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UAV-Assisted Intelligent Reflecting Surface

Symbiotic Radio System

Meng Hua, Luxi Yang, Senior Member, IEEE, Qingqing Wu, Cunhua Pan,

Chunguo Li, Senior Member, IEEE, and A. Lee Swindlehurst, Fellow, IEEE

Abstract

This paper investigates a symbiotic unmanned aerial vehicle (UAV)-assisted intelligent reflecting

surface (IRS) radio system, where the UAV is leveraged to help the IRS reflect its own signals to the

base station, and meanwhile enhance the UAV transmission by passive beamforming at the IRS. First, we

consider the weighted sum bit error rate (BER) minimization problem among all IRSs by jointly optimizing

the UAV trajectory, IRS phase shift matrix, and IRS scheduling, subject to the minimum primary rate

requirements. To tackle this complicated problem, a relaxation-based algorithm is proposed. We prove

that the converged relaxation scheduling variables are binary, which means that no reconstruct strategy is

needed, and thus the UAV rate constraints are automatically satisfied. Second, we consider the fairness

BER optimization problem. We find that the relaxation-based method cannot solve this fairness BER

problem since the minimum primary rate requirements may not be satisfied by the binary reconstruction

operation. To address this issue, we first transform the binary constraints into a series of equivalent equality

constraints. Then, a penalty-based algorithm is proposed to obtain a suboptimal solution. Numerical results

are provided to evaluate the performance of the proposed designs under different setups, as compared with

benchmarks.

Index Terms

Intelligent reflecting surface (IRS), unmanned aerial vehicle (UAV), phase shift optimization, UAV

trajectory optimization.
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I. INTRODUCTION

With the ever-growing sales of mobile devices and Internet of Things devices, current network

architectures are becoming overwhelmed by growing data traffic demands [1]. Although numerous

technologies such as millimeter wave (mmWave) communications, ultra-dense networks, and mas-

sive multiple-input multiple-output (MIMO) [2]–[4] have been proposed to address this problem,

they are usually realized with very large energy consumption and high hardware cost due to the

large number of RF chains required at the terminals. Recently, a new technology has come to the

attention of the wireless research community, namely intelligent reflecting surface (IRS), due to its

potential ability to reconfigure the radio propagation environment in a favorable way for transceiver

optimization. An IRS is comprised of a manmade surface of electromagnetic material consisting

of a large number of square metallic patches, each of which can be digitally controlled to induce

different reflection amplitude, phase, and polarization responses on the incident signals [5], [6].

Since an IRS typically has numerous patch units (such as PIN-diodes), it can provide a significant

passive beamforming gain without the need for RF chains, thus yielding a cost- and energy-efficient

solution. For example, experiments conducted recently in [7] showed that for a large IRS consisting

of 1720 reflecting elements, the total power consumption is only 0.280W. In addition, each IRS

reflecting element adjusted by the smart controller is able to induce an independent phase shift on

the incident signal to change the signal propagation such that the desired and interfering signals

can be added constructively or destructively to assist the communication system. Therefore, IRS

is a promising solution for improving the spectral and energy efficiency of wireless networks, and

paving the way to the green networks of the future.

The new research paradigm of IRS-aided wireless communication has been extensively studied,

e.g., see [8]–[10]. The authors of [8] proposed a radically software control approach, to enable

programmable control over the behavior of IRS-related wireless environments. How the availability

of IRS will allow wireless network operators to redesign common and well-known network

communication paradigms was discussed in [9]. The authors of [10] provided an overview of the

promising IRS technology for achieving smart and reconfigurable environments in future wireless

networks, and elaborated the reflection and channel models, hardware architecture as well as

various applications.

Recently, there have been many contributions devoting efforts to integrating IRS into the current

cellular networks. Joint active and passive beamforming design was investigated to either maximize

the system throughput or minimize the base station (BS) transmit power in [11]–[15]. In particular,

the authors in [11] studied the BS transmit power minimization problem by jointly optimizing the

BS beamforming matrix and IRS phase shift matrix while satisfying the users’ minimum signal-
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to-interference-plus-noise ratio (SINR) requirement, and the results showed that for a single-user

IRS-aided system, the received signal-to-noise ratio (SNR) increases quadratically with the number

of reflecting elements. In addition, the applications of IRS are also appealing for numerous different

system setups such as spectrum sharing [16], physical layer security [17]–[19], orthogonal multiple

access [20], [21], and simultaneous wireless information and power transfer [22]–[24].

Unlike the above studies in which the IRS is used purely to assist the transmissions of the

existing system, a new IRS functionality referred to as symbiotic radio transmission has been

proposed (also known as passive beamforming and information transfer transmission), where the

information bits are carried by the on/off states of the IRS, while passive beamforming is achieved

by adjusting the phase shift of each reflecting element [25]–[27]. Specifically, a sensor is integrated

into the IRS system, which for example collects environmental information such as temperature,

humidity, illuminating light, etc., and sends it to a smart controller at the IRS via adjusting the

on/off state of the IRS. Then, the controller transmits the collected information to the BS by

adjusting the on/off state of the IRS. This concept is similar to the spatial modulation transmission

technique, where the active transmit antenna number is regarded as a source of information to

improve the spectral efficiency [28].

In this paper, we study an unmanned aerial vehicle (UAV)-assisted IRS symbiotic radio system,

where the UAV is leveraged to assist the IRS data transmission. Specifically, we consider an

urban environment, where there are multiple IRSs available to sense environmental information.

As shown in Fig. 1, the IRS sends its own data to the BS by controlling its on/off state, and the

receiver side (BS) uses the difference in channel response caused by the on/off state to decode the

IRS information. The IRS also simultaneously tunes each reflecting element to align the phase of

the signal passing through the UAV-IRS-BS link with that of the UAV-BS link to achieve coherent

signal combining at the BS, thereby enhancing the UAV communication performance. In addition,

the UAV’s flexible mobility can be exploited to create favorable channel conditions for the UAV-

BS and UAV-IRS links. Our goal in this paper is to minimize the bit error rate (BER) of IRS by

jointly optimizing the UAV trajectory, IRS phase shift matrix, and IRS scheduling, subject to a

minimum data rate requirement for the UAV. We study two optimization objectives, one based on

fairness for the IRS and the other on the weighted sum BER of the IRS. Then, we develop two

novel algorithms to solve them. The main contributions of this paper are summarized as follows:

• We first consider the IRS weighted sum BER optimization problem, which is a mixed-integer

and non-convex problem. To develop a low complexity algorithm, we propose a relaxation-

based method. Specifically, we first relax the binary scheduling variables to continuous vari-

ables, and then we develop an alternating optimization (AO) algorithm to solve the relaxed
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non-convex optimization problem. We prove that the obtained scheduling results are the same

as the binary results from the AO method, which means that no reconstruct strategy is needed,

and thus the primary rate requirements of UAV are always satisfied. Numerical results show

the proposed relaxation-based method converges within only a few iterations.

