
UC Berkeley
UC Berkeley Previously Published Works

Title
Making sense of movement in embodied design for mathematics learning

Permalink
https://escholarship.org/uc/item/0650k0xx

Journal
Cognitive Research: Principles and Implications, 1(1)

ISSN
2365-7464

Authors
Abrahamson, Dor
Bakker, Arthur

Publication Date
2016-12-01

DOI
10.1186/s41235-016-0034-3
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0650k0xx
https://escholarship.org
http://www.cdlib.org/


Cognitive Research: Principles
and Implications

Abrahamson and Bakker Cognitive Research: Principles
and Implications  (2016) 1:33 
DOI 10.1186/s41235-016-0034-3
ORIGINAL ARTICLE Open Access
Making sense of movement in embodied
design for mathematics learning

Dor Abrahamson1* and Arthur Bakker2
Abstract

Embodiment perspectives from the cognitive sciences offer a rethinking of the role of sensorimotor activity in
human learning, knowing, and reasoning. Educational researchers have been evaluating whether and how these
perspectives might inform the theory and practice of STEM instruction. Some of these researchers have created
technological systems, where students solve sensorimotor interaction problems as cognitive entry into curricular
content. However, the field has yet to agree on a conceptually coherent and empirically validated design framework,
inspired by embodiment perspectives, for developing these instructional resources. A stumbling block toward such
consensus, we propose, is an implicit disagreement among educational researchers on the relation between physical
movement and conceptual learning. This hypothesized disagreement could explain the contrasting choices we witness
among current designs for learning with respect to instructional methodology for cultivating new physical actions –
whereas some researchers use an approach of direct instruction, such as explicit teaching of gestures, others use an
indirect approach, where students must discover effective movements to solve a task. Prior to comparing these
approaches, it may help first to clarify key constructs. In this theoretical essay we draw on embodiment and systems
literature as well as findings from our design research so as to offer the following taxonomy that may facilitate
discourse about movement in STEM learning: (1) distal movement is the technologically extended effect of physical
movement on the environment; (2) proximal movement is the physical movements themselves; and (3) sensorimotor
schemes are the routinized patterns of cognitive activity that become enacted through proximal movement by
orienting on so-called attentional anchors. Attentional anchors are goal-oriented phenomenological objects or
enactive perceptions (“sensori-”) that organize proximal movement to effect distal movement (“-motor”). All
three facets of movement must be considered in analyzing embodied learning processes. We demonstrate that
indirect movement instruction enables students to develop new sensorimotor schemes including attentional
anchors as idiosyncratic solutions to physical interaction problems. These schemes are, by necessity, grounded
in students’ own agentive relation to the world while also grounding target content such as mathematical
notions.

Keywords: Attentional anchor, Ecological dynamics, Embodiment theory, Enactivism, Interaction, Eye tracking,
Mathematical imagery trainer, Mathematics, Tablet, Technology
Significance
Engineering developments in computational technology
have created unprecedented opportunities for industry
to build and disseminate mathematics-education appli-
cations (“apps”). Thousands of these apps are now liter-
ally at the fingertips of any child who can access a tablet,
smartphone, or personal computer with a responsive
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touchscreen. Educational researchers could contribute to
the quality of these ubiquitous consumer products by of-
fering design frameworks informed by theories of learn-
ing. However, existing frameworks are derived from
interaction theories drawing on epistemological assump-
tions that are no longer tenable, given the embodiment
turn in the cognitive sciences. A proposed systemic re-
conceptualization of mathematical objects as grounded
in sensorimotor schemes for material interaction offers
educational designers heuristics for creating activities in
which students learn by discovering motion patterns.
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“All that is important is this one moment in movement.
Make the moment important, vital, and worth living.
Do not let it slip away unnoticed and unused”
(Martha Graham).

Background
Embodiment rising
In recent decades, we have witnessed a collective reeval-
uation of what we know about the human cognitive
architecture (Núñez & Freeman, 1999). Metaphors of
the mind as a central processing unit are all but gone,
making room for alternative epistemological conceptuali-
zations (Kiverstein, 2012). One intriguing set of proposals,
loosely referred to as embodiment theory, offer views of
the mind as extending out of the head, through the body,
and into the natural and sociocultural ecology (Anderson,
2003; Wilson, 2002; Yanchar, Spackman, & Faulconer,
2013). By these views, which may vary widely in their
commitments and details, mind and body are not separate
entities but instead form an irreducible ontology, wherein
sensorimotor activity is intrinsic to learning, knowing, and
reasoning. Furthermore, some authors advance the
perspective that human behavior in social ecologies is best
modeled from a systemic perspective that subsumes mul-
tiple individuals interacting in complex activity structures
regulated by cultural forms that are themselves constantly
evolving (Malafouris, 2013; Melser, 2004).
Our research program aspires to advance and refine

embodiment theory through investigating how it may
benefit the educational enterprise. We are particularly
interested in understanding relations between physical
actions and conceptual learning as these relations bear
on theoretical and pragmatic problems in the research
field of mathematics education and perhaps beyond into
other STEM domains. This theoretical paper attempts to
contribute to the research discourse on embodiment as
it pertains to mathematics education. We will be offering
analytic constructs for speaking about physical action in
ways that could inform the practice of educational
design research, that is, the science of building effective
instructional resources. In particular, we will offer a
taxonomy of movement that, we hope, could lead to em-
pirical work evaluating best instructional methodology
for action-based learning.

