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ABSTRACT OF THE THESIS 

 

Alpine Wildfire Risk Analysis 

via Monte Carlo Simulations in Mount Rainier National Park 

 

by 

 

Nikhil Pavan Auradkar 

Master of Science in Statistics 

University of California, Los Angeles, 2024 

Professor Mark S. Handcock, Chair 

 

This thesis explores an approach to analyzing wildfire risk in forests, with a focus on Mount 

Rainier National Park. Monte Carlo simulations utilize terrain and elevation data, point process 

methods, and existing wildfire spread knowledge to generate risk heatmaps at a fine-grained 

scale. The research is driven by the following questions: How can we accurately and efficiently 

simulate wildfire start points and spread using terrain and elevation data and various statistical 

methods? What can we learn about risk factors, drawing from the simulation results in 

conjunction with existing wildfire knowledge? 

The study aims to capture the inherent uncertainties and complexities associated with wildfire 

behavior. Grounded in the relationship between topographical features, forest density, and 

climatic conditions, the simulation model effectively integrates the key factors contributing to 

wildfire ignition and spread. The probabilistic nature of the Monte Carlo method allows for the 
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exploration of a wide range of wildfire scenarios, providing a nuanced understanding of risk and 

potential impacts. Results from the simulation identified areas of increased wildfire susceptibility 

and gave rise to Bayesian conclusions about risk in variables such as seasonality, moisture levels, 

and terrain.  
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CHAPTER 1 

Introduction 

This project is a continuation of a much more basic simulation assignment started in 2023. 

Improvements to the basic model will be discussed, along with the change in methodology, 

results, and conclusions. 

1.1 Background and Context 

Washington State, particularly its alpine regions, has a significant history of wildfires that have 

had environmental, economic, and human impacts. These regions, characterized by dense forests 

and rugged terrain, are particularly susceptible to fires due to dry summers and abundant fuel 

sources. Over recent years, these wildfires have grown in both frequency and intensity, likely 

driven both by climate change and increased human activities.  

 

Figure 1.1: Large wildfires since 1973 in the Mount Rainier area 
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Wildfires have led to the loss of human lives, property damage running into billions of dollars, 

destruction of wildlife habitats, and the release of vast amounts of carbon dioxide into the 

atmosphere, contributing further to global warming. The after-effects of wildfires also pose 

significant challenges. Post-fire landscapes are often susceptible to soil erosion, landslides, and 

flash flooding, further exacerbating the environmental devastation. Additionally, the smoke from 

wildfires affects air quality not just in the immediate vicinity but also across large distances, 

impacting public health. 

Given these severe impacts, there is a need for effective risk analysis to manage and mitigate the 

threat of wildfires. Predicting where and when a wildfire might occur, understanding its potential 

spread and intensity, and identifying the areas and communities at risk are all crucial for early 

warning, strategic resource allocation, planning effective responses, and ultimately reducing the 

damage caused by these catastrophic events. Risk modeling techniques, such as the Monte Carlo 

simulations performed in this project, can play a critical role in this context by providing 

probabilistic and scenario-based risk assessments, helping decision-makers understand and 

prepare for a range of possible wildfire events. 

1.2 Problem Statement and Objectives  

Despite the growing recognition of the wildfire risks, identifying areas that are most susceptible 

to these disasters is still a significant challenge. This challenge is rooted in the complex and 

dynamic nature of wildfires. A multitude of factors influence the spread of wildfires, including 

weather conditions (temperature, humidity, wind speed), terrain information (vegetation type, 

tree density, moisture content, proximity to bodies of water/ice), and the topography of the land 

(slope, aspect, elevation). These factors are further complicated by the complex variables 

involved in starting a wildfire – involving both weather conditions (primarily lightning) and 
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human factors (campgrounds, roads). For the sake of simplification and interpretability, this 

model will assume ignition via lightning strikes, which have been shown to cause a majority of 

large alpine fires. 

