure 2.7d). Of 

particular interest, tumor-infiltrating CD103+ Tregs, described as potent suppressors of effector T 

cells84, were abundant at day 7 but decreased with tumor progression (Figure 2.7e). This Treg 

subset expanded in the dLN, suggesting that distal suppressive mechanisms may support local 

changes to maintain a tumor-promoting systemic state. Anti-correlated changes extended to 

conventional CD4+ T cells, where CD44+ CD90high activated CD4+ T cells decreased in the tumor 

but expanded in the lymph node (Figure 2.7f). The spleen showed the greatest change in CD44+ 

CD27+ memory CD4+ T cells, which decreased with disease progression (Figure 2.7g). The blood 

showed increases of activated CD44+ CD4+ T cells expressing the CD31 adhesion receptor, which 
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can promote T cell survival in settings of inflammation (Figure 2.7h)85. CD44+ CD8+ T  cells 

expanding in the lymph node expressed Ly6C (Figure 2.7j), which can support lymph node homing 

of central memory T cells86. CD8+ T  cells generally expanded in the tumor, but the most dominant 

cluster expressed high levels of PD-1 and CD69 previously associated with T cell dysfunction 

(Figure 2.7i)87,88. To explore the extent of dysfunction, we interrogated intratumoral and splenic T 

cells for their expression of CD101 and CD38, two markers recently identified as evidence of 

permanent T cell dysfunction55. Late-stage tumor burden led to accumulation of CD38+CD101+ 

CD8+ T cells in the tumor as expected; however, this phenotype did not emerge in the spleen 

(Figure 2.7k), suggesting that CD8+ T  cells are altered differently in the TME and periphery. 

Similar changes in T cell composition were observed in the MMTV-PyMT model (Figure 2.8c-h). 

A similar pan-organ clustering analysis for the mononuclear phagocyte subsets, including 

macrophages and dendritic cells (Figure 2.9), revealed correlated and anti-correlated systemic 

changes in cell states with tumor progression. As expected, the tumor-infiltrating subsets were 

distinct from peripheral subsets and expressed high levels of PD-L1.  

We specifically interrogated protein expression dynamics of PD-1 and PD-L1 , the most 

commonly manipulated immune checkpoints by cancer immunotherapies to facilitate T cell 

responses89. While expression of these molecules is used clinically for patient stratification, it 

remains unclear whether they are expressed consistently or modulated dynamically over time. We 

indeed found dynamic PD-1 and PD-L1 expression on infiltrating immune cells (CD45+) and non-

immune cells (CD45- CD31-) in the TME and in the periphery of both 4T1 and AT3 breast cancer 

models (Figure 2.10a- c). In fact, while the overall amount of PD-L1 expression was significantly 

less in the blood compared to the tumor, median leukocyte signal intensity was positively 

correlated between these tissues (Figure 2.10d, r = 0.7487, p = 0.001). Both PD-1 and PD-L1 were 
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promiscuously expressed across immune cell types, particularly within the TME (Figure 2.10e). 

The most prominent cells expressing PD-L1 in the periphery were non-classical monocytes90 and 

cDCs, while PD-1 was abundantly expressed on T cells, neutrophils, and eosinophils. Dynamicity 

in PD-1 and PD-L1 expression suggests the potential for differential sensitivity to checkpoint 

blockade over the course of tumor development.   

Changes in cellular proliferation or death rates are potential mechanisms contributing to 

immune composition alterations. We discovered that immune proliferation fluctuated systemically 

in a pattern unique to each site but was coordinated across all immune subsets within that site 

(Figure 2.11a-d). Changes in Ki67 and cleaved caspase-3 expression corresponded poorly with 

clusters that were increasing or decreasing in frequency in the spleen (Figure 2.11e). Thus, while 

tumor burden systemically alters proliferation and death, these processes alone likely do not 

account for the systemic immune alterations observed. 

   

2.3.4 De novo T cell responses are impaired by pre-existing malignancy 

Having established that tumor development drives an altered immune macroenvironment, 

we next examined whether immune responses to new challenges were affected. Type 1 immune 

responses are associated with strong cellular immunity and are generally thought to provide 

optimal anti-tumor immunity. To understand how type 1 immune responses might take place in 

the context of cancer, we challenged healthy or AT3 tumor-bearing mice with two well-described 

pathogens that induce potent type 1 immunity, lymphocytic choriomeningitis virus (LCMV), and 

Listeria monocytogenes (Lm)91,92. Tumor-burdened mice still cleared the pathogens from the 

spleen (Figure 2.12a-b), consistent with the lack of complete immunosuppression in solid tumor 

patients. However, the cellular immune response to infection was dramatically altered. The 
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differentiation of effector CD8+ T cells, the magnitude of CD8+ T cell proliferation, and expression 

of the cytolytic mediator granzyme B were all significantly impaired in tumor-bearing mice after 

infection (Figure 2.12c-e and Figure 2.13a). These results demonstrate an unappreciated 

impairment of new cellular immune responses in the context of cancer.  

We previously found that CD8 T cells with markers of terminal dysfunction were only 

observed in the TME and not in the spleen (Figure 2.7k). Consistent with this hypothesis, splenic 

CD8 T cells harvested from either control or tumor-burdened animals were equally capable of 

producing the key effector cytokines IFNγ, TNFα, and IL-2 in vitro (Figure 2.13b). To test their 

functionality after infection, CD8 T cells from OT-I transgenic mice expressing a T cell receptor 

specific for ovalbumin (SIINFEKL) were isolated from control or tumor-bearing mice and 

transferred into recipient mice, which were infected with Lm-expressing ovalbumin (Lm-OVA). 

AT3 tumors still drove systemic changes in TCR transgenic mice (Figure 2.13c). OT-I CD8+ T  

cells from control and tumor-bearing mice proliferated equivalently in control recipients at day 7 

post-infection, the peak of the CD8+ T cell response91–93 (Figure 2.14a). However, when OT-I T 

cells were transferred into tumor-bearing recipients prior to infection, they expanded poorly, failed 

to induce T-bet expression associated with differentiation into effector cells, and expressed higher 

levels of PD-1 (Figure 2.14b). Similar results were also observed when polyclonal CD8+ T cells 

from control or tumor-burdened mice were competitively transferred (Figure 2.14c). We found 

that antigen-specific central memory, effector memory, and short-lived effector CD8+ T cells were 

less abundant in tumor-bearing mice at day 10 as well, suggesting that defects extend beyond peak 

proliferation and represent a fundamental impairment of de novo CD8+T cell responses (Figure 

2.14d). Together, these results demonstrate that cell extrinsic mechanisms suppress systemic T cell 

function in the tumor context.  
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 Since tumor experienced CD8+ T cells in the periphery were not dysfunctional, we 

hypothesized that impaired APC activity earlier during infection contributes to decreased 

peripheral CD8+T cell activation. Dendritic cells (DCs) play a key role in orchestrating CD8+T  

cell responses to Lm94, and evidence suggests that circulating DCs in breast cancer patients have 

reduced antigen presentation capacity95. Therefore, we quantified costimulatory molecule 

expression on splenic DCs 2 days post-infection. DCs from AT3 tumor-bearing animals expressed 

lower levels of key costimulatory molecules CD80 and CD86 and the activation marker CD83 

when compared to tumor-free controls (Figure 2.14e and Figure 2.13d). DCs from tumor-bearing 

mice also exhibited suboptimal activation at day 7 of infection, expressing lower levels of CD80, 

the adhesion molecule CD54 (ICAM-1), and PD-L1 (Figure 2.13e). This result suggests that the 

PD-1/PD-L1 axis does not cause the T cell response impairment and indicates that alternative 

strategies are likely required to induce new systemic T cell activity. We therefore sought to 

pharmacologically boost APC activation as a plausible strategy for achieving this goal. Anti-CD40 

treatment drives potent and systemic APC activation as shown by elevated CD86 and PD-L1 on 

splenic DCs (Figure 2.14f and Figure 2.13f). In the context of infection, anti-CD40 treatment 

rescued CD8+ T cell proliferation in tumor-burdened animals 7 days post infection (Figure 2.14g). 

We also observed significantly higher levels of activation markers CD80, CD54 and PD-L1 on 

DCs after treatment (Figure 2.13e), consistent with enhanced APC stimulation. In contrast, high 

doses of IL-12 or treatment with anti-CTLA-4 failed to rescue T cell proliferation (Figure 2.14g 

and Figure 2.13g), suggesting that T cell targeted interventions alone are not sufficient. These 

experiments demonstrate that APCs fail to drive optimal new T cell responses in the context of 

tumor burden.  
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2.3.5 Tumor resection reverses changes in systemic immune organization and responsiveness 

Given that defects in T cell activity were reversed after removal from a tumor-burdened 

context, we asked whether tumor clearance was sufficient to revert changes in systemic immunity. 

We surgically resected tumors when systemic changes were evident across sites and allowed mice 

to recover from surgery for 14 days to mitigate immune confounders from wound healing. We 

carefully tracked both local recurrence and metastatic outgrowth by bioluminescent imaging. 

Successful tumor resection reversed changes in systemic immunity in the AT3 and 4T1 breast 

cancer and the MC38 colorectal cancer models (Figure 2.15a). Splenic immune cluster frequencies 

and proliferative behavior became comparable to control animals (Figure 2.15b and c, and Figure 

2.16a-c). Successful resection restored compositional changes in spleen immune frequencies and 

T cell clusters; however, local recurrence in the AT3 model and overt lung metastasis in the 4T1 

model led to intermediate phenotypes in the systemic immune state (Figure 2.15d and e, and Figure 

2.16d and f-g). Local recurrence induced changes in the spleen comparable to primary tumors, but 

the composition of T cells was less dramatically altered. Lung metastasis induced more moderate 

changes, suggesting that systemic immune perturbations are not primarily the consequence of 

disseminated metastases. Finally, we interrogated DC and T cell responses 7 days after Lm-OVA 

infection and observed higher CD86 and PD-L1 expression on DCs in successfully resected mice 

(Figure 2.16h), and both T cell proliferation and granzyme B production were restored (Figure 

2.15f-g). Local recurrence mitigated this rescue. Thus, changes in the immune macroenvironment, 

unlike those of T cells in the TME, are highly dependent on ongoing tumor burden and are 

reversible upon effective tumor clearance. 

Finally, we investigated circulating cytokine levels to define potential mediators of tumor-

driven systemic immune remodeling. We reasoned that candidate factors would be elevated in the 
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serum of AT3 tumor-burdened mice, reduced in successfully resected animals, and elevated again 

with local recurrence, or vice versa. We found that levels of the inflammatory cytokines IL-1a and 

G-CSF followed this pattern (Figure 2.16i). Notably, recent studies have implicated G-CSF as a 

driver of myeloid-derived suppressor cell and neutrophil expansion in preclinical models and 

cancer patients14,96,97. While IL-1b has been shown to promote tumor development locally in the 

TME, the role of IL-1a is less well understood, though it is elevated human breast cancers98–100. 

Consistent with the hypothesis that tumor-secreted factors contribute to systemic immune 

remodeling, G-CSF and IL-1a, but not IL-1b, were produced by AT3 cancer cells in vitro (Figure 

2.16j). We next treated mice with IL-1 and G-CSF blocking antibodies starting 5 days after tumor 

initiation, prior to most systemic immune changes. We also investigated the potential systemic 

impacts of TGFb, a pleiotropic cytokine known to play key roles in shaping the TME, including 

immune cell exclusion and immunosuppression101,102. Both IL-1 and G-CSF blockade significantly 

abrogated systemic immune remodeling while TGFb blockade had no effect (Figure 2.15h and 

Figure 2.16e). IL-1 and G-CSF blockade reduced splenic neutrophils and less mature CD11b+ 

myeloid cells (Figure 2.15i). Notably, IL-1 blockade also significantly reduced circulating levels 

of G-CSF, suggesting that IL-1 may act upstream to promote G-CSF production (Figure 2.16k), 

consistent with in vitro data from human tumor cell lines103. IL-1 blockade was additionally 

sufficient to reduce tumor effects on the splenic T cell composition, preventing the observed 

reductions in naïve and central memory CD8+ T cells (Figure 2.15j-k). Thus, circulating IL-1a and 

G-CSF are critical mediators of tumor-driven systemic immune remodeling in this context. 
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2.4 Discussion 

This study constructs a comprehensive landscape of the immune macroenvironment in 

cancer, revealing a systemic immune context to consider when targeting immune behavior 

therapeutically. Strong pre-existing T cell activity is associated with clinical benefit from currently 

available immunotherapies, but many cancer patients likely require the priming of new antitumor 

immune responses. However, the ability of a tumor-burdened immune system to establish new 

responses is poorly defined104–106. Cancer patients are more susceptible to opportunistic infections 

and mount less effective responses to vaccines107,108, though the relative contributions of tumor 

driven systemic disruption and cytotoxic cancer therapies are debated. Here, we show that systemic 

immunity is disrupted to varying degrees across tumor types. Systemic immune alterations in 

breast cancer impair new immune responses, even to highly immunogenic pathogens that do not 

share tumor antigens. This challenges the idea that T cell dysfunction in cancer is limited to tumor-

specific T cells experiencing chronic antigen exposure. Our data reveal impairment in the initial 

coordination of a T cell response by APCs, impacting T cell proliferation and differentiation. 

Impaired type 1 immune responses represent a fundamental, but previously unappreciated, 

obstacle for effective immunotherapy. These results, alongside promising clinical results of CD40 

agonism in pancreatic cancer67, strongly support combinatorial therapeutic strategies that include 

APC activation. 

This work further reveals remarkable plasticity in the systemic immune state, as successful 

tumor resection largely reverted systemic immune disruptions. Influenced by physiological 

context, immunotherapies may have different consequences when applied pre- or post-operatively. 

These studies show that the immune macroenviornment in cancer is highly manipulatable, 

warranting further studies in cancer patients. Prior studies have connected systemic changes with 
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relapse in breast cancer patients, showing altered immune gene signatures in uninvolved lymph 

nodes and blood of patients with metastatic versus non-metastatic disease109 and that circulating 

CD45RA-Foxp3high Tregs predict future relapse110. In breast tumor models, we show that the 

primary tumor is a primary driver of systemic immune reorganization, but that lung and lymph 

node metastasis are also associated with additional subtle changes. Future work to understand 

systemic immune alterations across cancer patients could inform prognosis and optimal therapy. 

Our study lays the foundation for detailed studies of specific tumor macroenvironments to 

match our detailed understanding of tumor microenvironments in mouse tumor models and 

patients. Building a complete understanding of systems-level immunity in cancer should further 

our ability to drive effective and rationally-designed anti-tumor immune responses in all cancer 

patients. 
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Figure 2.1: Main mass cytometry gating strategy 
a, Main gating strategy for identifying major immune cell populations from mass cytometry 
datasets. 
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Figure 2.2: The systemic immune landscape is remodeled across tumor models. 
a, Composition of tumor immune infiltrates across late stage mouse models, identified by manual 
gating (n = 3 independent animals for 4T1; n = 6 AT3; n = 7 MMTV-PyMT; n = 6 B16; n = 6 
Braf-Pten; n = 4 LMP; n = 6 MC38; n = 1 SB28; n = 30 Controls). b-c, Principal component 
analysis (PCA) and corresponding vector plot of individual contributions for the tumor infiltrating 
immune frequencies (b), and the log2 fold change of immune frequencies for the tumor dLN, bone 
marrow, blood, and spleen (c) identified manually (n = 3 for SB28, otherwise as in panel (a)) d, 
Scaffold maps of spleen immune frequencies in breast tumor models (4T1, AT3, and MMTV-
PyMT). Black nodes represent canonical cell populations identified manually. Other nodes reflect 
unsupervised clustering of leukocytes. Nodes are arranged by similarity using a force-directed 
graphing algorithm (see Methods). Red denotes populations significantly higher in frequency in 
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tumor-burdened animals compared to controls; blue denotes significantly lower frequency. For 
significant nodes (q <0.05 by significance analysis of microarrays), the degree of coloring reflects 
log2 fold change (n as in panel (a)). e-f, PCA (e) and significant immune changes by cellular 
enrichment analysis (f) from human whole blood gene expression, comparing breast cancer 
patients (n = 173) and matched controls (n = 281), p*** <0.001 by two-sided Wilcoxon rank-sum 
test with Benjamini-Hochberg correction. Box plots: center line, median; box limits, upper and 
lower quartiles; whiskers, 1.58x interquartile range / sqrt(n); points, outliers. 
 
