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ABSTRACT OF THE DISSERTATION

Quasi-Regular Grids

by

Shane W. Flynn

Doctor of Philosophy in Chemistry

University of California, Irvine, 2021

Professor Vladimir A. Mandelshtam, Chair

This work revisits a general problem in numerical analysis; the efficient sampling of any

d-dimensional distribution function. Monte Carlo methods are the standard approach when

addressing a general distribution function, as they are able to produce a set of points in

configuration space following any distribution. However, there are apparent flaws with this

approach: namely, the inevitable phenomenon commonly referred to as “gaps and islands”

where some regions in configuration space are oversampled while other regions are under-

sampled. The well-known “curse of dimensionality” and its exponential scaling, combined

with inefficient sampling, results in these methods quickly becoming unfeasible for meaning-

ful applications. To this end we introduce a new sampling method, Quasi-Regular Grids,

which results in an optimally distributed set of points that maintain local uniformity while

simultaneously sampling any desired distribution. These new grids are then applied to

the challenging problem of computing the quantum vibrational spectra for both model and

molecular systems. We quantitatively establish the scaling properties of our method using

an analytic model, the Morse potential, contrasting our results to the current best practices

in the literature. We then tackle a chemical system of interest, formaldehyde, and again

show the method to be superior to recent work published on the same system. Finally we

present preliminary results for the spectral calculations of water. This research establishes

a completely general method with numerous applications expanding far beyond spectra cal-

culations, and will surely be an active area of further research in the future.
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Chapter 1

Monte Carlo Methods for the Sampling of a General

Distribution Function

The sampling problem refers to the general question of how to select a single instance,

or a finite number of objects, from a given set. For example, a trivial problem would be the

method used to select a single playing card from a deck. In practice the set will be much more

complex (potentially infinite), and one usually wishes to represent the larger set through the

collection of samples. This type of problem is ubiquitous across the scientific disciplines as

the quality of the subset of samples will dictate the accuracy and insights derived from any

subsequent analyses.

The particular sampling problem addressed in this research is the sampling of a general,

multi-dimensional distribution function. The goal is to represent a continuous function with

a discrete set of points as efficiently as possible. This is a long-standing problem in numerical

analysis, and its applications range from machine learning to quantum wave packets.1–4 A

primary reason for this diversity is that sampling methods can be used for the generation of a

training set for fitting (parametrizing) an expensive-to-compute (or measure) function. This

is incredibly important in fields such as supervised learning where standard algorithms are

susceptible to the quality of the training set.5–7 The classification problem is a well-known

example, where biased training sets result in the algorithms simply ignoring the minority

classes to optimize the recall of the majority.8

An important example from the domain of chemical physics is the application of training

sets to the fitting of ab-initio potential energy surfaces.9–16 For a computational chemist

the importance of ab-initio surfaces simply cannot be understated. For these applications

it is well known that the sampling methods must efficiently explore the potential energy

landscape while focusing on the physically relevant regions in configuration space. In order

1



to approach this problem rigorously one may attempt to quantify the “physical importance”

by devising the corresponding weight (or distribution) function.

2.1 Monte Carlo Implementations

Given a general distribution function P(x)
(
x ∈ Rd

)
, the primitive, but most prominent

methods for sampling P are the family of Monte Carlo methods.17;18 Monte Carlo can be

used to solve a large family of problems; most notably, stochastic problems like diffusion

and transport, or deterministic problems such as integral evaluations or solutions to partial

differential equations.19–23

Integration in particular is an important area of research for the physical sciences. Due

to the exponential scaling of space, quadrature-based methods quickly become unfeasible

for computing high-dimensional integrals. For this reason Monte Carlo methods are more

common. By applying a pseudo-random sequence an integral can easily be approximated

∫
R
dξ f(ξ) ≈ 1

N

N∑
i=1

f(xi), (2.1)

however, the presence of “gaps and islands” in the uncorrelated sequence results in slow

(namely, as ∼ 1/
√
N) numerical convergence. In the context of integration one can achieve a

significant improvement by using low-discrepancy correlated sequences, the so-called quasi-

random sequences. Quasi-Monte Carlo integration has been shown to have far superior

convergence properties (numerical studies even suggest ∼ 1/N ) depending on the specific

integral.24–26

In the context of sampling, most Metropolis Monte Carlo implementations use a pseudo-

random number generator to produce a set of trial moves with an acceptance criteria that

satisfies detailed balance. This produces a sequence of points distributed according to P(x).

In principle, the points in such a sequence are correlated. However, one can remove the cor-

relations by picking points separated from each other through sufficiently many Monte Carlo

2



Figure 2.1: Cartoon depiction of the rejection method generating a set of points according
to a desired distribution P . Points in blue were accepted using Monte Carlo criteria, and
follow P . Those in orange are discarded.

steps. This simple procedure results in a set of independent random points in configuration

space that samples the distribution in question.

2.1.1 Rejection Sampling

The applications considered in this work involve sampling from complicated distribution

functions such as the vibrational Schrödinger’s equation. If the distribution of interest cannot

easily be sampled from, a specific Monte Carlo method known as rejection sampling is often

used.27;28 The technique is exact, and the idea behind the method is very simple as shown

in Fig. 2.1.

3



The problem of sampling directly from a complicated distribution, P , is replaced by

drawing from a proposed distribution function, ρ, which can readily be sampled from. The

method of rejection sampling requires that a constant c exists such that

c ρ ≥ P . (2.2)

With these conditions one can generate a point xi from the distribution ρ, which encom-

passes the target distribution P . To ensure that the point xi comes from P , Monte Carlo

criteria is applied resulting in an acceptance or rejection.

P(x)

Pmax
> ξ[0, 1] (2.3)

Although the rejection process is highly inefficient as dimensionality is increased it is still

commonly implemented due to ease and lack of alternate methods for general, high-dimensional

distributions.29

2.2 Discrepancy

The use of the terms pseudo-random and quasi-random is ambiguous, however, we will

continue to use them throughout this work. These are terms used in the literature and we do

not want to cause confusion by changing the convention. However, in this context the term

pseudo-random specifically means a sequence of points that are uncorrelated and show a

high-discrepancy. The default number generators in essentially every programming language

fall under the category of pseudo-random number generators. Likewise quasi-random in this

context refers specifically to the locally correlated, low-discrepancy sobol sequence.

Discrepancy is a quantitative measure used to describe how evenly distributed the points

in a sequence are. Qualitatively a high-discrepancy refers to a sequence where significant

non-uniformity of the points occurs. In this scenario certain regions in configuration space

contain a large number of points, while others are sparse. Low-discrepancy refers to the

4



opposite, where the points are more evenly distributed reducing the clustering problem. The

discrepancy D∗s for a d-dimension sequence {xn} on the unit cube [0, 1]d can be defined as:

D∗s(x1, ..., xs) = sup
A∈E∗

∣∣∣∣ |{xi ∈ A}|S
− Vol(A)

∣∣∣∣
There are various different definitions for the discrepancy, and the problem of minimizing

the discrepancy of a set of points in very non-trivial. In this work we are not interested

in quantitative metrics for this property, but refer interested readers to the mathematics

literature.30–37

2.2.1 Consequences of Discrepancy

The high-discrepancy sequences form a characteristic pattern in space commonly referred

to as “gaps and islands”. These types of sequences lead to various numerical bottlenecks

such as the slow convergence problem in Monte Carlo integration discussed above. The

inherently redundant nature of the pseudo-random sequences results in the need for far

more points compared to a hypothetical locally uniform non-redundant sampling. While

the slow convergence of integration can be addressed with low-discrepancy sequences it is

unclear if this property is desired in the context of sampling. As show in Fig. 2.2, the

quasi-random sequence clearly fills the region more uniformly. A much larger number of

samples are required for the pseudo-random sequence to have comparable gap-sizes in the

configuration space.

While in principle low-discrepancy sequences may address the sampling problem, in prac-

tice they are only easy to generate for distributions that are products of low-dimensional

distribution functions, P(x) = P1(x1) × P2(x2) . . . . While there are a number of methods

available for the sampling of specific distributions, the generalization to higher dimensions

and non-trivial dependencies is still an open problem in numerical methods. This inherently

limits the application of quasi-random sequences to the sampling problem. Most authors have

5



Unif. pseudo-random Unif. quasi-random 

Figure 2.2: 128 and 1024 two-dimensional points from the unit square [0,1]2, generated using
a pseudo-random number generator (left) versus a quasi-random number generator (right).
The quasi-random sequences are highly structured to uniformly fill configuration space.

6



explored a combination of quasi-random sequences and the rejection method to generate a

set of points with quasi-random properties for a general distribution. This methodology and

associated claims about the resulting sets of points will be explored throughout this work.
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Chapter 2

Quasi-Regular Grids

The focus of this chapter is to introduce a new sampling method resulting in the gener-

ation of a novel nondirect product grid that we call quasi-regular sampling.38 These grids

are characterized by their local uniformity, while simultaneously sampling the proper global

topology of any distribution. Simple two-dimensional model systems are used to graphically

illustrate the strengths and weaknesses of currently available methods, providing an intu-

ition for the more challenging problems faced in higher dimensions. The subsequent chapters

focus on the application of these grids to study problems in the area of quantum dynamics.

As such, this chapter is essential to understanding the remainder of the work.

3.1 Ansatz for a Quasi-Regular Grid

One can imagine an ideal sampling method would produce a set of points xi ∈ Rd

(i = 1, · · · , N) that, on the one hand, are locally regular, i.e., sample the configuration space

in the least redundant fashion, and on the other hand, are globally distributed according

to an a priori defined distribution function P(x). To satisfy both conditions, which at first

glance seem mutually contradictory, we use an embarrassingly simple approximate solution.

By treating the grid points like particles interacting via a specially designed short-range

pairwise potential, we can optimize the set of points by minimizing the total energy of the

grid subject to this pseudo-potential.

Given a general normalized distribution function P(x) > 0, x ∈ Rd
(∫

dxP(x) = 1
)
,

our goal is to construct a set of points xi ∈ Rd (i = 1, · · · , N), which locally have a regular

arrangement, but globally are distributed according to P(x). We propose a practical solution
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based on minimization of the following functional in the form of a pairwise potential:

U(x1, · · · ,xN ) =
N∑
i=1

N∑
j=1

uij −→ min (3.1)

with the short-range pair pseudo-potential defined by

uij =

[
σ(xi)

xij

]m
−
[
σ(xi)

xij

]n
(3.2)

σ(x) = γ [NP(x)]−1/d , (3.3)

where xij := |xi−xj |. Due to the form of this short range interaction (motivated by the well-

known Lennard-Jones potential), the points xi are expected to arrange themselves locally to

resemble a quasi (i.e. not quite perfect) closed packed structure. In the traditional Lennard-

Jones potential σ is not a function of the distribution, resulting in a uniform distribution of

particles. For a quasi-regular grid, the functional form of σ(x) is key. Its role is to define the

distance between the nearest neighbors, in accordance with the local density of points P(x).

While the power law in Eq. (3.3) is intuitively obvious, the precise value of the constant

γ ∼ 1 is not, and as such, it becomes an adjusting parameter. A γ value that is too small

would result in disconnected clusters of points, while a value that is too large would force the

points to form regular structures with uniform spacing across large domains of configuration

space. That is, it is the “defects”, i.e. lattice imperfections, that allow for the desired

gradual variation of the spacings between nearest neighbors in accordance to the variation

of the density P(x). We find our construction to be robust, meaning there is a comfortable

range for γ where the behavior of the grid is insensitive to its value. In practice, the value

of γ can be optimized by comparing low-order moments of P(x), such as the mean and the

covariance matrix computed by

〈x〉 =
1

N

N∑
i=1

xi; 〈xxT〉 =
1

N

N∑
i=1

xix
T
i , (3.4)
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with their exact values. The necessity of computing the moments for ensuring quasi-

regularity is revisited in Section 5.3.

In this work we will be using the (6, 12) Lennard-Jones potential: (n,m) = (6, 12). In

general, the choice for the form of uij is flexible and does not play a crucial role in dictating

the optimized grids properties. However, in order to maintain a short-range interaction

for higher dimensionality, larger values for n and m must be used. For example, (n,m) =

(3 + d, 9 + d) would be a reasonable choice for a general implementation that scales with

dimensionality appropriately.

The flexibility in the form of the pair-wise potential is explored in Chapter 5, where the

ansatz is revisited and a more efficient algorithm is developed due to a convenient choice for

the pseudo-potential. Notably this improved ansatz removed the need for normalization and

the need for the fitting parameter γ.

3.2 Two-Dimensional Normal Distribution

To demonstrate not only our new method, but its competitors in the literature, we use

the two-dimensional standard normal distribution as a model system

P(x) = (2π)−d/2 exp

{
−x2

2

}
. (3.5)

The following well established approaches will be used both here and throughout the

remaining chapters to qualitatively and quantitatively demonstrate the superior properties

of a quasi-regular grid.

(a) Uniform pseudo-random+rejection: Starting with a uniformly distributed high-discrepancy

pseudo-random sequence xi in a sufficiently large domain, one retains only the points

that satisfy the inequality P(xi)/Pmax > ξi, where ξi is a pseudo-random number

uniformly distributed in the [0, 1] interval.

10



(b) Uniform quasi-random+rejection: Same as the above, but xi is a low-discrepancy

quasi-random sequence taken from the sobol distribution.

(c) “True” quasi-random: Utilizes the Beasley-Springer-Moro approximation39;40 to trans-

form a low-discrepancy uniform quasi-random sequence in [0, 1] × [0, 1] (i.e. the unit

square) into a two-dimensional standard normal distribution.