The interplay of these factors often leads to nonlinear and unpredictable fire behavior. Traditional 

methods for predicting wildfire risk often fall short in capturing these complexities and 

uncertainties, and thus, may not provide the level of detail and accuracy needed for effective 

planning and response. Therefore, there is a need to develop a more sophisticated and 

comprehensive approach to wildfire risk analysis in Washington's alpine regions that leverages 

our understanding of fire behavior and incorporates the detailed topographical and terrain data 

available. 

The primary objective of this project is to develop and implement a Monte Carlo simulation-

based model for assessing wildfire risk in Washington's alpine regions. This probabilistic model 

will seek to integrate the various factors influencing wildfire ignition and spread, including but 

not limited to topographical features, terrain features, and climatic conditions. By incorporating 

the inherent uncertainties in these factors and simulating a broad range of wildfire scenarios, the 

model aims to provide a comprehensive and nuanced understanding of wildfire risk. 

Specifically, the model will aim to identify areas most susceptible to wildfires, the most likely 

ignition points for wildfires, and the potential extent and intensity in these areas under different 

scenarios. These findings, synthesized, should be able provide valuable inputs for disaster risk 

management strategies, including preventive measures, emergency response planning, and 

resource allocation. Ultimately, this research aims to contribute towards a more resilient and 

prepared fire response system.  
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CHAPTER 2 

Existing Literature and Modeling 

2.1 Literature 

2.1.1 The Rothermal Model 

The Rothermel Surface Fire Spread Model is a foundational model used to predict the spread of 

wildfires. The model calculates the rate of fire spread based on factors such as fuel type, fuel 

moisture, wind, and slope. The comprehensive formula looks like: 

 (2.1) 

 R is the rate of spread (flaming front speed) 

 IR is the reaction intensity (energy release) 

 ξ is the propagating flux ratio (proportion of heat transfer) 

 ΦW and ΦP are dimensionless multipliers based on wind/slope 

 Pb is bulk density (fuel metric) 

 ε is the effective heating number 

 Qig is the heat of preignition 

The model is designed to estimate surface fire behavior (fires that burn within 6 feet of the 

ground). The Rothermel model, with modifications, has been widely used for fire and fuels 

management since its development in 1972. It includes equations for the rate of spread, flame 
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length, and fire intensity. The model's main inputs are fuel particle properties (such as moisture 

content), environmental variables (wind speed and slope), and the fuel bed.  

Not all variables here can be effectively transferred to the simulation – however specific parts of 

the model were helpful in construction the spread model. Specifically, factors influencing the 

bulk density and heat of preignition were incorporated – the moisture of extinction MX and the 

moisture content MF. The Rothermal model calculates fire spread as a balance between heat 

source and heat sink, with inputs like fuel moisture content playing a key role in the outcome. 

The model factors in live and dead fuel separately, with dead fuel moisture of extinction serving 

as a critical threshold where fire can no longer propagate through dead fuel. 

The simulation focuses on how live fuel moisture of extinction is calculated. According to the 

Rothermel Model, live fuel moisture is dynamically influenced by the proportion of live-to-dead 

fuels, meaning as the live fuel moisture content drops, the fire’s ability to spread increases. This 

behavior was the basis for the spread behavior, which simulates how changing moisture levels 

affect fire behavior over time. 

The model's reliance on slope and wind speed also plays a significant role in how moisture 

impacts fire spread. For instance, the propagating flux ratio adjusts the heat release to account for 

wind and slope effects, which was incorporated into my simulation to mimic how fires spread 

faster uphill and in dry, windy conditions. 

2.1.2 Lightning Strike Probability Risks 

The University of Georgia explores the probabilities and risk assessments associated with 

lightning strikes on trees and other tall objects. It details formulas used to estimate the 

probability of a lightning strike, including factors like historic lightning strike density, tree 

height, and surrounding topography. The guide explains how to use lightning strike density maps 
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and gives practical examples, such as the frequency of lightning strikes in the southeastern U.S. 

The manual also addresses factors that influence lightning attraction, such as the height of 

objects, the electrical field created by tall objects, and different types of lightning strokes. 