• We then take into account the fairness among multiple IRSs, and formulate a fairness BER

optimization problem. The resultant problem is also a mixed integer and non-convex problem,

which is in general difficult to solve optimally. We show that the commonly used relaxation-

based method cannot be applied to this problem since the UAV’s rate requirement constraints

may not be satisfied by the binary reconstruction operation for scheduling. To address this

issue, a novel penalty-based algorithm is proposed. We first transform the binary constraints

into a series of equivalent equality constraints, and then propose a two-layer algorithm to

solve the problem. Numerical results show the effectiveness of this penalty-based algorithm.

• We conduct simulation results for the two proposed scenarios to illustrate their performance.

For the first scenario, we study the impact of weighting factors on the system performance,

and find that the optimized UAV trajectory places it closest to IRS with a high weighting

factor. For the second scenario, the results show that the average fairness utility value is highly

related to the IRS phase shift matrix. In addition, for both scenarios, the system performance

is significantly improved by the optimized UAV trajectory as well as the finely tunable IRS

phase shift.

The rest of this paper is organized as follows: Section II introduces the system model and problem

formulation. In Sections III and IV, we study the weighted sum BER and fairness BER optimization

problems, respectively. Numerical results are provided in Section V, and the paper is concluded

in Section VI.

Notations: Boldface lower-case variables denote vectors. The notation ‖x‖ represents the Eu-

clidean norm of x, the circularly symmetric complex Gaussian variable x with mean µ and variance

σ2 is denoted by x ∼ CN (µ, σ2), statistical expectation is defined as E {·}, statistical variance is

defined as Var {·}, and O (·) denotes the big-O computational complexity notation.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider a UAV-assisted IRS symbiotic radio system consisting of a single-antenna BS, a single-

antenna UAV, and K IRSs as shown in Fig. 1, where the UAV acts to help the IRS transmit its own

data to the BS1. The BS and IRS are in fixed locations, and the UAV can freely adjust its heading

1For ease of exposition, we term the UAV and BS as a primary network to assist the IRS’s information transmission.
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Fig. 1. UAV assisted IRS Symbiotic Radio System.
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[ ],1
s
x n

[ ]1, ,1
u
x n n

[ ]1,
s
x n n [ ]1,

s
x n N

[ ]1, ,
u
x n n L

Fig. 2. Transmission frame for the IRS and primary transmission.

as it moves. The horizontal coordinates of the BS and the kth IRS are respectively denoted as

qb = [qxb , q
y
b ]
T and qs,k =

[
qxs,k, q

y
s,k

]T . In addition, the altitude of the BS is denoted as Hb, and the

altitudes of all the IRSs are the same denoted as Hs
2. We assume that the UAV flies in a periodic

trajectory at a fixed altitude Hu and with a given period T . To make the problem tractable, the

period T is equally divided into N time slots of duration δ = T/N . As a result, the trajectory of

the UAV can be approximated by the N two-dimensional sequences qu [n] = [qxu [n] , qyu [n]]T . Note

that the duration δ should be chosen to be sufficiently small to satisfy Vmaxδ � Hu, where Vmax

denotes the maximum UAV speed, so that the UAV’s location can be considered as approximately

2Note that adopting different altitudes of IRSs do not affect the algorithm design in this paper.
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unchanged within each time slot. The UAV mobility constraints are given below:

‖qu [n]− qu [n− 1]‖ ≤ Vmaxδ, ∀n, (1)

qu [0] = qI,qu [N ] = qF, (2)

where qI and qF represent the UAV’s initial and final location, respectively.

It is assumed that the IRS has M reflecting elements, and the reflection coefficient matrix of

IRS k at time slot n is defined by the diagonal matrix Θk [n] = diag
(
ejθk,1[n], . . . , ejθk,M [n]

)
, where

θk,m[n] denotes the phase shift corresponding to the mth reflecting element of IRS k at time slot n

[11], [22], [29], [30]. Let h1,k[n] ∈ CM×1, h2,k[n] ∈ CM×1, and h3[n] ∈ C1×1 respectively denote

the complex equivalent baseband channel vector between the UAV and the kth IRS, between the

kth IRS and the BS, and between the UAV and the BS, at time slot n, ∀k ∈ K. To capture both the

large-scale and small-scale fading, we model all channels as Rician [31]. Specifically, the channel

coefficient between the UAV and IRS k at time slot n is given by [32]

h1,k [n] =
√
β1,k [n]

(√
K1

K1 + 1
hLoS

1,k [n] +

√
1

K1 + 1
hNLoS

1,k [n]

)
, (3)

where β1,k [n] represents the large-scale fading channel coefficient, hLoS
1,k [n] and hNLoS

1,k [n] denote

the deterministic line-of-sight (LoS) channel component and the small-scale fading component,

respectively, and K1 is the Rician factor. The value of β1,k [n] is related to the communication

distance, and is given by

β1,k [n] =
β0

dα1
1,k [n]

=
β0(

‖qu [n]− qs,k‖2 + (Hu −Hs)
2)α1/2

, (4)

where β0 denotes the channel power at the reference distance of 1 meter, d1,k [n] is the distance

between the UAV and IRS k, and α1 denotes the path loss exponent. We assume that the IRS

employs a uniform linear array (ULA) of reflecting elements, and thus hLoS
1,k [n] is given by [32]

hLoS
1,k [n] = e−j

2πd1,k[n]

λ ×
[
1, e−j

2πd
λ

cosφ1,k[n], . . . e−j
2π(M−1)d

λ
cosφ1,k[n]

]T
, (5)

where d denotes the IRS element spacing, λ denotes the carrier wavelength, and cosφ1,k [n] =
qxs,k−q

x
u[n]

d1,k[n]
is the cosine of the angle of arrival (AoA) [33], [34]. The elements of hNLoS

1,k [n] of

the non-LoS component are assumed to be independent and identically distributed and follow

circularly symmetric complex Gaussian distribution with zero mean and unit variance.

Similarly, the channel vector between IRS k and the BS at time slot n is expressed as

h2,k [n] =
√
β2,k

(√
K2

K2 + 1
hLoS

2,k +

√
1

K2 + 1
hNLoS

2,k [n]

)
, (6)
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where β2,k = β0
d
α2
2,k

, d2,k =
√
‖qb − qs,k‖2 + (Hb −Hs)

2, α2 represents the path loss exponent, and

K2 is the corresponding Rician factor. hLoS
2,k = e−j

2πd2,k
λ

[
1, e−j

2πd
λ

cosφ2,k , . . . e−j
2π(M−1)d

λ
cosφ2,k

]T
,

where cosφ2,k =
qxb−q

x
s,k

d2,k
denotes the cosine of the angle of departure (AoD). The elements of

hNLoS
2,k [n] are also assumed to be independent and identically distributed and follow circularly

symmetric complex Gaussian distribution with zero mean and unit variance.

Finally, for the UAV-BS link at time slot n we have

h3 [n] =
√
β3 [n]

(√
K3

K3 + 1
hLoS

3 [n] +

√
1

K3 + 1
hNLoS

3 [n]

)
, (7)

where β3 [n] = β0
d
α3
3 [n]

, d3 [n] =
√
‖qu [n]− qb‖2 + (Hb −Hu)

2, hLoS
3 [n] = e−j

2πd3[n]
λ , path-loss

exponent α3, and Rician factor K3. In addition, hNLoS
3 [n] ∼ CN (0, 1).