High-discrepancy pseudo-random sequences are the most readily available, and as such

are the most commonly implemented method. However, the increased availability of low-

discrepancy quasi-random sequences combined with their desired properties has generated

much research in both sampling and integration applications.41–43

The quasi-regular grids as well as both rejection methods (a and b, see above) can be

readily applied to any general distribution function P(x). Unfortunately method (c) and

similar approaches are only straightforward for certain distributions, such as those with the

form shown in Eq. (3.6), or when other information like the cumulative distribution function

is available.

P(x1, · · · ,xd) = P1(x1)× · · · × Pd(xd) (3.6)

An important realization and a key motivation for the development of the quasi-regular

grids is that the rejection process destroys most of the desired properties associated with a

quasi-random sequence. This claim will be explored quantitatively in Chapter 4.

However, Fig. 3.1 shows the transformation of a uniformly distributed Sobol sequence

to a standard normal distribution through the inverse cumulative distribution function of

the standard normal distribution. Unlike the rejection-based methods discussed above, the

low-discrepancy of the uniformly distributed points is clearly maintained for the resulting

normal distribution.

Unfortunately, if we want to address the more general problem of any type of distribution

function we must abandon the use of explicit transformations. As shown in Fig. 3.2, even

to generate a model system like the normal distribution, a large number of points must
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Figure 3.1: Two-dimensional uniform sobol sequence (left) transformed to a two-dimensional
standard normal distribution using the inverse cumulative distribution function. The result-
ing normal distribution retains the organized structure present in the original sequence.
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Figure 3.2: The generation of 128 points following the two-dimensional standard normal dis-
tribution using pseudo-random and rejection (top) or quasi-random and rejection (bottom).
Although the pseudo-random approach requires many more trials, the end results appear to
be similar.

be proposed and then rejected. Namely the first column shows the total number of points

generated, while the last column shows only those that are accepted this inefficiency of the

rejection method is well-known and grows with dimensionality. The final set of points from

the high-discrepancy pseudo-random sequence after rejection appears to be Gaussian, but

is clearly still high-discrepancy as expected. However, the initially low-discrepancy quasi-

random sequence is, at-least visually, only appears marginally better when compared to the

pseudo-random approach. There is some local uniformity maintained, however, it is clearly

disrupted by the regions where the rejection method disregarded points. Therefore the

initially low-discrepant nature of the sequence becomes more similar to a high-discrepancy

sequence after rejection.

Fig. 3.3 shows the final product of all four methods. In contrast to the rejection ap-
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proaches, the “true” quasi-random sampling appears to be more locally uniform with points

efficiently filling the configuration space. We do note that while the “true” quasi-random

sampling does appear superior to the rejection methods, implementations innately produce

sets of points that appear arbitrarily close. This is a consequence of the uniformity definition

used to construct quasi-random sequences; namely that they aim to maintain uniformity for

every new point added to the sequence. These redundant points can result in numerical

instabilities which will be discussed in Chapter 4. Finally, the quasi-regular points seem

to be most ideal. The resulting grid looks strikingly similar to a two-dimensional contour

plot of a Gaussian distribution, the points are clearly arranged according to P . We also

observe the local regularity. The grid points seem to be surrounded by nearly perfect shells,

corresponding to their nearest neighbors.

3.3 Parameters of the Quasi-Regular Grids

The beauty of the quasi-regular ansatz is the simplicity and subsequent transparent

parameterization of the model. There are a number of sampling methods that have non-

transparent fitting procedures which may result in further optimization, but at the cost of

reproducibility. For a given set of quasi-regular points, the only fitting parameter is the

constant γ. This parameter is essentially a flat scaling which controls the strength with

which points repel or attract. While it is expected to be on the order of 1, we find that its

value is stable across a large range. Not reported here, however, the variation of γ does not

seem to effect the numerical accuracy during applications as discussed in Section 4.3.

As shown in Fig. 3.4 the value of γ causes the quasi-regular grids to form a set of

disconnected points. Likewise the points begin to take on a more uniform appearance when

too large. For this reason there is a comfortable region in which γ will produce a proper

quasi-regular grid and makes it unnecessary to rigorously optimize for most applications.

It is worth mentioning that for a given grid size N , a new quasi-regular grid must be

constructed “from scratch”, i.e. you must optimize the entire grid to account for any addi-
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Figure 3.3: A comparison of four different methods (see text) to generate sets of points
distributed according to the two-dimensional standard normal distribution., each set contains
128 points.
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Figure 3.4: 128 points generated according to the two-dimensional standard normal distribu-
tion. The effects of taking unreasonable values for γ are shown (1/100, 1, 100 respectively)
form left to right.
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tional points. In contrast to this, any given pseudo-random or quasi-random finite sequence

can be extended, if required, and by increasing the grid size, N , the results can be improved

gradually, not wasting any information/data generated using the smaller grid. This would

be an obvious disadvantage for using a quasi-regular grid for applications such as integration

where one may wish to extend the sequence to reach a desired accuracy. However, in Chap-

ters 4 and 6 these grid-based methods are applied to problems resulting in a generalized

eigenvalue problem. The solution of an N×N generalized eigenvalue problem with its ∼ N3

numerical scaling appears to be much more expensive than the generation of the grid. We

also find in that context, the optimization of the basis set is far more important in terms of

total accuracy compared to adjusting γ.

Although a new quasi-regular grid must be constructed to vary N , the quasi-regular grids

are able to reproduce the proper topology for P even when N is considerably small. The

optimization process applied during the generation of a quasi-regular grid allows a reasonable

approximation of the distribution to exist when N is small. This is unique compared to either

low-discrepancy or high-discrepancy sequences.

The scaling properties with respect to N for the quasi-regular grids are shown in Fig. 3.5.

The specific distribution function used in this example is discussed in detail in Chapter 4

Eq. (4.19); however, it is based on a semi-classical argument. The well-known Hénon-Heiles

Potential is being represented by the quasi-regular grids.44;45 The specific parameters used

to construct the grids were as follows: γ = 1, λ = 0.1118034, and Ecut = 13.3333, which are

taken directly from the literature.

V (x,y) =
1

2

(
x2 + y2

)
+ λ

(
x2y− 1

3
y3
)

(3.7)

The reason for introducing this specific expression is its non-trivial form which no longer

satisfies Eq. (3.6). The contour maps for this distribution are shown in blue, with a cutoff

contour shown in red. Clearly there is no issue in generating a quasi-regular grid for a non-

separable distribution, and the addition of more points scales with the appropriate density
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as expected. This property may be useful for applications where an approximate solution or

low accuracy is required.

3.4 Conclusions

We have introduced a new method and numerical algorithm for the sampling of a gen-

eral multi-dimensional distribution function P(x) using a quasi-regular grid of points xi

(i = 1, ..., N). This grid is constructed through the minimization of a pairwise functional,∑
u(xi,xj) → min, with the short-range pair pseudo-potential u(xi,xj). The distance be-

tween grid=points is defined according to the underlying distribution, allowing the grids

so form locally regular structures. The quasi-regular ansatz also contains only one fitting

parameter that is stable over a comfortable range, removing any non-transparent fitting

procedures.

Comparing the quasi-regular grids to the well-known Monte Carlo rejection methods, it

was shown that the local regularity of the points resulting from a quasi-regular approach are

highly desirable. Quasi-regular grids will surely be useful in many diverse areas of numerical

analysis due to their general yet simple construction.
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Figure 3.5: Sampling of the Hénon-Heiles Potential with progressively larger grid sizes (50,
100, 200, and 300 respectively). Note: the global topology is consistent with P independent
of the size of N .

19



Chapter 3

Quantum Dynamics Calculations: A Quantitative Ap-

plication for Quasi-Regular Grids

In this chapter we explore the computation of quantum vibrational spectra. Given a

quantum system with d active degrees of freedom, first, one chooses a suitable coordinate

system and a suitable set of basis functions. Then, by evaluating the matrix elements of

the Hamiltonian operator in this basis, the problem of calculating the energy levels and the

wavefunctions is reduced to an eigenvalue problem. We quantitatively explore the effects of

generating a Gaussian basis set using the quasi-regular grids developed in Chapter 3. Using

two-dimensional and three-dimensional Morse oscillators, we demonstrate that the resulting

optimized Gaussian basis sets have properties superior to other choices explored previously

in the literature.

4.1 Grid-Based Approaches in Quantum Dynamics

A large amount of research has been developed for solving the quantum dynamics of

molecular systems. In particular, grid-based methods for solving the Schrödinger equation

have been an active area of research for decades. The most prevalent approach applies a

direct-product grid, avoiding the need to compute any potential energy integrals; typically,

the resulting eigenvalue problem involves sparse matrices, which can be diagonalized using

very efficient iterative eigensolvers that only need a function that multiplies a vector by

a sparse matrix.46–52 This simple approach has an unavoidable drawback, the exponential

proliferation of the number of grid points with dimensionality,

N = c · κd (4.1)
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Figure 4.1: The outer shell of a circle defined by radius R and ε. The percentage of the
volume contained in this shell is given by Eq. (4.4).

We note though that the “curse of dimensionality” is the very nature of any basis method,

regardless of whether a primitive direct-product grid, or state-of-the-art functions are cho-

sen. The two constants, c and κ, do depend on this choice though, which may result in a

substantial reduction (or increase) in the total size of the basis; the largest possible κ would

usually correspond to a direct-product grid. At the same time, a simple pruning of a direct

product grid by retaining the points (r(i)) that appear within the energy cutoff region,

V (r(i)) < Ecut, (4.2)

often results in a noticeable reduction of both c and κ.

While this initially seems promising, one must recall the classic problem in statistical

physics; the scaling of the volume of a hypersphere with respect to dimensionality.53

Vd(R) =
πd/2

Γ(d/2 + 1)
Rn (4.3)

One can easily find an expression to estimate the fraction of the volume contained in the
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Figure 4.2: The fraction of the volume contained in the rind of a hypersphere. As the
dimensionality increases the majority of the volume is found at the surface.

skin of the hypersphere,

∆Vd(R)

Vd(R)
=
Vd(R)− Vd(R− ε)

Vd(R)

= 1−
(

1− ε

R

)d
.

(4.4)

Plotting this expression with respect to the dimensionality as shown in Fig. 4.2 we see

that the volume of a high-dimensional object rapidly becomes concentrated near its surface.

This textbook example makes it clear that the idea of covering a region of interest in a

high dimensional space uniformly by a grid (or localized basis functions) is futile. Even after

pruning according to Eq. (4.2), most of the grid points will still end up being wasted in the

peripheral region, i.e., the region of least importance, where the wavefunction is small and

not oscillatory. Sampling methods need to be developed to address this irrefutable fact for
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higher-dimensional systems.

4.1.1 Distributed Gaussian Basis

In order to avoid this severe exponential scaling of uniform grids, one may need to give up

the benefits of sparse linear algebra. Just as the citation list is long for direct-product grids,

many authors have investigated the use of non-direct product grids.54–60 In this context,

a distributed Gaussian basis (DGB) is a particularly popular option with a long history

going back several decades (see, e.g., Refs. 61–65). Gaussian basis functions are appealing

due to their localized nature and their convenient analytic properties that readily extend to

higher dimensions. Gaussian’s can form a convenient and flexible framework for solving the

Schrödinger equation. Although a generalized eigenvalue problem is obtained if the basis

is not orthogonal, there is a hope that this flexibility can be exploited so that an optimal,

compact, and efficient basis can be constructed. Consequently, a number of authors have

introduced different Gaussian placement methods as well as basis set truncation schemes

(see, e.g., Refs. 28;66–72). However, the optimal placement of the Gaussian basis functions

is still an open question.

Even assuming that an optimal distribution function for the Gaussian centers, P(r), is

known explicitly, its implementation is still not straight forward. As discussed in Chapter

3 one can easily generate a high-discrepancy pseudo-random sequence distributed according

to any distribution function using Monte Carlo, but it is hard to imagine that such a grid

would be optimal.

Accordingly, Garashchuk and Light proposed a scheme which partially addressed this

problem and which we will refer to as quasi-random+rejection. Namely, a uniform low-

discrepancy quasi-random (e.g., Sobol) sequence35–37 can be generated in a domain of inter-

est. A sequence r(i) with the desired distribution can then be produced by a rejection scheme

in which the points are retained with probability ∼ P
(
r(i)
)

. As discussed in Chapter 3 the

rejection step destroys the nice low-discrepancy structure found in the original sequence,
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which will subsequently impact the representation of the wave functions. While some of the

local correlations of the low-discrepancy sequence remain, we expect the quasi-regular basis

to be superior.

One could possibly compensate for the locally non-uniform distribution of Gaussian cen-

ters by customizing the width matrix for each Gaussian depending on its environment, but

this would certainly turn the basis optimization into a very non-trivial problem. There is an

additional problem one would need to address; the linear dependencies that inevitably arise

due to some points appearing arbitrarily close. Such linear dependencies lead to numerical

instabilities when solving the associated generalized eigenvalue problem. This can easily be

captured by the condition number of the resulting matrices, and poses a serious problem

for these methods. We believe the quasi-regular grids will addresses all of the concerns that

exist in the quasi-random+rejection scheme.

4.2 Vibrational Energy Calculations Using a Distributed Gaussian

Basis

Consider a d-dimensional system with the Hamiltonian (assuming atomic units and Carte-

sian coordinates):

Ĥ = −1

2
∇TM−1∇+ V (x). (4.5)

Here M := diag(mi) is a diagonal mass matrix, x ∈ Rd defines a column vector in the

configuration space, and ∇, the gradient.

It is convenient to make a transformation to the mass scaled coordinates,

r := UTM1/2(x− x0) (4.6)

where U defines the unitary transformation that diagonalizes the mass-scaled Hessian matrix:
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K̃ = M−1/2KM−1/2 .