The lightning strike probability model was used to determine ignition points based on 

environmental factors. The model described a relatively simply probabilistic estimate of where 

lightning will strike, focusing on the influence of tree height and the surrounding area: 

(2.2) 

This formula was used to simulate ignition in areas with trees. The guide also provided insight 

into lightning attraction distances, which helped refine how I positioned potential ignition 

sources in my simulation. For instance, taller trees have an enhanced electric field, increasing the 

likelihood of a lightning strike, a factor that was included to simulate higher ignition risk in 

specific terrain. By understanding how different current levels (up to 100kA for positive polarity 

strikes) affect the likelihood of lightning starting a fire, ignition behavior could be better 

predicted. 

2.1.3 Other Sources 

Other sources were used to better understand wildfire behavior and general knowledge. One 

emphasizes the role of topography in influencing wildfire spread. It describes how slope 

steepness, aspect, and elevation affect fire behavior. Fires tend to spread more quickly uphill due 

to pre-heating of fuels by the flames. Conversely, fires on downhill slopes or in complex terrain, 
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such as valleys and ridges, can spread more unpredictably due to wind turbulence. This 

document also referenced historical Australian bushfires, explaining how weather conditions and 

topography contributed to some of the country's most destructive wildfires, like the 2009 Black 

Saturday fires. 

2.2 Modeling 

Multiple studies have been done with similar intents. Exploring methodologies helps with 

determining pros and cons to this given approach. 

2.2.1 Assessing Fire Risk Using Monte Carlo Simulations of Fire 

This paper focuses on modeling fire spread using Monte Carlo simulations combined with 

FARSITE, a well-known fire behavior simulator. The study area covers 300 km² of Mt. Carmel, 

Israel, where a series of 500 simulations were run to model the spatial distribution of fires. The 

key inputs for this model include topographical data, vegetation/fuel maps, and climatic data. 

The simulations randomly selected ignition locations, fire length, and climatic data for each run. 

The ignition risk was modeled using proximity to roads as a proxy for human-caused fires. This 

study emphasizes the complexity of fire behavior, as it is influenced by a combination of 

vegetation, topography, and human activity. The Monte Carlo process generated fire-risk maps 

with high spatial resolution, allowing fine-scale strategic fire prevention planning. This approach 

confirmed that simulated fire frequencies closely correspond to historical fire events, suggesting 

that these simulations can serve as a reliable predictor for fire risk. 

The Monte Carlo approach here is particularly relevant as it underscores the importance of 

combining various spatial factors (ignition location, fire length, topography) and temporal factors 

(calendar date, climactic data) to assess fire spread risk comprehensively. Also, the paper’s 
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validation with historical data reinforces the utility of such simulations in predicting risk. The 

fine-grained simulations performed were a good starting point to look at and improve upon. 

2.2.2 Spatiotemporal Wildfire Modeling Through Point Processes with Moderate and 

Extreme Marks 

This paper presents a sophisticated statistical model to analyze wildfire ignition and spread based 

on spatiotemporal point processes. The primary modeling technique is the log-Gaussian Cox 

process (LGCP), which incorporates both moderate and extreme wildfire occurrences. By 

combining extreme-value theory with point process modeling, this approach allows for the joint 

analysis of wildfire occurrence and burnt area sizes, using Bayesian hierarchical models. The 

study was conducted on wildfire data from the French Mediterranean Basin from 1995 to 2018. 

Key factors influencing fire ignition in this model include weather (Fire Weather Index), forest 

cover, and historical fire data.  

By jointly modeling both moderate and extreme fires, the method improves the accuracy of 

predicting large-scale wildfires, especially in regions susceptible to significant fire risks. 