The primacy of movement
Embodiment theory rejects fundamental tenets of
Cartesian dualism, the dominant historical epistemology.
According to the Cartesian view, the enfleshed body is
an input/output conduit for the brain – physical actions
execute cerebral commands, while perceptual faculties,
predominantly vision, guide and monitor these actions,
collecting for the brain information on the results of the ac-
tions. The Cartesian mechanism bears intuitive explanatory
appeal, which may explain its historical resilience, and yet
the model has been increasingly challenged from diverse
fields of scholarship, including philosophy (Gallagher, 2015;
Gangopadhyay & Kiverstein, 2009; Merleau-Ponty, 1964;
Noë, 2006; Sheets-Johnstone, 1981), cognitive psychology
(Barsalou, 2010; Witt & Riley, 2014), cognitive development
(Lozada & Carro, 2016; Marshall, 2016; Thelen & Smith,
1994), dynamical systems (Kauffman, 1995; Kelso, 1995;
Turvey, 1992), human–computer interaction (Dourish,
2001; Gillies & Kleinsmith, 2014), and robotics (Clark,
1999). Physical movement, these critical scholars believe, is
not the executive arm of an abstracted intelligence.
Rather, moving is situated in dynamical cognition. Moving
marks adaptive, self-organizing, goal-oriented systemic
intelligence in growth (Kelso, 2000).
This “primacy of movement” (Sheets-Johnstone, 1999)

is the formative human condition and thus includes learn-
ing and reasoning across disciplines, contexts, and media.
Cognition develops in streaming activity of ecologically
embodied, embedded, and distributed interaction. Cogni-
tive activity may be actual, projected, or even imagined, as
when we sit still with our eyes closed. Even then, our
conscious experience of inner sensory perceptions and
dialogue need not imply a contentful mind. Rather, some
scholars believe that mental representations, which have
been a focal historical construct of cognitive science, are
for the most conscious epiphenomena of an intrinsically
enactive mind at work (Chemero, 2009; Hutto & Myin,
2013; Varela, Thompson, & Rosch, 1991).
Our own position is much related to enactivism. We

are inspired by the following words from Varela et al.
(1991), where they summarize the emergence of con-
cepts from the development of sensorimotor skill:

“[T]he enactive approach consists of two points: (1)
perception consists in perceptually guided action; and
(2) cognitive structures emerge from the recurrent
sensorimotor patterns that enable action to be
perceptually guided” (p. 173).

Where we use the verb “to enact” as well as its conjuga-
tions and cognates, we intend it as content-agnostic – by
saying that a person enacted some particular movement,
whether physically or imaginatively, we deliberately wish
to avoid ascribing or not to that movement epistemic
appendages such as understanding, meaning, intention, or
grounding. We hope this use of the verb will help to
clarify our position and arguments.

Embodiment in educational design research
The embodiment turn in the cognitive sciences has been
of considerable interest to educational researchers, as
evidenced in an accumulating body of literature seeking
to understand the implications of this philosophical turn
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for pedagogical theory and practice (Abrahamson, in
press; Begg, 1999; Davis & Sumara, 2008; Hall &
Nemirovsky, 2012; Hutto, Kirchhoff, & Abrahamson,
2015; Kieren, Gordon Calvert, Reid, & Simmt, 1995).
Embodiment theory’s proposed centrality of sensori-
motor activity in human learning found fertile grounds
in educational scholarship, where seminal ideas from
pragmatism (Dewey, 1916/1944), constructivism (Piaget,
1968), and cultural–historical theory (Vygotsky, 1926/
1997) had already articulated the formative role of
situated interaction in cognitive development.
As the field of educational research turned its attention

to physical actions performed in context, a wealth of
educational studies ensued that documented and theo-
rized the multimodal behaviors that people perform when
they engage mathematical content, such as when they
teach (Alibali et al., 2013), learn (Abrahamson, 2004;
Goldin-Meadow, Wagner Cook, & Mitchell, 2009; Lemke,
2003; Radford, 2003), problem solve (Goldin-Meadow,
Nusbaum, Kelly, & Wagner, 2001), and argue (Ochs,
Gonzales, & Jacoby, 1996; Schwarz & Prusak, 2016). For
the most, these studies have treated externally manifest
physical movements. Yet, movements during mathematical
activity may also be imaginary – introspective reports from
both experts (Hadamard, 1945) and novices (Presmeg,
1998) suggest the role of imagination in mathematical
inferential reasoning, and neuroscience experimenta-
tion concurs (Gallese & Lakoff, 2005; Zeki, Romaya,
Benincasa, & Atiyah, 2014).
When individuals reason, their cognitive activity is

implicitly embedded within sociocultural structures
(Sawyer, 2007; Stetsenko, 2002). In particular, when
people engage in mathematical discourse, they draw on
a variety of personal and material resources to construct,
depict, and explain their reasoning in the form of psy-
chological objects and actions that would be intelligible
to their interlocutors (Kirsh, 2013; Nemirovsky & Borba,
2004; Nemirovsky & Ferrara, 2009; Nemirovsky, Kelton,
& Rhodehamel, 2012; Radford, 2014). These schematized
multimodal expressions become the shared referents of
a collective practice (Becvar, Hollan, & Hutchins, 2005;
Lakoff & Núñez, 2000). In turn, these socially emergent
cultural forms then regulate human activity, specifically
individual reasoning (Malafouris, 2013; Saxe, 2012;
Wertsch, 1979).
As we look to educational researchers’ conceptualiza-