 
 
  



 31 

 
Figure 2.3: Systemic immunity is distinctly remodeled across tumor types. 
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a, Relative abundance of total leukocytes infiltrating the TME across eight tumor models. b-f, 
Scaffold maps of spleen cell frequencies across five distinct tumor models, SB28 glioblastoma (b), 
MC38 colorectal (c), LMP pancreatic (d), B16 melanoma (e), and Braf-PTEN melanoma (f), 
comparing late stage tumor burden to their respective health littermate controls. g, Heatmaps of 
the log2 adjusted fold change in bulk immune cell frequencies across all five tissues, where 
relevant, across all models. h, Heatmaps of the log2 adjusted fold change in bulk immune cell 
frequencies comparing the parental AT3 and engineered AT3 expressing reporters GFP and 
Luciferase, with cell labels in g. Lower inset shows linear correlation between these systemic 
immune features. 
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Figure 2.4: Systemic immunity is distinctly remodeled over tumor development. 
a, Pearson correlation between MMTV-PyMT primary tumor size and change in systemic immune 
composition, measured as Aitchison distance. b, Degree of systemic immune change by Aitchison 



 34 

distance over tumor growth (left) and after removing the contribution of primary tumor size by 
linear regression (right).  c, Percent of PyMT expressing metastatic cancer cells in the lung (green) 
and primary dLN (blue). d, Pearson correlation between lung or lymph node metastasis and the 
residual changes in systemic immune composition after regressing out primary tumor burden. e, 
Heatmap of the log2 adjusted fold change in bulk spleen immune cell frequencies for each 400 
mm2 tumor-bearing mouse, ranging from 0 to high metastatic disease. f, Pearson correlation 
between tumor mass and absolute number of infiltrating leukocytes in 4T1 breast tumors. g, Spleen 
immune absolute cell counts, adjusted absolute cell counts per mg of tissue, and unadjusted 
immune frequencies at each time point for neutrophils, B cells and T cells of the 4T1 breast tumor 
model. h, PCA of relative immune cell frequencies from each major immune tissue over time in 
the MMTV-PyMT breast tumor model. Vectors designate progression from control (first point) to 
25 mm2, 50 mm2, 125 mm2, and 400 mm2 (last point, arrowhead). i, Scaffold maps of immune cell 
frequencies in the spleen at each time point of 4T1 tumor burden, colored by log2 fold change in 
frequency compared to the previous time point. 
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Figure 2.5: The systemic immune landscape is remodeled progressively with tumor 
development. 
a-b, Scaffold maps of 4T1 tumor (a) and spleen (b) cell frequencies colored by significant 
Spearman correlation with time (across day 0, 7, 14, 21, and 35), p <0.05 by two-sided t-test with 
Benjamini-Hochberg correction. Green denotes positive correlation, and brown denotes negative 
correlation. c, PCA and corresponding vector plot of contributions for immune cell frequencies 
from each immune tissue over 4T1 breast tumor growth. Vectors designate progression from 
control day 0 (first point) to day 7, 14, 21, and 35 (last point, arrowhead). d, Curves of mean cell 
frequencies across time from a subset of immune cell types contributing to c, colored by tissue 
corresponding with c. All panels from one experiment, n = 3 independent animals for day 21 and 
n = 4 for all other timepoints. 
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Figure 2.6: Immunity is distinctly remodeled by compartment over tumor development. 
a-d, Scaffold maps of immune cell frequencies over 4T1 tumor progression in the tumor dLN (a) 
blood (b), bone marrow (c), and tumor (d), colored by fold change relative to the previous time 
point.  
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Figure 2.7: Tumor burden progressively changes the systemic T cell composition. 
a-d, CD3+ CD11b- leukocytes from all tissues from healthy and 4T1 tumor-burdened animals at 
progressive time points. a, Scaffold maps of the T cell cluster frequencies in the spleen at each 
disease stage, all colored by log2 fold change in frequency. Clusters with significant change over 
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time are highlighted in red in the first map, q <0.05 by multiclass significance analysis of 
microarrays.  b, Heatmap of the protein expression defining each T cell cluster, column normalized 
to each protein’s maximum positive expression. c, Heatmap of each T cell cluster frequency, by 
row, in each site and across the individual 3-4 animals per time point. d, Stacked bar plot of the 
log2 fold change in cluster frequency between early (day 7) and late (day 35) disease stage, colored 
by tissue. e-j, Representative scatter plots of key proteins defining T cell clusters that change in 
frequency in the designated tissues between early and late disease stage for Tregs (e), CD4+ T cells 
(f-h), and CD8+ T cells (i-j). k, Representative scatter plots and quantification of CD101+ CD38+ 
dysfunctional CD8+ T cells in the spleen and tumor of health or day 21 tumor-burdened animals. 
All panels from one experiment, n = 3 independent animals for day 21 and n = 4 for all other 
timepoints. Barplot: centre, mean; whiskers, standard deviation. 
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Figure 2.8: Tumor growth shifts the systemic T cell composition across models. 
a-b, PCA of T cell cluster frequencies across lymphoid tissues over tumor development for the 
4T1 (a) and MMTV-PyMT (b) breast tumor models. Vectors designate directional progression 
from control (first point) to late stage disease (last point, arrowhead). In a, tumor time points 
include day 7, 14, 21, and 35 after 4T1 cancer cell transplant. In b, tumor time points include tumor 
sizes of 25 mm2, 50 mm2, 125 mm2, and 400 mm2. c-e, CD3+ CD11b- leukocytes from all tissues 
clustered together from healthy and MMTV-PyMT tumor-burdened animals at progressive tumor 
sizes. c, Heatmap of each T cell cluster frequency, by row, in each site and across the individual 
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2-3 animals per time point. d, Stacked bar plot of the log2 fold change in cluster frequency between 
early (25 mm2) and late (400 mm2) disease time points, colored by tissue. e, Heatmap of the protein 
expression defining each T cell cluster, column normalized to each protein’s maximum positive 
expression. f-h, Representative scatter plots of key proteins that define T cell clusters changing in 
frequency in the designated site between early and late disease stage for CD8+ T cells (f), Tregs 
(g), and CD4+ T Cells (h). 
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Figure 2.9: Tumor growth shifts the systemic mononuclear phagocyte composition. 
a, CD3- CD19- leukocytes from all tissues clustered together from healthy and 4T1 tumor-
burdened animals at progressive time points. Left, stacked bar plot of the log2 fold change in 
cluster frequency between early (day 7) and late (day 35) times points, colored by tissue. Right, 
heatmap of the protein expression defining each cluster, column normalized to each protein’s 
maximum positive expression. b, Curves of the mean cell frequencies over time in the 4T1 breast 
tumor model from designated mononuclear phagocyte cell types, colored by tissue. c, PCA of the 
mononuclear phagocyte cell frequencies from each tissue over time in the 4T1 breast tumor model. 
Vectors designate progression from control (first point) to day 7, 14, 21, and 35 (last point, 
arrowhead). Coloring of tissues for a-c corresponds to labels in c. 
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Figure 2.10: PD-1 and PD-L1 expression is dynamic over tumor growth. 
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a, Distribution of PD-1 and PD-L1 signal intensities on tumor infiltrating leukocytes over time in 
the 4T1 or AT3 breast tumor models. Coloring of time points for a-d corresponds to legend in a. 
b, Percent of total infiltrating leukocytes (left of dashed line) or CD45-, non-endothelial cells (right 
of dashed line) with high PD-1 or PD-L1 expression in the 4T1 or AT3 tumor models. c, Percent 
of leukocytes with high PD-1 or PD-L1 expression over time and across tissues, 4T1 model. d, 
Pearson correlation between median PD-L1 signal intensity on blood versus tumor infiltrating 
leukocytes, 4T1 model. e, Percent of each major immune cell subset expressing high PD-1 or PD-
L1 in the tumor, blood, and spleen, identified manually. Cell subsets below 0.2% of total 
leukocytes were not included, X. Bars ordered by time point, beginning at healthy control. Double 
positive PD-1/PD-L1 expression was rare and not illustrated. p*<0.05, One-Way ANOVA, with 
Tukey correction versus control tissue or healthy mammary fat pad (blue in b-c, fill corresponding 
to bar color in e), or versus day 7 (green in b-c). 
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Figure 2.11: Tumor burden induces tissue-specific changes in immune cell cycling. 
a-b, Log2 fold change in all Ki67-expressing leukocytes in each tissue tissues for 4T1, AT3, and 
MMTV breast tumors (a), and over 4T1 tumor progression (b). p*<0.05, One-Way ANOVA, with 
Tukey correction versus control. c-d, Statistical Scaffold maps of Ki67 expression in immune cells 
of the tumor dLN comparing control to day 21 (c) and the spleen over time (d) in 4T1 tumor-
burdened animals. e, Percent of increasing clusters (red, total of 56), decreasing clusters (blue, 
total of 90), or unchanged cluster that have corresponding changes in cell cycle markers Ki67 and 
cleaved caspase-3. 
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Figure 2.12: Tumor burden leads to impaired T cell responses to secondary infection. 
a-b, Fold change in body weight after Listeria monocytogenes (Lm) infection (n = 11 independent 
animals for control groups and n = 9 for AT3 groups) (a), and quantification of Lm bacterial burden 
(b) in control and AT3 tumor-burdened animals (n = 5 for day 3 groups, n = 4 for control day 8, 
and n = 2 for AT3 day 8). c, Scaffold map of CD8+ T cell frequencies in the spleen in AT3 tumor-
burdened mice after 7 days of Lm infection, colored by fold change in frequency compared to 
infected control mice (n = 3 uninfected, n = 3 Lm infected), q <0.05 by significance analysis of 
microarrays. d-e, Quantification and representative scatter plots of splenic CD8+ T cell 
proliferation (d) and granzyme B production (e) in response to LCMV Armstrong or Lm in healthy 
or AT3 tumor-burdened animals (n = 3 uninfected, n = 4 LCMV, and n = 3 Lm infected). For all 
barplots: p* <0.05, p** <0.01 by two-sided t-test; center, mean; whiskers, standard deviation. 
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Figure 2.13: Tumor driven deficits in T cell responses are cell-extrinsic. 
a, Quantification of all CD8+ T cell populations in the spleen of healthy or AT3 tumor-burdened 
mice after 7 days of Lm infection, Two-Way ANOVA with Bonferroni correction. b, Expression 
of inflammatory cytokines, IFNg, IL-2, and TNFa in splenic CD8+ T cells isolated from control 
or AT3 tumor-burdened mice after in vitro differentiation with CD3, CD28 and IL-2, and re-
stimulation with Brefeldin A and PMA Ionomycin. c, Scatter plots of CD11b and Ly6G showing 
expected neutrophilia in OT-I TCR transgenic mice with AT3 tumor burden. d, Histograms of 
CD80, CD86, and CD83 signal intensity on cDCs from healthy or AT3 tumor-burdened mice at 
day 2 of Lm-OVA infection. e, Median signal intensity of CD80, PD-L1 and CD54 activation 
markers on splenic cDCs from healthy or AT3 tumor-burdened mice compared to IL-12p70 or 
CD40 treatment at day 7 of Lm-OVA infection. f, Median signal intensity of PD-L1 on splenic 
cDCs from untreated or CD40 treated AT3 tumor-burdened (day 21) mice. g, Quantification of 
splenic CD8+ T cell proliferation in healthy, untreated or CTLA-4-treated AT3 tumor-burdened 
animals in response to 7 days of Lm-OVA infection. p*<0.05, two-tailed t-test.     
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Figure 2.14: Tumor burden attenuates dendritic cell activation during secondary infection. 
a, OT-I T cell proliferation from control or tumor-burdened animals transferred into control 
recipients, and analyzed at 72, 96, and 144 hours post Lm-Ova infection (n = 3 independent animals 
per group). Quantification of 96 hours. b, Transferred OT-I T cell counts and median signal 
intensity of T-bet and PD-1 at day 6 of Lm-OVA infection (n = 3 for control, and n = 4 for AT3 
hosts). c, Competitively transferred polyclonal CD8+ T cell counts from congenic (CD45.1+ AT3 
tumor-burdened or CD45.1+CD45.2+ control) donors into CD45.2 control (n = 5) or AT3 tumor-
burdened recipients (n = 4), after 7 days of Lm infection. d, CD8+ T cell subtype counts from 
transferred CD45.1+ OT-I T cells at day 10 of Lm-OVA infection (n = 5 for control, and n = 4 for 
AT3 hosts). e, Median signal intensity of CD80, CD86, and CD83 on splenic conventional 
dendritic cells (cDCs) from healthy (n = 4) or AT3 tumor-burdened (day 28, n = 6) mice, at day 2 
of Lm-OVA infection (n = 2 for uninfected groups). f, Median signal intensity of CD86 on splenic 
cDCs from untreated (n = 3) or CD40 treated (n = 4) AT3 tumor-burdened (day 21) mice. g, 
Quantification of splenic CD8+ T cell proliferation in healthy versus untreated, IL-12p70-treated, 
or anti-CD40 treated AT3 tumor-burdened animals at day 7 of Lm-OVA infection (n = 2 control 
uninfected, n = 4 control Lm, and n = 5 for AT3 groups). For all barplots: p* <0.05, p** <0.01, 
p*** <0.001 by two-sided t-test; center, mean; whiskers, standard deviation. 
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Figure 2.15: Tumor resection completely resets the systemic immune landscape. 
a, Heatmaps of log2 fold changes in peripheral immune frequencies from tumor-burdened (T) or 
resected (R) mice. b-c, Scaffold maps of spleen immune frequencies (b) and proliferation (c) after 
AT3 resection compared to control (n = 3 per group). Insets show resected compared to tumor-
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burden (n = 4), q <0.05 by significance analysis of microarrays. d-e, Compositional Aitchison 
distances in spleen immune frequencies (d) or T cell cluster frequencies (e) from control (n = 3 for 
AT3, 8 for 4T1, and 5 for MC38), tumor-burdened (n = 6, 8, and 4), resected (n = 3, 6 and 6), or 
locally recurrent mice for AT3 and distal lung metastasis for 4T1 (n = 3 for both)(2 independent 
experiments for 4T1 and 1 experiment for AT3 and MC38). f-g, Quantification and representative 
scatter plots of splenic CD8+T  cell proliferation (f) and granzyme B production (g) after Lm 
infection in control (n = 4 and n = 7), AT3 tumor-burdened (n = 4), resected (n = 17), or recurrent 
mice (n = 4), 3 independent experiments. h-k, Compositional Aitchison distances of spleen 
immune frequencies (h), spleen frequencies of neutrophil (top) and undefined CD11b+ cells 
(bottom) (i), compositional Aitchison distances of T cell subset frequencies (j), and splenic CD8+T  
cell frequencies (k) from control, or tumor-burdened mice untreated or with IL-1, G-CSF, or TGFb 
antibody blockade (n = 5 per group, from 1 experiment). All box plots: center line, median; box 
limits, upper and lower quartiles; whiskers, 1.58x interquartile range / sqrt(n); points, outliers. All 
barplots: p* <0.05, p** <0.01, p*** <0.001 by two-sided t-test; center, mean; whiskers, standard 
deviation. 
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Figure 2.16: Tumor resection resets systemic immune organization and function. 
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a-c, Statistical scaffold maps of spleen immune cell frequencies (a) and proliferation by Ki67 
expression (b) in 4T1-resected mice, and of spleen immune cell frequencies in MC38-resected 
mice (c) compared to healthy control. Insets show resected mice compared to tumor-burdened 
mice. d-e, Heatmap of the log2 fold changes in splenic immune cell frequencies for local or lung 
recurrences from control mice (d), and for IL-1, G-CSF, or TGFb blockade from untreated AT3 
tumor-burdened mice (e). f-g, Heatmaps of T cell cluster expression profiles and log2 fold change 
from control for AT3 (f) and 4T1 (g) for the spleen and dLN. h, Median signal intensity of CD86 
and PD-L1 on splenic cDCs from healthy, AT3 tumor-burdened, resected, or resected mice with 
local recurrence at day 7 of Lm-OVA infection. i, Concentration of circulating cytokines, IL-1a 
and G-CSF from healthy, AT3 tumor-burdened, resected, or resected mice with local recurrence. 
j, Concentration of circulating G-CSF in control or AT3 tumor burdened mice left untreated or 
after 1L-1 or G-CSF blockade. k, Concentration of cytokines, IL-1a, IL-1b, and G-CSF from in 
vitro cell culture media conditioned with AT3 cancer cells. p*<0.05, two-tailed t-test. 
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Table 2.1: Antibody panel used for mass cytometry experiments. 
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Table 2.2: Change in spleen immune cell frequencies with tumor burden. 
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Table 2.3:  Antibody panel used for flow cytometry experiments. 
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2.5 Materials and Methods 

Animals: 

All mice were housed in an American Association for the Accreditation of Laboratory 

Animal Care–accredited animal facility and maintained in specific pathogen-free conditions. 