Nonlinear effects of covariates are captured to improve predictions, making the model adaptable 

to different seasonal conditions and locations. Focusing on the distribution of fire size is an 

important feature to look at during analysis and interpretation. This paper is relevant to the 

planning of a simulation as it provides a detailed framework for modeling fire ignition and size 

distributions based on spatiotemporal factors. Its emphasis on Bayesian modeling and 

uncertainty quantification aligns with the goal of simulating ignition behavior in complex 

terrains and understanding how varying conditions (such as weather and forest cover) influence 

wildfire spread. 

2.2.3 FireCast: Leveraging Deep Learning to Predict Wildfire 
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The FireCast paper explores the use of deep learning techniques to predict wildfire spread. The 

neural network (NN) model developed for this study relies on input data such as satellite 

imagery, elevation, weather conditions, and historical fire events. The system produces predicted 

fire perimeters and risk maps, which are then evaluated using metrics like accuracy, recall, and 

F-scores. The authors advocate for improvements in granularity by incorporating Monte Carlo 

simulations to refine predictions. Additionally, the paper briefly discusses the integration of a 

Wildfire Fire Decision Support System (WFDSS), a geospatial tool for fire management that also 

employs predictive modeling. 

This paper uses GIS data and satellite inputs for accurate fire prediction, which are very 

important to the planning of the simulation. While the simulation may focus more on 

deterministic factors like elevation and topography, the combination of deep learning and Monte 

Carlo simulations presented here offers a pathway to enhance predictions, especially in 

integrating spatial data to create more granular and precise fire risk maps. It also established an 

important fact in that current official wildfire risk modeling via Farsite is very slow (in the order 

of days to months) and very situational. 
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CHAPTER 3 

Data 

The data utilized in this research comprises detailed topographical and terrain information of the 

alpine regions in Washington State. Data was taken primarily from the United States Geological 

Survey (USGS), which has extensive data in a wide variety of formats. One dataset provided by 

the USGS is 3D Elevation Program (3DEP) - the topographic data provided includes elements 

such as elevation, recognizable features, and landmarks, providing a detailed overview of the 

surface characteristics of the landscape at a very fine granularity (~2x2 meters in some areas, 

including Mount Rainier National Park). Another such dataset is offered by the USGS’s National 

Land Cover Database (NLCD), which provides high-resolution terrain data collected using 

satellite techniques. This data categorizes the entire continental US into different terrains at a 

granularity of around 30x30 meters. It is especially useful for detailed terrain analysis, including 

the study of surface and subsurface features. In addition to these, the TNM datasets also include 

comprehensive hydrography and bathymetry data, which map out the water bodies across the 

country. This includes information about the depth and contours of these bodies, offering 

essential insights for any analysis related to water flow, flood risk, or aquatic ecosystems. 

3.1 USGS 3DEP Dataset 

The USGS 3DEP is a major initiative to collect high-resolution, three-dimensional elevation data 

for the United States. It provides topographic maps in GeoPDF and GeoTIFF formats, designed 

for various uses, including fire modeling. The 7.5-minute quadrangle maps cover 1.15 miles per 
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minute, making each map span approximately 8.6 by 8.6 miles with a granularity of less than 2 

meters. The maps used contain elevation data, which critically can be used to derive other 

important variables such as slope and aspect. Together they are important for modeling how fires 

spread over different landscapes. The historical topographic maps also offer insight into past 

landscapes, while more modern maps are available for contemporary analyses.  

 

Figure 3.1: USGS 3DEP data in Mount Rainier National Park 

In addition, USGS also provides LIDAR (Light Detection and Ranging) data can include trees 

and river features, providing valuable inputs for fire spread simulations. LIDAR is particularly 

useful for identifying fine-scale variations in terrain, helping to understand the obstacles or 

pathways fires may encounter. However, NLCD terrain data was eventually chosen over LIDAR 

due to its direct relevant to the Rothermal spread model. 