K̃ = UΩ2UT; Ω = diag{ωk}; UTU = I (4.7)

In these coordinates the Hamiltonian reads

Ĥ = −1

2
∇2 + V ′(r) (4.8)

where V ′(r) := V
(
x0 + M−1/2Ur

)
.

r := M1/2x, (4.9)

which gives

Ĥ = −1

2
∇2 + V ′(r), (4.10)

where V ′(r) := V (M−1/2r).

4.2.1 Generalized Eigenvalue Problem

Consider a set of points ri ∈ Rd (i = 1, · · · , N) where each grid point is associated with

a normalized Gaussian basis function:

Φi(r) := (2αi/π)d/4 exp
(
−αi|r− ri|2

)
, (4.11)

and the αi are strictly positive adjustable constants that are subject to optimization.

Defining the overlap and the Hamiltonian matrices,

Sij := 〈Φi|Φj〉

Hij := 〈Φi|Ĥ|Φj〉,
(4.12)

the eigenenergies Ek and eigenfunctions Ψk can be computed by solving the generalized
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eigenvalue problem,

(H− EkS)Ψk = 0. (4.13)

Below we present explicit expressions for the numerical evaluation of the required matrix

elements.

4.2.2 Matrix Elements

Gaussian’s are a convenient (although not necessary) choice for the basis functions. Their

multi-dimensional generalizations are well known, resulting in simple expressions to evaluate

for the matrix elements.

Recall that the product of two Gaussian’s is also a Gaussian:

Φi(r)Φj(r) = Sij

(
αi + αj

π

)d/2
exp

[
−(αi + αj)(r− r̄ij)

2
]
, (4.14)

where we have defined the vector

r̄ij :=
αiri + αjrj
αi + αj

(4.15)

The overlap matrix elements Sij := 〈Φi|Φj〉 are given by

Sij =

∫
Rd

dr Φi(r)Φj(r)

=

[
4αiαj

(αi + αj)2

]d/4
exp

[
−
αiαj(ri − rj)

2

(αi + αj)

] (4.16)

Given the Hamiltonian in the mass-scaled coordinates, Eq. (4.10), the kinetic energy
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matrix elements are

Tij := −1

2
〈Φi|∇2|Φj〉

= Sij
αiαj
αi + αj

[
d−

2αiαj(ri − rj)
2

αi + αj

] (4.17)

Finally the potential energy matrix elements Vij := 〈Φi|V ′|Φj〉 are evaluated numerically

in the space of the mass-scaled Cartesian coordinates. In this work we elect to use a low-order

Gauss-Hermit quadrature.

Vij =

∫
Rd

dr Φi(r)Φj(r) V ′(r)

= Sij

(
αi + αj

π

)d/2 ∫
Rd

dr V ′(r) exp
[
−(αi + αj)(r− r̄ij)

2
]

= π−d/2 Sij

∫
Rd

dz V ′
(

r̄ij +
z√

αi + αj

)
e−z2

(4.18)

Finally, the eigenenergies Ek and eigenfunctions Ψk are obtained by solving the general-

ized eigenvalue problem, Eq. (4.13).

4.2.3 The Distribution Function

In this work we assume that an optimal distribution function for the positions of the

Gaussian centers is defined using the form derived from a semiclassical argument.73 The

argument is simplistic, however, we believe it gives the proper dimensionality scaling and

density. Starting with the total energy as the sum of the kinetic and potential, the momentum

has the form, p =
√

2m(E−V). Because the distance is inversely proportional to the

density, the uncertainty principle suggests the density should be of the form P ∝ (E−V)d/2.
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Figure 4.3: Depiction of the Gaussian widths and subsequent overlap generated when apply-
ing Eq. (4.21) to a quasi-regular grid. The condition number and stability of the resulting
eigenvalue problem are ensured due to the uniformity.

Introducing a cutoff contour and normalizing the distribution we arrive at:

P(r) :=

 c−1 [Ecut − V (r)]d/2 , V (r) < Ecut

0, V (r) ≥ Ecut

(4.19)

where

c =

∫
V (r)<Ecut

dr [Ecut − V (r)]d/2

is the normalization constant. In our numerical tests we compare against recent work de-

veloped by Garashchuk and Light; they also implement a distribution function of this form,

although instead of the power, d/2, they used an adjustable constant.28

A reasonable choice for the set of αi constants depends on the type of grid used for
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constructing the Gaussian centers. Assuming the points ri are distributed according to

P(r), the following expression to define the Gaussian widths is natural:

αi := α0 [NP(ri)]
2/d . (4.20)

Due to the local regularity of the quasi-regular grids, we propose an alternate definition

for the Gaussian widths:

αi := α0 dist−2i , (4.21)

where disti is the distance to the nearest neighbor of the i-th point. The latter expression

is clearly preferable as it conveniently decouples the problem of grid generation from the

following steps in the solution of the quantum dynamics problem. The choice of α0 is not

obvious but depends on the distribution function and the basis size. Its value adjusts for the

scale in configuration space and can easily be identified as shown in Fig. 4.4.

Finally, we note that numerical instabilities are often encountered when distributed Gaus-

sian basis sets are employed, especially when combined with nonuniform grids. For example,

when two grid points appear arbitrarily close to each other, the corresponding Gaussian’s

become linearly dependent. This in turn leads to a large condition number in both the

Hamiltonian and the overlap matrices. The quasi-regular grids by definition minimize this

very problem as they avoid any clustering of the grid points. In addition, Eq. (4.21) assures

that all the adjacent Gaussian’s have similar overlap. These properties can be visualized as

shown in Fig. 4.3 where a quasi-regular grid (N = 200) has been generated using the Morse

potential, Eq. (4.22). The Gaussian widths are scaled according to their nearest neighbor as

defined by σ. This forces all the Gaussian’s to maintain a similar overlap, corresponding to

smaller Gaussian’s in the regions where the wavefunction is more oscillatory. Likewise the

less oscillatory regions are covered with fewer, broader Gaussian’s.
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Figure 4.4: Sample optimization for the choice of α0, the only fitting parameter associated
with the construction of a quasi-regular basis.
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4.3 Eigenenergy Computations for the Morse Potential

Here we set out to apply the method to two-dimensional and three-dimensional systems

described by the Morse potential:

V (x) = D

d∑
k=1

(
e−wkxk − 1

)2
, (4.22)

where the Morse parameters are taken to be D = 12.0, w1 = 0.2041241, w2 = 0.18371169,

and w3 = 0.16329928. These same models were used by Garashchuk and Light in a similar

framework, albeit in order to demonstrate the superiority of the Gaussian bases distributed

according to the quasi-random+rejection scheme.28 Here, we compare the present approach

with the aforementioned methods; however, we are specifically interested in the comparison

to the quasi-random+rejection scheme, which was shown to be the most efficient implemen-

tation in the literature.

We note that most grid-based methods have several adjusting parameters that could, in

principle, be finely tuned to achieve the best performance for a given problem. While this

may be desirable for challenging systems, the exact strategy used is rarely elaborated on in

the literature. This results in non-transparent methods that may or may not be reproducible.

In this work we limited the grid optimization to making “reasonable” choices for the grid

parameters and refrained from over-tuning any specific method for practical comparisons and

conclusions to be drawn. All parameters used to construct the Gaussian bases are provided

in Table. 4.1. Values were chosen to be consistent with previously published work whenever

possible.

To this end, Fig. 4.5 shows the placement of the Gaussian centers for the 2D Morse po-

tential using the four different schemes of interest. For the direct-product and quasi-random

basis sets we tried to replicate the choices made in Ref. 28, whenever the information was

available. In fact, we were unable to accurately reproduce the results reported in Ref. 28

because the precise values of the grid parameters were not provided in the paper. Further-
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Table 4.1: Parameters used to construct the Gaussian bases for the model systems described
by the 2D and 3D Morse potential. Values were chosen to be consistent with previously
published work whenever possible.

d grid N Ecut γ α0

2 Direct-product 482 11.5 - 2.1
2 Quasi-rand.+Rej. 482 11.5 1.0 1.2
2 Quasi-regular 300 12 1.0 0.3
2 Quasi-regular 400 12 1.0 0.3

3 Quasi-rand. 939 7.5 1.0 0.4
3 Quasi-rand+Rej. 939 7.5 1.0 0.5
3 Quasi-regular 500 7 1.2 0.5
3 Quasi-regular 700 7 1.2 0.3
3 Quasi-regular 900 7 1.2 0.3
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Figure 4.5: Placement of Gaussian basis functions for the two dimensional Morse potential.
Also shown (in red) the V = Ecut = 11.5 contour line.
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more, these parameters could not be recovered since all the relevant raw data was lost due

to a hard drive failure after the paper was published (private communication with Sophya

Garashchuk). We made reasonable choices for analysis; however, it is clear the original pub-

lication was subjected to a non-trivial optimization process to generate higher accuracy than

we produce in this work.

In all cases the potential matrix elements were computed using a five-point Gauss-Hermite

quadrature for each degree of freedom. A three-point quadrature would certainly suffice for

these applications, but the higher-order scheme was chosen to completely eliminate this

source of error for more accurate comparisons. Because the Morse oscillators used in the

Hamiltonian are not coupled, the eigenvalue problem can be solved analytically. These

analytic values were computed and used to assess each methods accuracy through the relative

error.

Fig. 4.6 shows the relative errors for the lowest 100 eigenenergies for the 2D Morse

potential using three different DGB schemes. Although not shown, the two-dimensional

uniform quasi-random grid (N = 482) had accuracy comparable to that using the direct-

product grid. As demonstrated earlier, the truncated direct-product scheme is inferior to

the quasi-random+rejection approach.28 However, the present (quasi-regular) scheme is even

more accurate than the latter using a smaller grid (N = 400) and the errors are still smaller.

Notably, the results obtained with the present method using only N = 300 Gaussian’s are

better than those using the direct-product grid with N = 482.

The results for the three dimensional Morse potential are presented in Figure 4.7. The

3D direct-product grid (not shown) was significantly worse than any of the methods pre-

sented, while the uniform quasi-random grid was significantly worse than the results from

the other two methods shown. Here we observe that the quasi-regular grids have a dis-

tinct advantage over the second best method, i.e. quasi-random+rejection. That is, the

present approach using N = 700 provides similar accuracy for all 100 eigenenergies as the

quasi-random+rejection method using N = 939.
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Figure 4.6: Relative error for the eigenenergies of the 2D Morse potential computed using
three different schemes to generate Gaussian bases. Note the logarithm scale.
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Table 4.2: Relative error for the 50 lowest eigenenergies for the two-dimensional Morse
oscillator. Tabular data associated with Fig. 4.6 All results are in cm−1.

Direct-Prod (482) QRG (300) Quasi+Rej. (482) QRG (400)

7.83E-09 1.00E-10 2.82E-10 2.33E-11
6.00E-08 2.20E-10 1.74E-09 3.86E-11
9.58E-09 6.91E-10 3.55E-09 3.85E-11
2.70E-07 3.31E-10 5.65E-09 6.61E-11
4.31E-08 2.27E-09 1.25E-08 6.46E-11
9.19E-08 4.53E-10 2.25E-08 1.49E-10
1.78E-06 1.62E-09 2.79E-08 1.15E-10
2.01E-07 4.09E-09 4.18E-08 2.85E-10
9.77E-08 2.48E-09 2.95E-08 3.58E-10
1.06E-06 7.19E-10 9.98E-08 7.57E-10
1.28E-05 6.14E-09 1.62E-07 4.68E-10
1.40E-06 1.89E-08 9.62E-08 7.96E-10
2.14E-07 1.35E-08 1.13E-07 1.52E-09
5.50E-06 2.93E-09 4.02E-07 2.83E-09
8.83E-07 1.78E-09 2.08E-07 2.25E-09
4.70E-05 1.35E-08 5.68E-07 2.10E-09
1.04E-05 6.31E-08 2.65E-07 2.20E-09
1.20E-06 7.01E-08 4.40E-07 4.58E-09
1.34E-05 6.28E-09 1.34E-06 8.78E-09
8.59E-07 1.05E-08 6.78E-07 5.73E-09
4.64E-06 7.13E-09 1.68E-06 7.89E-09
7.81E-05 2.07E-08 1.41E-06 5.94E-09
3.94E-05 1.34E-07 9.23E-07 9.33E-09
1.33E-05 1.86E-08 3.54E-06 2.24E-08
8.87E-06 2.19E-07 1.51E-06 1.31E-08
1.15E-05 1.14E-08 7.86E-06 2.15E-08
1.62E-06 6.90E-08 2.00E-06 2.11E-08
4.11E-06 1.83E-08 4.00E-06 1.79E-08
6.72E-05 2.30E-08 2.44E-06 1.40E-08
6.67E-05 1.84E-07 3.50E-06 3.00E-08
9.73E-06 3.44E-08 7.32E-06 5.61E-08
3.41E-05 4.23E-07 5.77E-06 4.75E-08
0.000266 2.53E-08 4.67E-06 3.92E-08
1.17E-05 2.75E-08 2.37E-05 5.63E-08
8.28E-06 2.04E-07 6.84E-06 7.58E-08
1.03E-05 3.33E-08 1.59E-05 6.83E-08
4.42E-06 1.04E-07 7.55E-06 6.65E-08
5.83E-05 1.60E-07 1.27E-05 9.41E-08
0.000101 6.63E-08 1.53E-05 1.46E-07
5.86E-05 5.63E-07 1.42E-05 1.63E-07
0.001215 7.36E-08 1.30E-05 1.33E-07
8.64E-06 3.88E-08 4.15E-05 1.41E-07
3.07E-05 3.56E-07 2.15E-05 2.71E-07
1.05E-05 9.29E-08 4.35E-05 2.94E-07
1.01E-05 3.71E-07 2.32E-05 2.73E-07
9.91E-06 2.26E-07 2.69E-05 2.17E-07
0.000234 2.11E-07 3.68E-05 4.31E-07
0.000457 9.44E-08 3.54E-05 4.61E-07
0.002789 2.97E-07 4.55E-05 5.67E-07
5.18E-05 6.53E-07 3.71E-05 6.14E-07
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Figure 4.7: Relative error for the eigenenergies of the 3D Morse potential computed using
three different schemes to generate Gaussian bases. (Note the logarithm scale.)
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Table 4.3: Relative error for the 50 lowest eigenenergies for the three-dimensional Morse
oscillator. All results are in cm−1.