tions of movement, we wish here further to narrow our
focus onto the work of instructional designers and in
particular design researchers. Design researchers (or
design-based researchers) are educational researchers
whose empirical studies are lodged in the practice of
engineering, building, and evaluating learning environ-
ments (Bakker & Van Eerde, 2015; Cobb, Confrey,
diSessa, Lehrer, & Schauble, 2003). A substantial number
of design researchers have been inspired by embodiment
theory to envision innovative platforms, materials,
activities, and facilitation techniques that leverage the
physical actions students perform as important re-
sources for content learning (Lee, 2015; Malinverni,
Ackermann, & Pares, 2016; Manches & O’Malley,
2016; Smith, King, & Hoyte, 2014). By and large, the
objective of these designs is to create conditions for
cultivating students’ enactment of particular motor
actions that would presumably lead to understanding
some targeted conceptual content. In one design, for
example, students jump sidewise along a number-line mat
in response to numerical cues flashed on a screen, thus
grounding conceptions of relative numerosity into a spatial
representation that is used pervasively in mathematical
practice (Fischer, Moeller, Bientzle, Cress, & Nuerk, 2011).
Having briefly reviewed the rise of embodiment theory,

the centrality of movement in the theory, and the
application of the theory to educational research, we
now turn to introduce a research problem that will serve
us as a case study throughout this paper. We will then
argue that embodiment theory could tackle this problem
if the field agreed on analytic definitions of movement.
The paper then offers these definitions and exemplifies
their application.

The paradox of learning to operate new mathematical
objects
In activities such as the number-line mat, students
receive direct instructions on how to move, and then the
students practice moving accordingly. It seems logical
that students should be directly instructed to move in
patterns associated with expert mathematical practice.
Indeed, across all human disciplines, arts, and crafts,
novices are apprenticed by receiving explicit instructions
on how to wield objects of their trade, be these a
mason’s trowel, a plumber’s wrench, or a violinist’s bow
(Ingold, 2000). In these manual practices, engaging tools
effectively coevolves with developing expert perception
both of the tools themselves and the domain they are
applied to and generate (Goodwin, 1994; Vérillon &
Rabardel, 1995). To emphasize, these tools and domains
of the manual trades are perceptually accessible, exter-
nally manifest entities. Yet, how could direct movement
instruction work in the discipline of mathematics, where
novices do not perceive the tools and domains they are
yet to learn? How can you operate on an object you do
not yet see?
Mathematical objects, such as a proportion, are both

like and unlike material objects. Similar to a trowel,
wrench, or bow, a proportion is something people can
legitimately talk about – it can exist in semiotic social
space as a bonafide shared referent of multimodal dis-
course. Unlike material objects, however, mathematical
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objects are not manifest referents of the instructional
environment (cf. Bakker & Hoffmann, 2005) but need to
be co-constructed in discursive space (Nemirovsky et al.,
2012). This tentative ontology of mathematical objects
encumbers instructional conversations, which depend on
some initial shared referent, even if the referent is am-
biguous or still emerging into prospective discursive
space (Flood, Harrer, & Abrahamson, 2016; Foster, 2011;
Isaacs & Clark, 1987; Moschkovich, 2015; Newman,
Griffin, & Cole, 1989; Sfard, 2002). As such, students
entering embodied–interaction spaces face a double
challenge – they cannot manipulate the object so as to
satisfy the task specifications, and they cannot see the
object in order to enact the manipulation and evaluate
the efficacy of their actions. How might this learning
paradox be unraveled?
We propose that undoing this paradox begins from

reconceptualizing movement from embodiment perspec-
tives as sensorimotor cognitive activity.1 From this view,
it is not the case that students must discover both how
to move (motor) and what to perceive (sensori-), they
must discover how to move by discovering what to per-
ceive (and vice versa). This enactivist proposal to recon-
ceptualize the ontology of physical movement builds on
cognitive developmental research as well as dynamical
systems theories. As Piaget (1968, 1970) asserted, sen-
sorimotor schemes are enacted routines comprising both
what you operate on and how you operate on it.
These complementary aspects of goal-oriented situated
action co-evolve reciprocally and recursively through
mutual adaptation into systemic functioning structures
(Kelso, 2000; Newell, 1996; Thelen & Smith, 1994; van
Gelder, 1998).
Co-evolution of motion and object, we further

propose, suggests the pedagogical merit of indirect
instruction in embodied–interaction learning environ-
ments. Indirect instruction, we will argue, provides stu-
dents the time, space, and license to adapt their intrinsic
dynamics (Kostrubiec, Zanone, Fuchs, & Kelso, 2012) by
discovering and refining new sensory orientations
toward the action field. As we will explain, these action-
oriented sensory constructions of the environments are
called “attentional anchors” (Hutto & Sánchez-García,
2015).
In this paper we will not adjudicate among direct and

indirect approaches to the instruction of new movement.
In fact, the rationale of this paper is that future empirical
comparisons are predicated on prior theoretical analysis,
as we attempt to offer here.