3.2 USGS NLCD Dataset 
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The NLCD 2021 dataset provides comprehensive land cover data for the contiguous United 

States (CONUS), including vegetation types, water bodies, and developed areas. It is periodically 

updated to reflect changes in land use, natural vegetation, and development patterns. For wildfire 

modeling, the vegetation type is critical since different terrain have vastly different fire 

behaviors. Grasslands, forests, and shrublands have distinct fuel properties, such as fuel moisture 

and moisture of extinction, as mentioned above in the Rothermal model. This dataset, provided at 

a 30 meter granularity, helps to determine the terrain's fuel load and structure, which can 

significantly influence wildfire ignition, spread rates, and overall fire behavior. The dataset also 

provides information on terrain and land cover dynamics, such as changes in vegetation over 

time. 

 

 

Figure 3.2: USGS NLCD data in Mount Rainier National Park 
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Figure 3.3: USGS NLCD legend (note different vegetation types) 

3.3 Washington Large Fires Dataset (1973–2023) 

The Washington Large Fires Dataset offers detailed historical data on large wildfires in the state, 

including the date, size, acreage, boundary/perimeter, and cause of each fire. This dataset is 

essential for understanding historical fire behavior, helping validate fire models by comparing 

simulated fire spread and size to real-world events. The dataset also allowed for analysis of 

trends in fire frequency, size, and causes, offering insights into how factors like climate change 

or human activities are impacting wildfire risks. By including boundary and perimeter data, this 

dataset is particularly useful for visualizing how fires expanded over time, and for refining the 

simulation of fire behavior based on real-world observations. 
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CHAPTER 4 

Simulation 

4.1 Initial Model 

The initial simulation logic was relatively simple and did not capture much of the Rothermal 

model behavior, data sourcing, or model logic listed above. 

4.1.1 Methodology 

One of the first thoughts was to find a determine what temperature and wind speed were more 

likely to cause large, dangerous burns. Thus, they could be the parameters that were varied the 

most in testing to determine their ‘optimal’ values. However, they were not measured as temporal 

variables existing explicitly in the simulation. Temperature was instead tied directly to spread 

probability, i.e. the likelihood that a neighboring cell catches fire in each iteration of the 

simulation. Wind speed was tied to spread probability, with higher speeds increasing the 

probability and direction increasing/decreasing the probability.  

Several parameters, directly influencing the occurrence and spread of wildfires, were identified 

for the simulation. One such parameter was the fire start point, which was determined by 

elevation data and other factors such as the likelihood of lightning strikes at higher elevations or 

human involvement in camping/hiking areas. From research, it was determined that the two most 

likely causes of a wildfire were: 

1. Human intervention, either from a campground or with machinery 

2. Lightning strikes 
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However, data from the internet widely varies on the proportion of wildfires that are caused by 

humans versus inclement weather. To try and accurately simulate both impetuses, the model was 

tuned to favorably select start points that were either close to local minima or local maxima. In 

doing so, both human intervention and lightning strikes were treated as equal contributors to 

wildfires.  

Importance sampling was used to focus on more likely fire start points and spread patterns, 

increasing the efficiency of the simulation. In the model, not all start points were equally likely;  

this required a non-uniform sampling approach, achieved through importance sampling. 

Mathematically, this can be described as:  

(4.1) 

In this context, X represents the start points, and f(X) represent the wildfire risk at each start 

point. This technique helped create a more representative dataset and consequently a more 

accurate model. 

For terrain data NLCD data was not used – a simplified satellite imagery dataset. The spread of 

the algorithm from cell to cell was determined by a single variable tied to the RGB value of each 

of the cells in the satellite image.  
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Figure 4.1: Satellite imagery of a portion of Mount Rainier National Park 

The spread of fire was also modeled as an uncertain parameter, influenced by the terrain, wind 

direction and speed, and climatic conditions like dry or wet periods. Here, the ‘green value’ of 

the satellite data was utilized heavily. As heavily forested areas burn more easily than less 

forested areas, the model dictated that a burn would be more likely if the ‘green value’ in the 