Quasi-Rand (939) QRG (500) Quas+Rej. (939) QRG (700) QRG (900)

1.15E-05 2.42E-07 8.74E-08 2.44E-08 1.13E-08
4.14E-05 5.11E-07 2.60E-07 8.73E-08 2.24E-08
2.31E-05 8.45E-07 2.68E-07 2.35E-07 2.85E-08
4.71E-05 1.83E-06 3.17E-07 3.27E-07 1.18E-07
6.05E-05 2.30E-06 5.38E-07 3.30E-07 5.50E-08
5.24E-05 2.50E-06 6.39E-07 6.24E-07 1.10E-07
5.93E-05 5.42E-06 3.73E-07 1.51E-06 9.76E-08
0.000179 6.58E-06 1.24E-06 6.69E-07 2.24E-07
0.000108 6.87E-06 1.17E-06 1.81E-06 2.26E-07
0.000169 1.38E-05 1.42E-06 2.09E-06 4.95E-07
0.000133 1.08E-05 1.61E-06 1.27E-06 1.57E-07
0.00015 1.18E-05 2.76E-06 1.94E-06 2.42E-07
0.000182 1.54E-05 9.12E-07 3.30E-06 3.32E-07
0.000387 2.01E-05 3.45E-06 2.33E-06 3.40E-07
0.000342 2.35E-05 1.19E-06 6.63E-06 2.37E-07
0.000389 2.14E-05 2.10E-06 4.37E-06 5.61E-07
0.000401 4.52E-05 5.46E-06 3.95E-06 9.98E-07
0.000292 3.33E-05 2.17E-06 6.71E-06 5.39E-07
0.000513 4.18E-05 3.97E-06 9.23E-06 8.52E-07
0.000771 6.35E-05 6.61E-06 8.45E-06 1.03E-06
0.000797 3.52E-05 5.30E-06 3.59E-06 3.37E-07
0.000372 4.87E-05 8.08E-06 4.99E-06 6.51E-07
0.00063 6.89E-05 6.99E-06 8.00E-06 8.53E-07
0.000532 4.98E-05 4.65E-06 8.33E-06 6.71E-07
0.001447 8.15E-05 4.77E-06 1.47E-05 6.08E-07
0.000538 6.02E-05 4.73E-06 1.34E-05 6.32E-07
0.000853 6.73E-05 4.93E-06 9.98E-06 8.80E-07
0.000689 9.78E-05 2.10E-05 1.29E-05 1.43E-06
0.000569 7.78E-05 5.49E-06 1.02E-05 1.34E-06
0.000968 9.91E-05 4.53E-06 2.25E-05 1.16E-06
0.00098 0.000116 1.21E-05 1.90E-05 1.72E-06
0.00198 0.000148 1.65E-05 2.00E-05 2.47E-06
0.000827 9.20E-05 1.23E-05 2.31E-05 2.03E-06
0.002457 0.000189 2.54E-05 2.45E-05 1.88E-06
0.00157 8.14E-05 1.26E-05 9.76E-06 9.00E-07
0.001736 0.000184 1.50E-05 2.62E-05 1.86E-06
0.001081 0.00014 1.83E-05 1.16E-05 1.52E-06
0.001639 0.000171 1.79E-05 1.77E-05 3.15E-06
0.000989 0.000137 2.27E-05 1.71E-05 1.93E-06
0.002308 0.000208 1.77E-05 2.42E-05 2.27E-06
0.001133 0.000132 9.16E-06 2.42E-05 1.40E-06
0.001699 0.000158 2.18E-05 2.64E-05 1.77E-06
0.002029 0.000183 1.32E-05 2.26E-05 2.37E-06
0.002053 0.000209 4.99E-05 3.37E-05 3.41E-06
0.001255 0.000195 1.54E-05 2.30E-05 2.31E-06
0.001921 0.000208 2.12E-05 5.07E-05 3.39E-06
0.001524 0.000183 1.84E-05 3.45E-05 2.80E-06
0.00174 0.000172 3.61E-05 2.47E-05 6.01E-06
0.001556 0.000197 2.93E-05 3.17E-05 3.15E-06
0.002159 0.0003 5.56E-05 5.70E-05 4.55E-06
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4.4 Conclusions

We have provided an assessment of the use of quasi-regular grids to construct a distributed

Gaussian basis. These types of bases are a key ingredient in a well-established framework

for calculating vibrational spectra, marking just one of many possible applications for the

formalism. We demonstrated that the redundant nature of the Monte Carlo rejection schemes

result in a distributed Gaussian basis with “broken teeth” which cannot be optimal for

representing the wavefunctions of an atomic system. The quasi-regular grids minimize not

only the total size of the basis, but also the well-known numerical instability associated with

the ill-conditioned nature of the overlap matrix. The method also only contains one fitting

parameter associated with the grid, and one associated with the Gaussian widths, making

it both simple and reproducible. No complex truncation schemes or approximations in the

potential energy are required, resulting in high accuracy vibrational spectra.
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Chapter 4

An Improved Quasi-Regular Formalism

The purpose of this chapter is to improve upon the original quasi-regular ansatz, in

particular to generate a high-dimensional grid that we are certain is quasi-regular. We

achieve this by modifying the form of the pseudo-potential. By removing the attractive terms

in the potential we find that cavities no longer form in the grid. This has the added benefit

of no longer requiring the distribution function to be normalized, significantly reducing

the computational effort in generating the grid. We then introduce a radial pair correlation

function to measure the distribution of nearest neighbors throughout the grid. By evaluating

the resulting histogram one can confirm the local structure of the grid points, and the

resulting quality of the quasi-regular grid itself. Finally we apply this updated methodology

to model systems of higher dimensional Morse oscillators (d = 4, 5, and 6), where we show

that high-accuracy vibrational calculations can still be performed in these higher dimensional

environments.

5.1 A Practical Pseudo-Potential

Although the original quasi-regular grid implementation was shown to be superior to

other available sampling methods, we discovered some problems when working in higher

dimensions. While in theory the form of the pseudo-potential should not impact the resulting

quasi-regular grid, assuming the interactions are truly short-range, in practice the choice can

impact the number of iterations needed to minimize a given grid. The original motivation

for Eq. (3.2) was to form a Lennard-Jones “like” crystal structure, however, the presence of

an attractive term results in the possibility to form gaps due to the points being attracted

to some extent.

This occurs during the minimization process, as shown in Fig. 5.1 regions of the grid
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Figure 5.1: The generation of a quasi-regular grid using the Lennard-Jones pseudo-potential.
As the grid is being optimized a large number of local minima must be traversed, resulting
in the formation of holes (left) which require numerous iterations to remove (right) before a
proper quasi-regular grid is generated.
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have formed holes due to these attractions. The algorithm does ensure that given enough

iterations these holes will be removed, however, this extended minimization process become a

non-trivial computationally bottleneck as the dimensionality increases. In higher dimensions

the minimization landscape is much more complex, containing a plethra of local minima for

the points to explore. This results in a large number of iterations being needed to reach the

global minima. By keeping the pseudo-potential short-range, but removing these attractions,

the resulting grids will maintain their quasi-regular structure but miniimization will occur

much faster.

5.2 Quasi-Regular Grid Ansatz Revisited

Consider a general, however no longer necessarily normalized, distribution function P(r) ≥

0 with a finite support A ∈ Rd. Our goal is to construct a set of points (or “particles”)

r(i) ∈ A (i = 1, · · · , N), which (I) locally, have a regular (possibly, closed-packed) arrange-

ment and (II) globally, are distributed according to P(r). Clearly, the two conditions, (I)

and (II), are mutually contradictory and as such can only be satisfied approximately. That

is, the local regular arrangement around each point r(i) is ideally a spherical shell of nearest

neighbors with radius rmin(r(i)). For condition (II) it is then natural to require the scaling

law,

rmin(r) = κ [P(r)]−1/d , (5.1)

to be satisfied approximately for any r = r(i) with some constant κ.

Here, for the construction of a quasi-regular grid we propose both an improved and

simplified (compared to that in Chapter 3) solution based on the minimization of the energy

functional,

U(r(1), · · · , r(N)) =
N∑
i=1

N∑
j=1

uij −→ min, (5.2)
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with a (purely repulsive) short-range pair potential,

uij =

{[
P(r(i))

]1/d ∥∥∥r(i) − r(j)
∥∥∥
α

}−m
, (5.3)

where for a positive-definite matrix α we defined the α-norm of vector r by

‖r‖α := (rTαr)1/2 (5.4)

The choice of the adjustable parameter m is probably not important, as long as the

potential is truly “short-range”, which can be achieved by, e.g., m = 9 + d. The role of α

will be clarified later.

Due to the strong short-range repulsion, the particles r(j) are expected to arrange them-

selves locally to resemble a quasi (i.e. not quite perfect) closed packed structure. Moreover,

the lack of attractive terms in the energy functional (these terms were included in the original

formulation38) enormously simplifies the energy landscape that now has only a small number

of local minima which are all structurally equivalent. At the same time, the functional form

of uij is the key to maintaining the scaling law (5.1), i.e., defining the distance between the

nearest neighbors in accordance with the local density of points P(r). Due to the absence of

the attractive terms, there is no need to normalize P(r). To this end, the minimization of U

can be carried out by the simulated annealing method,74 in which case one can conveniently

move a single particle at a time, subsequently exploiting the pairwise nature of the energy

functional.

5.3 Assessment of Quasi-Regularity

In higher dimensions we can no longer visually inspect the grid to assess its quasi-

regularity. Although we can continue to compute properties of the distribution such as

the moments, this is both computational expensive and not sufficiently accurate in higher

dimensional. Likewise we could monitor the total energy of the system as a function of
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iteration, however this does not guarantee that the grid is fully optimized.

To more accurately assess the “local regularity” of a set of points {r(i)} (i = 1, ..., N), we

consider the radial pair correlation function (more precisely, the corresponding histogram)

scaled with respect to the distribution function P(r):

gsc(r) :=
1

N

N∑
i=1

∑
j 6=i

δ

r −
∥∥∥r(i) − r(j)

∥∥∥
α

rmin(r(i))

 , (5.5)

The constant, κ, in Eq. (5.1) is generally unknown, but in order to make Eq. (5.5)

meaningful we can replace it by its lower bound estimate, e.g.,

κ =
1

N

N∑
j=1

P(r(j))1/drj,min, (5.6)

where the actual nearest neighbor distance for j-th particle is

rj,min := mini

∥∥∥r(i) − r(j)
∥∥∥
α

(j = 1, ..., N). (5.7)

To this end, the sharpness of the first peak in gsc(r) can be used to assess the local

regularity (condition II), and its appearance at r ∼ 1, to assess how well condition II is

satisfied.

5.3.1 Two-Dimensional Numerical Examples of Quasi-Regularity

The radial pair correlation function gives information on the distribution of nearest neigh-

bors. We can again use the two-dimensional standard normal distribution Eq. (3.5) to un-

derstand the radial pair correlation function. If there is no underlying structure associated

with the nearest neighbors in the grid, the radial pair correlation function is not expected

to have any structure. And as shown in Fig. 5.2, none of the methods relying on random

points have a defined peak in their respective histograms.
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(c)
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Figure 5.2: Histograms of the radial pair correlation functions for the (a) uniform pseudo-
random plus rejection, (b) uniform quasi-random plus rejection, (c) a true quasi-random
sequence generated from the Beasley-Springer-Moro transformation, and (d) quasi-regular
grid, applied to the two-dimensional standard normal distribution. See Fig. 3.3 for the
associated grids.
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5.4 Morse Analysis in Higher Dimensions

With the new quasi-regular ansatz and the improved metrics to ensure quasi-regularity,

one can begin to tackle the challenging problem of higher-dimensional quantum dynamics

calculations. The distribution function is no longer required to be normalized, we therefore

elect to use the following distribution:

P(r) =

 [Ecut + ∆E − V (r)]d/2 , V (r) < Ecut

0, V (r) ≥ Ecut

(5.8)

where V (r) is the potential energy, and Ecut and ∆E are adjusting parameters that depend

on the system and the energy range of interest. The ∆E parameter allows us to move the

outer-edge of the quasi-regular grid as close to Ecut as we desire.

We again use the Morse potential, Eq. (4.22), and the following approaches for distribut-

ing a set of Gaussian basis functions:

1. Direct-product: A uniformly spaced direct-product grid truncated at Ecut.

2. Uniform quasi-random: A uniformly distributed 2D low-discrepancy quasi-random se-

quence (in this work we use the Sobol sequence35–37), truncated at Ecut.

3. Uniform pseudo-random+rejection: Starting with a uniformly distributed pseudo-

random sequence r(i) in a sufficiently large domain, one retains only the points that

satisfy the inequality P
(
r(i)
)
/Pmax > ξi, where ξi is a random number uniformly

distributed in the [0, 1] interval.