Remark 1: Although in this paper we adopt the ULA at IRS to facilitate the purpose of

exposition, all the proposed algorithms are applicable to the case of uniform planar array (UPA)

adopted at IRS with only a slight modifications for optimizing IRS phase shift discussed in (25)

in Section III.

Remark 2: Generally, there are two main approaches for the IRS-involved channel acquisition,

depending on whether the IRS elements are equipped with receive radio frequency (RF) chains

or not [5]. For the first approach with active receive RF chains, conventional channel estimation

methods can be applied for the IRS to estimate the channels of the UAV-IRS and IRS-BS links,

respectively. In contrast, for the second approach without receive RF chains at the IRS, the IRS

reflection patterns can be designed jointly with the uplink pilots to estimate the concatenated

UAV-IRS-BS channel and UAV-BS channel e.g., [35], [36].

Typically, the symbol rate for the IRS transmission is much lower than that for the primary

(UAV) transmission due to the limited computational and communication capabilities at the IRS.

To describe it clearly, the frame structure for the IRS symbol, primary symbol, and channel

coherence time is shown in Fig. 2. We assume that the duration of each UAV time slot equals

the channel coherence time, i.e, δ=Tc. In the figure, xs,k[n, n1] represents the kth IRS symbol

transmitted to the BS in the n1th block of time slot n, and xu[n, n1, l] is the primary symbol

transmitted from the UAV to the BS at the lth sub-block of block n1 within time slot n. Denote

by Ts and Tu the durations of each IRS symbol and primary symbol, respectively. Without loss of

generality, we assume that each IRS symbol covers L primary symbols, namely Ts = LTu, where

L is an integer, and L� 1. In addition, we assume δ = Tc = N1Ts, where N1 is an integer, and

N1 � 1.
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To facilitate the system design, we consider a widely used wake-up communication scheduling

approach [37], [38], where the UAV can only communicate with at most one IRS3 at any time

slot n. Define the scheduling variable ak[n], where ak[n] = 1 indicates that IRS k is served by the

UAV, and ak[n] = 0 otherwise. We then have the following scheduling constraints
K∑
k=1

ak [n] ≤ 1,∀k, n, (8)

ak [n] ∈ {0, 1} ,∀k, n. (9)

If IRS k is communicating with the UAV in time slot n, the signal received by the BS at the lth

sub-block of block n1 within time slot n is given by

yr,k [n, n1, l] =
√
P
(
hH2,k [n] Θk [n] h1,k [n,]xs,k [n, n1]

)
xu [n, n1, l]︸ ︷︷ ︸

IRS-aided link

+
√
Ph3 [n]xu [n, n1, l]︸ ︷︷ ︸

direct link

+ w [n, n1, l] , (10)

where P denotes the transmit power at the UAV, xu[n, n1, l] ∼ CN (0, 1), w[n, n1, l] ∼ CN (0, σ2)

denotes the noise at IRS k with power σ2. We adopt the simple but widely used on-off keying

(OOK) modulation for IRS’s information transmission, i.e., xs,k [n, n1] = {0, 1}.

Since the IRS’s own signal and UAV’s primary signal are simultaneously received by the BS, to

detect the composite signals correctly, several detectors such as maximum-likelihood (ML) detector,

linear detector, and successive interference cancellation (SIC)-based detector, can be applied [39].

Furthermore, the strength of the signal received from UAV is generally much larger than that

received from the IRS due to the following two reasons. First, the direct link between the UAV

and the BS is always dominated by LoS due to the less scatters in the sky. Second, since the IRS

consists of a large number of reflecting elements, it would significantly enhances the UAV’s signal

transmission via adjusting the phase shifters. In addition, the SIC receiver decodes the stronger

signal first, subtracts it from the composite signal, and extracts the weaker one from the residue.

Therefore, the SIC based detector is practically appealing and applied in this paper [39], [40].

Define h [n] = h3 [n] + hH2,k [n] Θk [n] h1,k [n]xs,k [n, n1]. It can be observed that h [n] contains

xs,k [n, n1], which changes relatively fast as compared to the channel variation. In other words,

the IRS’s reflected signal xs,k [n, n1] plays the role of fast-varying channel components, making

channel h [n] vary over the primary signal xu [n, n1, l] shown in (10). According to [26], [ [32],

3Strictly speaking, the UAV directly communicates with the controller at IRS k rather than IRS itself. In the sequel, we will use

the two terminologies interchangeably.
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Appendix B.7], [41], the achievable rate (bps/Hz) for the primary (UAV) system assisted by IRS

k is given by

R̄u,k [n, n1, l]

= Eh[n]

{
log2

(
1 +

P
∣∣h3 [n] + hH2,k [n] Θk [n] h1,k [n]xs,k [n, n1]

∣∣2
σ2

)}
(a)
= Exs,k[n,n1]

{
log2

(
1 +

P
∣∣h3 [n] + hH2,k [n] Θk [n] h1,k [n]xs,k [n, n1]

∣∣2
σ2

)}
(b)
= ρlog2

(
1 +

P
∣∣h3 [n] + hH2,k [n] Θk [n] h1,k [n]

∣∣2
σ2

)
+ (1− ρ) log2

(
1 +

P |h3 [n]|2

σ2

)
. (11)

where (a) holds since under a channel coherence time, h3 [n], h1,k [n], and h2,k [n] are all invariant,

while h [n] varies with the IRS’s reflected signal xs,k [n, n1]. Equality (b) holds since we assume

that the probability for sending symbol “1” at IRS k is ρ (0 ≤ ρ ≤ 1), and that for sending symbol

“0” at IRS k is 1− ρ, ∀k. It can be seen that the primary rate for each sub-block within time slot

n is the same. Thus, the achievable rate for the primary system assisted by IRS k at time slot n

is given by R̄u,k [n] = R̄u,k [n, n1, l].

After correctly decoding the primary signal xu[n, n1, l], subtracting the primary signal from the

composite signal, and we can obtain the intermediate signal as [40]

ŷr,k [n, n1, l] =
√
P
(
hH2,k [n] Θk [n] h1,k [n]xs,k [n, n1]

)
xu [n, n1, l] + w [n, n1, l] . (12)

For the different IRS reflected symbols, the signals received at the BS have different amplitude

values as

ỹr,k [n, n1, l] =


√
P
(
hH2,k [n] Θk [n] h1,k [n]

)
xu [n, n1, l] + w [n, n1, l] , for symbol 1,

w [n, n1, l] , for symbol 0.
(13)

It is not difficult to check that4

ỹr,k [n, n1, l] ∼

 CN
(

0, P
∣∣hH2,k [n] Θk [n] h1,k [n]

∣∣2 + σ2
)
, for symbol 1,

CN (0, σ2) , for symbol 0,
(14)

We adopt a simple joint-energy detector for detecting IRS’s symbols [42], [43]. Define ȳr,k [n, n1] =
L∑
l=1

|ỹr,k [n, n1, l]|2. It can be readily checked that a random variable ȳr,k [n, n1] is the sum of

L independent identically distributed central chi-squared random variables with two degrees of