Animal experiments were approved and conducted in accordance with Institutional Animal Care 

& Use Program protocol number AN157618. Wild-type female BALB/c, C57BL/6, and B6x 129 

F1 mice between 8-10 weeks old were purchased from The Jackson Laboratory and housed at our 

facility. 4T1 (1X105 cells / 100 µl) or AT3 (5x105 cells / 100 µl) breast cancer cells were 

transplanted into the fourth mammary fat pad. SB28 glioblastoma cells (1x105 cells / 2 µl) were 

transplanted into the right cerebral hemisphere by stereotactic injection. MC38 colon cancer cells 

(1x105 cells / 100µl), B16-F10 melanoma cancer cells (1x105 cells / 100 µl), or LMP pancreatic 

cancer cells (2x105 cells / 100 µl) were transplanted into the subcutaneous region of the flank. 

Female MMTV-PyMT mice were bred at Stanford University. Tyr::CreER; BrafV600E/+; Ptenlox/lox 

mice  were purchased from Jackson Laboratory and housed at our facility. Tumors were considered 

well-established when they reached approximately 1 cm3 in volume. TCR Transgenic OT-I 

CD45.1 mice and heterozygous CD45.2, CD45.1 mice were bred at our facility. Animals were 

housed under standard SPF conditions with typical light/dark cycles and standard chow.  

 

Cell Lines: 

4T1 cells were gifted from Dr. Mary-Helen Barcellos-Hoff (UCSF). AT3 cells were gifted 

from Dr. Ross Levine (MSKCC). For in vivo experiments tracking tumor growth and recurrence 

after resection, we used 4T1 cells expressing mCherry-Luciferase and AT3 cells expressing GFP-

Luciferase. SB28 cells, derived from a NRasV12;shp53;mPGDF transposon-induced glioma111, 
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were gifted from Dr. Hideho Okada (UCSF). LMP cells, derived from the KrasG12D/+;LSL-

Trp53R172H/+;Pdx-1-Cre model of pancreatic cancer112, were gifted from Dr. Edgar Engleman 

(Stanford University). MC38 cells and B16-F10 cells gifted from Dr. Jeffrey Bluestone (UCSF). 

4T1, MC38, B16, and SB28 cells were cultured in RPMI-1640, and AT3 and LMP cells were 

cultured in DMEM, all supplemented with 10% fetal calf serum, 2 mM L-glutamine,100 U/ml 

penicillin and 100 mg/ml penicillin/streptomycin. 

 

Infectious Agents: 

Listeria monocytogenes strain 10403s expressing OVA (Lm-OVA) was originally kindly 

provided by Dr. Shomyseh Sanjabi (UCSF).113 Lm-OVA stocks frozen at -80o C were grown 

overnight at 37o C in BHI broth supplemented with 5 ug/ml erythromycin. Then, overnight cultures 

were sub-cultured by diluting into fresh BHI broth supplemented with 5 ug/ml erythromycin and 

grown for 4 hours. Bacteria CFU was then quantified by measuring optical density at 600 nm. 

Bacteria were then diluted to 5X104 CFU / 100 µl in sterile PBS and 100 µl was injected per mouse 

i.v. via the retro-orbital vein.      

Lymphocytic choriomeningitis virus (LCMV) was kindly provided by Dr. Jason Cyster 

(UCSF) and mice were infected with pre-titered and aliquoted stocks stored in PBS at -80o C and 

diluted with sterile PBS. Mice were infected with 2x105 PFU by intraperitoneal injection. 

 

Mass Cytometry Antibodies: 

All mass cytometry antibodies and concentrations used for analysis can be found in 

Supplementary Table1. Primary conjugates of mass cytometry antibodies were prepared using the 

MaxPAR antibody conjugation kit (Fluidigm) according to the manufacturer’s recommended 



 57 

protocol. Following labeling, antibodies were diluted in Candor PBS Antibody Stabilization 

solution (Candor Bioscience GmbH, Wangen, Germany) supplemented with 0.02% NaN3 in PBS 

to between 0.1 and 0.3 mg/ml and stored long-term at 4° C. Each antibody clone and lot was 

titrated to optimal staining concentrations using primary mouse samples. 

 

Cell Preparation: 

All tissue preparations were performed simultaneously from each individual mouse, as 

previously reported46. After euthanasia by C02 inhalation, peripheral blood was collected via the 

posterior vena cava prior to perfusion of the animal and transferred into sodium heparin-coated 

vacuum tubes prior to dilution in PBS with 5 mM EDTA and 0.5% BSA (PBS/EDTA/BSA). 

Spleens and lymph nodes were homogenized in PBS/EDTA at 4° C. Bone marrow was flushed 

from femur and re-suspended in PBS/EDTA at 4° C. Tumors were finely minced and digested in 

RPMI-1640 with 4 mg/ml collagenase IV, and 0.1 mg/ml DNase I. After digestion, re-suspended 

cells were quenched with PBS/EDTA at 4° C. All tissues were washed with PBS/EDTA and re-

suspended 1:1 with PBS/EDTA and 100 mM cisplatin (Enzo Life Sciences, Farmingdale, NY) for 

60 s before quenching 1:1 with PBS/EDTA/BSA to determine viability as previously described83. 

Cells were centrifuged at 500 x g for 5 min at 4° C and re-suspended in PBS/EDTA/BSA at a 

density between 1-10 x 106 cells/ml. Suspensions were fixed for 10 min at room temperature (RT) 

using 1.6% paraformaldehyde in PBS and frozen at -80° C.  

 

Mass-Tag Cellular Barcoding:  

Mass-tag cellular barcoding was performed as previously described114. Briefly, 1 x 106 

cells from each animal were barcoded with distinct combinations of stable Pd isotopes in 0.02% 
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saponin in PBS. Samples from any given tissue from each mouse per experiment group were 

barcoded together. Cells were washed once with cell staining media (PBS with 0.5% BSA and 

0.02% NaN3), and once with 1X PBS, and pooled into a single FACS tube (BD Biosciences). 

After data collection, each condition was deconvoluted using a single-cell debarcoding 

algorithm114. 

 

Mass Cytometry Staining and Measurement: 

Cells were resuspended in cell staining media (PBS with 0.5% BSA and 0.02% NaN3) and 

metal-labeled antibodies against CD16 and CD32 were added at 20 mg/ml for 5 min at RT on a 

shaker to block Fc receptors. Surface marker antibodies were then added, yielding 500 µl final 

reaction volumes and stained for 30 min at RT on a shaker. Following staining, cells were washed 

2 times with cell staining media, then permeabilized with methanol for at 10 min at 4° C. Cells 

were then washed twice in cell staining media to remove remaining methanol and stained with 

intracellular antibodies in 500 µl for 30 min at RT on a shaker. Cells were washed twice in cell 

staining media and then stained with 1ml of 1:4000 191/193Ir DNA intercalator (Fluidigm) diluted 

in PBS with 1.6% paraformaldehyde overnight. Cells were then washed once with cell staining 

media and then two times with double-deionized (dd) H20. Care was taken to assure buffers 

preceding analysis were not contaminated with metals in the mass range above 100 Da. Mass 

cytometry samples were diluted in dd H20 containing bead standards (see below) to approximately 

106 cells per ml and then analyzed on a CyTOF 2 mass cytometer (Fluidigm) equilibrated with dd 

H20. We analyzed 1-5 x 105 cells per animal, per tissue, per time point, consistent with generally 

accepted practices in the field. 
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Mass Cytometry Bead Standard Data Normalization:  

Data normalization was performed as previously described46. Briefly, just before analysis, 

the stained and intercalated cell pellet was resuspended in freshly prepared dd H20 containing the 

bead standard at a concentration ranging between 1 and 2 x 104 beads/ml. The mixture of beads 

and cells were filtered through a filter cap FACS tubes (BD Biosciences) before analysis. All mass 

cytometry files were normalized together using the mass cytometry data normalization 

algorithm115, which uses the intensity values of a sliding window of these bead standards to correct 

for instrument fluctuations over time and between samples.  

 

Mass Cytometry Gating Strategy:  

After normalization and debarcoding of files, singlets were gated by Event Length and 

DNA. Live cells were identified by Cisplatin negative cells. All positive and negative populations 

and antibody staining concentrations were determined by titration on positive and negative control 

cell populations. 

 

Scaffold Map Generation:  

Statistical scaffold maps were generated using the open source Statistical Scaffold R 

package available at github.com/SpitzerLab/statisticalScaffold with modifications detailed below. 

Statistical scaffold analysis combines unsupervised clustering to identify immune cell subsets with 

dimensionality reduction using a force-directed graph to visualize the organization of immune cells 

within a tissue. Regions of the graph are easy to identify due to the incorporation of canonical 

immune cell types defined manually as ‘landmarks’ in the graph. As previously described46,83, 

cells from each tissue for all animals were clustered together and then deconvolved into their 



 60 

respective samples. Cluster frequencies or the Boolean expression of specific proteins for each 

cluster were passed into the Significance Analysis of Microarrays algorithm116 (using a q-value 

cutoff of 0.05), and the fold change results were reported (rather than the binary significance cutoff 

as originally implemented in Spitzer et al., 2017). Cluster frequencies were also correlated with 

the time from tumor inoculation using Spearman’s rank-ordered correlation. All results were 

tabulated into the Scaffold map files for visualization through the graphical user interface, with 

coloring modifications to graph the spectrum of fold change or correlation strength. The fold 

change was log2 normalized and graphed with an upper and lower limit of a four-fold difference, 

unless otherwise indicated. Cluster frequencies were calculated as a percent of total live leukocytes 

or parent immune subset as indicated. The spleen data from the 4T1 model were used to spatialize 

the initial Scaffold map because all major, mature immune cell populations are present in that 

tissue. 

  

Cell Frequency Heat Map Generation:  

Specified subsets, i.e. T cells and mononuclear phagocytes, were manually gated from each 

tissue for all animals and clustered together. Cluster frequencies were calculated as a percent of 

total live nucleated cells within that subset (excluding erythrocytes). T cells were identified as 

CD3+, CD11blo. Mononuclear phagocytes were defined as CD11b+, CD19-, CD3-, Ly6G-. 

Heatmaps of the resulting cluster frequencies were generated in R. 

 

Human Gene Expression Analysis: 

Whole blood microarray data was generated by The Norwegian Women and Cancer 

(NOWAC) study and is deposited in the European Genome-Phenome Archive under accession 
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number EGAS00001001804 as previously reported117. Principal component analysis of centered 

and scaled data was performed in R using the prcomp function. xCell cell type enrichment 

analysis118 was performed in R using the xCell package (https://github.com/dviraran/xCell) using 

a customized list of cell populations known to exist in peripheral whole blood (B-cells, basophils, 

CD4+ T cells, CD4+ naïve T cells, CD4+ T central memory, CD4+ T effector memory, CD8+ T 

cells, CD8+ naïve T cells, CD8+ T cells, CD8+ T central memory, CD8+ T effector memory, cDC, 

class-switched memory B-cells, eosinophils, erythrocytes, megakaryocytes, memory B-cells, 

monocytes, naïve B-cells, neutrophils, NK cells, NKT, pDC, plasma cells, platelets, Tgd cells, Th1 

cells, Th2 cells, and Tregs). 

 

In vitro CD8+ T cell Differentiation and cytokine production: 

Mice bearing 21-day AT3 tumors were euthanized and their spleens harvested and 

dissociated. CD8+ T cells were enriched using the EasySep Streptavidin Negative Selection Kit 

with the following biotinylated markers: CD11b, MHCII, CD11c, Gr1, B220, CD4, CD44, and 

Ter119. Isolated CD8+ T cells were then stimulated with plate-bound anti-CD3 (1 ug/ml) and 

suspended in anti-CD28-containing (0.5 ug/ml) T cell media for 3 days. The cells were then 

removed from CD3+CD28 stimulation and rested for 1 day. Cells were then restimulated with 

PMA and ionomycin or left unstimulated for 4 hours with brefeldin A and analyzed by flow 

cytometry. 

 

Adoptive T Cell Transfer: 

For OT1 and polyclonal adoptive transfers, CD8+ T cells were isolated from spleens of 

CD45.1 OT1 TCR transgenic or CD45.1, CD45.2 heterozygote wildtype or CD45.1 BoyJ mice by 
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enrichment with EasySep Streptavidin Negative Selection Kit with the following biotinylated 

markers: CD11b, MHCII, CD11c, Gr1, B220, CD4, and Ter119. Cells were stained with CFSE or 

Cell Trace Violet and 1 x 105 cells were then adoptively transferred into each recipient mouse via 

the retroorbital vein. 

 

Quantifying Bacterial Burden: 

To quantify bacterial burden, spleens were harvested and dissociated. Cells from each 

mouse were lysed in 0.5% Triton X-100 in PBS and cells were serially diluted in duplicate and 

aliquots were then added to BHI agar and incubated overnight at 37° C. Colonies grown were then 

counted to quantify bacterial CFU present.  

 

Treatments: 

For infection studies, in vivo antibody treatments were given i.p. starting on day 0 of Lm-

Ova infection: 200 μg of agonistic anti-CD40 (FGK4.5, BioXCell) on day 0, 225 μg of 

recombinant IL-12p70 (BioLegend) daily, and 200 μg of anti-CTLA-4 (9H10, BioXCell) on day 

0 and day 3. For cytokine inhibition studies, in vivo antibody treatments were given i.p. starting 

on day 5 after injection of AT3 cells: 10 ug of blocking anti-GCSF (67604, R&D Systems) daily, 

and 200 ug of both blocking anti-IL-1a (ALF-161, BioXCell) and blocking anti-IL-1R (JAMA-

147, BioXCell) every 3 days. We observed compensatory elevations in circulating IL-1a with anti-

IL-1a treatment, so we added anti-IL-1R to ensure sufficient blockade of this pathway. 

 

Tumor Resection: 

Mice bearing 14-day 4T1 tumors or 16 to 21-day AT3 or MC38 tumors (between 350-
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550mm3) were anesthetized by intraperitoneal (i.p) injection with a mixture of ketamine and 

xylazine, and titrated to effect with isoflurane from a precision vaporizer. The surgical site was 

shaved and sterilized with 70% ethanol and 10% povidone iodine. An incision was made 

subcutaneously at the anterior midline and along the flank of the side with the tumor, using surgical 

scissors, to reveal the inguinal mammary tumor. The tumor was teased away using forceps and the 

surgical wound closed with wound clips. Wound clips were removed after 7 days. 20-30% of AT3 

or 4T1-resected mice had tumor recurrence due to incomplete removal of primary tumors or 

outgrowth of micro-metastases. These mice were separated from successful resection analyses. 

 

Cytokine Quantification: 

For in vivo circulating plasma cytokines, mice were bled via the retroorbital vein using 

heparinized capillary tubes. Blood was then centrifuged at 1000 x g for 10 minutes and the 

supernatant plasma was removed for analysis. For tissue culture supernatants, cells were grown 

for 48 hours in fresh media, then supernatant was removed, centrifuged at 3000 x g for 10 minutes 

to remove debris. Plasma and tissue culture supernatant samples were sent to Eve Technologies 

(Calgary, AB), and analyzed using a multiplex cytokine array. 

 

Flow Cytometry: 

All flow cytometry antibodies and concentrations used for analysis can be found in Table 

2.3. Cells were stained for viability with Zombie-NIR stain. Cell surface staining was performed 

in cell staining media (PBS with 0.5% BSA and 0.02% NaN3) for 15 minutes at room temperature. 

Intracellular staining was performed after fixing cells with BioLegend FluoroFix Buffer and 

permeabilizing cells with BioLegend’s Intracellular Staining Perm Wash Buffer.  The following 
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anti-mouse antibodies were used: (PE-Dazzle594) – CD3 (clone 17A2), (Pacific Blue) – CD4 

(clone RM4-5), (BV786) – CD8 (clone 53-6.7), (APC-Cy7) – CD45 (clone 30-F11), (APC) – 

CD38 (clone 90), (PE) – CD101 (clone Moushi101) , (PD1) – PE-Cy7 (clone 29F.1A12), (BV421) 

– TCRβ (clone H57-597), (PE) – IFNg (clone XMG1.2), (BV711) – IL2 (clone JES6-5H4), (FITC) 

– TNFa (clone MP6-XT22), (BV650) – CD8 (clone 53-6.7), (BV510) – KLRG1 (clone 2F1-

KLRG1), (BV421) – CD62L (clone MEL-14), (FITC) – CD45.2 (clone 104), (APC) – CD8 (clone 

53-6.7), (PE-Cy7) – MHC I (clone AF6-120.1), (PE) – CD45.1 (clone A20). All antibodies were 

purchased from BioLegend, Inc., BD Biosciences, or Thermo Fisher Scientific. Stained cells were 

analyzed with a CytoFLEX flow cytometer (Beckman Coulter) or an LSR II flow cytometer (BD 

Biosciences). Singlets were gated by forward scatter area (FSC-A) and forward scatter width 

(FSC-W), as well as by side scatter area (SSC-A) and side scatter width (SSC-W). All positive and 

negative populations were determined by staining on positive and negative control populations. 