RGB coding for the satellite data was very high. From research, it was also determined that 

elevation difference and wind speed/direction had major impacts on the spread of wildfires. Fires 

generally traveled both uphill and with the wind; the model was thus tuned to enhance spread 

probabilities when either of these conditions were met.  
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Estimating critical values of the equivalent parameters for temperature and wind speed can be 

viewed in a Bayesian setting. Let's denote T as the temperature, W as the wind speed, and B as a 

binary event representing whether a large, dangerous burn occurred. By running numerous 

simulations varying T and W, the likelihood P(B|T, W) could be estimated. The prior beliefs 

about how T and W affect B could then be updated using Bayes' theorem, which can be 

expressed as: 

(4.2) 

Here, P(T, W|B) is the posterior distribution of T and W given B. P(T, W) is the prior distribution 

of T and W. The resulting posterior distribution represents the updated beliefs about the 

distributions of T and W that lead to large, dangerous burns, given the data observed. By 

examining this distribution, it was possible to make informed statements about the equivalent 

parameters that were more likely to result in large, dangerous burns. 

Other parameters identified were burnout probability – the likelihood that a given cell on fire 

would enter a ‘burnt’ state, and stop probability – the likelihood that the entire wildfire would 

stop burning (in lieu on other parameters for rain). The simulation model was defined to capture 

the interplay of each the identified parameters. The process was repeated thousands of times, 

each time with different combinations of the uncertain parameters, leading to different potential 

fire paths. The result was a theoretical but comprehensive set of wildfire scenarios, capturing a 

wide range of possible events. 

4.1.2 Results 

Bayesian strategies were employed to tune the model parameters, particularly the equivalent 

parameters for temperature and wind speed. Dimensional tiered sampling was applied until the 
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parameters produced a large burn (over 1000 square meters affected) at least once out of every 

hundred runs. The spread probability was found to need to be at least 0.15 and the modulation 

factor (based on optimal wind and elevation) was found to need to be at least 1.5. 

Once these parameters were fixed, sampling began to find the areas in the specified region with 

the most risk. N = 1024 simulations were run with parameter values spread_prob = 0.15, 

burnout_prob = 0.15, stop_prob = 0.005, and modulation factor = 2. 

Below are starting points and heatmap-plotted results from this run of simulations:  

 

Figure 4.2: Cumulative damage from n = 1204 simulated wildfires 
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Figure 4.3: Starting points from n = 1204 simulated wildfires 

Areas of high risk density were found to coincide with one of two area profiles: 

1. Local maxima, with a higher-than-average RGB green value, with a negative gradient on 

at least two sides. These can be classified as narrow and long hills. 

2. Flat areas, with very high RGB green values, with a local minima close by (presumably 

where the fire started). These can be classified as lush plateaus. 
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Overall, out of the 1204 simulations run, 24 were categorized as ‘large burns’. Burns heavily 

favored greener portions of the specified area. These results are in line with the model’s tuning. 

 

Figure 4.4: Distribution of green RGB values in burnt cells 

4.1.3 Limitations 

To start, the start/ignition algorithm needed improvement. By attempting to account for both 

human intervention and lightning strike ignitions, the algorithm had inherently become cloudy. 

The model considered local minima and maxima as the most likely starting points for wildfires; 

minima due to human factors associated with roads and campgrounds, which are typically at 

lower altitudes, and maxima due to the higher propensity of lightning strikes at higher altitudes. 

The model could benefit from independently addressing these factors, perhaps through a tiered 

approach that considers multiple variables in concert. Eventually, it was decided to just focus on 

lightning strike ignitions. 
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Improvements in terrain analysis were identified to potentially enhance the model's performance. 

As it is tied to satellite imagery, it does not properly recognize water bodies, large elevation 

differences, or previously burnt forest areas, which can all act as natural barriers to fire spread. A 

more detailed terrain analysis (through NLCD) would incorporate these factors, providing a 

more realistic representation of how fires spread and are stopped in the real world. 

The spread probability definition could also be improved. The initial model tied just one variable 

to spread probability modifications. The probability of fire spread based on terrain and elevation 

was significantly lacking in this regard. Incorporating these elements would yield more realistic 

simulations of fire behavior and spread patterns. Furthermore, the stoppage probability used in 

the model is a simplification in place of variables such as rain and firefighting efforts, 

implemented to make the simulation more efficient. With more computing power, a more 

accurate representation of these factors could be used. 