4. Uniform quasi-random+rejection: Same as the above, but r(i) is a 2D Sobol sequence.

The results for N = 350 comparing the various methods are shown in figures 5.3 and

5.4. The top two panels in Fig. 5.3 show two types of uniform grids: a direct-product

grid and quasi-random grid. While the quasi-random grid seems to have a somewhat better

appearance near the edges, the main drawback of both grid layouts is that too many points
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Figure 5.3: Different methods (see text) to generate N = 350 grid points for the 2D Morse
potential (4.22) within the cutoff range V (r) < Ecut = 11.5 (indicated by the red contour
line). The two top panels show uniformly distributed grids. The non-uniform grids in the
two bottom panels follow the distribution, P(r), defined by Eq. (5.8) (∆E = 1.0).
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Figure 5.4: Sampling of the Morse potential (see the caption in Fig. 5.3) by a quasi-regular
grid. The compromise between achieving local regularity and the desired distribution P(r)
is assessed by the sharpness of the peak at r ∼ 1 in the radial correlation function, gsc(r).

are wasted in the region (close to the cutoff line) where the wavefunctions are smooth and less

oscillatory. As a consequence, given the fixed total number of points N = 350, both grids are

too sparse in the central region where the wave functions are oscillatory and need a dense

grid for an adequate representation. The bottom left panel in Fig. 5.3 shows a 2D grid

generated by a pseudo-random sequence distributed according to the desired distribution

function (Eq. (5.8)). The clustering of grid points and presence of gaps throughout the

domain of interest is apparent. The bottom right panel shows the grid obtained by the

rejection method from the originally uniform 2D Sobol sequence (i.e., the sequence that

appears in the top right panel). Yet, the bottom two panels look very similar due to the

rejection process. To construct this 350-point grid a large number of points (∼10 000) had to

be rejected leading to an almost complete loss of correlations between the remaining points,

consequently bringing back the unwanted gaps.

To this end, Fig. 5.4 shows the quasi-regular grid result using the same number (N =

350) of points. The density of the quasi-regular grid points is consistent with the desired

distribution (Eq. (5.8)) and is locally regular (i.e., locally has uniform spacing between
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Table 5.1: Parameters used to construct the Gaussian bases for the higher dimensional
Morse potential calculations. The choice of parameters can be explored to obtain the desired
accuracy.

d N Ecut γ α0

4 2000 7 1.7 0.5
5 6000 7 1.7 0.7
6 9000 7 1.7 0.9

nearest neighbors). The appearance of the quasi-regular grid, at-least visually, is ideal. In

addition, the quality of this quasi-regular grid is confirmed by the radial correlation function

gsc(r) which does show a relatively sharp peak at r ∼ 1.

With this metric we can now explore the vibrational spectra for higher dimensional

Morse oscillators, namely d = 4, 5, 6, corresponding to the dimensionality we will consider

in Chapters 6 and 7. We are unaware of any reported values in the literature for these

higher-dimensional Morse calculations, so we have chosen reasonable parameters to roughly

maintain the accuracy observed in more established lower-dimensional cases. For convenience

we set the ω values as ω1 = 0.2, ω2 = 0.18, ω3 = 0.16, ω4 = 0.14, ω5 = 0.12, and ω6 = 0.1

respectively.

The potential energy matrix elements were computed using a three-point Gauss-Hermite

sparse quadrature for each degree of freedom. While the integrals were originally attempted

using quasi-Monte Carlo methods (not reported here), the scaling of the sparse quadrature

does make quadrature-based approaches reasonable for higher-dimensional systems. The

scaling of the quadrature grid is shown in Fig. 5.5 assuming a Gauss-Hermite order parameter

of 3.

We have refrained from exhaustively optimizing these calculations for transparency, how-

ever, any individual system can be further fine-tuned to achieve a desired accuracy. The

parameters used to construct these grids are shown in Table. 5.1. As shown in Fig. 5.6 we

observe that high accuracy quantum dynamics calculation can be performed in these higher-

dimensional spaces. We were unable to produce a similar accuracy with the alternate grid
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Figure 5.5: The scaling of a sparse quadrature grid (with an order parameter of 3) as the
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Figure 5.6: Relative error for the eigenenergies of the Morse potential in a progressively
larger configuration space. (Note the logarithm scale.)

methods due to the large values of N that would have been required, consistent with our

understanding of the hypersphere problem (see Eq. (4.4)). As expected, in higher dimensions

the cutoff contour needs to be reduced to have a dense enough grid. However, if the cutoff

contour is made too small, the total accuracy will be reduced because the relevant regions

in configuration space are not being sampled.

5.5 Conclusions

The original quasi-regular ansatz was modified to be both simpler and more efficient,

and notably no longer contains any fitting parameters. Replacing the pseudo-potential with

a solely repulsive form we were able to greatly reduce the computational effort needed to

generate a quasi-regular structure. We then defined a radial pair correlation function to
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quantitatively asses the quasi-regular properties of a grid. This approach is less expensive

to compute and more accurate compared to the previous method of numerically computing

the lower moments of the distribution. Finally the vibrational spectra for four-dimensional,

five-dimensional, and six-dimensional Morse oscillators were computed with relatively high

accuracy, and relatively small basis sets when compared to the configuration space.
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Chapter 5

Vibrational Spectra of Formaldehyde

This chapter applies the optimized distributed Gaussian basis resulting from a quasi-

regular grid to the computational of the quantum vibrational spectra of formaldehyde.75 By

representing the molecule in a set of internal coordinates defined by the bond lengths and an-

gles, the problem is reduced from a twelve-dimensional Cartesian space, to a six-dimensional

configuration space. The kinetic energy operator is computed numerically, making the overall

approach highly generalizable, and could easily be implemented for other atomic systems of

similar size. The vibrational spectra computed using the DGB derived from a quasi-regular

gird is again shown to be highly accurate, while simultaneously requiring far less basis func-

tions when compared to recent methods in the literature. The approach also contains no

over-fit parameters or non-transparent optimizations ensuring the results are reproducible.

6.1 Collocation Method for Quantum Dynamics

In their recent work Manzhos and Carrington72 presented impressive results computing

the vibrational spectrum of formaldehyde, H2CO, using the collocation method.76;77 In the

present work we follow the latter paper very closely, for this reason from here onward we

will refer to it as M&C. In their paper they demonstrated that the method could be both

improved and simplified further by using the most convenient set of internal coordinates,

and evaluating the kinetic energy matrix elements numerically. This drastically reduces the

problem from a daunting twelve-dimensional quantum dynamics calculation to a simpler

(but still cutting-edge) six-dimensional problem. Likewise the numerical evaluation of the

kinetic energy operator avoids the need for complicated algebraic manipulations and makes

the approach promising for other systems.

Assuming any convenient internal coordinate system r = (r1, · · · , rd) that describes a
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molecule (d = 3Natoms − 6) or its part, the vibrational Hamiltonian is given by

Ĥ = T̂ + V (r), (6.1)

in which the kinetic energy operator is written using the 3Natoms Cartesian coordinates

T̂ = −
3Natoms∑
i=1

− ~2

2mi

∂2

∂x2i
. (6.2)

Next consider a set of grid points r(i) ∈ Rd (i = 1, · · · , N), where each point is associated

with a basis function, localized in its vicinity. A convenient (but in no way required) choice

corresponds to a set of Gaussians,

Φi(r) := exp

[
−
∥∥∥r− r(i)

∥∥∥2
α(i)

]
(i = 1, ..., N), (6.3)

where the norm ‖...‖
α(i)

is defined by Eq. (5.4) with the coordinate dependence of the width

matrix α(i) to be specified later.

When using the collocation method one defines a new grid containing a set of collocation

points r(i) ∈ Rd (i = 1, · · · , Nc) at which the Schrödinger equation must be satisfied,

(Ĥ − E)Ψ
(
r(j)
)

= 0. (6.4)

It is standard (although not required) to set the first N points to coincide with the center

of the localized functions (the Gaussian centers in this work), and the remaining points are

then generated separately (see below). By defining the overlap and Hamiltonian matrices,

Sji := Φi

(
r(j)
)

; Hji := ĤΦi

(
r(j)
)
, (6.5)
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and expanding the eigenfunctions using the Gaussian basis,

Ψ(r) =
N∑
i=1

ciΦi(r), (6.6)

we arrive at the rectangular generalized eigenvalue problem,

(H− ES)c = 0 (6.7)

That is, each eigenvalue E, in Eq. (6.7) is associated with Nc equations and N unknown

coefficients c = (c1, ..., cN )T. One practical way to solve this (overdetermined) problem is

to reduce it to a square N ×N generalized eigenvalue problem as, e.g.,72

(STH− ESTS)c = 0. (6.8)

Note here that in the special case of Nc = N , one does not need to multiply by ST,

a step which is not only expensive (scales as ∼ N3), but also makes the original problem

(6.7) more ill-conditioned. However, given a fixed Gaussian basis, increasing the number of

collocation points, Nc, should improve the accuracy of the computed eigenvalues noticeably

(see Fig. 6.4), while the matrix construction is still comparable or (depending on Nc) even

less expensive than the solution of the (non-symmetric) generalized eigenvalue problem.

In order to avoid very complicated algebra involving internal coordinates, r = r(x), the

action of the kinetic energy operator (6.2) on the basis functions at each collocation point,

i.e., T̂Φ
(
r(j)
)

, is evaluated numerically by finite difference in the Cartesian space.72

Although no integrals involving the potential energy surface (PES) are computed, the

method is numerically exact as long as the evaluation of ∇2Φi(r
(j)) through finite difference

is accurate and the basis is large enough. Unfortunately “large enough” is ambiguous as

each system considered will need to be studied for convergence.

Here we assume that an optimal distribution function P
(
r(i)
)

for the positions of the

55



Gaussian centers is defined using Eq. (5.8). Note that M&C use a similar distribution

function, however, they do not scale according to the dimensionality (i.e. d/2) but follow the

approach of Garaschuk and Light and set γ = 1. There are a number of parameters that can

be optimized depending on the exact approach taken. For the DGB resulting from a quasi-

regular grid we have not found this difference in the distribution function to meaningfully

alter the accuracy of the resulting eigenvalues. This could indicate a more optimal form

of the distribution function exists, however, this is beyond the scope of this study. The

positive-definite matrix α that appears in the definition of the norm in Eq. (5.4) is set to be

diagonal

α := diag{1/∆rk} (6.9)

with ∆rk defining the range spanned by the Gaussian centers along the k-th degree of

freedom (k = 1, · · · , d).

As mentioned in Chapter 4, there is a large body of research optimizing distributed

Gaussian basis sets.69;78–81 The quality of a given basis set does very much depend not only

on how the Gaussian centers are distributed, but also on the expression used to compute

the Gaussian widths, αi. This choice is quite important when working on more complicated

systems, a wrong choice for the widths (e.g., too narrow or too wide) may result in poor

approximations of the wavefunctions or ill-conditioned matrices, or both.

Clearly, the optimal choice for α(i) must depend on the local distribution of the Gaussian

centers around the i-th Gaussian. At the same time, one cannot afford to make the protocol

for optimizing the widths matrices α(i) too elaborate or else construction and reproducibility

will suffer. In the present case, the procedure of choosing α(i) can be made straightforward38

since the local arrangement of Gaussian centers is the same everywhere, except for a scaling

factor. Consequently, we use the following simplified expression:

α(i) :=
bα

r2i,min

, (6.10)
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where ri,min is the distance to the nearest neighbor from the i-th point (cf. Eq. (5.1)) and

b ∼ 1 is the only adjustable parameter.

To this end, we note again that numerical instabilities are often encountered when DGBs

are employed, especially when using nonuniform grids. For example, when two grid points

appear too close, the corresponding Gaussians become linearly dependent. This in turn leads

to a large condition number for both the Hamiltonian and the overlap matrices. The quasi-

regular ansatz minimizes this very problem as it eliminates the clustering of the grid points.

In addition, Eq. (6.10) assures that all the adjacent Gaussian’s have a similar overlap.

6.2 Numerical Details for Formaldehyde

In our numerical demonstration we consider the four-atom molecule of formaldehyde,

H2CO. This choice was motivated by M&C72 who used essentially the method formulated

in the previous section. We implemented the same PES, i.e., that from Carter,82 and the

same set of bond-angle internal coordinates as shown in Fig. 6.1 (rCO, rCH1
, rCH2

, θ1, θ2, φ).

The difference is in the choice of the points defining the Gaussian centers r(i) and the

Gaussian widths matrices α(i). M&C placed their Gaussian’s using the same procedure

as that implemented to construct the bottom right panel of Fig. 5.3, i.e. the uniform

quasi-random+rejection scheme. In the present case, the Gaussian centers are placed using

a quasi-regular grid. M&C used the same diagonal matrix α for all Gaussian’s but the

values for its elements were set in a non-transparent fashion which possibly resulted from an

additional optimization not explained in the paper.

In the present case, the only adjustable parameter for the Gaussian widths was b (cf.

Eq. (6.10)) which was then set to b = 1 for all the reported results. However, additional

calculations (not reported) confirmed that the stability of the results depends on the specific

parameters used, meaning further optimization is always possible for a given system. Of

note, a larger basis will have a larger region of stability for a given value of b, and this

stability region decreases as the basis size decreases.
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Figure 6.1: A schematic of the three bond lengths and associated angles used to define the
formaldehyde molecule.

Table 6.1: The parameters used to construct the DGB sets for H2CO. An excessive number
of collocation points were used to ensure convergence. Minimal effort was made to optimize
these parameters.

data set QRG10K QRG15K QRG20K

N 10 000 15 000 20 000

Nc 500 000 750 000 1 000 000

Ecut (cm−1) 15 000 15 000 15 000

∆E (cm−1) 3000 5 000 5 000
b 1.0 1.0 1.0
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Several calculations were performed using N = 10K, 15K, and 20K (i.e., 10 000, 15 000

and 20 000). The parameters of these calculations are given in Table. 6.1 All of the grids

were constructed according to the following simple protocol.