 

Quantification and statistical analysis: 

Comparison of cell frequencies and protein expression in Statistical Scaffold was 

performed using Significance Analysis of Microarrays as described above and in Bair and 

Tibshirani, 2004 and Bruggner et al., 2014. Features with q <0.05 were considered statistically 

significant. Comparison of bulk manually gated cell frequencies was performed using Wilcoxon 

rank-Sum test with Benjamini-Hochberg correction in R. Analysis of principle components for 

human gene expression was performed using two-sided Wilcoxon rank-sum test in R. Analysis of 

cell correlation with time was performed using Spearman correlation with Benjamini-Hochberg 

correction. All comparisons over 4T1 tumor growth were performed by one-way ANOVA with 

Tukey correction in Prism. Unless otherwise states, all other comparisons after infection, 
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treatment, or resection were made using two-sided t tests in Prism. All tests with p <0.05 were 

considered statistically significant. Unless otherwise stated in the figure legends, n = 3 to 6 

independent mice for each experimental condition.  

 

Data availability: 

All mass cytometry data are publicly available by request to the senior author without 

restrictions or at https://premium.cytobank.org/cytobank/projects/2433/.  

 

Code availability: 

The updated Statistical Scaffold package is available at 

https://github.com/SpitzerLab/statisticalScaffold. 
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3.1 Abstract 

The organization and functional capacity of systemic immunity is perturbed over tumor 

development, yet the implications of these preexisting differences for the efficacy of 

immunotherapies has not been explored. Here, we investigated how cancer immune 

macroenvironments affect the efficacy and mechanisms of two classes of immunotherapies: PD-

L1 checkpoint blockade, or agonism of the costimulatory molecule CD40. We discovered that both 

cancer cell type and anatomical location differentially shape the immune macroenvironment. Only 

cancers with preexisting peripheral immune engagement responded to PD-L1 blockade, whereas 

CD40 agonism overcame preexisting deficits by driving efficacious de novo systemic immune 

remodeling across cancer models. All effective immunotherapies led to systemically coordinated 

immune responses with convergent expansion of key effector T cell subsets, but each strategy 

drove nuanced phenotypic states, including terminal effector bias with combination therapy and 

dichotomous CD27 and CD127 expression between monotherapies. Efficacy associated with 

peripheral cDC behavior, and CD40 agonism massively activated and expanded both cDC1s and 

cDC2s in the tumor dLN. This study demonstrates that the preexisting immune macroenvironment 

in cancer dictates therapeutic choice in driving optimal antitumor immune responses.   
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3.2 Introduction 

Strategies to harness immune defense mechanisms against cancer are rapidly expanding, 

from various checkpoint inhibitors to T cell engineering, and yet the clinical impact of 

immunotherapy remains limited by the inability to identify when a specific strategy will be 

efficacious. This gap underscores the need to identify appropriate stratification criteria to rationally 

choose immune interventions with the greatest potential in each patient setting. The heterogeneity 

in local immune responses has been well characterized10,119–121, used to broadly stratify cancer 

patients across a range from immunological deserts with little to no local immune involvement, to 

excluded with immune recruitment but poor infiltration, to inflamed with ample immune 

infiltration and highest likelihood of response to checkpoint inhibitor immunotherapies122,123. PD-

L1 expression in the tumor microenvironment (TME) is another often cited stratification 

criterion124–126, where more local expression suggests heavy tumor reliance on this mode of 

immune disengagement and thus greater susceptibility to blockade. There has also been extensive 

work to describe local immune remodeling during successful immunotherapy127. While the clinical 

focus remains largely on the TME, an appreciation is growing for the importance of peripheral 

immune engagement in productive antitumor responses. 

Numerous studies of late demonstrate that peripheral immune involvement is essential to 

immunotherapeutic efficacy in both preclinical and clinical studies. Blocking peripheral immune 

trafficking or otherwise impairing peripheral immune integrity abrogates the therapeutic benefit 

of checkpoint blockade45,47,48. Efficacy necessitates peripheral involvement because T cells in the 

TME acquire states of terminal dysfunction56,57,128, whereas clinical responses are associated with 

stem-like memory T cell populations59. Several recent studies show that effective 

immunotherapies expand peripheral TCR diversity and drive new and activated T cell clones into 



 69 

the TME, which recognize novel antigen targets60–63. Importantly, we are learning that peripheral 

immune signatures are in fact predictive of efficacy both prior to and during immunotherapy. 

Baseline TCR repertoire diversity is predictive of PD-1 and CTLA1-4 blockade efficacy in 

classical Hodgkin lymphoma and metastatic melanoma29,129. In non-small cell lung cancer patients, 

pre-treatment peripheral CD8+ T cells levels associated with durable clinical benefit in response 

to checkpoint inhibitors (CPIs), with predictive power further strengthened after one round of 

checkpoint blockade130.  Across cancer therapeutic strategies, the importance of peripheral 

immunity holds. Postoperative peripheral CD4+ T cell frequencies are predictive of both 

recurrence free survival and favorable response to adjuvant chemotherapy in patients with 

colorectal cancer (CRC)131. These findings clearly implicate the need for systemic immune 

engagement for productive antitumor responses, but how different therapies achieve this across 

diverse cancer settings remains unclear. 

Novel T cell expansion suggests that de novo immune responses mediate 

immunotherapeutic efficacy, rather than reinvigoration of existing local responses. Work primarily 

within the past year has identified conventional dendritic cells (cDCs) in the tumor draining lymph 

nodes (dLNs) as the primary mediators of checkpoint blockade efficacy49,51–53, where they prime 

new T cell responses. A fundamental, yet underappreciated, limitation to generating new immune 

responses is the functional capacity of immunity in a tumor-burdened host. Cancer patients show 

disrupted peripheral immunity, including a reduction in circulating T cell frequencies and TCR 

repertoire diversity as well as defects in T cell and monocyte cytokine signaling compared to 

healthy individuals29,132,133. Our group recently demonstrated that tumor development significantly 

alters the systemic immune landscape, ultimately impacting the integrity of adaptive immune 

responses132. We found that the strong activation of antigen-presenting cells was capable of 
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restoring de novo adaptive immunity in tumor-burdened hosts, specifically via agonism of the 

costimulatory molecule CD40 on antigen-presenting cells. In cancer contexts resistant to 

checkpoint blockade, CD40 agonism is showing great promise likely via enabling cDCs64–67, 

however the systemic consequences of CD40 agonism and how they bare out across different 

cancer settings is incompletely described. Altogether, these findings implicate the immune 

macroenvironment in cancer as a critical determining factor in immunotherapeutic efficacy. 

 Here, we build off recent discoveries noting the importance and disruption of systemic 

immunity in cancer by directly asking how the immune macroenvironment influences 

immunotherapeutic mechanisms, and thus efficacy. We show that disease context matters, where 

both cancer cell type and anatomical tumor location impact systemic immune remodeling. Across 

three distinct immune macroenvironments, we show that PD-L1 checkpoint blockade is 

efficacious in settings with preexisting immune involvement, while CD40 agonism drives robust 

systemic immune remodeling and is pan-effective. Effective antitumor immune responses were 

highly systemically coordinated and converged across therapies on the expansion of key effector 

immune populations. However, the quality of effector CD8+and CD4+ T cell states was dependent 

on the treatment condition. Finally, we show that cDC states in the dLN are associated with 

immunotherapeutic efficacy and that CD40 agonism dramatically elevates activation of peripheral, 

but not intratumoral, cDC1s and cDC2s. This study provides the first in depth assessment of the 

global immune consequences, across multiple contexts, of key immunotherapies either approved 

or in clinical trials for several human cancers. The findings build on recent literature to identify 

the potential predictive value of preexisting peripheral immune responses in determining the 

mechanisms of immunotherapeutic strategies and their effect on disease outcome. 
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3.3 Results 

3.3.1 Cancer context dictates remodeling of the systemic immune macroenvironment 

 We previously showed that the systemic immune state is disrupted with cancer 

development, and that immune changes were distinct across tumor models. To understand the 

consequence of the immune macroenvironment on immunotherapies, we investigated the 

commonly studied and treatment-responsive MC38 subcutaneous model of colon cancer and the 

AT3 orthotopic model of breast cancer in the mammary fat pad (Figure 3.1A). To deconvolute 

immune consequences due to the cancer cell type and the anatomical tumor location, we 

additionally explored the AT3 breast cancer cell line injected subcutaneously. These models 

developed at different rates, with MC38 growing the fastest and subcutaneous AT3 the slowest, 

though all three reached a size of 150 mm3 by day 20 (Figure 3.1B-C). We profiled the immune 

macroenvironment using mass cytometry in 5 organs critical to immune responses, including the 

tumor, dLN, blood, spleen and bone marrow. Single CD45+ cells across organs and models were 

clustered using the Clara algorithm, and clusters were classified according to their most similar 

canonical immune cell type (defined by manual gating), to which we refer as a “landmark 

reference” (Figure 3.1D). All major immune cells were captured with our pan-immune antibody 

panel, along with several markers of cell states and activity (Table 3.1). 

 We began by assessing the local and peripheral immune responses to tumor development 

across these three contexts. The immune composition of the TME was strikingly concordant with 

cancer cell type, remaining highly similar between AT3 models regardless of tumor location 

(Figure 3.1E-F). MC38 tumors were dominated by macrophages, with notable infiltration of 

effector CD8+ T cells. By comparison, both subcutaneous and orthotopic AT3 tumors had greater 

neutrophil, cDC and NK cell infiltration. One key differentiator, orthotopic AT3 had greater 
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effector CD4+ T cell infiltration relative to either subcutaneous tumor. The Aitchison distance 

measuring overall immune cell composition was significantly different between the MC38 model 

and the AT3 models, but not between the AT3 tumors at different sites (Figure 3.1F). We next 

compared peripheral immune remodeling, having previously established that breast cancer models 

lead to dramatic systemic immune disruption dependent on active tumor burden132. Indeed, 

orthotopic AT3 led to significant changes across the 4 peripheral sites investigated, whereas 

subcutaneous MC38 showed more modest changes (Figure 3.1G-H). Subcutaneous AT3 resulted 

in a near absence of peripheral responses aside from monocyte expansion (Figure 3.1G-H). 

Notably, the dLN was highly altered by orthotopic but not the subcutaneous AT3 tumors. Thus, 

the peripheral immune landscape was jointly dictated by the anatomical location and the cancer 

cell type. Overall, this setup provided a useful stratification of systemic immune remodeling, with 

distinct TMEs and a gradient of peripheral immune engagement spanning low (AT3 

subcutaneous), moderate (MC38 subcutaneous), and high (AT3 mammary fat pad). Further, we 

found that peripheral immune responses were significantly more coordinated in the orthotopic AT3 

and MC38 models, AT3 bearing the most connectivity, consistent with more total changed features 

in that model (Figure 3.1J). 

 Lastly, we explored the expression dynamics of the PD-1/PD-L1 checkpoint blockade 

pathway to assess potential model-specific susceptibility to immunotherapeutic intervention. As 

previously described, MC38 showed high PD-L1 expression on tumor or stromal cells, 

macrophages and cDCs in the TME134, which was significantly lower for both AT3 models (Figure 

3.1K). In the dLN, both MC38 and orthotopic AT3 showed elevated PD-L1 expression specifically 

on CD11b+ cDC2s, corresponding with peripheral immune activation in these models (Figure 

3.1L). MC38 showed a greater proportion of cDC1s relative to cDC2s. We next explored PD-1 
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expression on T cells systemically and found greater expression on CD8+ T cells in the tumor, 

blood, and dLN in the MC38 model, and higher expression on Tregs in the orthotopic AT3 model 

(Figure 3.1M). Tracking with PD-L1 dynamics on cDC2s, CD4+ T cells in the dLN showed higher 

PD-1 expression for both MC38 and orthotopic AT3. These results are particularly interesting 

given that the field has relied on PD-L1 expression dynamics in the tumor to predict efficacy, but 

our data suggest a potential role of PD-L1 blockade in affecting dLN interactions between CD4+ 

T cells and cDC2s.  

 

3.3.2 PD-L1 blockade and CD40 agonism show different efficacies across cancer immune 

macroenvironments 

Recent literature supports the idea that a de novo immune response may be critical to 

driving productive anti-tumor immune responses, particularly in contexts lacking a strong pre-

existing immune response. Here, we employed two immune intervention strategies: relief of 

immunosuppression by PD-L1 antibody inhibition, or activation of antigen-presenting cells by 

CD40 antibody agonism. Given that PD-L1 blockade itself does not provide a new activating 

signal, but rather blocks a suppressive signal, we hypothesized that PD-L1 blockade would be 

effective in contexts with pre-existing systemic immune activation. Indeed, PD-L1 blockade alone 

was sufficient to stall or slow MC38 and orthotopic AT3 tumor growth over a 7-day course of 

treatment; however, it failed to affect the growth of subcutaneous AT3 tumors, which induce the 

least peripheral immune remodeling (Figure 3.2A-B). In contrast, CD40 agonism was sufficient to 

stall or slow tumor growth across all three cancer contexts. Within this time window, the 

combination of PD-L1 blockade and CD40 agonism did not provide added therapeutic benefit over 

CD40 agonism alone. The delay in tumor outgrowth was sustained after cessation of treatment on 
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day 7, particularly for the MC38 model (Figure 3.3). 

Given these distinct outcomes, we assessed global changes in the immune landscape with 

therapy. Broadly, effector CD8+ T cells expanded in the tumor in every case of treatment efficacy, 

but CD40 agonism induced much greater expansion and was uniquely sufficient to significantly 

remodel the overall local immune composition across contexts (Figure 3.4A-C). CD40 agonism 

was also uniquely capable of dramatically remodeling peripheral immunity, showing large 

divergences in principal component (PC) space and significant changes in Aitchison compositional 

distance across all three settings ((Figure 3.4D-E). These results suggest that peripheral immune 

responses are important during productive antitumor immune responses and that CD40 agonism 

is sufficient to drive strong peripheral immune engagement in settings lacking a preexisting 

response. 

 

3.3.3 PD-L1 blockade and CD40 agonism drive both shared and unique immune features 

during effective antitumor responses. 

 In order to shed light on the specific cellular and molecular contributions to a productive 

response, and why therapy fails in some settings, we investigated the systemic immune changes 

induced by PD-L1 blockade, CD40 agonism, or combination in depth. Our study design also 

allowed us probe whether distinct immunotherapeutic interventions result in similar or entirely 

distinct immune outcomes during a productive response. 

We began by assessing immune changes unique to each monotherapy and then defined 

convergence between the two, with the goal of highlighting critical immune features that drive 

responses to immunotherapy. We summarized the total number of immune cell clusters that 

significantly changed across sites and models for each therapy (Figure 3.5A) and constructed a 



 75 

detailed systemic map of the altered immune cell types (Figure 3.5B and Figure 3.6A-B). PD-L1 

blockade uniquely changed a moderate number of immune cluster frequencies across all tissues in 

the MC38 model. In comparison, PD-L1 blockade only changed a few clusters in the mammary 

AT3 model, which had greater preexisting alterations in systemic immunity. One shared change 

between these two models specific to PD-L1 blockade was an increase in Ly6C+ CD127+ CD62L+ 

CD44- CD8+ T cells in the blood.  

CD40 agonism drove dramatic systemic remodeling with many unique changes in cluster 

frequencies across all five tissues and in all three models, including notable expansions in 

circulating effector CD4+ T and CD8+ T cells and activated NK cells. In the subcutaneous contexts 

with moderate or low preexisting systemic immune changes, CD40 agonism drove between 1.5-2 

fold more changes as compared to the mammary AT3 model, which already highly remodeled the 

systemic immune state in the absence of therapy (187 clusters for subcutaneous AT3, 233 clusters 

for MC38, 118 clusters for mammary AT3). Focusing in on the MC38 model, in which these 

therapies demonstrated the most dramatic efficacy, PD-L1 blockade and CD40 agonism each 

demonstrated unique systemic alterations in clusters of effector CD8+ T cells, CD4+ T cells, and 

NK cells, which largely increased with therapy (Figure 3.5B and Figure 3.7). Thus, each 

monotherapy was capable of driving treatment-specific effects on the systemic immune landscape, 

though CD40 agonism resulted in larger global changes. 