Lack of temporal variables was also an issue – no real risk factors could be identified easily, 

without looking into how temperature and wind tied themselves to other simulation variables. 

Even the definition of this behavior was somewhat nebulous. 

Finally, one of the limitations of this study was the number of simulations performed. Due to 

computational constraints, the total number of simulations across the final run barely exceeded 

1.2K. With more computational power or efficient algorithms, future studies would run more 

simulations, improving the robustness and reliability of the results. Additionally, more data 

points would provide a more comprehensive understanding of the multivariate nature of wildfire 

behavior and risk.  

4.2 Current Model 
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The wildfire simulation model presented here integrates the several key data sources and 

algorithms mentioned above to predict wildfire behavior under varying environmental 

conditions. Data collection and preparation involve terrain, elevation, moisture levels, and fire 

perimeters, while the simulation models fire ignition, spread, and burnout through probabilistic 

algorithms. This section goes into detail about the improvements made from the initial model. 

4.2.1 Methodology 

The simulation is still structured around a Monte Carlo (MC) method, running multiple iterations 

to produce a range of potential fire outcomes. By simulating numerous fires with varying initial 

conditions—such as different ignition points, weather, and moisture levels—the model can 

capture the inherent randomness of fire behavior.  

Elevation data is sourced from the USGS 3DEP product. This data is used to derive critical 

terrain characteristics such as slope and aspect. Slope, which measures the steepness of the 

terrain, and aspect, which identifies the dominant cardinal direction a slope faces, are vital in 

predicting fire spread rates.  

The maxima score, another terrain feature, is calculated using a diagonal-inclusive Laplacian 

kernel as opposed to a categorization based on neighboring cells like before. This score helps 

identify prominent features in the landscape, such as the height of trees relative to their 

surroundings. The maxima score is particularly relevant for modeling ignition probabilities since 

lightning tends to strike taller objects, making trees with high maxima scores more likely ignition 

points. 

The terrain data is derived from the National Land Cover Database (NLCD), which categorizes 

different land cover types. Different vegetation categories—such as forests, grasslands, and 

urban areas—exhibit different fire behaviors. Forested areas, with dense tree coverage and leaf 
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litter, provide substantial fuel, leading to higher fire intensities and longer burn durations. In 

contrast, grasslands may ignite more quickly but burn out sooner due to lower fuel loads. This 

categorization allows the model to assign base moisture levels, moisture of extinction, and base 

spread probabilities to each terrain type. Vegetation type directly impacts the likelihood of 

ignition and how quickly fires spread once they start. 

Two temporal random variables – season and rainfall – are created at simulation time to reflect 

environmental variability and allow for easier risk analysis. The season influences baseline 

conditions such as temperature and fuel moisture, while rainfall is dynamically updated during 

the simulation, affecting moisture levels. Both temporal variables interact with the spatial 

parameters to determine the likelihood of ignition and fire spread. 

The spread model has been completely overhauled based on the Rothermal model - moisture 

plays a crucial role in the simulation, as it directly influences the probability of a fire starting and 

spreading. The model calculates moisture as a function of baseline terrain moisture, season, and 

rainfall. Each cell in the simulation grid is assigned a moisture level, and this level is 

dynamically updated based on weather changes during the simulation. Additionally, each terrain 

type has a pre-determined moisture of extinction, representing the point at which the fuel is too 

wet to sustain a fire. These values directly impact the fire’s catch/spread probability, which 

dictates whether a cell ignites when exposed to flames. 
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Figure 4.5: Base moisture, moisture of extinction, and base spread probability for all terrains 

Values from this table are mostly derived from the Rothermal documentation. Others are taken 

from other sources mentioned in the literature review above. Rain and seasonality have impacts 

on moisture to start each iteration of the simulation (e.g. summer results in dryer climate, 3” 

rainfall results in moister climate). Below is an example of the dynamic nature of the moisture 

algorithm: 
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Figure 4.6: Moisture algorithm (spread probability modifier is calculated as 0.379) 