Begin by generating an initial set of points {r(i)} (i = 1, ..., N) with Metropolis Monte

Carlo using the distribution function P(x) (Eq. (5.8)), where each point is selected after

Nskip = 1000 Monte Carlo steps to reduce correlations between points. Note though that

the present choice of Nskip is not essential since this grid is then subject to optimization. This

set of points is used to determine the ranges ∆rk which define the norm ‖...‖α (Eq. (5.4)). In

the next step a “greedy simulated annealing minimization” (i.e., the only accepted moves are

those resulting in a reduction of the total energy) is applied to the set {r(i)} by minimizing the

energy functional U({r(i)}) (Eq. (5.2)). The convergence of the minimization is monitored

by observing the decrease of U({r(i)}) and by examining the scaled pair correlation function

gsc(r) (Eq. (5.5)). As an example, in Fig. 6.2 we show gsc(r) for the QRG15K set. The sharp

peak at r ∼ 1 indicates both the achieved local regularity of the grid and its consistency

with the given distribution function P(x).

The additional collocation points were generated using the quasi-random+rejection scheme

with the same distribution function P(r). We note though that switching to the pseudo-

random+rejection scheme did not make a noticeable difference (not reported here). Note

also that M&C used a quasi-random+rejection sequence for the collocation points, with the

first N points in the sequence defining the Gaussian centers.

To make sure that insufficient averaging over the collocation grid would not contribute

to the error, the maximum number of collocation points was set to a large value, namely,

Nc,max = 50N . The convergence with respect to Nc was then monitored by solving Eq. (6.8)

for the intermediate values of Nc. As in Ref. 72 we report the results for the lowest 50

eigenenergies.

As suggested by M&C here the action of the kinetic energy operator (6.2) on the ba-

sis functions at each collocation point, i.e., T̂Φi

(
r(j)
)

, is evaluated numerically by finite
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Figure 6.2: The quality of the 6d QRG constructed for H2CO is assessed using the scaled
radial pair correlation function (set QRG15K: N = 15 000, ∆E = 5 000 cm−1, Ecut = 15 000
cm−1 ).
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difference in the Cartesian space using a five-point stencil. This allows one to avoid very

complicated algebra involving the representation of the Laplacian in the bond-angle internal

coordinates, and also makes the algorithm very general, i.e., not depending heavily on the

choice of the coordinate system.

The generalized eigenvalue problem (6.8) is not symmetric and hence its eigenvalues are

either real or come in complex-conjugated pairs. However, the latter situation indicates poor

convergence, i.e., well-converged eigenenergies are always real.

6.3 Vibrational Spectra of Formaldehyde

Given the eigenenergies of formaldehyde have already been reported by M&C,72 the

purpose of this section is to use this well-established numerical example as a benchmark to

further assess the methodology and demonstrate the superiority of a distributed Gaussian

basis derived using the quasi-regular ansatz.

There are several factors contributing to the convergence of the computed eigenenergies

using the techniques described above. Besides the quality of the Gaussian basis set and

the size and extension of the collocation grid we would like to focus first on the numerical

errors associated with the evaluation of the Hamiltonian matrix elements. Since the potential

energy integrals are avoided, the only numerical error is due to the use of finite difference in

the implementation of the Laplacian operator. This simplicity comes with a price, namely:

we were unable to achieve very high accuracy, regardless of how elaborate the finite difference

scheme was (i.e., either using three-point, five-point or seven-point stencil). For example,

Fig. 6.3 shows the differences in the eigenvalues using the five-point stencil scheme with

three different step sizes: 0.01, 0.001, and 0.0001 (mass-scaled coordinates, atomic units).

Apparently, the corresponding error increases with the energy from less than 1 cm−1 for

the lowest eigenenergies to about 2 cm−1 for some of the highest ones. Consequently, one

cannot expect the overall error in the eigenenergies to be smaller than the finite-difference

error. We noticed though that when the basis size is increased, the finite-difference error
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Figure 6.3: The differences between the eigenenergies (using the QRG15K basis set) when
the five-point stencil method is applied while varying the step size ∆x.

decreases.

In the special case of Nc = N (i.e., when the collocation points coincide with the Gaussian

centers), the finite-difference error turns out to be negligibly small for either the three-point

or five-point stencil. This can be explained by the fact that in this special case the kinetic

energy matrix is diagonally-dominated with the diagonal elements obtained by evaluating

the second derivatives of the Gaussians at their maxima. At the maxima the quadratic

approximation is expected to be excellent, assuming the step size, ∆x, is not too large.

However, when excess collocation points are generated they can appear arbitrarily close

together, resulting in matrices that are not diagonally dominated but have large off-diagonal

elements. These types of matrices could amplify the existing errors.

Although the case of Nc = N is noticeably faster as it avoids matrix multiplication by
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Figure 6.4: The intrinsic error for set QRG15K obtained by taking the difference between the
computed eigenenergies when using only the Gaussian centers (Nc = N) and the eigenener-
gies when using the largest number of collocation points (Nc = 750 000).

ST (cf. Eq. (6.8)) and, in addition, it does not suffer from the finite-difference error, Fig. 6.4

clearly demonstrates that using a sufficiently large Nc (∼ 20N) allows one to substantially

reduce the eigenenergy errors compared to the case of Nc = N .

This improvement is clearly a large enough advantage to merit the added computational

cost. We must note however, that the work of M&C does not seems to have any meaningful

benefit derived from their added collocation points.

As shown in Fig. 6.5 the difference between using only their Gaussian centers, or a large

number of collocation points is on the order of one wavenumber. The same trend is found

when reviewing their smaller basis set calculations too. It is difficult to determine why their

results do not seem to improve with Nc, however, they are clearly not taking advantage of
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Figure 6.5: M&Cs convergence with respect to Nc for their N = 40 000 basis. The error is
computed through the difference from their largest calculation: Nc = 400 000.

64



0 10 20 30 40 50
Eigenstate

-10

-5

0

5

10
E

rr
o

r 
(c

m
-1
)

 QRG20K - QRG15K

 QRG20K - QRG10K

Figure 6.6: Intrinsic convergence: the eigenenergy differences between QRG10K and
QRG15K data sets relative to QRG20K set.

the method. It could be due to the range in which they generate their collocation points

(i.e. not sampling any new space compared to their basis functions), or due to the condition

of their matrices.

To this end, Table 6.2 presents our results for the first 50 eigenenergies using N =

10K, 15K, and 20K, together with the most accurate results of M&C using N = 40K and

Nc = 400K. Overall, the agreement is good between all four sets of calculations and is

within a few or several wavenumbers. Figures 6.6 and 6.7 visualizes the same information in

a graphical form.

More specifically, Fig. 6.6 shows the differences between the eigenenergies of the two pairs

of sets, QRG15K-QRG20K and QRG15K-QRG10K; Fig. 6.7 shows the energy differences

between our QRG15K data set and N=40K data set from M&C. For reference, Fig. 6.8
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Figure 6.7: The results for the QRG15K set are compared to the largest calculation by
M&C,72 i.e. N=40K Nc=400K, by taking the difference between the two sets of eigenenegies.
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shows the intrinsic comparison between the three sets reported by M&C using N=40K, 30K

and 25K. We note that the discrepancies between the latter three data sets are within a

range similar to the discrepancies between our data sets, however, our method makes use of

a much smaller basis size.

Based on these comparisons, we can definitely conclude that using a quasi-regular grid

to place the Gaussian basis functions is advantageous compared to the previously used

approach72 based on the quasi-random + rejection scheme with an improvement of about

a factor of 3. These improvements will be instrumental in future works where systems

with larger dimensionality and/or more complex dynamics (e.g., involving large amplitude

motion) are investigated. In such systems it is necessary to have the correct placement of

the basis functions, which will be a good test for the methodology.

6.4 Automatic Differentiation

The combination of using internal coordinates to define a quasi-regular grid, and numeri-

cal evaluations of the kinetic energy operator make this method general enough to tackle any

four atom molecule. However, the inability to increase the accuracy of the kinetic energy

evaluations will need to be addressed before a software package is made ready for distri-

bution. One approach would be to compute analytic expressions for the derivatives in the

kinetic energy expressions. The internal coordinates are expressed in terms of arc-functions

which become incredibly complex when a second derivative is taken. It would be more

reasonable to compute the first derivatives which are rather simple, and then compute the

second derivatives numerically to reduce the overall error. Analytic expressions for these

first derivatives are derived in the appendix.

Another promising avenue for future research would be to replace the finite difference

approach with a numerically exact method (see, for example, Ref. 83). Automatic differenta-

tion is based on dual numbers which are of the form v + v̇ε, where v, v̇ ∈ R and ε2 = 0,

ε 6= 0. v is called the primal and v̇ is called the derivative.84 If one considers substituting a
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Figure 6.8: The intrinsic convergence from Ref. 72: the eigenenergy differences between the
N=25K and N=30K data sets relative to the largest N=40K set and using the collocation
grids defined by Nc = 10N
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Table 6.2: 50 lowest eigenenergies for H2CO with respect to the ground state energy (first
row) for the three basis sets in Table 6.1. All results are in cm−1.

QRG10K QRG15K QRG20K 40K(M&C)

5774.24 5774.98 5774.56 5775.3

1166.54 1166.61 1166.75 1166.9
1250.40 1250.44 1250.41 1250.6
1500.47 1500.30 1500.03 1499.7
1746.06 1746.50 1746.28 1747.0
2326.84 2326.88 2326.84 2326.8
2421.62 2421.64 2421.71 2422.0
2497.44 2497.79 2497.56 2498.2
2668.14 2666.90 2666.75 2666.3
2719.18 2719.91 2719.22 2720.6
2775.42 2778.51 2777.80 2780.9
2838.41 2840.30 2840.06 2842.4
2905.07 2905.79 2905.66 2906.0
3000.17 3000.50 3000.02 3001.5
3001.80 3001.35 3000.75 3002.1
3237.85 3239.65 3238.84 3240.3
3468.54 3471.24 3470.93 3472.6
3480.70 3481.20 3480.69 3480.7
3586.04 3586.22 3585.93 3586.4
3674.49 3674.82 3674.64 3675.2
3740.25 3742.34 3741.02 3742.3
3828.80 3826.30 3824.87 3825.5
3887.45 3887.57 3886.80 3887.7
3932.72 3937.00 3936.32 3939.2
3935.10 3937.81 3936.53 3940.3
3989.94 3992.77 3993.11 3995.8
4026.21 4030.62 4028.76 4033.0
4056.47 4058.31 4057.64 4058.2
4079.48 4083.73 4082.39 4085.5
4163.37 4164.65 4164.09 4164.4
4170.13 4166.73 4167.11 4166.3
4193.34 4195.43 4193.66 4196.4
4243.21 4249.72 4247.22 4250.9
4247.25 4251.15 4249.36 4253.4
4331.21 4336.10 4333.88 4337.6
4398.72 4399.54 4398.35 4397.8
4462.42 4468.55 4465.94 4467.3
4495.78 4501.01 4496.02 4507.6
4515.39 4523.12 4521.57 4527.9
4561.92 4569.45 4567.97 4571.6
4618.84 4624.38 4623.11 4624.1
4628.42 4629.58 4627.51 4629.5
4726.54 4732.04 4730.27 4730.4
4729.75 4734.18 4732.22 4734.1
4744.45 4745.66 4744.93 4745.2
4841.30 4843.36 4841.70 4843.5
4924.97 4926.96 4925.87 4926.6
4946.91 4958.41 4954.51 4953.1
4975.21 4980.67 4976.28 4976.7
4982.57 4983.69 4980.56 4983.6

69



Figure 6.9: The Wengert list used to apply automatic differentation to the function y =
x1x2 + cosx1 .

dual number into a differentialable function using the Taylor Series:

f(a+ ε) = f(a) +
f ′(a)

1!
ε+

f ′′(a)

2!
ε2 +

f ′′′(a)

3!
ε3 + . . .

= f(a) + f ′(a)ε+ 0 + 0 + . . .

= f(a) + f ′(a)ε

(6.11)

It becomes clear that the first derivative of a function can be evaluated by simply evalu-

ating the function at the dual number. The benefit of dual numbers are also made obvious

here, unlike finite difference methods, the higher order derivatives are not being ignored but

are explicitly eliminated.

For example the derivative of a one-dimensional Gaussian can be computed as:

f(x+ ε) = e−a(x+ε)
2

= e−ax
2

+ (−2axe−ax
2
)ε

(6.12)

Standard implementations for automatic differentation have two separate modes: the

so-called forward mode and reserve mode. Both begin by representing the function as a

computational graph where each node (v) represents an intermediate step in the calculation

(See Fig. 6.9). To demonstrate consider evaluating ∂y
∂x1

at x1 = 4, x2 = 3, for the function

y = x1x2 + cosx1.

The simpler albeit computational inefficient forward mode computes each node linearly
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from the input to the end result, storing intermediate results in the primal trace.

v−1 = x1 = 4

v0 = x2 = 3

v1 = v−1 · v0 = 12

v2 = cos v−1 = cos (4)

v3 = v1 + v2 = 12 + cos (4)

(6.13)

To evaluate v̇3, one traverses the dual trace where the derivative of each node is evaluated

with respect to x1.

˙v−1 =
∂x1
∂x1

= 1

v̇0 =
∂x2
∂x1

= 0

v̇1 = ˙v−1v0 + v−1v̇0 = 3

v̇2 = − sin (v−1) ˙v−1 = − sin (4)

v̇3 = v̇1 + v̇2 = 3− sin (4)

(6.14)

Resulting in the desired derivative: ∂y
∂x1

= 3− sin (4).