4Note that although xu[n, n1, l] is known at the BS after decoding, xu[n, n1, l] still can be regarded as a random variable

following circularly symmetric complex Gaussian distribution during each one IRS symbol since each IRS symbol covers L

primary symbols.
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freedom. Suppose that the symbol “1” hypothesis is H1 and symbol “0” hypothesis is H0, we can

readily obtain the expectation and variance of |ỹr,k [n, n1, l]|2 as

E
{
|ỹr,k [n, n1, l]|2

}
= σ2

i , under Hi, i = {0, 1},

Var
{
|ỹr,k [n, n1, l]|2

}
= σ4

i , under Hi, i = {0, 1}, (15)

with σ2
1 = P

∣∣hH2,k [n] Θk [n] h1,k [n]
∣∣2 + σ2 and σ2

0 = σ2. Based on the central limit theorem, when

L is large, the distribution of ȳr,k [n, n1] asymptotically approaches a Gaussian distribution as

ȳr,k[n, n1] ∼ N
(
Lσ2

i , Lσ
4
i

)
, under Hi, i = {0, 1}, (16)

Define probability density function f (ȳr,k[n, n1]|Hi) = 1√
2πLσ2

i

exp

(
−(ȳr,k+[n,n1]−Lσ2

i )
2

2Lσ4
i

)
, i =

{0, 1}. Following from [44], the decision criteria is if

f (ȳr,k[n, n1]|H1) ≥ f (ȳr,k[n, n1]|H0) , (17)

then symbol “1” is chosen, otherwise, symbol “0” is chosen. As such, the BER of IRS can be

derived from

Pe,k [n, n1] =

Pr (H1) Pr
(
ȳr,k [n, n1] < ȳthr [n, n1] |H1

)
+ Pr (H0) Pr

(
ȳr [n, n1] ≥ ythr [n, n1] |H0

)
, (18)

where ȳthr [n, n1] denotes the decision threshold. The optimal decision threshold ȳth,optr [n, n1] can

be derived by taking the first derivative of Pe,k [n, n1] with respect to (w.r.t.) ȳthr [n, n1], which is

given by

ȳth,optr =
Lσ2

1σ
2
0

σ2
1 + σ2

0

1 +

√√√√
1 +

2 (σ2
1 + σ2

0) ln
σ2
1

σ2
0

L (σ2
1 − σ2

0)

 . (19)

Therefore, the BER for detecting IRS k’s reflected symbol can be derived as

Pe,k[n, n1] = ρQ

(
Lσ2

1 − ȳth,optr√
Lσ2

1

)
+ (1− ρ)Q

(
ȳth,optr − Lσ2

0√
Lσ2

0

)
,

(a)
≈ Q

(√
L
σ2

1 − σ2
0

σ2
1 + σ2

0

)
=Q

(
√
L

P
∣∣hH2,k [n] Θk [n] h1,k [n]

∣∣2
P
∣∣hH2,k [n] Θk [n] h1,k [n]

∣∣2+2σ2

)
, (20)

with the Q function given by Q (x) = 1√
2π

∫∞
x
e−

t2

2 dt. (a) holds since for a large value L, ȳth,optr

given in (19) approaches 2Lσ2
1σ

2
0

σ2
1+σ2

0
. We can see that the BER of IRS k within each sub-block of time

slot n is the same. Thus, the BER for IRS k at time slot n is given by Pe,k [n] = Pe,k [n, n1].
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In this paper, we are interested in the average communication throughput and average BER.

Theorem 1: The average achievable rate for the primary system, i.e., E{R̄u,k[n]}, is upper bounded

by

E
{
R̄u,k [n]

}
≤R̂u,k [n]

4
= (1− ρ) log2

(
1 +

Pβ3 [n]

σ2

)
+

ρlog2

1 +
P
(
|x0,k [n]|2 +

(K1+K2+1)Mβ1,k[n]β2,k
(K1+1)(K2+1)

+ β3[n]
K3+1

)
σ2

 , (21)

where x0,k [n] =
√

K3β3[n]
K3+1

hLoS
3 [n] +

√
K1K2β1,k[n]β2,k
(K1+1)(K2+1)

(
hLoS

2,k [n]
)H

Φk [n] hLoS
1,k [n].

Proof : Please refer to Appendix A.

In Theorem 1, we can see that R̂u,k[n] is determined by the deterministic LoS channel compo-

nents
{
h3

LoS [n] ,hLoS
1,k [n] ,hLoS

2,k [n]
}

, the large-scale fading coefficients {β1,k [n] , β2,k, β3 [n]}, and

the IRS phase shift matrix Φk [n]. It is worth pointing out that the above approximation will be

tight if the SNR is sufficiently high [45].

Define SNR γ̄k [n] =
|hH2,k[n]Θk[n]h1,k[n]|

σ2 . Similarly, we can obtain the average SNR for IRS k at

time slot n as

γk[n]
4
= E {γ̄k [n]}=

(
|x̄0,k [n]|2 +

(K1+K2+1)Mβ1,k[n]β2,k
(K1+1)(K2+1)

)
σ2

, (22)

where x̄0,k [n] =
√

K1K2β1,k[n]β2,k
(K1+1)(K2+1)

(
hLoS

2,k [n]
)H

Φk [n] hLoS
1,k [n].

B. Problem Formulation

For the first scenario, our goal is to minimize the weighted sum BER among all IRSs over all the

time slots by jointly optimizing the UAV trajectory, IRS phase shift matrix, and IRS scheduling.

Accordingly, the problem can be formulated as

min
θk,m[n],qu[n],ak[n]

K∑
k=1

wk

N∑
n=1

ak [n]E {Pe,k [n]} (23a)

s.t.
K∑
k=1

ak [n]R̂u,k [n] ≥ Rth,∀n, (23b)

0 ≤ θk,m[n] ≤ 2π,∀m, k, n, (23c)

(1), (2), (8), (9), (23d)

where wk denotes the weighting factor for IRS k, with a higher value representing a higher priority

over other IRSs, and Rth is the minimum rate requirement of the primary transmission system for

any time slot n. Problem (23) is challenging to solve mainly due to the following three reasons.

First, the optimization variables ak[n] for communication scheduling are binary and thus (9), (23a),
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and (23b) involve integer constraints. Second, the IRS phase shift matrix, UAV trajectory, and IRS

scheduling are intricately coupled in (23a) and (23b), which makes the problem non-convex. Third,

the expression of E{Pe,k[n]} in the objective function is implicit w.r.t. the optimization variables.

In general, there is no efficient method to optimally solve problem (23).

For the second scenario, our goal is to minimize the maximum BER among all IRS over all

the time slots by jointly optimizing the UAV trajectory, the IRS phase shift matrix, and the IRS

scheduling. Accordingly, the problem can be formulated as

min
θk,m[n],qu[n],ak[n],R

R (24a)

s.t.
1

N

N∑
n=1

ak [n]E {Pe,k [n]} ≤ R, ∀k, (24b)

K∑
k=1

ak [n]R̂u,k [n] ≥ Rth,∀n, (24c)

(1), (2), (8), (9), (23c). (24d)

The left hand side of (24b) denotes the average BER of IRS k over all N time slots. Problem (24)

is still difficult to solve due to the similar challenges for the weighted sum BER problem discussed

above.