Objective: taxonomy of movement in embodied design
for mathematics learning
The objective of this paper is thus to offer a conceptual
analysis of what we all might mean when we talk about
movement in embodied-interaction mathematics learning
environments. Our proposed taxonomy will implicate
three types or facets of movement: (1) distal movements
we ultimately effect in the world via mediating instru-
ments; (2) proximal physical movements that handle the
instruments; and (3) sensorimotor operatory schemes that
organize the performance of these tasks. The instruments
we wield to extend our proximal movements may them-
selves constitute vital elements of mathematical learning
and reasoning. When these instruments are immaterial
ways of seeing the world, we will call them “attentional
anchors” (Hutto & Sánchez-García, 2015) and explain
their subjective evolution as problem-solving psycho-
logical structures serving situated activity and potentially
coalescing as mathematical objects.
As a context for this analysis, we will discuss a form of

instructional design inspired by embodiment theory that
looks to create conditions for students to develop new
proto-mathematical sensorimotor schemes in the absence
of direct instruction. At its broadest, the paper is moti-
vated by the assumption that evaluating any plausible
pedagogical methodology might, at the very least, enrich
the field’s knowledge about cognition and instruction
(Easterday, Rees Lewis, & Gerber, 2016). However, it may
ensue that this instructional methodology bears advan-
tages for practice.
We believe that students can and should learn to move

in new ways through active exploration. Solving dynamical
interaction problems rather than being taught directly
how to move, we maintain, enables individual students to
develop sensorimotor schemes appropriate to their idio-
syncratic enactive skill (Chow, Davids, Button, & Renshaw,
2016; Chow et al., 2007). Through subsequent activities of
our design, students describe these motor-actions and
situated perceptions in the form of mathematical entities
(Howison, Trninic, Reinholz, & Abrahamson, 2011). That
is why we say that students first learn to move in new
ways and then learn mathematics by modeling these new
ways of moving (Abrahamson & Sánchez-García, 2016).
Herein, we contextualize our theoretical arguments for

conceptualizing movement as sensorimotor activity and
considering the qualities of minimally guided instruction.
Specifically, we offer a thought experiment elucidating our
view of movement. We then offer results from an empir-
ical study suggesting the merits of our proposals.

Learning is moving in new ways: designing for
the emergence of proto-mathematical sensori-
motor schemes
What is movement in relation to concepts such that we
can design for conceptual learning? This theoretical
section offers to unpack the idea of movement in ways
that may prove useful for educational designers and,
more broadly, for educational scholarship. The section
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below proposes to split movement into proximal and
distal components, and we then explain how technology
mediates proximal and distal movements as well as how
this mediating role can be leveraged in designing for
mathematics learning.

Raising the question of design: proximal versus distal
movement
When we say that students participating in designed
educational activities learn mathematical content by first
learning to move in a new way, we must clarify the me-
diating role of technology in acculturating this capacity
to move in a new way. Very often, our physical actions
are in direct contact with the objects we manipulate,
such as when we lift a ball and throw it. Some educa-
tional designs leverage these naturally available, unmedi-
ated manipulation processes as sources of learning. For
example, students may learn about physics principles of
kinematics by experiencing and reflecting on the greater
physical effort demanded in throwing a ball across
greater spatial distance. Such design is both governed
and limited by universal laws. However, our contact with
the objects we manipulate can be moderated by inter-
vening tools, such as when we use physical utensils (e.g.,
a fork) or electronic appliances (e.g., a remote control)
to extend, augment, distribute, scale, and transform our
physical actions over and through space, time, media,
cultural forms, and fellow participants (Hutchins, 2014;
White, 1984). As such, technology creates enactive
distance between intention and effect. Learning to con-
trol the environment in instrumented situations is the
process of removing this enactive distance by assimilat-
ing and mastering the instruments (Morgan & Kynigos,
2014; Pratt & Noss, 2010; Vérillon & Rabardel, 1995).
For example, the blind and visually impaired learn to
navigate space using a cane, where the cane becomes
through practice a sensorimotor extension of the body
into a thus expanded “enactive landscape” (Kirsh, 2013).
This principle of sensorimotor augmentation is well

known among cognitive scientists of neuroplasticity who
build sensory substitution technological systems (Bach-y-
Rita, Collins, Saunders, White, & Scadden, 1969). Simi-
larly, designers of educational activities capitalize on this
neuroplasticity principle (Siu, 2016). Following principles
of the embodied design framework, we build tools whose
operatory function is engineered specifically so as to
demand, and therefore cultivate, the development of
particular sensorimotor schemes as a condition for
masterful control of the environment in accord with
task demands. In so doing, we target specific sensori-
motor schemes that, through instructional guidance,
will come to ground the mathematical concepts we
want these students to learn (Abrahamson, 2014;
Abrahamson & Trninic, 2015).
When a tool mediates an individual’s action on the
environment, we often witness differences between prox-
imal and distal action, that is, between the hand motions
of manipulating the tool and the extended result of this
manipulation in the domain of action. For example,
compare the bimanual motion of operating a pair of
gardening shears and the effect of these mechanically
mediated motions on a branch. Notably, competent
shearing is oriented on the branch, not on the hands,
unless we experience physical or mechanical breakdown
(Koschmann, Kuuti, & Hickman, 1998). In analyzing the
dynamics of these activities and the locus of a student’s
attention, it is therefore helpful to clarify whether we are
referring to the proximal or distal movements.
Whereas the proximal/distal distinction is quite