In addition to their unique effects, we found multiple convergent immune cell clusters 

altered by both PD-L1 blockade and CD40 agonism, defined as changing in the same direction 

(similar) and to the same degree (converge). Unsurprisingly, intratumoral expansion of effector 

CD8+ T cells showed convergence between therapies in both the MC38 and mammary AT3 models 

(Figure 3.5A-B and Figure 3.6A). This was the only locally convergent immune feature between 
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PD-L1 blockade and CD40 agonism in the mammary AT3 model, consistent with the critical 

cytotoxic functions of these cells in cancer. In the MC38 model, activated KLRG1+ granzyme B+ 

NK cell and Th1 (T-bet+) CD4+ T cell populations expanded intratumorally across both therapies 

(Figure 3.7). This model exhibits lower levels of infiltrating NK cells and effector CD4+ T cells 

without treatment (Figure 3.1E). The tissue with the greatest number of convergent immune 

features between therapies in the MC38 tumor model was the blood, supporting the importance of 

robust peripheral immune engagement (Figure 3.5A-B). 

 We asked whether combination therapy resulted in additive or synergistic effects on the 

immune response, as quantified by changes in the abundances of immune cell clusters. Instead, we 

found that the majority of combination-induced changes either mimicked one or the other 

monotherapy, particularly CD40 agonism, or even antagonized changes that took place after 

monotherapy (Figure 3.5C-D and Figure 3.6C-D). In the MC38 model, combination therapy did 

lead to greater increases in highly active PD-1+ effector CD8+ T cell clusters in the tumor, which 

trended toward increased abundances in the blood. Interestingly, the most striking combinatorial 

impact was on systemic monocyte populations. Classical monocytes uniquely expand in the bone 

marrow, and MHC-II high monocytes (cluster m32 and a34) trended toward increased abundance 

in the spleen and blood after combination therapy (Figure 3.8A, B, and E). Conversely, non-

classical monocytes almost completely disappeared from the blood, spleen, and bone marrow 

(Figure 3.8C, D, and F). Overall, combination therapy did not inherently augment the systemic 

immune impacts of monotherapy. 

Given the robust systemic consequences of CD40 agonism, we anticipated dramatic 

alterations in circulating cytokine profiles to help mediate these effects. We assessed a panel of 44 

cytokines in the blood and found moderate changes induced by tumor burden, but dramatic 
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upregulation across nearly all cytokines by CD40 agonism, which were also mimicked by 

combination therapy (Figure 3.9). Consistent with the significant expansion of effector T cells and 

NK cells in the blood, inflammatory cytokines IL-2, IFNg, and the active heterodimer IL-12p70 

were elevated by CD40 agonism across models (Figure 3.9E). PD-L1 blockade induced moderate 

changes across circulating cytokines in the MC38 model but showed less of an impact in the AT3 

models (Figure 3.9). This careful analysis of systemic immune abundances and cytokine profiles 

emphasizes the dramatic ability of CD40 agonism to reorient the immune system regardless of 

preexisting immune activity. 

 

3.3.4 Effective antitumor immune responses are coordinated between the tumor and 

periphery. 

We defined which of the many systemic immune changes with immunotherapy were 

associated with treatment efficacy and likely critical features of a productive antitumor immune 

response. We rationalized that cancer cell killing requires immune cells within the tumor, so we 

began by correlating immune features in the tumor that significantly changed after therapy with 

the tumor volume at day 7 after the initiation of therapy. We focused on the MC38 model because 

therapy showed the most dramatic impact on tumor volume in this setting. We found mainly 

negative correlations between changed tumor immune clusters and end-point tumor volume across 

therapies, suggesting that effective therapy largely increases immune responses in the tumor 

(Figure 3.10A). Importantly, two effector CD8+ T cell clusters, an effector CD4+ T cell cluster, 

and an NK cell cluster showed significant associations with tumor volume in each of the three 

treatment settings (Figure 3.10A-B). Defining their phenotype, the effector CD8+ T cell subsets 

showed high activation (CD44+, PD-1+, CD90+, Ly6C+), and high cytotoxicity and evidence of 
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ongoing or recent proliferation (granzyme B+, Ki67+). MC38 cluster number 63 (cluster m63) was 

more differentiated, with high CD69 and CD86 but lacking CD27, whereas cluster m67 was more 

memory like with high CD27 expression.  The NK cell cluster m29 was terminally mature (TCF1- 

CD27- and CD11b+) and cytotoxic (KLRG1+ and granzyme B+), and the effector CD4+ T cell 

cluster m73 was a proliferative Th1 subset (T-bet+ CD27+ Ki67+). This result pairs with our 

previously described convergence results to highlight that expansion of these critical effectors is 

associated with tumor clearance.  

We addressed how these critical tumor immune subsets associated with peripheral immune 

changes to understand the peripheral immune dynamics involved in the cellular network that 

results in productive cancer cell killing. We correlated the log2 fold change in cluster abundance 

in the tumor with that of the blood, spleen, lymph node, and bone marrow for monotherapies 

(Figure 3.10C-F), as well as combination therapy (Figure 3.11A-D). PD-L1 blockade induced 

immune coordination in efficacious settings between the tumor and circulating immunity in the 

blood and spleen. Greater coordination was driven in the MC38 context that lacked the strong 

preexisting coordination observed in the mammary AT3 model. CD40 agonism, and similarly 

combination therapy, led to dramatic coordination between the tumor and all peripheral sites. This 

supports a developing picture of coordinated systemic remodeling by immunotherapy, where PD-

L1 blockade leads to immune effects that largely magnify the type of immune response seen at 

baseline, while CD40 agonism leads to robust novel immune activation networks in primary and 

secondary lymphoid organs in addition to immune cells trafficking through the blood.   

We focused on associations between the tumor and blood because this relationship was 

evident across all treatments, and therapeutically informative changes in the blood carry the 

highest translational potential due to its accessibility in cancer patients. We found a module of 
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positive association containing the critical effector immune clusters in the tumor and general NK 

cell and effector CD8+ T cell clusters as well as Th1 cluster m73 in the blood (Figure 3.10G-H and 

Figure 3.11E). This module also contained PD-1+ Treg cluster m77, and MHC-IIhigh Ly6C+ B cell 

clusters in the blood. The latter result, evident in both PD-L1 blockade and CD40 agonism, 

supports the notion that B cell activation may be a part of effective antitumor immune responses 

rather than just a consequence of systemic CD40 agonism135. We also observed a negative 

correlation between this module of immune features and MHC-II- PD-L1+ non-classical 

monocytes in the blood across treatments. Accordingly, these blood populations themselves 

correlated with therapeutic outcome by day 7 tumor volume (Figure 3.10I). Combination therapy 

tended to drive higher frequencies of effector T cell clusters in the blood, with significantly greater 

total effector CD8+ T cells and trends for individual clusters. We detected similar associations 

between effector T cells in the tumor and circulating NK cells, effector CD4+and CD8+ T cells, 

Tregs and MHC-II- PD-L1+ non-classical monocytes in the blood in the AT3 models (Figure 

3.11F-H). Taken together, these results demonstrate that productive antitumor immune responses 

involve coordination between peripheral immune dynamics and effector cells in the tumor.  

 

3.3.5 Distinct immunotherapeutic strategies drive nuanced phenotypic states in CD8+ T cells. 

 Having established that CD8+ T cells are systemically altered across immunotherapies and 

associated with therapy outcome, we further interrogated their phenotypic states to better 

understand whether each therapeutic condition drove activation in the same way. 

 As shown above, effective therapy consistently increases effector CD8+ T cells in the 

tumor, with CD40 agonism doing so to the greatest extent and similarly expanding effectors in 

circulation at the expense of naïve subsets (Figure 3.12A-B). However, the types of expanded 

clusters varied across models. Cluster m63, previously associated with efficacy, began as the most 
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dominant cluster in the MC38 tumor and continued as such with therapy-driven effector expansion. 

The AT3 models had a similar cluster a63, but also showed significant amounts of clusters a66 

and a64 in the TME, expressing higher CD27 and Ki67, all of which expanded. Although CD40 

agonism drove dramatic changes, each immunotherapy ultimately drove nuanced phenotypic 

outcomes depending on the preexisting context. Probing effector phenotype began to also expose 

nuance between each immune intervention, including unique features of combination therapy-

induced cell states. At the bulk level, all three treatment strategies elevated granzyme B+ effector 

CD8+ T cells to similar degrees, but combination led to even higher numbers of Ki67+ cytotoxic 

cells in the tumor and in circulation (Figure 3.12C-G).  

To more deeply investigate changes in composition of cell states, we plotted an equivalent 

number of single cells from each treatment context in UMAP reduced dimensional space and 

noticed striking treatment-specific patterns in regional density even within clusters (Figure 3.12H 

and J). We capitalized on regional density to understand how different treatments influenced the 

relative degree of protein expression and designed a new computational strategy, Regional 

Enrichment Analysis. Each individual cell is classified into a treatment neighborhood based on the 

treatment identities of its nearest neighbors, or otherwise classified as unenriched if there are no 

significantly enriched treatments in the region. We tested this method on control blood CD8+ T 

cells assessing enrichment for individual mice, as well as real treatment groups, and compared the 

percentage of individual cells that fell into the unenriched category to define the optimal threshold 

(Figure 3.13). We tested different numbers of nearest neighbors to decide on k = 15 as optimal. 

An enrichment cutoff of 8 of 15 neighbors from the same treatment identity was not only 

individually significant, with a p value of <0.005, but also showed the greatest difference in the 

percent of cells assigned to enriched communities between control data (biological replicates of 
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wild-type mice) and data from different treatments. This strategy resulted in 14% of cells from 

control samples, but 72% of cells from immunotherapy-treated mice assigned to enriched 

communities, supporting the notion that treatment induced changes in protein expression profiles 

within CD8+ T cells, even within those that are assigned to the same cluster.  

Proceeding with this strategy in the MC38 model, we found that PD-L1 blockade, CD40 

agonism, and especially combination therapy each resulted in unique regional enrichment of 

intratumoral CD8+ T cells, indicating differential protein expression based on treatment (Figure 

3.12I). We profiled key proteins that indicate cell state across these regions by calculating Z-

scores, and indeed found several proteins with significant differences in expression between 

treatment enrichment groups (Figure 3.12K). CD8+ T cells in regions that were enriched for 

untreated and PD-L1-treated mice showed higher expression of several activation markers, 

including CD44, PD-1, and T-Bet. PD-L1 blockade also elevated CD86 and CD90. In contrast, 

regions enriched for cells from anti-CD40-treated mice contained cells with significantly greater 

KLRG1 and less Ki67 expression, both consistent with a terminally differentiated short-lived 

effector cell state. Interestingly, regions enriched for cells from combination therapy were 

characterized by high cytotoxic protein expression of granzyme B and KLRG1 along with the 

proliferation marker Ki67 and a marked drop in all other activation markers. T cell memory 

markers also showed striking regulation by immune intervention, where PD-L1 blockade increased 

CD27, CD40 agonism reduced CD27 and instead increased CD127, and combination therapy 

dramatically reduced CD127. These features could be observed on individual clusters, including 

cluster m63 most abundant in the tumor (Figure 3.12L), as apparent when visualizing protein 

expression gradients on UMAP dimensionality reduction plots (Figure 3.12M).  

Given the strong and outcome relevant associations between tumor and blood, we deployed 
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Regional Enrichment Analysis on circulating CD8+ T cells (Figure 3.12N-P). Again, we found 

treatment-enriched zones largely emphasizing the shift from naïve and memory pools to effector 

cells, evident to some extent with PD-L1 blockade but most striking with CD40 agonism or 

combination therapy (Figure 3.12N-P). These differences were also evident when computing the 

Euclidean distance between overall expression profiles of CD8+ T cells from the average cell in 

untreated mice (Figure 3.12Q). PD-L1 blockade elevated CD27 expression on naïve CD8+ T cells 

as well as CD127 and CD86 expression on memory CD8+ T cells, though expression of Ki67 in 

these cells was reduced. Memory CD8+ T cells enriched for treatment with CD40 agonism alone 

expressed reduced levels of CD127 and elevated Ki67, potentially indicative of a shift away from 

a quiescent memory state. Effector cells with phenotypes enriched in the CD40 agonism group 

expressed lower levels of the memory marker CD27 while those enriched in the combination 

therapy group expressed higher levels of CD27 (Figure 3.12R-S). Both expressed higher levels of 

and granzyme B (Figure 3.12R-S). Cells enriched in the CD40 agonism monotherapy group also 

expressed more KLRG1, whereas those enriched for combination therapy expressed more PD-1 

(Figure 3.12R-S).  

We also studied therapy-driven regional biases in the AT3 models, and similarly found that 

each treatment context resulted in unique protein expression outcomes on tumor and blood CD8+ 

T cells (Figure 3.14).  Interestingly, the CD27 dynamics on tumor cells were flipped, where 

effector CD8+ T cells enriched in the CD40 agonism group expressed higher levels while those 

enriched in the PD-L1 blockade group expressed lower levels. The significance of these expression 

patterns and whether they result in differential outcomes with longer-term therapy or disease 

recurrence are important areas for future investigation.  
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3.3.6 CD40 agonism enhances intratumoral and circulating CD4+ T cell activation. 

 While the focus of immunotherapies has largely been on cytotoxic CD8+ T cells, recent 

studies have led to a growing appreciation of the multifaceted role of CD4+ T cells. Tumor antigen-

experienced CD4+ T cells from the periphery are sufficient to provide more long-term protection 

against rechallenge following a productive response to immunotherapy46,66, and their TCR 

diversity increases locally and peripherally with effective PD-1 blockade29. Impressively, 

peripheral CD4+ T cell diversity at baseline was shown to be associated with PD-1 blockade 

efficacy. We therefore also characterized the phenotypic state of systemic CD4+ T cells during 

productive antitumor responses to understand and how they are shaped by different cancer contexts 

and immunotherapeutic interventions. 

We hypothesized that CD4+ T cells would show nuanced changes after therapy influenced 

by cancer type and the pre-existing differences in effector abundances and PD-1/PD-L1 expression 

dynamics in the dLN. Of note, cells with a phenotype matching the cluster of CD4+ T cells that 

associated with outcome in the MC38 model (cluster m73; PD-1+ CD27+ Ki67+) were significantly 

more prevalent in the mammary AT3 model than in either subcutaneous model without treatment 

(Figure 3.15A-C). CD40 agonism elevated the frequency of effector CD4+ T cells in the MC38 

and subcutaneous AT3 models but not in the mammary AT3 model, in which CD4+ T cells were 

already present at a greater frequency without treatment (Figure 3.15A-B). However, PD-L1 

blockade uniquely resulted in a trend toward an increase in effector CD4+ T cells in mammary 

AT3 tumors (Figure 3.15A-B). Also unique to PD-L1 blockade, the total frequency of effector 

CD4+ T cells in the tumor significantly correlated with the expression of PD-L1 by CD11b+ cDC2s 

in the dLN (Figure 3.15D). In circulation, PD-L1 blockade did not dramatically alter CD4+ T cell 

frequencies, but CD40 agonism and combination therapy resulted in dramatic increases in effector 
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CD4+ T cells expressing PD-1 and Ki67 (Figure 3.15E-F). 

 Delving deeper into treatment-induced phenotypes, we again performed Regional 

Enrichment Analysis on CD4+ T cells from the tumor and the blood. Tumor-infiltrating CD4+ T 

cells showed phenotypic variation depending on treatment (Figure 3.15G-I). Focusing on 

individual clusters m72 and efficacy-associated m73, CD40 agonism or combination therapy 

elevated the transcription factor T-bet and proliferation marker Ki67 expression, evident of 

activated effector status (Figure 3.15J). Summarizing treatment enriched zones across clusters, we 

found more broadly that regions enriched for CD40 agonism and combination treatments 

contained cells expressing elevated levels of T-bet and Ki67, whereas regions enriched for PD-L1 

blockade or untreated mice contained cells expressing higher levels of CD127 and TCF1 (Figure 

3.15K). We calculated an overall effector CD4+ T cell activation score by adding activation marker 

Z-scores and found that both anti-CD40 monotherapy and combination therapy drove unique CD4+ 

T cells with higher activation across all three models (Figure 3.15L and Figure 3.16A-F).  