Remark 3: It can be seen that Pe,k [n] given in (20) is a complicated expression with an integral,

which is challenging to analyze directly. In addition, it can be readily verified that Q function is

monotonically decreasing with SNR γ̄k [n]. Instead of maximizing the SNR directly, we introduce

a utility function F (γ̄k [n]), which is a differential, concave and monotonically increasing function

w.r.t. γ̄k [n], to replace BER Pe,k [n]. In addition, to obtain the average BER E {Pe,k [n]}, we set

the upper bound of E {F (γ̄k [n])}, i.e., F (E {γ̄k [n]}), as our design metric for facilitating the

algorithm design. In the subsequent sections, instead of minimizing the BER directly, we aim to

maximize the corresponding utility functions.

III. RELAXATION-BASED ALGORITHM FOR WEIGHTED SUM BER OPTIMIZATION PROBLEM

In this section, we propose a relaxation-based algorithm to solve problem (23). Specifically,

we first relax the binary scheduling variables into continuous variables, and divide the relaxed

non-convex problem into two sub-problems, then solve these two sub-problems. However, even

with this decomposition, the problem is still difficult to handle due to the non-convex cosine in

both the objective function and constraints. To address this issue, we first obtain a closed-form

solution for the IRS phase shift matrix for a given UAV trajectory and communication scheduling,
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and then substitute this expression into the original problem resulting in a joint IRS scheduling

and UAV trajectory optimization problem. We first develop the following theorem:

Theorem 2: For any given UAV trajectory and IRS scheduling, the optimal IRS phase shift

matrix that maximizes the primary rate and SNR is given by

θopt
k,m [n] = −2πd ((cosφ2,k − cosφ1,k [n]) (m− 1)− (d1,k [n]− d2,k [n]) +d3 [n])

λ
,∀k,m, n. (25)

Proof : Please refer to Appendix B.

From Appendix B, we can see that the maximizer of the terms |x0,k [n]|2 and |x̄0,k [n]|2 are

respectively given by

∣∣x∗0,k [n]
∣∣2=

K3β3 [n]

K3 + 1
+
K1K2M

2β1,k [n] β2,k

(K1 + 1) (K2 + 1)
+2M

√
K1K2K3β1,k [n] β2,kβ3 [n]

(K1 + 1) (K2 + 1) (K3 + 1)
, (26)

and ∣∣x̄∗0,k [n]
∣∣2=

K1K2M
2β1,k [n] β2,k

(K1 + 1) (K2 + 1)
. (27)

Substituting (26) and (27) in (21) and (22), respectively, we have

Ru,k [n] = (1− ρ) log2

(
1 +

Pβ3 [n]

σ2

)

+ρlog2

1 +
P
(

(ck,1+ck,3) β1,k [n] +ck,2
√
β1,k [n] β3 [n]+β3 [n]

)
σ2

 , (28)

and

γk [n] =
(ck,1+ck,3) β1,k [n]

σ2
, (29)

where ck,1 =
K1K2M2β2,k

(K1+1)(K2+1)
, ck,2 = 2M

√
K1K2K3β2,k

(K1+1)(K2+1)(K3+1)
, and ck,3 =

(1+K1+K2)Mβ2,k
(K1+1)(K2+1)

.

As a result, the weighted sum BER optimization problem (23) can be simplified as

max
qu[n],ak[n]

K∑
k=1

wk

N∑
n=1

ak [n]F
(

(ck,1+ck,3) β1,k [n]

σ2

)
(30a)

s.t.
K∑
k=1

ak [n]

ρlog2

1 +
P
(

(ck,1+ck,3) β1,k [n] +ck,2
√
β1,k [n] β3 [n]+β3 [n]

)
σ2


+ (1− ρ) log2

(
1 +

Pβ3 [n]

σ2

))
≥ Rth,∀n, (30b)

(1), (2), (8), (9). (30c)

It can be seen that (30) only involves two variables, qu [n] and ak [n], and the cosine function no

longer appears, which thus make the problem easier to solve. In the following, a low complexity

algorithm based on the relaxation method is proposed. Note that different from [38], [46], [47],
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where the resulting continuous scheduling variables need to be converted into binary. However, for

problem (30), we prove that the converged relaxation scheduling variables are binary, which means

that no reconstruct strategy is needed, and thus the UAV rate constraints (30b) are automatically

satisfied. Specifically, we first relax the binary variable ak[n] to a continuous variable, and rewrite

constraint (9) as follows [38], [46], [47]:

0 ≤ ak [n] ≤ 1,∀k, n. (31)

We then decompose the relaxed problem into two separate subproblems, IRS scheduling and UAV

trajectory optimization, and then alternately optimize each one.

A. IRS Scheduling Optimization

For any given UAV trajectory qu[n], the IRS scheduling problem of (30) becomes

max
ak[n]

K∑
k=1

wk

N∑
n=1

ak [n]F
(

(ck,1+ck,3) β1,k [n]

σ2

)
(32a)

s.t. (8), (30b), (31). (32b)

Since both the objective function and constraints are linear w.r.t. ak[n], problem (32) is thus a

linear optimization problem.

Theorem 3: The optimal solution aopt
k [n] to problem (32) is binary, i.e., aopt

k [n] ∈ {0, 1}.

Proof : Please refer to Appendix C.

Theorem 3 shows that even though the binary constraint in the IRS scheduling problem of (32)

has been relaxed, the obtained solution is still a binary result. As such, no reconstruction operation

is needed. In addition, since (32) is a linear optimization problem, it has very low computational

complexity [48].

B. UAV Trajectory Optimization

For any given IRS scheduling ak[n], the UAV trajectory optimization problem of (30) becomes

max
qu[n]

K∑
k=1

wk

N∑
n=1

ak [n]F
(

(ck,1+ck,3) β1,k [n]

σ2

)
(33a)

s.t. (1), (2), (30b). (33b)

Note that (33) is neither concave or quasi-concave due to the non-convex constraints (30b) and

non-convex objective function (33a). In general, there is no efficient method to obtain the optimal
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solution. In the following, we adopt the successive convex optimization technique to solve (33).

To this end, we introduce additional slack variables {z1,k[n]} and {z3[n]}, and recast (33) as

max
qu[n],z1,k[n],z3,k[n]

K∑
k=1

wk

N∑
n=1

ak [n]F
(

(ck,1+ck,3) z1,k [n]

σ2

)
(34a)

K∑
k=1

ak [n]

ρlog2

1 +
P
(

(ck,1+ck,3) z1,k [n] +ck,2
√
z1,k [n] z3 [n]+z3 [n]

)
σ2


+ (1− ρ) log2

(
1 +

Pz3 [n]

σ2

))
≥ Rth,∀n, (34b)

β1,k [n] ≥ z1,k [n] , ∀k, n, (34c)

β3 [n] ≥ z3 [n] , ∀n, (34d)

(1), (2). (34e)

It can be shown that at the optimal solution to (34), we must have β1,k [n] = z1,k [n] and β3 [n] =

z3 [n] ,∀k, n, since otherwise we can always increase z1,k[n] (or z3[n]) without decreasing the value

of the objective. Therefore, problem (34) is equivalent to problem (33). With this reformulation,

objective function (34a) is now concave w.r.t. z1,k[n], but with the new non-convex constraints