straightforward and probably uncontested, we worry
that the distinction is sometimes obscured in discus-
sions of technological design for embodied–inter-
action mathematics learning. In particular, we are
concerned that insufficient distinction is being made
in the literature between, on the one hand, the pri-
mary manipulations that students enact and, on the
other, the effects of these technologically extended
manipulations within the domains of action, whether
these be mechanical or virtual media. This lack of
distinction between proximal and distal actions, we
submit, may implicitly hamper our community’s con-
versation about learning processes and design princi-
ples. For example, the distinction could help us
implicate where students attend as their teacher
guides their work (Shvarts & Krichevets, 2016).
In the next sections, we aim further to clarify the

proximal/distal distinction by complexifying the relation
between a person’s sensorimotor orientation toward a
situation and the technologically moderated environ-
mental effects of their actions. We will be looking at
cases where actions are mediated by a computational
platform, specifically at tablet-based activities designed
for students to learn through solving interaction prob-
lems. The cases were selected to offer a two-stepped
salvo, as follows.
The next section, a thought experiment, will treat a

dissociation between how we move our hands on the
tablet interface and what trace the software generates
on the screen as the mediated result of our manual
motions. We then present this dissociation as bearing
potential for educational design. In the subsequent
section we discuss an eye-tracking study of how stu-
dents solve challenging interaction problems leading
to mathematical notions. Drawing on empirical find-
ings, we will argue for a systemic conceptualization of
proximal and distal movement as task-driven, situ-
ated, distributed sensorimotor schemes oriented on
emergent perceptions of the environment.
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Interpolating technology into the agent–environment
relation mediates new sensorimotor schemes supporting
learning objectives
Consider the following activity involving two hypothet-
ical task scenarios. In both Condition 1 and Condition 2,
(1) you are presented with a tablet interactive applica-
tion; (2) on the screen you see a black circular line; and
(3) you are asked to draw a red line on top of the black
line. In Condition 1, a “finger painting” task, you use
your index finger to trace directly along the existing
circle perimeter. As you do so, virtual red paint oozes
from under your fingertip to cover the black line. In
Condition 2, you cannot trace directly on the black
circle. Instead, you are asked to imagine this circle as
plotted in a Cartesian space. Now you must move your
left hand index up/down along the y-axis to the left of
the circle simultaneous with moving your right hand
index right/left along an x-axis below the circle. The
application plots red points at spatial locations corre-
sponding to the ordered-pair [x, y] Cartesian intersec-
tion of your fingers’ respective measured distances from
the origin point. You are thus asked to graph a circle
manually.2

Whereas the two conditions share a task objective of
generating a red circle on top of the black circle, clearly
Condition 2 is more difficult that Condition 1. Condition
2, unlike Condition 1, presents you with a problem, and
more so if you have never before worked in the Cartesian
field. To solve this problem, you must engage in
inquiry. You actively explore the new space to dis-
cover its embedded functions and determine their
utilities relevant to the task objective. In so doing,
you enter a cycle of tight, rapid, recursive sensori-
motor feedback loops, where you attempt various
manipulations, attend to their coinciding instrumented
effect, and constantly tune your movement pattern.
Perhaps you infer heuristics for action and even articulate
them verbally. Through practice, you progressively accom-
modate your operatory schemes so as to assimilate the
tool’s discovered affordances for action. Condition 2
thus presented you with a new constraint that initially
impeded your capacity to fulfill the task. However,
through figuring out how to cope with this constraint
you developed new subjective affordance for the en-
vironment (Forman, 1988; Greeno, 1994; Newell,
1986, 1996). You have learned to move in a new way
through a representational system that has become
central in mathematics, the Cartesian system of per-
pendicular x- and y-axes.
In this case, we demonstrated two different ways of

generating the same geometrical figure. In a sense,
the red circle of Condition 1 is not the same as the red
circle of Condition 2. At least, from your subjective per-
spective, Condition 2 demands of you to develop a new
phenomenological and conceptual construction of what a
circle is from a mathematical perspective (Abelson &
diSessa, 1986; Papert, 1980; Piaget & Inhelder, 1969;
Wilensky & Papert, 2010). More generally, the available
means of production we have learned to access and use in
fulfilling an activity task are instrumental in forming our
conceptions of the objects we produce and perceive
(Baird, 2004; Chase & Abrahamson, 2015; Meira, 1998;
Rosenbaum & Abrahamson, 2016).
As educational designers, we target particular concepts

by creating both the task objectives and the means of
accomplishing those objectives. The designer’s goal
ultimately is not about having a student produce a circle
per se but having a student struggle to produce a circle
with the given means. In the case of Condition 2, the
technological interaction conditions are designed to
foster opportunities for students to develop a particular
sensorimotor scheme – a bimanual coordinated motor
action oriented on a geometrical figure. Still, a new
coordination is not yet new mathematical knowledge.
For manual know-how to become conceptual know-that,
students need to use disciplinary frames of reference to
re-describe their own actions (Bartolini Bussi & Mariotti,
2008). In so doing, students shift into disciplinary ways
of seeing and talking (Abrahamson, 2009; Bamberger &
diSessa, 2003; Sfard, 2002).
In this subsection, we offered a hypothetical study