We also observed expansion of effector CD4+ T cells in the blood. CD4+ T cells enriched 

by PD-L1 blockade expressed higher levels of CD90136, CD69 and T-bet, leading to a modest but 

significant increase in CD4+ T cell activation score in the MC38 model (Figure 3.15M-S). In fact, 

CD69 expression differentiates a unique effector CD4+ T cell island enriched for PD-L1 blockade 

in UMAP dimensionality reduction plots (Figure 3.15N-O). In comparison, treatment with anti-

CD40 or combination therapy led to a dramatic expansion in effector CD4+ T cells with higher 

activation scores across models, driven by the expression of PD-1, Ki67, CD86, and T-bet (Figure 

3.15M-S). Efficacy-associated cluster m73 occupies the UMAP region with this expression 

profile, which was entirely dominated by CD40 agonism or combination therapy. The marker 

enrichment bias across therapies was also observed in the subcutaneous AT3 model (Figure 3.16G-
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N). In addition, both anti-CD40 monotherapy and combination therapy resulted in effector cells 

expressing higher levels of CD27 but not CD127 in both the MC38 and mammary AT3 models 

(Figure 3.15P, R). Effective immunotherapy clearly involves stimulation of CD4+ T cells 

systemically, with nuance in their phenotypic characteristics according to the cancer context and 

type of therapeutic intervention. 

 

3.3.7 CD40 agonism elevates peripheral but not local activation of cDC1s and cDC2s. 

 Dendritic cells have recently been shown to be the critical mediator of effective antitumor 

immune responses following PD-1/PD-L1 checkpoint blockade, specifically via interactions with 

T cells in the dLN52,53. This provides mechanistic context to our observation that PD-L1 blockade 

is effective in cancer settings with elevated PD-L1 expression on cDCs and PD-1 expression on T 

cells in the dLN. Given their essential role in orchestrating de novo immune responses, we 

expected that cDCs would also be critical mediators of the efficacy of CD40 agonism, a strategy 

that directly activates these antigen-presenting cells and has been shown to be sufficient for T cell 

priming in cancer models66,137. To this end, we were interested in understanding systemic cDC 

responses and how they differ between PD-L1 blockade and CD40 agonism across our three cancer 

contexts. 

Because cDCs are rare cells, clustering all immune subsets above collapsed into only 1 or 

2 clusters, fewer than the number of cDC subsets that are known to exist. Therefore, we clustered 

cDCs separately (defined as CD11c+ MHC-II+ F4.80lo CD64lo) and asked how the internal 

composition of cDC subsets changed with therapy. We found that CD40 agonism significantly 

remodeled the cDC composition across models in the tumor as well as the dLN (Figure 3.17A-C), 

whereas PD-L1 blockade induced moderate changes. This finding presents one mechanism by 

which CD40 agonism may orchestrate the significant systemic expansion of CD8+and CD4+ T 
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cells. To probe this hypothesis further, we performed Regional Enrichment Analysis to assess 

nuances in cDC behavior, modifying the number of neighbors to account for the relative rarity of 

cDCs compared to T cells. Beginning with the tumor, we found a striking reduction in the 

abundance of cDCs with effective therapy in the MC38 model (Figure 3.17D-G), particularly 

CD103+ cDC1s (red arrows). We followed this up by assessing absolute cell counts, and indeed 

found that all three therapies in the MC38 model led to significant loss of intratumoral CD103+ 

cDC1s (Figure 3.17H). The activation score on remaining intratumoral CD103+ cDC1s was not 

altered by any treatment, calculated by the summation of activation marker Z-scores (Figure 

3.17H). Similarly, absolute cell counts of intratumoral CD11b+ cDC2s decreased, significantly by 

PD-L1 blockade and trending by CD40 agonism, and overall activation was not significantly 

altered Figure 3.17I). There were variable changes in protein expression intensities within the 

activation profile across treatments, but most interestingly, combination therapy actually reduced 

CD86 and MHC-II expression on both cDC1s and cDC2s. Combination therapy additionally 

enriched for cDCs with lower PD-L1 expression while CD40 agonism alone enriched for higher 

PD-L1 (Figure 3.17E-G). Similar activation patterns were observed on cDCs in AT3 tumors, 

however, CD11b+ cDC2s did uniquely trend toward higher activation with combination therapy 

for subcutaneous AT3 (Figure 3.18A-B).  

Prior studies suggest that cDCs can migrate from the tumor to the dLN46,138,139, so we next 

investigated cDC behavior in this secondary lymphoid organ. By regional enrichment analysis, it 

was immediately apparent that several regions were enriched for cells from mice that received 

CD40 agonism therapy (Figure 3.17J-M). Specifically, we observed the emergence of cDCs with 

dim but detectable CD103 and CD8 belonging to cluster m6/a6 (Figure 3.18C, Figure 3.17J-M and 

Figure 3.18F-M, red arrows), matching the subset that decreased in abundance in the tumor and 
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likely representing recent emigrants. Consistently, the absolute count of CD103+ cDC1s in the 

dLN significantly increased with CD40 agonism or combination therapy in the MC38 model 

(Figure 3.17N). As observed in the tumor, the activation score was not elevated on this subset in 

the dLN and was actually reduced by combination therapy (Figure 3.17N). Instead, CD8+ cDC1 

resident to the dLN showed significant increases in both absolute cell count and expression 

intensities across activation and co-stimulation proteins (PD-L1, PDCA.1, Ki67, CD69, and 

CD86), resulting in a significantly higher activation score (Figure 3.17O). PD-L1 blockade drove 

a similar trend of increased CD8+ cDC1 abundance and activation, suggesting importance across 

effective therapies. CD11b+ cDC2s also increased in absolute frequency by all three therapies in 

the dLN of the MC38 model, although only CD40 agonism or combination therapy was able to 

significantly increase activation (Figure 3.17P). We again observed similar activation of cDC1s 

and cDC2s in the dLNs of subcutaneous AT3, whereas mammary AT3 was distinct in already 

driving dLN cDC2 activation at baseline (Figure 3.18N-O).  

Relating these observations of dLN cDC expansion and activation to therapeutic efficacy, 

we found that CD8+ cDC1s and CD11b+ cDC2s in the dLN both significantly correlated with 

reduced tumor volume in the MC38 model with CD40 agonism (Figure 3.17Q). There was 

absolutely no correlation between outcome and CD103+ or CD11b+ cDC activation in the tumor. 

These findings demonstrate that cDC activity in the dLN, and not the tumor itself, are indicative 

of strong ongoing antitumor immune responses. 

Inspired by the significant associations between the tumor and the blood, which also 

associated with therapeutic outcome, we also investigated cDCs in circulation. All three effective 

immunotherapeutic strategies resulted in significant remodeling of the circulating cDC 

composition for MC38 and mammary AT3, wheras only CD40 agonism or combination therapy 
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significantly altered circulating cDCs in the subcutaneous AT3 model (Figure 3.18P). More 

fascinating still, CD8+ cDC1s in the blood were significantly activated by all three treatments in 

the MC38 model, and in all cases this activation was strongly associated with efficacy (Figure 

3.18Q and T and Figure 3.17R). In contrast, circulating cDCs were not activated by PD-L1 

blockade in the AT3 models, though they were subtly activated by CD40 agonism, resulting in 

higher expression of CD86, MHC-II, and Ki67 (Figure 3.18R-T). Altogether, these data reveal that 

effective immunotherapies drive strong cDC activation in the periphery rather than intratumorally, 

likely promoting the observed systemic activation of effector CD4+ and CD8+ T cells. 

 

 

3.4 Discussion 

This study provides the first in-depth assessment of systemic immune consequences driven 

by PD-L1 blockade, CD40 agonism, or combination therapy across three discrete cancer immune 

macroenvironments. We show that effective immunotherapy involves systemic immune 

remodeling, either preexisting or driven de novo by therapy, and converges on the expansion of 

key tumor infiltrating effector CD8+ T cells, CD4+ T cells, and NK cells. Importantly, we show 

that PD-L1 blockade is effective in contexts with an engaged immune macroenvironment, and 

associates with PD-L1 expression dynamics on cDCs in the dLN and not cells in the TME. CD40 

agonism drives dramatic systemic immune remodeling, including the expansion and activation of 

both cDC1s and cDC2s in the dLN, and is more broadly effective. We also show tight associations 

between the tumor and circulating immune responses that also correspond with efficacy. These 

findings have implications for the way immunotherapy is prescribed, supporting recent evidence 

that the preexisting peripheral immune state can predict therapeutic outcome, and further can guide 
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which treatment strategy is most likely to succeed. A key future direction is to clearly define which 

peripheral immune responses, within broad systemic immune engagement, are essential for PD-

L1 blockade efficacy and what immune contexts not explored here may impede the efficacy of 

CD40 agonism.  

 Combination therapy has been widely viewed as a promising avenue for success in patients 

resistant to checkpoint blockade immunotherapies140; however, it is becoming clear that adding 

multiple immune interventions is not inherently synergistic. We did not observe benefit in tumor 

outcome with the combination of PD-L1 blockade and CD40 agonism in these settings, which has 

become a theme in combination therapy clinical trials141. One group previously showed that 

combination therapy can improve efficacy against well-established tumors, but actually impairs 

antitumor immunity in low tumor burden settings by inducing deletion of tumor-specific T cells 

via over-activation and skewing the overall repertoire to lower frequency clones142. This argues 

strongly that immune interventions should be tailored to the need, which can be facilitated by using 

the immune macroenvironment as an indicator of ongoing immune responses. Subtyping of triple-

negative breast cancer patients based on systemic immune state has proved useful120, where 

systemic accumulation of neutrophils identifies a subtype resistant to checkpoint blockade and 

thus a case for combined approaches. Settings with a low pre-existing systemic immune response 

and lack of tumor immune infiltration are served by therapeutically driving strong immune 

responses, such as therapy-resistant and immunologically quiet pancreatic cancer. In both a 

preclinical model and early clinical trial, combing CD40 agonism with checkpoint blockade is 

showing promise66,67. Another application of combinatorial strategies informed by the immune 

macroenvironment is in late-stage disease where checkpoint blockade more often fails143. We 

previously showed that systemic immune remodeling becomes more disrupted over the course of 
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tumor development. Our current study assessed the immune impact in relatively early to mid-stage 

disease but paves the way for critical future investigation on reorienting highly disrupted systemic 

immunity. Future work is also needed to parse the consequences of systemic depletion of non-

classical monocytes by combination therapy, observed in our study across all three models, which 

could include unintended disease spread in more metastatic cancer settings144. 

 Understanding how different therapies drive efficacy is important to improving patient 

reach, and our study demonstrates that PD-L1 blockade, CD40 agonism, and their combination 

each lead to nuanced phenotypic T cell states. CD40 agonism or combination drove more late-

stage effector states in both CD8+and CD4+ T cells in the tumor, but also the blood. Intratumoral 

CD8s were particularly stratified, where CD40 agonism drove greater KLRG1 expression on T 

cells than PD-L1 blockade, but combination additionally reduced several activation markers likely 

indicative of terminal effector status.  In the CD4+ T cell compartment, CD40 agonism drive more 

cell cycle activity, with higher Ki67 and cCaspase3 suggesting higher turnover with expansion. 

The magnitude of T cell activation bias with CD40 agonism, and even more so combination, may 

impede immune memory. The expression dichotomy of memory markers CD27 and CD127 across 

immunotherapies has not been previously described, but here suggests a role in supporting massive 

effector expansion. We showed that combination therapy uniquely and universally drove elevated 

CD27 and loss of CD127 expression in effector CD4+ and CD8+ T cells. In viral responses, CD27 

was shown to compliment CD28 signaling by promoting the survival of activated T cells during 

successive divisions145. Both CD27 and CD127 expression identify cells that can give rise to long-

term memory146,147, but loss of CD127 specifically was shown to define functional effector CD8+ 

T cells in HIV-infected individuals148. We also found an interesting but context dependent 

regulation of CD27 by monotherapies, where PD-L1 blockade increased and CD40 agonism 
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decreased CD27 expression in the MC38 model. A study showed that CD27 stimulation supports 

cytotoxic T cell responses by enhancing CD4+ T cell help, where CD27 agonism alone or paired 

with PD-1 blockade improved vaccine efficacy against human papillomavirus–expressing 

tumors149. We found the opposite monotherapy impact in the AT3 models, with CD40 instead 

elevating CD27, suggesting that the precise mechanisms at play during productive response 

depend on the entire immune context. Thus, the type of immunotherapeutic strategy deployed 

skews antitumor responses in the balance between strong immediate cytotoxicity and long-term 

memory potential. Studies to follow should include temporal analysis of T cell states over long-

term therapeutic interventions and investigate resulting memory capacity with rechallenge or 

metastatic spread.  

 Finally, our work supports recent studies implicating conventional dendritic cell activity in 

tumor dLNs as the critical orchestrator of productive antitumor immunity. Conventional DC 

function is impaired by tumor burden, with perturbed development and deficits in tumor 

infiltration impeding the productive priming of new T cell responses20,26,150. Immunotherapies 

drive efficacy when they promote de novo immune activation beginning with cDCs. Multiple 

groups recently showed that cDCs in the dLN were the critical mediators of checkpoint blockade 

efficacy52,53, which culminates in the systemic expansion of new T cell clones and unique antigen 

specifies29,60–62. Here, we show preexisting PD-L1 elevation on cDCs in the dLN of cancer models 

that respond to PD-L1 blockade, and significant associations between efficacy and dLN cDC 

activation. Importantly, we found no associations between efficacy and intratumoral PD-L1 

expression or cDC activation, exposing an inherent weakness in the common use of tumor 

checkpoint expression as a stratification criterion for checkpoint blockade success. We do show 

that circulating cDC1 activation may be a viable and accessible indicator of ongoing efficacy 
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across therapies, which warrants follow-up in clinical samples. A recent study demonstrated that 

migratory cDCs transfer tumor antigen to dLN resident cDCs, which then carry out T cell priming 

functions139, a dynamic supported by our finding that resident cDCs in the dLN and not 

immigrating CD103+ subsets were highly activated by CD40 agonism. Successful antitumor 

responses are highly collaborative and systemic in nature, and recent discoveries indicate a shift 

in priority from reinvigoration to de novo activation. We expect that targeted DC interventions will 