(34c) and (34d). The key observation is that in (34c), although β1,k [n], defined in (4), is not

convex w.r.t. qu[n], it is convex w.r.t. ‖qu [n]− qs,k‖2. Recall that any convex function is globally

lower-bounded by its first-order Taylor expansion at any feasible point [49]. Therefore, for any

local point ‖qru [n]− qs,k‖2 obtained at the rth iteration, we have

β1,k [n] ≥ β0(
‖qru [n]− qs,k‖2 + (Hu −Hs)

2)α1/2
− α1β0

2
(
‖qru [n]− qs,k‖2 + (Hu −Hs)

2)α12 +1

×
(
‖qu [n]− qs,k‖2−‖qru [n]− qs,k‖2) 4= ϕlb (β1,k [n]) . (35)

Define the new constraint as

ϕlb (β1,k [n]) ≥ z1,k [n] ,∀k, n, (36)

which is convex since ϕlb (β1,k [n]) is a quadratic function w.r.t. qu [n]. Similarly, for any local

point ‖qru [n]− qb‖2 obtained at the rth iteration, with β3 [n] = β0
d
α3
3 [n]

and

d3 [n] =
√
‖qu [n]− qb‖2 + (Hb −Hu)

2, β3[n] which is defined in (34d) can be replaced by

β0(
‖qru [n]−qb‖2 + (Hu −Hb)

2)α32 − α3β0

2
(
‖qru [n]− qb‖2 + (Hu −Hb)

2)α32 +1

×
(
‖qu [n]− qb‖2−‖qru [n]− qb‖2) ≥ z3 [n] ,∀n, (37)

which is also a convex constraint.
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Algorithm 1 Proposed relaxation-based algorithm for solving problem (30).
1: Initialize ‖qru [n]− qs,k‖2, r = 0, rmax.

2: Relax binary scheduling variables as continuous variables, and set ark[n]=1/K.

3: Repeat

4: Solve problem (32) for given {qru[n]}, and denote the optimal solution as {ar+1
k [n]}.

5: Solve problem (40) for given {ar+1
k [n]}, and denote the optimal solution as {qr+1

u [n]}.

6: Update r ← r + 1.

7: Until the fractional increase in the objective value of (30) is below a threshold or the

maximum number of iterations rmax is reached.

In addition, to tackle the non-convexity of constraint (34b), we introduce variable z2,k[n], and

reformulate (34b) as
K∑
k=1

ak [n]

(
ρlog2

(
1 +

P ((ck,1+ck,3) z1,k [n] +ck,2z2,k[n]+z3 [n])

σ2

)

+ (1− ρ) log2

(
1 +

Pz3 [n]

σ2

))
≥ Rth,∀n, (38)

with the additional constraint

z1,k [n] ≥
z2

2,k [n]

z3 [n]
,∀k, n. (39)

Both constraints (38) and (39) are convex since we can see that the left hand side of (38)

is a log function, which is concave, and the right hand side of (39) is a quadratic-over-linear

fractional function, which is convex. As a result, for any given local points ‖qru [n]− qs,k‖2 and

‖qru [n]− qb‖2, we have the following optimization problem

max
qu[n],z1,k[n],z2,k[n],z3[n]

K∑
k=1

wk

N∑
n=1

ak [n]F
(

(ck,1+ck,3) z1,k [n]

σ2

)
(40a)

s.t. (1), (2), (36), (37), (38), (39). (40b)

C. Convergence Analysis and Computational Complexity

In the proposed AO algorithm, we solve the relaxed problem (30) by iteratively solving problems

(32) and (40), where the solution obtained for one subproblem in each iteration is used as the

initial point for the other. The detailed procedure for solving (30) is summarized in Algorithm 1.

The convergence of Algorithm 1 has been well studied in [50], and is omitted here for brevity.
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We now analyze the complexity of Algorithm 1. In step 4, (32) is a linear optimization problem

whose complexity is O (KN) [48], where KN denotes the number of variables. In step 5,

the complexity for solving (40) by the interior point method is O(2KN + 3N)3.5 [51], where

2KN + 3N denotes the number of variables. Therefore, the total complexity of Algorithm 1 is

O
(
Liter

(
KN+(2KN + 3N)3.5)), where Liter stands for the number of iterations required to reach

convergence.

IV. PENALTY-BASED ALGORITHM FOR FAIRNESS BER OPTIMIZATION PROBLEM

In this section, we aim to solve problem (24). Based on Theorem 2, (28), and (29) in Section

III, problem (24) is simplified as

max
qu[n],ak[n],R

R (41a)

s.t.
1

N

N∑
n=1

ak [n]F
(

(ck,1+ck,3) β1,k [n]

σ2

)
≥ R, ∀k, (41b)

K∑
k=1

ak [n]

ρlog2

1 +
P
(

(ck,1+ck,3) β1,k [n] +ck,2
√
β1,k [n] β3 [n]+β3 [n]

)
σ2


+ (1− ρ) log2

(
1 +

Pβ3 [n]

σ2

))
≥ Rth,∀n, (41c)

(1), (2), (8), (9). (41d)

Unfortunately, the low-complexity algorithm based on the relaxation-based method cannot be

applied to problem (41) due to the primary rate requirement (41c). More specifically, when

converting the continuous-valued solutions for the ak[n] obtained by the relaxed problem to binary,

e.g., using the rounding function [46], constraint (41c) will in general no longer be satisfied. In

this section, we propose a two-layer penalty-based algorithm to solve (41). The inner layer solves

a penalized optimization problem by applying the AO method, while the outer layer updates the

penalty coefficient, until convergence is achieved. Specifically, in the inner layer, the original

problem (41) is decomposed into three subproblems: IRS phase shift matrix optimization, IRS

scheduling optimization, and UAV trajectory optimization.

We first introduce slack variables {āk[n]} to transform the binary constraints into a series of

equivalent equality constraints. Specifically, (9) can be rewritten as

ak [n] (1−āk [n]) =0,∀k, n, (42)

ak [n] = āk [n] , ∀k, n. (43)
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From (42) and (43), we can readily derive that the ak[n] that satisfies the above two constraints

must be either 1 or 0, which confirms the equivalence of the transformation of (9) into the two

constraints. We then use (42) and (43) in a penalty term that is added to the objective function of

(41), yielding the following optimization problem

min
qu[n],ak[n],R,āk[n]

−R+
1

2η

K∑
k=1

N∑
n=1

(
|ak [n] (1−āk [n])|2+|ak [n]−āk [n]|2

)
(44a)

s.t. (1), (2), (8), (41b), (41c) (44b)

where η > 0 is the penalty coefficient used to penalize the violation of the equality constraints

(42) and (43) [50]. While these equality constraints become satisfied as η → 0, it is not effective

to initially set η to be a very small value since in this case the objective will be dominated by the

penalty terms, and the term −R will be diminished. In contrast, initializing η with a larger value

allows us to obtain a good starting point for the proposed algorithm. Then, by gradually decreasing

the value of η, we can finally obtain a solution that satisfies (42) and (43) within a predefined

accuracy. Note that, for any given penalty coefficient η, problem (44) is still non-convex due to

the non-convex constraints (41b) and (41c). We then apply the AO method to iteratively optimize

the primary variables in different blocks [50]. Specifically, in the inner layer, problem (44) is

divided into three subproblems in which {āk[n]}, {ak[n]}, and {qu[n]} are optimized iteratively

as follows:

A. Inner layer iteration

1) Optimizing āk[n] for given ak[n] and qu[n]. This subproblem can be expressed as

min
R,āk[n]

−R+
1

2η

K∑
k=1

N∑
n=1

(
|ak [n] (1−āk [n])|2+|ak [n]−āk [n]|2

)
(45a)

s.t. (41b). (45b)

We can see that only the auxiliary variable āk[n] is involved in the objective function. Therefore,

setting the derivative of (45) w.r.t. āk[n] to zero, the solution can be obtained as

āopt
k [n] =

ak [n] + a2
k [n]

1 + a2
k [n]

,∀k, n. (46)

2) Optimizing ak[n] for given āk[n] and qu[n]. This subproblem is written as

min
ak[n],R

−R+
1

2η

K∑
k=1

N∑
n=1

(
|ak [n] (1−āk [n])|2+|ak [n]−āk [n]|2

)
(47a)

s.t. (8), (41b), (41c). (47b)
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It can be seen that (47) is convex with a quadratic objective function and linear inequality

constraints, which can be numerically solved by standard convex optimization techniques, such as

the interior-point method [49].

3) Optimizing qu[n] for given ak[n] and āk[n]. Ignoring the constant terms that are irrelevant

to the UAV trajectory, this subproblem is formulated as:

max
qu[n],R

R (48a)

s.t. (1), (2), (41b), (41c). (48b)

Note that (48) is neither concave or quasi-concave due to the non-convex constraints (41b) and

(41c). In general, there is no efficient method to obtain the optimal solution. In the following,

we adopt the successive convex optimization technique to solve (48). Using the previous analysis

of the UAV trajectory optimization for problem (33) in Section III-B, by introducing the same

slack variables {z1,k[n], z2,k[n], z3[n]} and local points ‖qru [n]− qs,k‖2 and ‖qru [n]− qb‖2, we can

directly derive the following equivalent convex optimization problem

max
qu[n],z1,k[n],z2,k[n],z3[n],R

R (49a)

s.t.
1

N

N∑
n=1

ak [n]F
(

(ck,1+ck,3) z1,k [n]

σ2

)
≥ R, ∀k, (49b)

(1), (2), (36), (37), (38), (39). (49c)

Based on the previous discussions, the objective function and all of the constraints are convex.

Thus, (49) is a convex optimization problem that can be efficiently solved by, for example, the

interior point method [49].

B. Outer layer iteration

In the outer layer, we gradually decrease the value of the penalty coefficient η as follow

η = cη, (50)

where c (0 < c < 1) is a scaling factor, where a larger value of c can achieve better performance

but at the cost of more iterations in the outer layer.

C. Convergence Analysis and Computational Complexity

To show the converged solutions of the proposed penalty-based algorithm, the terminal criteria

for the outer layer is given as follows;

ξ= max {|ak [n] (1−āk [n])| , |ak [n]−āk [n]| ,∀k, n} , (51)
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Algorithm 2 Proposed penalty-based algorithm for solving problem (41).
1: Initialize ar1k [n], ‖qr1u [n]− qs,k‖2, η, r1 = 0, r2 = 0 ε1, ε2, rmax.

2: Repeat: outer layer

3: Repeat: inner layer

4: Update ār1k [n] based on (46).

5: Update ar1k [n] by solving problem (47).

6: Update qr1u [n] by solving problem (49).

7: r1 ← r1 + 1.

8: Until the fractional decrease of the objective value of (44) is below a threshold ε1 or the

maximum number of iterations rmax is reached.

9: Update penalty coefficient ηr2 based on (50).

10: r2 ← r2 + 1, and r1 ← 0.

11: Until the constraint violation ξ is below a threshold ε2

where ξ is a predefined accuracy. The detailed procedure of the penalty-based algorithm is summa-

rized in Algorithm 2. In the inner layer, with the given penalty coefficient, the objective function

of (44) is non-increasing over each iteration after applying the AO method, and the objective of

(44) is bounded due to the limited flying time T and transmit power P . As such, a stationary point

can be achieved in the inner layer. In the outer layer, we gradually decrease the penalty coefficient

so that the equality constraints (42) and (43) are ultimately satisfied. Based on the results in [52,

Appendix B], this penalty-based framework is guaranteed to converge.

The complexity of Algorithm 2 can be quantified as follows. In the inner layer, the main com-

plexity of Algorithm 2 comes from steps 5 and 6. In step 5, the complexity of computing ak[n] is

O(KN + 2N + 1)3.5 [51], where KN+2N+1 stands for the number of variables [53]. Similarly, in

step 6, the complexity required to compute the UAV trajectory is O(2KN + 3N + 1)3.5 [51], where

2KN + 3N + 1 denotes the number of variables. Therefore, the total complexity of Algorithm 2 is

O
(
LouterLinner

(
(KN + 2N + 1)3.5+(2KN + 3N + 1)3.5)), where Linner and Louter respectively

denote the number of iterations required for reaching convergence in the inner layer and outer

layer.

V. NUMERICAL RESULTS

In this section, we provide numerical results to verify the performance of the proposed algorithm

for the UAV assisted IRS symbiotic radio transmission system. In the simulation, we consider a

system that operates on a carrier frequency of 755 MHz with the system bandwidth of 1 MHz
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and the effective noise power density −120dBm/Hz. As such, the noise power at the BS and the

channel gain are set to σ2 = −60 dBm and β0 = −30 dB, respectively [54]. In addition, we set

d/λ = 1/2 [55]. The UAV altitude is fixed at Hu = 30 m with transmit power P = 20 dBm

and maximum speed Vmax = 10 m/s. The UAV’s initial and final location are set to qI = qF =

[15m 0]T . The altitudes of the BS and IRS are both set to Hs = Hb = 10 m. The duration of

each time slot is δ = 0.1 s. The path loss exponents for the UAV-IRS link, IRS-BS link, and

UAV-BS link are assumed to be the same 2.4, and the Rician factors for the above links are set

to be 10 dB. Without loss of generality, we set the utility function F(·) as a logarithm function

with base 2, which naturally achieves a certain of fairness among the information transmission

of multiple IRSs, and has been widely adopted in the literature, such as [56]. Unless otherwise

specified, we set rmax = 300, ρ = 0.5, ε1 = 10−3, ε2 = 10−10, η = 500, c = 0.7.

A. Weighted Sum BER Optimization

This subsection evaluates the performance of Algorithm 1 for the weighted sum BER problem

(23). We consider 5 IRS, which are located at qs,1 = [30 m, 30 m]T ,qs,2 = [−30 m, 30 m]T ,qs,3 =

[−40 m, 0]T ,qs,4 = [−30 m,−30 m]T ,qs,5 = [30 m,−30 m]T in a horizontal plane. Unless

otherwise specified, the weighting factors are set as w = [1, 1, 1, 1, 1]T . To show the efficiency

of Algorithm 1, its convergence behaviour for the two different periods T is plotted in Fig. 3.