Historical fire perimeter data provides information on fire size distribution, shape, and the types 

of vegetation burned in past fire events. This historical data is used to tune the simulation model 

and ensure it accurately reflects real-world fire behavior. By analyzing the size and shape of past 

fires, the model refines its spread algorithms to predict similar behavior under analogous 

conditions. Specifically, convex hulls were utilized here – making sure large historic and large 

simulated fires had similar ratio between their areas and the areas of their convex hulls. 

4.2.2 Runtime 

The ignition, spread, and burnout of fires are driven by both spatial and temporal variables. Each 

simulation run starts by selecting ignition points probabilistically, influenced by the maxima 

score, which reflects the likelihood of lightning strikes. Cells with higher maxima scores, 

typically taller trees or elevated terrain, are more likely to be selected as ignition points. 

The spread algorithm operates on a cellular automaton framework, where each cell can be in one 

of three states: not burning (0), burning (1), or burnt (0.9). The first iteration of each simulation 

ignites the starting cell, after which the fire spreads to neighboring cells in subsequent iterations. 

Fire spread is influenced by several factors: 

1. Stop Probability: This parameter determines whether the fire will continue spreading or if 

the simulation should stop at a given point. If the fire reaches areas with insufficient fuel 

or moisture levels, the simulation may stop earlier than anticipated. 

2. Burnout Probability: For cells that are burning, the burnout probability determines 

whether they transition to the burnt state. This probability is influenced by the cell’s 

moisture level and the burnout prob parameter. Moist cells are less likely to burn 

completely, and the fire may smolder without fully transitioning to the burnt state. 
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3. Spread Probability: For non-burning cells adjacent to burning cells, the spread probability 

determines whether the fire will spread to those cells. This probability is influenced by 

terrain type, slope, and moisture levels. Cells on the diagonals are not considered 

neighboring cells for spread purposes; only cells in the four cardinal directions are 

evaluated. The model checks each adjacent cell’s terrain type and moisture level to 

determine whether the fire will propagate into that cell. 

The result of these combined processes is a realistic simulation of fire spread that reflects how 

wildfires move through different terrains and under different environmental conditions. 

The model provides several outputs that capture the results of each simulation run. The primary 

outputs include: 

1. Raster Maps showing the cumulative spread of all wildfires over multiple runs. 

2. Length Maps that quantify the amount of damage caused by the fire, reflecting the fire’s 

final perimeter after it stops spreading. 

3. Time Maps indicating the number of iterations it took for the fire to spread. 

4. Ignition Maps highlighting the ignition points for all simulation runs. 

5. Temporal variables (season, rainfall) vs. Wildfire spread. 

6. Terrain vs. Wildfire spread. 
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4.2.3 Results 

The simulation was conducted over two geographic areas – one a smaller subset of Mount 

Rainier National Park, and two the entire national park. As the simulation was also made more 

efficient by optimizing data types and loop behaviors, tens of thousands of runs were able to be 

completed in each simulation in the smaller subset. Note the patterns around rolling hillsides and 

lush areas: 

 

Figure 4.7: Cumulative damage from n = 56K simulated wildfires 
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Even in the much larger national park bounds, many thousands of runs were able to be completed 

in each simulation. Note the pattern around the perimeter of Mount Rainier: 

 

Figure 4.8: Cumulative damage from n = 7K simulated wildfires 
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Wildfire damage resembled a distribution similar to that of historic fire areas. A cutoff was 

imposed at 100K cells due to computational restrictions. 

 

Figure 4.9: Distribution of damage 
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Summer dominated the average fire damage average. 

 

Figure 4.10: Seasonality (spring/summer/fall/winter) vs. Damage 
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Zero rainfall dominated the average fire damage average. 

 

Figure 4.11: Rainfall vs. Damage  
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