become an essential element of next generation immunotherapies. 
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Figure 3.1: Cancer cell type and anatomical location dictate the immune macroenvironment 
in cancer. 
A, Cancer models seeded by direct injection into the target site. B, Tumor growth curves after 
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cancer cell injection for subcutaneous MC38 (left) and mammary fat pad AT3 or subcutaneous 
AT3 (right). C, Number of days to reach ~150 mm3, the designated size for treatment start. D, 
Force-directed map of immune clusters representing the systemic immune landscape, constructed 
from clusters in the MC38 model but with corresponding clusters in the AT3 datasets. E, Stacked 
frequencies of clusters in the tumor, collapsed by major immune landmarks (left) and highlighted 
frequencies of all effector CD8+and CD4+ T cell clusters (right); p values calculated by two-tailed 
t-test. F, Aitchison distance of the tumor immune composition between the MC38 model and each 
AT3 model; p values calculated by two-tailed t-test. G, Map summarizing the number of 
significantly changed clusters binned by major landmark across the blood, tumor dLN, spleen, and 
bone marrow in each model, increasing in the first column (red) and decreasing in the second 
column (blue) for each organ; p <0.05, significance analysis of microarrays (SAM). H, Aitchison 
distance of the peripheral immune composition between control animals and tumor burdened 
animals; p values calculated by two-tailed t-test. I, Summary of local and peripheral immune 
compositional distance, stratifying the immune macroenvironments of the three models. J, 
Systemic correlation networks connecting clusters significantly changed from control, showing 
positive correlations (red) and negative correlations (blue) of log2 fold change from control 
between organs; p values <0.05, spearman correlation. The number of correlations per cluster is 
plotted on the right; p values calculated by Wilcoxon rank-sum test. K, Percent of PD-L1 
expressing cells in the tumor; by two-tailed t-test. L, PD-L1 signaling intensity on CD11b+ cDC2s 
and percent of CD8+ cDC1s in the dLN; by two-tailed t-test. M, Z-scores of relative PD-1 
expression across models on T cells in the tumor and each immune organ. 
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Figure 3.2: CD40 agonism is pan-effective, but PD-L1 blockade efficacy is context-dependent 
A, Tumor growth curves over a 7-day course of PD-L1 blockade, CD40 agonism, combination or 
no immunotherapy. B, Day 7 tumor volume across treatment groups for each model; p values 
calculated by two-tailed t-test.  
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Figure 3.3: Long-term tumor growth responses to immunotherapy in each model. 
A-F, Tumor volume growth curves and survival after a 7-day window of PD-L1 blockade, CD40 
agonism or combination immunotherapy in subcutaneous MC38 (A-B), mammary AT3 (C-D), or 
subcutaneous AT3 (E-F) tumor models. 
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Figure 3.4: PD-L1 blockade operates within preexisting immune responses while CD40 
agonism drives systemic immune remodeling. 
A, Stacked frequencies of clusters in the tumor, collapsed by major immune landmarks, with 
treatment for each model. D, Highlighted frequencies of all effector CD8+ T cell clusters with 
treatment for each model; p <0.05, two-tailed t-test. C, Aitchison distance of the tumor immune 
composition with treatment for each model; p values calculated by two-tailed t-test. D, Principal 
component analysis of the center-log-ratio of peripheral immune frequencies with treatment for 
each model, with average Euclidean distance in PC space shown below. E, Aitchison distance of 
the peripheral immune composition with treatment for each model; p values calculated by two-
tailed t-test. 
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Figure 3.5: Effective PD-L1 and CD40 interventions drive both unique and shared systemic 
immune responses. 
A, Summary of the number of clusters significantly changed with treatment that were unique to 
PD-L1 blockade, unique to CD40 agonism, or convergent and taking place with both 
monotherapies, across models. The total frequency of clusters falling into each category is 
summarized on the right with callouts of overlapping changes; p <0.05, SAM. B, Map 
summarizing the number of clusters significantly changed with treatment in the MC38 model, 
falling into each unique or convergent category and binned by major landmark across immune 
organs; increasing in the first column (red) and decreasing in the second column (blue), or changed 
in either direction but similar or statistically the same between monotherapies (gold). C, Summary 
of the number of clusters significantly changed with combination treatment that were unique, and 
antagonized or mimicked changes induce by monotherapies, across models. The total frequency 
of clusters falling into each category is summarized on the right with a callout of overlapping 
change. D, Map summarizing the number of clusters significantly changed with combination 
therapy in the MC38 model, falling into each emergent (purple), antagonistic (green), or mimetic 
(gold) category and binned by major landmark across immune organs; p <0.05, SAM.   
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Figure 3.6: Convergent and emergent systemic immune features with single or combination 
therapies in AT3 models. 
A-B, Map summarizing the number of clusters significantly changed with treatment in the 
mammary AT3 (A) or subcutaneous AT3 (B) models, falling into each unique or convergent 
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category and binned by major landmark across immune organs; increasing in the first column (red) 
and decreasing in the second column (blue), or changed in either direction but similar or 
statistically the same between monotherapies (gold); p <0.05, SAM. C-D, Map summarizing the 
number of clusters significantly changed with combination therapy in the mammary AT3 (C) or 
subcutaneous AT3 (D) models, falling into each emergent (purple), antagonistic (green), or 
mimetic (gold) category and binned by major landmark across immune organs; p <0.05, SAM. 
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Figure 3.7: Activated NK cell expansion with immunotherapy in the tumor and blood. 
A, NK cell cluster frequencies as a percent of total leukocytes for the tumor and blood with 
treatment across models. B, Cluster protein expression identities across NK cell clusters. 
Significant clusters are indicated on the right, color by uniqueness or convergence between 
monotherapies as described in Figure 3.5. C, Representative scatter plots of KLRG1 and granzyme 
B expression on NK cells in the blood across models.  
 
  



 102 

 
 
Figure 3.8: Combination therapy reorganizes systemic monocyte abundances. 
A-D, Classicalal monocyte (A-B) and non-classical monocyte (C-D) cluster frequencies as a 
percent of total leukocytes for the blood, spleen, bone marrow and tumor with treatment across 
models, and the corresponding protein expression identities across clusters; p <0.05 or p <0.1 as 
indicated against control (black) or untreated tumor-bearing (grey), Wilcoxon rank-sum test. E, 
Representative density plots of Ly6C and MHC-II expression on classical monocytes in the blood 
across models. F, Representative density plots of Ly6C and CD11b expression on monocytes in 
the blood across models. 
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Figure 3.9: CD40 agonism elevates a variety of cytokines in circulation. 
A, Aitchison distance between circulating cytokine levels across models; p values calculated by 
Wilcoxon rank-sum test. B, Aitchison distance between circulating cytokine levels across 
treatments in each model; p values calculated by Wilcoxon rank-sum test. C-D, Heatmap of 
cytokine log2 fold changes between untreated and control (C) or between untreated and treated 
(D) for each model; p values calculated by Wilcoxon rank-sum test with or without benjamini 
Hochberg correction. E, Log2 fold change in circulating abundance of specific pro-inflammatory 
cytokines IL-2, IFNg, and IL-12p70 with treatment in all three models; p values calculated by two-



 104 

tailed t-test. 

 
 
Figure 3.10: Effective immunotherapies drive coordination of immune responses between 
the tumor and periphery. 
A, Immune clusters changed in the tumor with treatment and significantly correlated with day 7 
tumor volume in the MC38 model; p values <0.05, spearman correlation. B, Immune clusters in 
the tumor significantly associated with day 7 tumor volume for all three therapies in the MC38 
model. C-D, Correlation networks connecting clusters between the tumor and peripheral immune 
organs that are significantly changed with PD-L1 blockade (C) or CD40 agonism (D) and show 
positive correlations (red) or negative correlations (blue) of log2 fold changes from untreated; p 
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<0.05, spearman correlation. E, Number of clusters colored by organ across specific MC38 tumor 
immune clusters, corresponding with networks in C and D. F-G, Heatmap of cluster correlations 
between the tumor and blood of MC38 tumor-bearing animals after PD-L1 blockade (F) or CD40 
agonism (G), with callout to specific positive and negative correlation modules. H, Day 7 tumor 
volume by immune cluster frequencies in the blood identified in correlation modules in F and G, 
of MC38 tumor-bearing animals. 
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Figure 3.11: Systemic immune responses are coordinated across models with effective 
therapy. 
A, Correlation networks connecting clusters between the tumor and peripheral immune organs that 
are significantly changed with combination PD-L1 blockade and CD40 agonism, showing positive 
correlations (red) or negative correlations (blue) of log2 fold changes from untreated; p <0.05, 
spearman correlation. B-D, Number of clusters colored by organ across specific tumor immune 
clusters for combination therapy in MC38 (B), monotherapies or combination in mammary AT3 
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(C) and CD40 agonism or combination in subcutaneous AT3 (D). E-G Heatmaps of cluster 
correlations between the tumor and blood after combination therapy in MC38 (E) monotherapies 
or combination in mammary AT3 (F), or CD40 agonism in subcutaneous AT3 (G) with callout to 
specific positive and negative correlation modules; p <0.05, spearman correlation. H, Correlation 
scatterplots of immune cluster frequencies in the tumor and blood identified in F and G, for 
mammary or subcutaneous AT3 tumor-bearing animals; spearman. 
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Figure 3.12: Immunotherapies drive nuanced phenotypic states in systemically expanding 
effector CD8+ T cells. 
A, CD8+ T cell cluster frequencies as a percent of total leukocytes for the tumor and blood with 
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treatment across models. B, Cluster protein expression identities across naïve, memory, and 
effector subsets. Significant clusters are indicated on the right, color by uniqueness or convergence 
between monotherapies as described in Figure 3.5. C-E, Ki67 and granzyme B expression on 
effector CD8+ T cells in the tumor (C-D) and the blood (E). Representative density plots of Ki67 
and granzyme B expression on effector CD8+ T cells in the tumor (F) and blood (G). H, UMAP 
of single CD8+ T cells in MC38 tumor colored by cluster, subsetted to consistent number of total 
CD8+ T cells per treatment condition to represent internal composition. I, Regional Enrichment 
Analysis on MC38 tumor CD8+ T cells, with an inset of frequency for each enrichment category. 
J, UMAPs of MC38 tumor CD8+ T cells for each treatment condition. K, Heatmap of relative 
expression of key memory and activation proteins on effector CD8+ T cells across enrichment 
regions; p <0.05, SAM. L, Histograms of significantly distinct protein expression in enrichment 
regions for cluster m63 in the MC38 tumor; p <0.05, SAM. M, UMAPs of CD8+ T cells in the 
MC38 tumor colored by protein expression intensity. N-P, Blood CD8+ T cell UMAP and Regional 
Enrichment Analysis colored by cluster (N), enrichment category (O), or each treatment condition 
(P). Q, Euclidean distance between blood CD8+ T cell protein expression profiles across 
treatments. R-T, Enriched region protein expression differences, shown by histograms in specific 
clusters (R), UMAPs colored by protein expression intensity (S), and heatmap of relative memory 
and activation protein expression on effector CD8+ T cells across enriched regions; p <0.05, SAM. 
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Figure 3.13: Benchmarking Regional Enrichment Analysis on control CD8+ T cells. 
A, Percent of total cells categorized as unenriched after Regional Enrichment Analysis of blood 
CD8+ T cells across independent control animals (black) untreated animals (grey) or across all 
treated tumor-bearing conditions (red) for each enrichment cutoff, out of 15 nearest neighbors. B-
C, UMAPs of blood CD8+ T cells in control animals colored by cluster (B) or individual animal 
(C). D, Euclidean distance between blood CD8+ T cell expression profiles across control animals. 
E, UMAP colored by enrichment category. F, Distribution of enrichment categories across 
clusters. G-H, Map of neighborhood barcodes falling into each enrichment category for control 
animals (G) or all treated tumor-bearing conditions (H). 
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Figure 3.14: CD8+ T cells acquire different phenotypic states based on immunotherapy in 
AT3 cancer models. 
A-F, UMAPs of tumor CD8+ T cells colored by cluster (A and D) or Regional Enrichment Analysis 
(B and E), and relative memory or activation marker expressions for each enrichment category on 
effector CD8+ T cells (C and F) for mammary or subcutaneous AT3. G-J, UMAPs of blood CD8+ 
T cells colored by cluster (G and K) or Regional Enrichment Analysis (H and L), Euclidean 
distance between blood CD8+ T cell expression profiles across treatments (I and M), and relative 
memory or activation marker expressions for each enrichment category on effector CD8+ T cells 
(J and N) for mammary or subcutaneous AT3; p <0.05, by Wilcoxon rank-sum test in I and M or 
by SAM in C,F, J, and N.  
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Figure 3.15: CD40 drives greater systemic activation of effector CD4+ T cells than checkpoint 
blockade. 
A, CD4+ T cell cluster frequencies as a percent of total leukocytes for the tumor and blood with 
treatment across models. B, Cluster protein expression identities across naïve, memory, and 
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effector subsets. Significant clusters are indicated on the right, color by uniqueness or convergence 
between monotherapies as described in Figure 3.5. C, Frequency of effector CD4+ T cells with a 
cluster m73/a74 phenotype; p values calculated by two-tailed t-test. D, Correlation between total 
tumor effector CD4+ frequency and PD-L1 median signal intensity on CD11b+ cDC2s in the dLN, 
after PD-L1 blockade across models; spearman. E-F, Frequency (E) and representative density 
plots (F) of Ki67 and PD-1 expression on effector CD4+ T cells in the blood. G, UMAP of single 
CD4+ T cells in MC38 tumor colored by cluster, subsetted to consistent numbers of total cells per 
treatment condition to represent internal composition. H, Regional Enrichment Analysis on MC38 
tumor CD4+ T cells. I, UMAPs of CD4+ T cells in the MC38 tumor colored by protein expression 
intensity. J-K, Enriched region protein expression differences on intratumoral effector CD4+ 
clusters m72 and m73 (J) and across all effector CD4+ T cells (K); p <0.05, SAM. L, Tumor 
effector CD4+ T cell activation scores as the sum of activation marker Z-scores across treatment 
enriched regions, across models; p values calculated by Wilcoxon rank-sum test. N-), Blood CD4+ 
T cell UMAP and Regional Enrichment Analysis colored by cluster (M), enrichment category (N), 
or protein expression (O). P, Enriched region protein expression differences on blood effector 
CD4+ clusters m72; p <0.05, SAM. Q, Euclidean distance between blood CD4+ T cell protein 
expression profiles across treatments. R, Enriched region protein expression differences on 
effector CD4+ T cells in the blood, across models; p <0.05, SAM. S, Blood effector CD4+ T cell 
activation scores as the sum of activation marker Z-scores across treatment enriched regions; p 
values calculated by Wilcoxon rank-sum test. 
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Figure 3.16: CD4+ T cells acquire different phenotypic states based on immunotherapy in 
AT3 cancer models. 
A-F, UMAPs of tumor CD4+ T cells colored by cluster (A and D) or Regional Enrichment Analysis 
(B and E), and relative memory or activation marker expressions for each enrichment category on 
effector CD4+ T cells (C and F) for mammary or subcutaneous AT3. G-J, UMAPs of blood CD4+ 
T cells colored by cluster (G and K) or Regional Enrichment Analysis (H and L), Euclidean 
distance between blood CD4+ T cell expression profiles across treatments (I and M), and relative 
memory or activation marker expressions for each enrichment category on effector CD4+ T cells 
(J and N) for mammary or subcutaneous AT3; p <0.05, by Wilcoxon rank-sum test in I and M or 
by SAM in C,F, J, and N. 
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Figure 3.17: CD40 agonism drives activation and accumulation of conventional dendritic 
cells in the periphery. 
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A, Conventional dendritic cell cluster expression profiles for MC38 (top) and AT3 (bottom). B-C, 
Heatmaps of compositional cDC cluster frequencies across models in the tumor (B) and dLN (C); 
p <0.05, SAM. D-G, UMAP and Regional Enrichment Analysis for cDCs in the tumor, colored 
by cluster (D), Regional Enrichment (E), treatment condition (F), and protein expression (G). 
CD103+ subsets highlighted with a red arrow. H-I, Absolute cell counts, activation scores and 
heatmap of relative activation marker expression on CD103+ cDC1s (H) and CD11b+ cDC2s (I) 
in the tumor; p values calculated by Wilcoxon rank-sum test. J-M, UMAP and Regional 
Enrichment Analysis for cDCs in the dLN, colored by cluster (J), Regional Enrichment (K), 
treatment condition (L), and protein expression (M). CD103+ subsets highlighted with a red arrow. 
N-P, Absolute cell counts, activation scores and heatmap of relative activation marker expression 
on CD103+ cDC1s (N), CD8+ cDC1s (O) and CD11b+ cDC2s (P) in the dLN; p values calculated 
by Wilcoxon rank-sum test. Q-R, Correlation between treatment efficacy and activation scores on 
dLN CD8+ cDC1s and CD11b+ cDC2s (Q), and blood CD8+ cDC1s (R) in MC38; p <0.05, 
spearman. 
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Figure 3.18: CD40 can stimulate previously inactive cDC1s and cDC2s in the periphery. 
A-B, activation scores and heatmap of relative activation marker expression on CD103+ cDC1s 
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(A) and CD11b+ cDC2s (B) in the tumor of AT3 models; p values calculated by Wilcoxon rank-
sum test. C-D, Frequency of cells falling into the CD103+ cluster m6 for MC38 (C) or cluster a6 
for mammary AT3 (D) or subcutaneous AT3 (E); p values calculated by Wilcoxon rank-sum test. 
F-M, UMAP and Regional Enrichment Analysis for cDCs in the dLN of mammary and 
subcutaneous AT3 tumor-bearing animals, colored by cluster (F and J), treatment condition (G 
and K), Regional Enrichment (H and L) and protein expression (I and M), CD103+ subsets 
highlighted with a red arrow. N-O, activation scores and heatmap of relative activation marker 
expression on CD8+ cDC1s (N) and CD11b+ cDC2s (O) in the dLN of AT3 models; p values 
calculated by Wilcoxon rank-sum test. P, Heatmaps of compositional cDC cluster frequencies 
across models in the blood; p <0.05, SAM. Q-S, Activation scores on CD8+ cDC1s in the blood in 
MC38 (Q), mammary AT3 (R) or subcutaneous AT3 (S) tumor-bearing animals; p values 
calculated by Wilcoxon rank-sum test. T, Heatmap of relative activation marker expression on 
CD8+ cDC1s in the blood, corresponding with Q-S; p <0.05, SAM. 
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Table 3.1: Antibody panel used for mass cytometry experiments. 
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3.5 Materials and Methods 

Animals: 

All mice were housed in an American Association for the Accreditation of Laboratory 

Animal Care–accredited animal facility and maintained in specific pathogen-free conditions. 

Animal experiments were approved and conducted in accordance with Institutional Animal Care 

& Use Program protocol number AN157618. Wild-type female C57BL/6 mice between 8-10 

weeks old were purchased from The Charles River Laboratory and housed at our facility. MC38 

(1X105 cells / 100 µl) colon cancer cells or AT3 (5x105 cells / 100 µl) breast cancer cells were 

transplanted into the subcutaneous region of the flank.  AT3 (5x105 cells / 100 µl) breast cancer 

cells were also independently transplanted into the fourth mammary fat pad. Tumors were 

considered established for treatment when they reached ~150 mm3 in volume. Animals were 

housed under standard SPF conditions with typical light/dark cycles and standard chow.  