Reverse mode implementations have the same primal trace as the forward mode, but the

dual trace is more complex:

∂yj
∂vi

=
∑

p∈parents(i)

∂yj
∂vp

∂vp
∂vi

(6.15)
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Denoting v̄i =
∂yj
∂vi

=
∑
p v̄p

∂vp
∂vi

:

v̄3 = ȳ = 1

v̄2 = v̄3
∂v3
∂v2

= 1 · 1 = 1

v̄1 = v̄3
∂v3
∂v1

= 1 · 1 = 1

v̄0 = v̄1
∂v1
∂v0

= 1 · v−1 = 4

¯v−1 = v̄2
∂v2
∂v−1

+ v̄1
∂v1
∂v−1

= 1 · (− sin v−1) + 1 · v0 = 3− sin (4)

(6.16)

Resulting in the desired derivative: ∂y
∂x1

= 3− sin (4).

Future research should look to replace the finite difference evaluations with an automatic

differentiation approach. This may be able to reduce the total error by a few wavenumbers,

resulting in more stable results.

6.5 Conclusions

The present test calculations of the lowest 50 eigenenergies of formaldehyde demonstrate

that a Gaussian basis arranged according to a quasi-regular grid has superior qualities result-

ing in about a factor of 3-4 reduction in the total number of Gaussian’s needed to maintain

the same accuracy as the previously used quasi-random Gaussian basis.72 Moreover, the

regular local arrangement of the Gaussian centers allows one to implement a straightforward

procedure for choosing the Gaussian width matrices, which appears to be a non-trivial issue

otherwise.

With all the appealing properties and advantages of the present methodology which

involves the easy-to-construct efficient and compact Gaussian basis and the following col-

location approach to set-up a generalized eigenvalue problem, the only remaining serious

drawback of the overall methodology seems to be the consequence of using a non-orthogonal

basis and hence the need to deal with the numerical solution of a large generalized eigenvalue

72



problem. Here, two issues need to be addressed: (1) how to solve for the lowest eigenvalues

(and eigenvectors) using iterative methods, and (2) parallelization of whatever generalized

eigenvalue solver is used. Currently, neither of the two issues seem to have a satisfactory

solution.
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Chapter 6

Water Clusters and the Local Monomer Approximation

This final chapter looks at the challenging problem of computing rovibrational spectra

of water clusters, in particular the water hexamer. Due to the high dimensionality of the

cluster in Cartesian space (d = 54), we instead perform quantum dynamics calculations on

a subspace of one water molecule at a time, by invoking the local monomer approximation.

This process is repeated for each monomer in the system, resulting in a spectra for the entire

cluster. By constructing a distributed Gaussian basis set with Gaussian centers placed

according to the ground state wavefunction we perform Lmon3 calculations of the cage1

hexamer using the MBPOL potential energy surface. The challenges faced during the work

ultimately motivated the development of the Quasi-Regular grids discussed in Chapters 3

and 5.

7.1 The Problems with Water

Water has always been an important molecular system both in experiments and in com-

putation. The water hexamer in particular continues to be an active area of research due to

the fact that the six-molecule system is the smallest cluster that is able to form energetically

stable three-dimensional structures.85–89 Water clusters in particular are notoriously diffi-

cult systems due to the isomer composition being dictated by the specific potential energy

surface used, and the highly quantum nature of the water cluster. There are a number of

different isomers know to account for large fractions of the equilibrium distribution, such as

the “prism” and “cage” structures shown in Fig. 7.1, and significant effort has gone to the

characterization of these systems.90;91

However, if we consider the hexamer in Cartesian space, each monomer has nine degrees

of freedom resulting in a dimensionality of d = 54. To deal with the large system size we
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Figure 7.1: Select isomers of the water hexamer which are prevalent in the ground state.
The specific structures were generated using the MB-pol potential energy surface; the cage1
configuration (left) and the prism (right).

75



apply an approximate separable method known as the local monomer model,92;93 and in

particular the work of Joel Bowman (see ref. 94).

Similar to the previously discussed projects our interest was focused on the placement of

the Gaussian basis functions to represent the system. At the time we believed a combination

of using a low-descrepancy sequence to construct our Gaussian Basis, combined with quasi-

Monte Carlo integration techniques we would be able to compute larger LMM approximations

for the monomers composing the cluster. Ideally one would perform either Lmon-6 or Lmon-9

subspace calculations as these subspaces contain the most meaning physically.

7.2 A Distributed Gaussian Basis Constructed with the Sobol Se-

quence

Consider a distributed Gaussian basis with Gaussian centers set using a quasi-random

sequence distributed according to the harmonic ground state wavefunction.

Consider a d-dimensional system with the Hamiltonian (in atomic units, i.e., ~ = 1) given

by

Ĥ = −1

2
∇TM−1∇+ V (q) (7.1)

Here q ∈ Rd defines a column vector, and ∇, the gradient.

Let K̃ = M−1/2KM−1/2 be the mass-scaled Hessian matrix defined at the minimum

(located at q = q0) of the potential energy V (q).

K̃ = UΩ2UT; Ω = diag{ωk}; UTU = I (7.2)

The mass-scaled normal mode coordinates r ∈ Rd are

r = UTM1/2(q− q0) (7.3)
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or defining r = (r1, ..., rd)
T

rk = UT
kM1/2(q− q0) (7.4)

Also,

q = q0 + M−1/2Ur (7.5)

Using the normal mode coordinates, the Hamiltonian reads

Ĥ = −1

2
∇T∇+ V (q0 + M−1/2Ur) (7.6)

Consider a grid rj ∈ Rd (i = 1, ..., J), sampled using a quasi-random sequence defined

by the harmonic ground state wavefunction:

Ψ0(r) =

√
det Ω

(2π)d
exp

[
−1

2
rTΩr

]
(7.7)

Each grid point is associated with a basis function in the form of a multivariate Gaussian:

Φi(r) := exp

[
−1

2
(r− ri)TGi(r− ri)

]
, (7.8)

where Gi is a positive definite width matrix.

Recall that the product of two Gaussian’s is also a Gaussian:

Φi(r)Φj(r) = A exp

[
−1

2
(r− r̄ij)T

(
Gi + Gj

)
(r− r̄ij)

]
(7.9)

where

ui := Giri; r̄ij :=
(
Gi + Gj

)−1
(ui + uj);

A := exp

{
−1

2

[
(ri)Tui + (rj)Tuj − (r̄ij)T(ui + uj)

]}
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The overlap matrix is then given by

Sij := 〈Φi|Φj〉

= A

√
(2π)d

det
(
Gi + Gj

) (7.10)

To further simplify consider the following:

Φi(r)Φj(r) = SijPij(r) (7.11)

where Pij is a normalized multivariate Gaussian distribution

Pij(r) :=

√
det
(
Gi + Gj

)
(2π)d

exp

[
−1

2
(r− r̄ij)T

(
Gi + Gj

)
(r− r̄ij)

]
; (7.12)

The kinetic energy matrix is computed as

Tij := −1

2
〈Φi| ∇T∇ |Φj〉

=
1

2
Sij

∫
Rd

dr (r− ri)TGiGj(r− rj)Pij(r)

This expression can be evaluated analytically for a general case, however, we will later

consider the special case of diagonal Gi matrices.

Finally the potential energy matrix is given by

Vij := 〈Φi|V |Φj〉 (7.13)

= Sij

∫
Rd

dr Pij(r)V (q0 + M−1/2Ur)
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And the dipole moments:

µnm := 〈Φi|µ|Φj〉

= Sij

∫
Rd

dr Pij(r)µ(q0 + M−1/2Ur)
(7.14)

These expressions can be greatly simplified, consider

Gi = αiΩ (7.15)

A natural choice for αi is

αi = α0J
2/d exp

[
−1

d
rTΩr

]
(7.16)

where α0 ∼ 1 is a constant to be specified later.

Redefining terms:

r̄ij :=
αir

i + αjr
j

αi + αj
(7.17)

A := exp

[
−

αiαj
2(αi + αj)

∑
k

ωk(rik − r
j
k)2

]
(7.18)

Sk :=

[
2π

(αi + αj)ωk

]1/2
exp

[
−

αiαj
2(αi + αj)

ωk(rik − r
j
k)2
]

(7.19)

Note that the i, j-independent factor in Eq. (7.19) can be dropped as it does not affect

the final generalized eigenvalue problem (cf. Eq. (7.30)), i.e., we can safely use

Sk =
1√

αi + αj
exp

[
−

αiαj
2(αi + αj)

ωk(rik − r
j
k)2
]

(7.20)

for the product of two Gaussian’s we have

Φi(r)Φj(r) = Sij Pij(r) (7.21)
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where the overlap matrix is

Sij :=

∫
Rd

dr Φi(r)Φj(r) =
d∏

k=1

Sk (7.22)

and

Pij(r) =
d∏

k=1

P
(k)
ij (rk) (7.23)

P
(k)
ij (rk) :=

[
(αi + αj)ωk

2π

]1/2
exp

(
−

(αi + αj)ωk
2

(rk − r̄
ij
k )2
)

Both the Potential and Dipole matrices will need to be computed numerically.

Vij = Sij

∫
Rd

dr Pij(r)V (q0 + M−1/2Ur)

µij = Sij

∫
Rd

dr Pij(r)µ(q0 + M−1/2Ur)

(7.24)

The integrals in Eq. (4.18) are computed as follows. First, we generate a quasi-random

sequence z(l), l = (1, ..., L) sampled from the standard normal distribution. Then use the

following: ∫
Rd

dr Pij(r)V (q0 + M−1/2Ur) ≈ 1

L

L∑
l=1

V (q(l)) (7.25)

with

r
(l)
k = r̄

ij
k +

[
(αi + αj)ωk

]−1/2
z
(l)
k (7.26)

and

q(l) = q0 + M−1/2Ur(l), (7.27)

The kinetic energy matrix elements are given by the following expression

Tij = Sij

d∑
k=1

αiαjωk
2(αi + αj)

[
1−

αiαj(r
i
k − r

j
k)2ωk

αi + αj

]
(7.28)
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Finally, the vibrational eigenenergies E and eigenfunctions

Ψ(r) =
∑
j

cjΦj(r) (7.29)

can be obtained from solving the generalized eigenvalue problem:

∑
j

(Vij + Tij − ESij)cj = 0 (7.30)

The intensity of an absorption line for rovibrational transitions is given in terms of

the dipole matrix. Assuming our system is initially in the ground state (and zero angular

momentum) the intensity of the j-th transition is computed as:

Ij←0 := A νj←0 〈Ψ0(r)|µσ|Ψi(r)〉2 (7.31)

The Hamiltonian Eigenvectors are normalized

c(j),T S c(j) = 1

where

Ψ0(r) =

Ng∑
n=1

c
(0)
n φn Ψi(r) =

Ng∑
m=1

c
(i)
m φm (7.32)

The dipole matrix and associated intensities are then computed as

〈Ψ0|µσ|Ψi〉2 =

(∑
n

∑
m

c
(0)
n c

(i)
m µnm

)2

Ij←0 = A νj←0

∑
σ


(∑

n

∑
m

c
(0)
n c

(i)
m µσnm

)2


(7.33)
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Figure 7.2: Convergence of the first few frequencies for monomer1 of the cage conformation
in the Lmon3-MBPOL. In red are the expected harmonic approximations.

7.3 The Lmon3 Spectra of water using MB-pol

For this work we implement the MB-pol water potential energy surface. This surface,

developed by the Paesani group, is both one of the most accurate, and most expensive models

for water available.95;96 Again, we believed the use of quasi-Monte Carlo methods would

be enough to account for the numerical bottleneck associated with using a high-accuracy

potential surface such as MB-pol. As shown in Fig. 7.2 we can easily converge the lower

frequencies (to 1 wavenumber accuracy) with a very small number of basis functions when

using the Lmon3 subspace.

The location of the frequencies being lower than the harmonic approximation is consistent

with the anharmonicities in the system. We can also produce a qualitatively reasonable

spectra as shown in Fig. 7.3.
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Figure 7.3: Vibrational spectra for the Cage1 water hexamer using the MBPOL potential
and the Lmon3 approximation. A small number of basis functions, N=300, produces a set
of intensities in the qualitatively correct region of the spectrum.
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The spectra does appear to be qualitatively correct, i.e. we see peaks in the general

region of the known bend and OH-stretching modes. And again these are lower than the

harmoinc approximation due to the anharmoinc terms.

However, studies attempting to implement the Lmon6 subspace made it clear that con-

vergence with respect to the basis size would be unreasonable due to the costly potential

energy evaluations. Quasi-Monte Carlo approaches did not drastically reduce the integra-

tion problem to allow for a meaningful contribution beyond the Lmon3 results. This project

demonstrated that while the integration of the potential energy matrix element is a key com-

ponent of the spectral calculations, the distribution of the basis functions was a potentially

more fruitful endeavor.
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Appendix

Pseudo-Code for QRG Generation

A FORTRAN pseudo-code which demonstrates the numerical implementation of the

QRG minimization using internal bond coordinates.

program main

use QRG_module

!Generate Initial Grid

do i=1,100

call Metropolis_MC(100,r(:,1),Pr,Vr,step)

enddo

do i=2,NG

r(:,i)=r(:,i-1)

call Metropolis_MC(1000,r(:,i),Pr,Vr,step)

enddo

do i=1,NG

sigma(i)=P(r(:,i),V_(i))**(-1./d1)

call Internal_to_bond(r(:,i),bond(:,i))

enddo

call find_range(bond)

E=0

do i=2,NG

do j=1,i-1

E=E+Pair_rpl(bond(:,i),bond(:,j),sigma(i),sigma(j))

enddo

enddo
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!Optimize QRG (greedy Minimization)

do n=1,NG*N_MC_QRG

k=random_integer(1,NG)

call random_number(delr)

r_trial=r(:,k)+step*(2*delr-1)

call Internal_to_bond(r_trial,bond_trial)

P_trial=P(r_trial,V_trial)

if(P_trial > 1d-100) then

sigma_trial=P_trial**(-1./d1)

delE=0d0

do j=1,NG

if(j.ne.k) then

delE=delE+Pair_rpl(bond(:,j),bond_trial,sigma(j),sigma_trial)

- Pair_rpl(bond(:,j),bond(:,k),sigma(j),sigma(k))

endif

enddo

if(delE <= 0d0) then

r(:,k)=r_trial(:)

bond(:,k)=bond_trial(:)

sigma(k)=sigma_trial

V_(k)=V_trial

accept=accept+1

E=E+delE

endif

endif

if(mod(n,NG*10)==0)then

if(accept/NG*10. < 0.4) step=step*0.9
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if(accept/NG*10. > 0.6) step=step*1.1

accept=0

E=0

do i=2,NG

do j=1,i-1

E=E+Pair_rpl(bond(:,i),bond(:,j),sigma(i),sigma(j))

enddo

enddo

endif

enddo

end program main
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Kinetic Energy Analytic Expressions

We have the following transformations (I have dropped the mass-scaling terms). The

system is 4 atoms, we therefore have a 12d coordinate vector x.

x = (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) (7.34)

Each atoms coordinates are given by:

C = (x1, x2, x3) Ω = (x4, x5, x6)

H1 = (x7, x8, x9) H2 = (x10, x11, x12)

We define a 6d internal coordinate vector r.

r1 = H1 −C = (x7 − x1, x8 − x2, x9 − x3) r1 = ||r1||

r2 = H2 −C = (x10 − x1, x11 − x2, x12 − x3) r2 = ||r2||

r3 = Ω−C = (x4 − x1, x5 − x2, x6 − x3) r3 = ||r3||

Here (r1,r2,r3) specify the distance between the atoms. (|| || is the norm vector).