of technologically mediated action. For the purposes
of this essay, our objective was to differentiate con-
ceptually between proximal and distal movement in-
sofar as this differentiation bears on the practice and
theory of educational design for mathematics learning.
As such, we contrasted two technologically mediated
activity conditions where the goal distal movement
was identical (drawing a red circle on a screen) but
the proximal movements were dramatically different
(tracing with a finger vs. simultaneously operating
two orthogonal axes in a Cartesian field). Whereas
the distal movement constituted a necessary task goal, the
activity’s educational potential was largely determined by
the proximal movement required to generate the dis-
tal movement. Thus, a study of mathematics learning
from an embodiment perspective should focus on the
development of proximal movement, not just its distal
product.
In the next section we “recede” into proximal move-

ment to demonstrate that it, too, can be usefully differ-
entiated. Looking at empirical data, we will show that
different sensorimotor schemes can achieve the same
proximal movement. The case will demonstrate varia-
bility, both intra-personal and inter-personal, in how
students orient sensomotorically toward objects on the
tablet screen so as to generate a particular pattern of
hand movements.
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Empirical illustration: embodied design of
proportional learning
We are building the argument that educational re-
searchers, and more broadly cognitive scientists, should
adopt a more nuanced discourse about movement. We
view descriptions of manual movement that focus only
on how the hand is moving, for example, analyses of the
shape, pace, and morphology of the hand’s kinematic
path through space, as failing to capture the sensori-
motor schemes generating this movement. Namely,
objective descriptions of hand trajectory ignore how the
student is orienting to the task and environment so as to
develop and produce this movement (Brooks & Goldin-
Meadow, 2015; Gallagher & Lindgren, 2015; Lindgren,
Tscholl, Wang, & Johnson, 2016; Nathan & Walkington,
2016; Ping & Goldin-Meadow, 2008). Nevertheless, we
propose, our pedagogical theorizing and intervention
should be attending precisely to these schemes. From an
enactivist perspective, these schemes, the student’s
actionable relation to the biological–cultural context, are
the stuff of cognition and thus constitute the goal and
mark of conceptual change. In this section we offer
empirical findings as evidence supporting our argument
for rethinking movement in mathematics teaching and
learning.

Design background
In the previous sections, we contrasted two scenarios to
clarify the distinction between proximal and distal move-
ment as well as direct versus indirect approaches to em-
bodied design. A direct approach was to draw a red
circle on top of a black one. An indirect one was to
move two hands along an x- and y-axis in such a way
that the same thing happens. We aimed to convince the
reader that, while the former scenario would engage stu-
dents in embodied activity, the latter is more likely to in-
volve them in embodied mathematical activity and thus
help them develop sensorimotor schemes that are math-
ematically relevant to the concept of circle.
In this section we continue by thinking through and

illustrating what embodied design for learning about
proportion could mean. A direct scenario could be to
ask students to point at halfway up a bar, or make a bar
twice as long. Again, we maintain such embodied tasks
would have little potential for learning about mathema-
tics. In our collaborative work, initiated by the Embodied
Design Research Laboratory at Berkeley, we have
explored many different designs. An early mechanical
design involved a student holding two pulleys that were
moved up and down in a particular ratio. From an ob-
server’s perspective, the student was moving her hands
in a mathematical proportion. But was she learning?
Very little. There was no need for reflection (Trninic,
Reinholz, Howison, & Abrahamson, 2010).
The next design iteration was centered on using Wii de-
vices to remote-control two cursors on a screen (Fig. 1).
The task was to move the cursors up and down in parallel
with the objective of keeping the screen green; this was
the case if the cursors’ heights above the bottom of the
screen instantiated a particular ratio, regardless of
whether the students initially knew or understood
this. We call this pedagogical activity architecture a
Mathematical Imagery Trainer (Howison et al., 2011).
The Mathematical Imagery Trainer is an interactive

technological system designed to foster opportunities for
students first to develop targeted sensorimotor schemes
and then model these schemes in particular forms that
lead to understanding targeted concepts. Now in its
tenth year of research, the system has been implemented
in a variety of media, including a mechanical apparatus,
Wii, Kinect, and iOS touchscreens; it has been evaluated
in a variety of settings, including laboratory clinical
interviews with individual or paired students and
school sites with groups and whole classrooms; and it
has served as a context for evaluating an artificially
intelligent pedagogical agent. Here, we focus on findings
relevant to this theoretical essay. In particular, we will
discuss data gathered at Utrecht University suggesting
variability in students’ sensorimotor schemes for enacting
proximal movement solutions.3

Attentional anchors as mediating proximal and distal
movement
The activity task presents students with the motor-
action problem of moving their hands in a motion
pattern where both hands rise in parallel but at different
speeds, for example, the right hand must rise twice as
fast as the left hand. (For the sake of readability we will
only focus on the 1:2 ratio in the remainder of this
paper). We have studied the process by which students
learn to move in this new way. Our analyses have drawn
on data that include audio–video recordings of students’
actions and multimodal explanations to the researcher,
logs of interface actions, and eye-tracking of foveal
vision (Abrahamson, Shayan, Bakker, & Van der Schaaf,
2016). These analyses indicated that students were using
attentional anchors, as we now explain.
As students manipulated the two cursors, they

attended to particular loci on the screen. These loci
included not only the two cursors but also “non-stimuli”,
that is, particular locations on the screen where there
were no discernable contours (Fig. 2). For example,
while moving the two cursors the students would stare
at a point on the screen background between the two
cursors. To an objective viewer, there was nothing there,
and yet the students focused on those points. It ap-
peared that the students were somehow using these loci
to facilitate their competent simultaneous manipulation