 

Cell Lines: 

MC38 cells were gifted from Dr. Jane Grogan (Genentech). AT3 cells were gifted from 

Dr. Ross Levine (MSKCC). MC38 cells were cultured in RPMI-1640, and AT3 cells were cultured 

in DMEM, all supplemented with 10% fetal calf serum, 2 mM L-glutamine,100 U/ml penicillin 

and 100 mg/ml penicillin/streptomycin. 

 

Treatments: 

For immunotherapy studies, in vivo antibody treatments were given i.p. for a 7 day period 

starting when tumors reached ~150 mm3 in volume: 200 ug of anti-PD-L1 (9708-6E11, Genentech) 

on day 0, 3 and 6, and 200 ug of agonistic anti-CD40 (FGK4.5, BioXCell) on day 0. Antibodies 
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were delivered in 100 µl volume in sterile PBS, containing either monotherapy or their 

combination. Tumor volumes were measured and calculated regularly using the modified ellipsoid 

formula ½ x (length x width2). 

 

Cytokine Quantification: 

For in vivo circulating plasma cytokines, mice were bled via the retroorbital vein using 

heparinized capillary tubes. Blood was then centrifuged at 1000 x g for 10 minutes and the 

supernatant plasma was removed for analysis. Plasma samples were sent to Eve Technologies 

(Calgary, AB), and analyzed using a multiplex cytokine array. 

 

Mass Cytometry Antibodies: 

All mass cytometry antibodies and concentrations used for analysis can be found in Table 

3.1. Primary conjugates of mass cytometry antibodies were prepared using the MaxPAR antibody 

conjugation kit (Fluidigm) according to the manufacturer’s recommended protocol. Following 

labeling, antibodies were diluted in Candor PBS Antibody Stabilization solution (Candor 

Bioscience GmbH, Wangen, Germany) supplemented with 0.02% NaN3 in PBS to between 0.1 

and 0.3 mg/ml and stored long-term at 4° C. Each antibody clone and lot was titrated to optimal 

staining concentrations using primary mouse samples. 

 

Cell Preparation: 

All tissue preparations were performed simultaneously from each individual mouse, as 

previously reported46. After euthanasia by C02 inhalation, peripheral blood was collected via the 

posterior vena cava prior to perfusion of the animal and transferred into sodium heparin-coated 
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vacuum tubes prior to dilution in PBS with 5 mM EDTA and 0.5% BSA (PBS/EDTA/BSA). 

Spleens and lymph nodes were homogenized in PBS/EDTA at 4° C. Bone marrow was flushed 

from femur and re-suspended in PBS/EDTA at 4° C. Tumors were finely minced and digested in 

RPMI-1640 with 4 mg/ml collagenase IV, and 0.1 mg/ml DNase I. After digestion, re-suspended 

cells were quenched with PBS/EDTA at 4° C. All tissues were washed with PBS/EDTA and re-

suspended 1:1 with PBS/EDTA and 100 mM cisplatin (Enzo Life Sciences, Farmingdale, NY) for 

60 s before quenching 1:1 with PBS/EDTA/BSA to determine viability as previously described83. 

Cells were centrifuged at 500 x g for 5 min at 4° C and re-suspended in PBS/EDTA/BSA at a 

density between 1-10 x 106 cells/ml. Suspensions were fixed for 10 min at room temperature (RT) 

using 1.6% paraformaldehyde in PBS and frozen at -80° C.  

 

Mass-Tag Cellular Barcoding:  

Mass-tag cellular barcoding was performed as previously described114. Briefly, 1 x 106 

cells from each animal were barcoded with distinct combinations of stable Pd isotopes in 0.02% 

saponin in PBS. Samples from any given tissue from each mouse per experiment group were 

barcoded together. Cells were washed once with cell staining media (PBS with 0.5% BSA and 

0.02% NaN3), and once with 1X PBS, and pooled into a single FACS tube (BD Biosciences). 

After data collection, each condition was deconvoluted using a single-cell debarcoding 

algorithm114. 

 

Mass Cytometry Staining and Measurement: 

Cells were resuspended in cell staining media (PBS with 0.5% BSA and 0.02% NaN3) and 

metal-labeled antibodies against CD16 and CD32 were added at 20 mg/ml for 5 min at RT on a 
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shaker to block Fc receptors. Surface marker antibodies were then added, yielding 500 µl final 

reaction volumes and stained for 30 min at RT on a shaker. Following staining, cells were washed 

2 times with cell staining media, then permeabilized with methanol for at 10 min at 4° C. Cells 

were then washed twice in cell staining media to remove remaining methanol and stained with 

intracellular antibodies in 500 ml for 30 min at RT on a shaker. Cells were washed twice in cell 

staining media and then stained with 1ml of 1:4000 191/193Ir DNA intercalator (Fluidigm) diluted 

in PBS with 1.6% paraformaldehyde overnight. Cells were then washed once with cell staining 

media and then two times with double-deionized (dd) H20. Care was taken to assure buffers 

preceding analysis were not contaminated with metals in the mass range above 100 Da. Mass 

cytometry samples were diluted in dd H20 containing bead standards (see below) to approximately 

106 cells per ml and then analyzed on a CyTOF 2 mass cytometer (Fluidigm) equilibrated with dd 

H20. We analyzed 1-5 x 105 cells per animal, per tissue, per time point, consistent with generally 

accepted practices in the field. 

 

Mass Cytometry Bead Standard Data Normalization:  

Data normalization was performed as previously described46. Briefly, just before analysis, 

the stained and intercalated cell pellet was resuspended in freshly prepared dd H20 containing the 

bead standard at a concentration ranging between 1 and 2 x 104 beads/ml. The mixture of beads 

and cells were filtered through a filter cap FACS tubes (BD Biosciences) before analysis. All mass 

cytometry files were normalized together using the mass cytometry data normalization 

algorithm115, which uses the intensity values of a sliding window of these bead standards to correct 

for instrument fluctuations over time and between samples.  
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Mass Cytometry Gating Strategy:  

After normalization and debarcoding of files, singlets were gated by Event Length and 

DNA. Live cells were identified by Cisplatin negative cells. All positive and negative populations 

and antibody staining concentrations were determined by titration on positive and negative control 

cell populations. 

 

Systemic Immune Clustering:  

As previously described46,83, CD45+ Ter119- live immune cells from each tissue for all 

animals were clustered together and then deconvolved into their respective samples. Clustering 

was set to a pre-defined number of 100 clusters for MC38 (clusters m), and separately 100 clusters 

for AT3 tumor models (clusters a). Separate clustering was performed because the experiments 

were conducted at different times for MC38 and AT3. To clean potentially redundant clusters, and 

pair datasets between models, we performed nearest neighbor calculations and combined any 

clusters that were more similar within a dataset than between datasets, indicating redundant or 

non-visually discriminate clusters. Once cleaned, clusters in the AT3 datasets were matched to 

their most similar MC38 dataset cluster, again by nearest neighbor analysis. There were clusters, 

or immune cell states, with no close association between datasets. The result was a total of 79 

clusters for both MC38 and AT3 datasets. 

A force-directed cluster map was generated based on MC38 clusters using the scaffold map 

R package available at github.com/SpitzerLab/statisticalScaffold. Scaffold analysis combines 

unsupervised clustering to identify immune cell subsets with dimensionality reduction using a 

force-directed graph to visualize the organization of immune cells within a tissue. Regions of the 

graph are easy to identify due to the incorporation of canonical immune cell types defined 
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manually as ‘landmarks’ in the graph. Each cluster was colored corresponding to its most similar 

immune landmark. 

  

Convergent and Divergent Analysis:  

For convergent analysis, clusters were compared between untreated and each monotherapy 

as well as between monotherapies to identify significant differences using the Significance 

Analysis of Microarrays algorithm116 (using a q-value cutoff of 0.05). Significantly changed 

clusters were then binned into monotherapy unique, significant from untreated in one monotherapy 

but not the other, convergent similar, with significant changes in the same direction with both 

monotherapies but to significantly different magnitudes, and lastly convergent same, with 

significant change from control to the same magnitude. Analysis was performed separately for 

each organ, in each model. 

For emergent analysis, significantly changed clusters were identified in combination 

therapy animals compared to untreated animals. Referencing the previously calculated changes 

with each monotherapy, clusters were then binned as emergent, antagonistic, or mimetic. 

Emergence was classified as novel, only significant with combination therapy, cooperative, 

significantly greater than changes induced by both monotherapies, or augmentative, significantly 

greater than a change induce by one monotherapy. Antagonism was classified as a compromise, 

an intermediate change between monotherapies, nullify, significant changes by both 

monotherapies no longer reach significance, or antagonize PD-L1 blockade or CD40 agonism 

therapies, changes induced by a specific monotherapy no longer reach significance. Lastly, 

mimicry was classified as specific to one monotherapy, resulting in the same significant change as 

PD-L1 or CD40, or convergent, significantly changed to the same magnitude as monotherapies.  



 126 

Systemic Correlation Networks:  

 Systemic correlation networks were generated by first identifying which clusters were 

significantly different from control, or untreated tumor-bearing animals using the Significance 

Analysis of Microarrays algorithm116 (using a q-value cutoff of 0.05). The log2 fold change was 

then calculated for each significantly altered cluster, and these values for each cluster were 

correlated across tissues by nonparametric Spearman’s rank correlation. Values correlated 

included untreated and the treatment group of interest, resulting in associations in the change from 

baseline and not necessarily overall abundance (likewise for comparisons in untreated animals 

from control). Significant correlations with p <0.05 were plotted in circular networks using igraph 

in R, with red lines denoting changes in the same direction and blue lines denoting changes in 

opposing directions. 

 

Regional Enrichment Analysis: 

For T cell Regional Enrichment Analysis, immune cells were subsetted to a consistent 

number of cells in each treatment condition (5,000 per condition for most cases, 1,800 for AT3 

tumor analyses with lower T cell infiltration). UMAP dimensionality reduction was performed in 

R to visualize cells by cluster, condition, and protein expression. Independent from UMPA, nearest 

neighbor analysis was performed to identify the 15 nearest single cells in each dataset. Each single 

cell was then classified by the treatment identity of its neighbors, either significantly enriched for 

one treatment condition or unenriched. The enrichment cutoff, or number of neighbors of a specific 

condition to be called enriched, was defined as p <0.05 chance of random sampling from a set of 

15 giving a cutoff of 7. We increased the cutoff to 8 of 15 neighbors to maximize differences by 

treatment and minimized enrichment by independent animal. UMAPs were then colored by this 
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treatment enrichment classification.  

Dendritic cell Regional Enrichment Analysis was performed similarly, except we did not 

subset to the same number of cells per condition due to the paucity of DCs in specific treatment 

conditions. We only subsetted to correct for the N per treatment group. The enrichment cutoff here 

was independently calculated per treatment condition, depending on the frequency of that 

condition in the dataset.  

 Differences in protein expression intensities between enrichment groups were calculated 

using Significance Analysis of Microarrays, comparing each enrichment category to unenriched 

protein expression intensities. Results for specific clusters were plotted as histograms, with the 

unenriched protein expression in gray and significant deviations in enrichment regions overlayed 

and colored accordingly. Results across all effector clusters were plotted as expression Z-scores. 

 

Quantification and statistical analysis: 

Comparison of cluster frequencies and protein expression intensities in enriched zones 

were performed using Significance Analysis of Microarrays as described above and in Bair and 

Tibshirani, 2004 and Bruggner et al., 2014. Features with p <0.05 were considered statistically 

significant. Correlation analyses were performed using Spearman correlation, with Benjamini-

Hochberg correction in cases of multiple comparisons. All comparisons were made using two-

sided t tests in Prism or by two-sided Wilcoxon rank-sum test in R, with Benjamini-Hochberg 

correction in cases of multiple comparisons, as noted in the figure legends. All tests with p <0.05 

were considered statistically significant. N = 3 to 8 independent mice for each experimental 

condition.  
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Data availability: 

All mass cytometry data are publicly available by request to the senior author without 

restrictions.  

 

Code availability: 

The Regional Enrichment Analysis package is available by request to the senior author 

without restrictions.  
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Chapter 4 Closing and Future Directions 
 

Collectively, this series of studies holistically interrogates the systemic nature of tumor-

induced immune disruption across diverse cancer contexts, which bears out consequences on de 

novo functional capacity and reversibility that have implications for top immunotherapeutic 

strategies. My doctoral research shows that: 

1) Cancer cell type and anatomical location each contribute to shaping the immune 

macroenvironment in cancer; interestingly, metastases induce a much quieter systemic 

immune impact than the primary tumor.   

2) Secondary viral or bacterial challenges exposed weakened adaptive immune responses in 

tumor-burdened animals, which can be overcome by strong stimulation of antigen-

presenting cells, namely conventional dendritic cells.  

3) Successful resection of primary tumor burden normalizes the systemic immune landscape, 

providing opportunity for outgrowth in cases with previously undetected disseminated 

disease.  

4) Systemic immune remodeling is indicative of peripheral immune engagement capable of 

mounting productive antitumor responses with PD-L1 blockade, whereas agonism of 

CD40 is sufficient to induce antitumor immunity even in previously immunologically quiet 

systemic contexts.   

Altogether, this body of work reveals that the immune macroenvironment in cancer is a powerful 

tool to determine which immune intervention strategy best serves each context, and to understand 

why therapies fail so that we may design more inclusive next generation immunotherapeutics.  
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 Several open questions remain following these studies, including what specific aspects of 

the peripheral immune response are most informative in designing treatment strategies. The studies 

largely investigated mouse models of cancer, with individual findings associated with observations 

in human patients. It is imperative that the field of cancer immunology amass a collection of patient 

peripheral immune profiling to tease apart which active immune programs are taking place and 

how immune interventions modulate these responses across diverse patient contexts. Machine 

learning is a powerful tool that can be exploited to root out a collection of peripheral immune 

signatures that predict optimal immune perturbation or identify gaps in our arsenal of immune 

modulations. There is also opportunity to use regular patient peripheral immune profiling to 

identify when therapeutic resistance begins to develop, and how to change strategy to maintain 

efficacy. These characterizations can be used to answer important mechanistic questions that 

include how disease stage and metastasis, cancer cell type, and anatomical location each contribute 

to overall remodeling of systemic immunity. 

 We and several others have demonstrated the importance of cDC function in driving 

successful de novo antitumor immune responses52,53,132. Even checkpoint blockade, originally 

believed to de-restrict effector T cells in the TME, has been shown to rely on cDC interactions 

with PD-1 expressing T cells in the dLN. An important next step is to understand when cDC 

function needs to be supported by removing checkpoints versus initiated by strong stimuli such as 

CD40 agonism. There is already some indication in the literature that too strong of an immune 

stimulation, when unwarranted, can actually abrogate antitumor immunity. As CD40 agonism is 

highly non-specific, more targeted alternatives for manipulating cDC behaviors should be sought. 

Furthermore, it will be important to define what preexisting peripheral immune responses need to 

exist for PD-L1 blockade to be efficacious. Although our data and recent literature support cDC 
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activation in the tumor dLN as the critical driver, there are a variety of other peripheral immune 

changes that may support a beneficial outcome. Along these lines, it is not clear how strong of a T 

cell response is actually required for productive tumor clearance; is it much weaker after PD-L1 

blockade than CD40 agonism, yet both can be efficacious. There are additional implications for 

de novo immune responses to other immune challenges that may arise concurrent with tumor 

burden, such as weaker viral or bacterial adaptive responses demonstrated in my studies, that 

warrant future work on how to support unrelated immune activities in cancer patients.  

An area not fully addressed here, but important for future follow-up is the long-term 

consequences of extensive systemic immune remodeling, whether by natural tumor burden or by 

immunotherapeutic interventions. We show that tumor resection at mid-stage disease is sufficient 

to reverse the majority of peripheral changes, but this plasticity may be lost at some point during 

tumor progression. Even with mid-stage disease, there were small but persistent changes in 

peripheral myeloid subsets after two weeks. It remains an open question whether patients who 

have survived cancer have lasting bias or disruption in immune responses. Extending this to more 

direct perturbations, chemotherapy has been shown to drive lasting changes in CD4+ T cells in 

breast cancer patients that likely skews normal immune responses31. Lasting consequences of 

immunotherapies are also a real possibility, especially with the extent of systemic immune 

disruption driven by CD40 agonism. There are obvious autoimmune comorbidities with strong 

immune stimulation, but more subtle changes in the overall composition of the immune system or 

future response biases remain to be thoroughly characterized.  

There is much more work to be done to fully engage the immune system against cancer, 

but we are making great strides in understanding the breadth of cancer evasion tactics and how we 

can systematically circumvent each one.  
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