The last 3 internal coordinates are for the angles:

costheta1 =
r1 · r3
r1 ∗ r3

costheta2 =
r2 · r3
r2 ∗ r3

r1r3 = r1 × r3 ||r1r3|| =
√

r1r3 · r1r3

r2r3 = r2 × r3 ||r2r3|| =
√

r2r3 · r2r3

cosphi =
r1r3 · r2r3

||r1r3|| ∗ ||r2r3||
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Finally we define the r vector:

r := (r1, r2, r3, acos(costheta1), acoscostheta2), acos(cosphi))

= (r1, r2, r3, r4, r5, r6)

(7.35)

dr1
dx

dr1
dx1

=
x1 − x7
r1

dr1
dx2

=
x2 − x8
r1

dr1
dx3

=
x3 − x9
r1

dr1
dx4

= 0
dr1
dx5

= 0
dr1
dx6

= 0

dr1
dx7

=
−x1 + x9

r1

dr1
dx8

=
−x2 + x8

r1

dr1
dx9

=
−x3 + x9

r1
dr1
dx10

= 0
dr1
dx11

= 0
dr1
dx12

= 0

dr2
dx

dr2
dx1

=
x1 − x10

r2

dr2
dx2

=
x2 − x11

r2

dr2
dx3

=
x3 − x12

r2
dr2
dx4

= 0
dr2
dx5

= 0
dr2
dx6

= 0

dr2
dx7

= 0
dr2
dx8

= 0
dr2
dx9

= 0

dr2
dx10

=
−x1 + x10

r2

dr2
dx11

=
−x2 + x11

r2

dr2
dx12

=
−x3 + x12

r2
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dr3
dx

dr3
dx1

=
x1 − x4
r3

dr3
dx2

=
x2 − x5
r3

dr3
dx3

=
x3 − x6
r3

dr3
dx4

=
−x1 + x4

r3

dr3
dx5

=
−x2 + x5

r3

dr3
dx6

=
−x3 + x6

r3
dr3
dx7

= 0
dr3
dx8

= 0
dr3
dx9

= 0

dr3
dx10

= 0
dr3
dx11

= 0
dr3
dx12

= 0

dr4
dx

dr4
dx1

=
(x1 − x7)r23 (r1 · r3) + (x4 + x7 − 2x1) r21r

2
3 + (x1 − x4) r21 (r1 · r3)

r31r
3
3

√
1− (r1·r3)2

r21·r
2
3

dr4
dx2

=
(x2 − x8)r23 (r1 · r3) + (x5 + x8 − 2x2) r21r

2
3 + (x2 − x5) r21 (r1 · r3)

r31r
3
3

√
1− (r1·r3)2

r21·r
2
3

dr4
dx3

=
(x3 − x9)r23 (r1 · r3) + (x6 + x9 − 2x3) r21r

2
3 + (x3 − x6) r21 (r1 · r3)

r31r
3
3

√
1− (r1·r3)2

r21·r
2
3

dr4
dx4

=
(x1 − x7)

(
x25 + x26

)
+ (x4 − x7)

(
x22 + x23

)
r1r

3
3

√
1− (r1·r3)2

r21·r
2
3

+
(x1 − x4) [x8 (x2 − x5) + x9 (x3 − x6)] + (2x7 − x1 − x4) (x3x6 + x2x5)

r1r
3
3

√
1− (r1·r3)2

r21·r
2
3
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dr4
dx5

=
(x5 − x8)

(
x21 + x23

)
+ (x2 − x8)

(
x24 + x26

)
r1r

3
3

√
1− (r1·r3)2

r21·r
2
3

+
(x2 − x5) [x9 (x3 − x6) + x7 (x1 − x4)] + (2x8 − x2 − x5) (x3x6 + x1x4)

r1r
3
3

√
1− (r1·r3)2

r21·r
2
3

dr4
dx6

=
(x6 − x9)

(
x21 + x22

)
+ (x3 − x9)

(
x24 + x25

)
r1r

3
3

√
1− (r1·r3)2

r21·r
2
3

+
(x3 − x6) [x7 (x1 − x4) + x8 (x2 − x5)] + (2x9 − x3 − x6) (x2x5 + x1x4)

r1r
3
3

√
1− (r1·r3)2

r21·r
2
3

dr4
dx7

=
(x7 − x4)

(
x22 + x23

)
+ (x1 − x4)

(
x28 + x29

)
r3r

3
1

√
1− (r1·r3)2

r21·r
2
3

+
(x1 − x7) [x5 (x2 − x8) + x6 (x3 − x9)] + (2x4 − x1 − x7) (x2x8 + x3x9)

r3r
3
1

√
1− (r1·r3)2

r21·r
2
3

dr4
dx8

=
(x2 − x5)

(
x27 + x29

)
+ (x8 − x5)

(
x21 + x23

)
r3r

3
1

√
1− (r1·r3)2

r21·r
2
3

+
(x2 − x8) [x4 (x1 − x7) + x6 (x3 − x9)] + (2x5 − x2 − x8) (x1x7 + x3x9)

r3r
3
1

√
1− (r1·r3)2

r21·r
2
3
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dr4
dx9

=
(x3 − x6)

(
x27 + x28

)
+ (x9 − x6)

(
x21 + x22

)
r3r

3
1

√
1− (r1·r3)2

r21·r
2
3

+
(x3 − x9) [x4 (x1 − x7) + x5 (x2 − x8)] + (2x6 − x3 − x9) (x1x7 + x2x8)

r3r
3
1

√
1− (r1·r3)2

r21·r
2
3

dr4
dx10

= 0
dr4
dx11

= 0
dr4
dx12

= 0

dr5
dx

dr5
dx1

=
(x1 − x10)r23 (r2 · r3) + (x4 + x10 − 2x1) r22r

2
3 + (x1 − x4) r22 (r2 · r3)

r32r
3
3

√
1− (r2·r3)2

r22·r
2
3

dr5
dx2

=
(x2 − x11)r23 (r2 · r3) + (x5 + x11 − 2x2) r22r

2
3 + (x2 − x5) r22 (r2 · r3)

r32r
3
3

√
1− (r2·r3)2

r22·r
2
3

dr5
dx3

=
(x3 − x12)r23 (r2 · r3) + (x6 + x12 − 2x3) r22r

2
3 + (x3 − x6) r22 (r2 · r3)

r32r
3
3

√
1− (r2·r3)2

r22·r
2
3

dr5
dx4

=
(x4 − x10)

(
x22 + x23

)
+ (x1 − x10)

(
x25 + x26

)
r2r

3
3

√
1− (r2·r3)2

r22·r
2
3

+
(x1 − x4) [x11 (x2 − x5) + x12 (x3 − x6)] + (2x10 − x1 − x4) (x2x5 + x3x6)

r2r
3
3

√
1− (r2·r3)2

r22·r
2
3
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dr5
dx5

=
(x2 − x11)

(
x24 + x26

)
+ (x5 − x11)

(
x21 + x23

)
r2r

3
3

√
1− (r2·r3)2

r22·r
2
3

+
(x2 − x5) [x10 (x1 − x4) + x12 (x3 − x6)] + (2x11 − x2 − x5) (x1x4 + x3x6)

r2r
3
3

√
1− (r2·r3)2

r22·r
2
3

dr5
dx6

=
(x3 − x12)

(
x24 + x25

)
+ (x6 − x12)

(
x21 + x22

)
r2r

3
3

√
1− (r2·r3)2

r22·r
2
3

+
+ (x3 − x6) [x10 (x1 − x4) + x11 (x2 − x5)] + (2x12 − x3 − x6) (x2x5 + x1x4)

r2r
3
3

√
1− (r2·r3)2

r22·r
2
3

dr5
dx7

= 0
dr5
dx8

= 0
dr5
dx9

= 0

dr5
dx10

=
(x1 − x4)

(
x211 + x212

)
+ (x10 − x4)

(
x22 + x23

)
r32r3

√
1− (r2·r3)2

r22·r
2
3

+
+ (x1 − x10) [x5 (x2 − x11) + x6 (x3 − x12)] + (2x4 − x1 − x10) (x2x11 + x3x12)

r32r3

√
1− (r2·r3)2

r22·r
2
3
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dr5
dx11

=
(x11 − x5)

(
x21 + x23

)
+ (x2 − x5)

(
x210 + x212

)
r32r3

√
1− (r2·r3)2

r22·r
2
3

+
+ (x2 − x11) [x4 (x1 − x10) + x6 (x3 − x12)] + (2x5 − x2 − x11) (x1x10 + x3x12)

r32r3

√
1− (r2·r3)2

r22·r
2
3

dr5
dx12

=
(x12 − x6)

(
x21 + x22

)
+ (x3 − x6)

(
x210 + x211

)
r32r3

√
1− (r2·r3)2

r22·r
2
3

+
+ (x3 − x12) [x4 (x1 − x10) + x5 (x2 − x11)] + (2x6 − x3 − x12) (x1x10 + x2x11)

r32r3

√
1− (r2·r3)2

r22·r
2
3

dr6
dx

These expressions are a bit much for mathematica to simplify. Staring at the output I

can make the following definitions to help simplify.

m := r1 × r2 = (a, b, c)

a = x3x5 − x2x6 − x3x8 + x6x8 + x2x9 − x5x9

b = −x3x4 + x1x6 + x3x7 − x6x7 − x1x9 + x4x9

c = x2x4 − x1x5 − x2x7 + x5x7 + x1x8 − x4x8

(7.36)
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n := r2 × r3 = (d, e, f)

d = x12x2 − x11x3 − x12x5 + x3x5 + x11x6 − x2x6

e = −x1x12 + x10x3 + x12x4 − x3x4 + x1x6 − x10x6

f = x1x11 − x10x2 − x11x4 + x2x4 − x1x5 + x10x5

(7.37)

dr6
dx1

=

[2c(−x5+x8)+2b(x6−x9)](m·n)

|m|4
+
f(−x5+x8)+c(x11−x5)+e(x6−x9)+b(x6−x12)

|m|2√
1− m·n

|m|4

dr6
dx2

=

[2c(x4−x7)+2a(−x6+x9)](m·n)

|m|4
+
f(x4−x7)+c(−x10+x4)+d(−x6+x9)+a(x12−x6)

|m|2√
1− m·n

|m|4

dr6
dx3

=

[2b(−x4+x7)+2a(x5−x8)](m·n)

|m|4
+
e(−x4+x7)+d(−x5−x8)+b(x10+x4)+a(−x11+x5)

|m|2√
1− m·n

|m|4

dr6
dx4

=

[2c(x2−x8)+2b(−x3+x9)](m·n)

|m|4
+
f(x2−x8)+c(−x11+x2)+e(−x3+x9)+b(x12−x3)

|m|2√
1− m·n

|m|4

dr6
dx5

=

[2c(−x1+x7)+2a(x3−x9)](m·n)

|m|4
+
f(−x1+x7)+c(−x1+x10)+d(x3−x9)+a(−x12+x3)

|m|2√
1− m·n

|m|4
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dr6
dx6

=

[2b(x1−x7)+2a(−x2+x8)](m·n)

|m|4
+
e(x1−x7)+d(−x2+x8)+b(x1−x10)+a(x11−x2)

|m|2√
1− m·n

|m|4

dr6
dx7

=

[2c(−x2+x5)+2b(x3−x6)](m·n)

|m|4
+
f(−x2+x5)+e(x3−x6)

|m|2√
1− m·n

|m|4

dr6
dx8

=

[2c(x1−x4)+2a(−x3+x6)](m·n)

|m|4
+
f(x1−x4)+d(−x3+x6)

|m|2√
1− m·n

|m|4

dr6
dx9

=

[2b(−x1+x4)+2a(x2−x5)](m·n)

|m|4
+
e(−x1+x4)+d(x2−x5)

|m|2√
1− m·n

|m|4

dr6
dx10

=
− [(−x2 + x5)c+ (x3 − x6)b]

|m|2
√

1− m·n
|m|4

dr6
dx11

=
− [(x1 − x4)c+ (−x3 + x6)a]

|m|2
√

1− m·n
|m|4

dr6
dx12

=
− [(−x1 + x4)b+ (x2 − x5)a]

|m|2
√

1− m·n
|m|4
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