Fig. 1 The Mathematical Imagery Trainer for Proportion: schematic activity sequence. The system is here set at a 1:2 ratio, so that the favorable
sensory feedback (a green background) is activated only when the right hand is twice as high along the monitor as the left hand. This figure
sketches out our Grade 4–6 study participants’ paradigmatic interaction sequence toward discovering an effective operatory scheme: (a) while
exploring, the student first positions the hands incorrectly (red feedback); (b) stumbles upon a correct position (green); (c) raises hands
maintaining a fixed interval between them (red); and (d) corrects position (green). Compare b and d, the two green configurations, to note the
different intervals between the cursors
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of the two cursors. When students explained their
solution strategy in words and gestures, they referred to
objects they perceived on the screen, for example, they
explained that they were looking at the spatial interval
between the two cursors. They would say that this inter-
val should increase as the hands rise and decrease as the
hands descend (Fig. 2) or that this interval should move
to the right in the Orthogonal Pluses task variant
(Fig. 3).
We realized that these imaginary objects emerged into

students’ interaction dynamics through the process of
solving the control problem of keeping the screen green
– the imaginary objects were goal-oriented sensorimotor
objectifications of the interaction space. The objects
emerged from empty space to help the students perform
a challenging motor-control coordination. That is, in-
stead of attending to two hands separately, students
could attend to a single object and control it. We further
realized that attending to these objects helped students
learn the new mathematical ideas, because students re-
ferred to these objects in modeling and describing their
sensorimotor schemes, first qualitatively and then,
once we introduced mathematical tools onto the
screen, also quantitatively. Borrowing from Hutto and
Fig. 2 Schematic overview of the variety of emergent dynamical gaze patt
which we call attentional anchors, make evident that each student attende
as a focal gaze point. There is no object to manipulate at that point, in fac
and uses the attentional anchor to manage the joint manipulation of both
inter-student variability
Sánchez-García (2015), we called these imaginary ob-
jects attentional anchors (Abrahamson & Sánchez-
García, 2016; Abrahamson et al., 2016).
The empirical context of these studies enables us to

track the emergence of a sensorimotor scheme as the
integration of two components – a new gestalt in the
environment (the “sensori-” component, e.g., a new
attentional anchor) and a way of moving relative to this
perceptual invariant (the “motor” component, e.g., a new
bimanual motion coordination centered on the
attentional anchor). In particular, attentional anchors,
such as a linear interval between two points, are what
we have come to call goal-oriented sensorimotor objecti-
fications. Students construct attentional anchors as their
spontaneous solution to motor-control interaction prob-
lems. These attentional anchors constitute new proto-
mathematical objects amenable to reflecting, modeling,
articulating, and expressing in formal symbolic notation.
The studies also demonstrate that, whereas light-handed
guidance is sufficient for the emergence of attentional
anchors, mathematical re-description of these interaction
solutions requires more heavy-handed intervention.
In summary, proximal movements may result from a

variety of sensorimotor orientations toward the task
erns in solving the Parallel Pluses motor-control task. These patterns,
d to some location between the pluses or at least used that location
t, there is no perceptual stimulus there at all. The student constructs
cursors. Patterns a through e show both intra- and



Fig. 3 Eye-tracking and clinical data reveal a student’s emergent attentional anchor as their solution to a problem of coordinating bimanual
orthogonal movements. In this activity variant, the left hand moves up/down the y-axis while the right hand moves right/left along the x-axis.
The screen will be green only when the left and right hands’ respective distances from the origin (bottom-left corner) relate according to the
target ratio (here, 1:2). a A student uses an emergent attentional anchor to guide proportional bimanual coordination: they are focusing on an
imaginary diagonal line between the tips of their left-hand and right-hand index fingers, keeping this line at a constant angle to the x-axis while
moving the line to the right. b The same student from a is explaining their strategy to the experimenter. They gesture an imaginary diagonal line
running down from a point on the y-axis to a point on the x-axis
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space – one cannot judge a sensorimotor scheme by its
proximal movement cover. In order to understand how
students learn mathematics through participating in
interaction tasks, it is not enough to describe their distal
and proximal movements. We need to dig deeper to find
out how they are orienting toward the situation. In par-
ticular, more nuanced observation and measurement is
necessary for looking under the distal and proximal
covers so as to implicate underlying sensorimotor
schemes. Educational investigations of embodied learning,
we propose, must be geared to theorize, measure, and
analyze sensorimotor orientations, as these may constitute
the psychological source of proto-mathematical objects.
Understanding students’ sensorimotor orientations with
the help of attentional anchors should help us better
theorize mathematical learning and, in turn, better design
mathematics learning systems. For this to occur, educa-
tional researchers need to adopt a taxonomy of movement
and develop research methods for investigating mathem-
atical moving.

Conclusion
Whereas researchers informed by embodiment theory
generally agree that physical movement plays formative
roles in fostering conceptual learning, they have yet to
agree over methodology for engaging students in
performing these movements (Abrahamson, 2015;
Glenberg, 2006; Lindgren & Johnson-Glenberg, 2013;
Pouw, van Gog, & Paas, 2014). While some researchers
believe we should train students directly to perform the
movements, others believe we should let students dis-
cover these movements for themselves through working
on goal-oriented tasks in appropriately constrained envi-
ronments. We have proposed that this practical question
begs the theoretical question of what we actually mean
when we talk about physical movement. Only once we
have answered this theoretical question can we, as a
community, address problems of practice.
Drawing on both enactivist philosophy and cognitive

development psychology, we have argued that externally
manifest movement is only the tip of the iceberg, the
cusp of deep sensorimotor activity that includes
attentional anchors. We demonstrated the utility of
using the phrase “proximal movement” to describe phys-
ical actions proper and “distal movement” to describe
what the proximal movements ultimately enact in the
world via instrumental mediation. We further demon-
strated that particular proximal movements are them-
selves consequences of different motor coordination
schemes oriented on attentional anchors. It is these sen-
sorimotor schemes, not only the distal or proximal
movements, that educational designers are seeking to
foster, and we therefore hope our proposed distinctions
will prove useful for educational designers. Our insights
also suggest a need for more process-oriented studies to
understand embodied learning, complementary to exper-
iments in which condition outcomes are compared but
in which we know little about the process.
In particular, by rendering sensorimotor schemes

conceptually transparent for researchers and practi-
tioners, and positioning these schemes as the cognitive
vehicle of mathematical reasoning, we hope to have con-
tributed to a more productive discourse around the po-
tential role of the embodiment approach in educational
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endeavors. Too often in our anecdotal encounters with
colleagues and teachers have we heard what we perceive
as under-informed diminutive characterizations of em-
bodied interaction. These views focus on distal move-
ments or perhaps on proximal movement yet with little,
if any, concern for the sensorimotor schemes these
movements elicit and present with the help of atten-
tional anchors. At the same time, we recognize that
much work lies ahead in helping teachers see how
students are thinking. Some technological solutions
have been put forth as means of making key aspects
of sensorimotor schemes manifest as external activity
that teachers can access, scrutinize, evaluate, and
respond to. Non-invasive co-attention eye-tracking
techniques may be one approach (Sharma, Caballero,
Verma, Jermann, & Dillenbourg, 2015; Shayan,
Abrahamson, Bakker, Duijzer, & Van der Schaaf, 2017;
Shvarts & Krichevets, 2016).
Our studies also suggest that, left to their own devices,

students each figure out how to coordinate their move-
ments so as to satisfy the interaction task specifications.
We recognize the perceived pedagogical tradeoff of stu-
dents each thinking about a problem in a different way.
After all, teachers are mandated to channel students to-
ward normative understanding of curricular concepts.
However, it could be that students nevertheless con-
struct situations differently, and that our study only
exposed this general phenomenon (Allen & Bickhard,
2013; Kostrubiec et al., 2012). Further, we maintain that
both intra-student and inter-student variability in
solutions bears developmental benefit for individuals
learning to participate in the personal and social enact-
ment of mathematical practices (Abrahamson, Lee,
Negrete, & Gutiérrez, 2014). In that sense, our studies
demonstrate the cognitive diversity of a collective of stu-
dents and, in so doing, marks potential for research and
practice that leverages this diversity as means of enrich-
ing collective argumentation (Abrahamson, Berland,
Shapiro, Unterman, & Wilensky, 2006; Asterhan &
Schwarz, 2009; Cifarelli & Cai, 2005).
Any discussion of student behaviors and outcomes

would be incomplete without attending to the instruc-
tors’ actions. We wish to underscore the light-handed
approach we have been practicing in our tutorial inter-
views. This approach to the design and implementation
of pedagogical interventions focuses on fostering new
ways of moving by managing constraints on action. The
approach is coherent with the methodology of teaching
experiments (Steffe & Thompson, 2000) and with claims
from radical constructivism (von Glasersfeld, 1983,
1992) as well as analogous research on athletic perform-
ance (Chow et al., 2016; Chow et al., 2007). As such,
empirical research on implementing the constraints-
based instructional approach may contribute to current
discussions on the process and merit of explorative
learning (cf. Kirschner, Sweller, & Clark, 2006). At the
least, we have demonstrated the embodied design frame-
work as well as a design architecture, the Mathematical
Imagery Trainer, which could issue useful empirical
contexts for further investigating individual and inter-
actional mechanisms underlying embodied STEM
learning. As interactive technology increasingly enters
formal as well as informal STEM education, it should
be important for the community of researchers to in-
form the design and evaluation of consumer products
that promise to offer quality embodied learning.
Endnotes
1Following Sheets-Johnstone (1999) we conceptualize

movement as the source and expression not only of
cognition, but also of affective relations with the
world; however, in this paper, we focus on cognitive
activity.

2Condition 2 is somewhat comparable to working with
an Etch-a-Sketch or its mechanical variants (Nemirovsky
et al., 2012).

3Readers are referred to http://edrl.berkeley.edu/content/
kinemathics for a listing of relevant publications.
These papers (a) draw on the literature of mathemat-
ics education research to explain the rationale and
build of the technological system and the range of
interaction tasks; (b) report in detail on our methods
and results in empirical work with the system; (c) ex-
plain why and how students redescribed their sensori-
motor schemes mathematically when we introduced
symbolic artifacts into the interaction space; and (d)
propose contributions for theory, practice, and design.
To date, empirical data from studies evaluating the
system include behaviors of several hundred students
aged 9–14 years.
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