It is observed that the average weighted sum utility value increases quickly with the number of

iterations, and in both cases converges within only 3 iterations.
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Fig. 3. Convergence behaviour of the proposed Algorithm 1

for different period.
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In Fig. 4, the optimized UAV trajectories obtained by Algorithm 1 when T = 40 s are studied

for two different weighting factors, i.e., w1 = [1, 1, 1, 1, 1]T and w2 = [1, 1, 0.5, 1, 1]T . We see
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that the UAV sequentially visits all IRS for the weighting factor w1, since the path loss between

the UAV and IRS is significantly reduced when the UAV is nearby, thereby improving the utility

value. However, for weighting factor w2, the UAV only does a close fly-by of IRS 3 rather than

hovering above it, since w2 places a lower weight on IRS 3 and hence reduces its priority relative

to the others. To see this more clearly, in Fig. 5 the UAV speed profile for the two weighting

factors is plotted. Compared with w1, for w2 the UAV spends less time hovering above IRS 3 for

serving.
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In Fig. 6, the IRS scheduling for T = 40 s is plotted. We see that for optimizing the weighted

sum utility, the IRSs are scheduled for different lengths of time as shown in Fig. 6. As before,

the IRS scheduling results are indeed binary, which verifies the effectiveness of Algorithm 1.
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In Fig. 7, we compares the average weighted sum utility value versus T achieved by the following

schemes: 1) Proposed scheme in Algorithm 1; 2) Circular trajectory, where the UAV flies with a

circle path of radius 15 m (corresponding to the distance from the BS to the UAV’s initial/final

location) and center [0,−0]T ; 3) Fixed phase shifts, where the IRS phase shifts for all the elements

is fixed at either π or π/2. For the fixed phase shift examples, the UAV trajectory is set to be the

result obtained by the proposed scheme. The upper bound for the weighted sum BER problem is

given by the solution to

max
∀k

{
log2

(
1 +

LP (ck,1 + ck,3) β0

σ2(Hu −Hs)
α1

)}
. (52)

It is observed from Fig. 7 that our proposed algorithm substantially outperforms the other methods

in terms of average weighted sum utility value. This is expected since an optimized UAV trajectory

can establish better channel conditions for the IRS, which significantly increases IRS’s SNR. In

addition, by adjusting the IRS phase shifts to align the cascaded AoA and AoD with the UAV-BS

link, i.e., as shown in Theorem 2, the SNR of the UAV-IRS-BS link will be significantly increased.

In Fig. 8, we study the average weighted sum utility value versus the number of IRS reflecting

elements M . The performance gain of the proposed approach and the circular trajectory increases

with M , since more reflecting elements help achieve higher passive beamforming gain. In addition,

our proposed approach outperforms the circular trajectory by leveraging the UAV mobility. Clearly,

the IRS has a significant impact on the system performance, and the IRS phase shifts must be

finely tuned in the system design.

B. Fairness BER Optimization
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Fig. 9. Convergence behaviour of Algorithm 2.
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Fig. 11. Optimized UAV speed for T = 40 s.

This subsection evaluates the performance of Algorithm 2 for the fairness BER problem (24).

The initial setup for the fairness BER problem simulations are the same as those used for evaluating

the weighted sum BER approach discussed above. Fig. 9 shows the penalty violation ξ in (51) and

the convergence behavior of Algorithm 2 under different periods T . It can be seen from Fig. 9(a)

that ξ converges very fast with the value decreasing to 10−10 after 34 iterations for T = 20 s. Even

when T = 40 s, the constraint is eventually satisfied within the predefined accuracy (i.e., 10−10)

by 34 iterations, which indicates that the proposed penalty-based algorithm can effectively tackle

the binary scheduling constraints. In addition, in Fig. 9(b), we plot the fairness utility value versus

the number of outer layer iterations. We see that the fairness utility value increases quickly with

the number of outer layer iterations for both the T = 20 s and T = 40 s cases, and convergence

to a fraction of the final value is achieved only 4 iterations.

In Fig. 10, the optimized trajectories obtained by Algorithm 2 for T = 20 s and T = 40 s are

plotted. As T increases, the UAV exploits its mobility to adaptively enlarge and adjust its trajectory

to move closer to each IRS. When T becomes sufficiently large, i.e., T = 40 s, the UAV is able to

sequentially visit all the IRS and stay stationary above each of them for a certain amount of time.

This is expected since when the distance between the UAV and IRS is small, the length of the

double channel fading propagation, i.e., the UAV-IRS-BS link, will be reduced, thus improving the

IRS transmission SNR. To see this more clearly, Fig. 11 plots the UAV speed for the case when

T = 40 s. We see that the UAV flies either with maximum or zero speed, indicating that the UAV

flies with maximum UAV speed to move closer to the IRS, and then remains stationary above it as

soon as possible. Additionally, we observe in Fig. 12 that the IRS sequentially communicates with

each UAV to experience better channel conditions, and the scheduling results are indeed binary,



25

0 50 100 150 200 250 300 350 400

Time slot n

0

1

IR
S

 s
c
h

e
d

u
lin

g

IRS 1

IRS 2

IRS 3

IRS 4

IRS 5

Fig. 12. Optimized IRS scheduling for T = 40s.

10 15 20 25 30 35 40

Time T (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

F
a

ir
n

e
s
s
 u

ti
lit

y
 v

a
lu

e

Upper bound

Proposed scheme

Fixed IRS shift, /2

Fixed IRS shift, 

Circular trajectory

Fig. 13. Average fairness utility value versus period T .

which demonstrates that the constraints in (42) and (43) are satisfied by the proposed Algorithm 2.

In Fig. 13, we study the average fairness utility value versus period T for our proposed scheme

compared with the same benchmarks as those considered for the weighted sum BER problem in

Fig. 7. Fig. 13 shows that the fairness utility value for the circular trajectory is constant regardless

of the period T due to the time-invariant air-to-ground channels. In contrast, the fairness utility

value achieved by the proposed scheme increases with T , which further demonstrates the benefits

of leveraging the UAV mobility. The calculation of the upper bound for the fairness BER problem

is different from that for the weighted sum BER problem. When T is sufficiently large, it can

be assumed that the amount of time each IRS served is equal. As for the case when the UAV

hovers above the IRS, an upper bound for the fairness BER problem can be obtained by solving

the following problem

max
xk≥0,Rupper

Rupper (53a)

s.t. xklog2

(
1 +

LP (ck,1 + ck,3) β0

σ2(Hu −Hs)
α1

)
≥ Rupper,∀k, (53b)

K∑
k=1

xk = 1, (53c)

where the term log2

(
1 +

LP(ck,1+ck,3)β0
σ2(Hu−Hs)α1

)
represents the achievable rate for the IRS when the

UAV is directly above IRS k, and xk denotes the travel time ratio for IRS k. Problem (53) is a

linear optimization problem, and thus can be easily solved by the interior point method.

In Fig. 14, the average fairness utility value versus the number of IRS reflecting elements

is studied. We see that the performance gain of the proposed scheme increases as the number
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Fig. 14. Average fairness utility value versus the number of IRS reflecting elements.

of IRS reflecting elements increases, since more reflecting elements help achieve higher passive

beamforming gain. In addition, the performance of the fixed IRS phase shift scheme is very poor,

and the average fairness utility value nearly approaches zero due to the unaligned angles of the

UAB-IRS-BS and UAV-BS links, which implies that the IRS phase shift must be carefully tuned.

VI. CONCLUSION

In this paper, we studied a UAV-assisted IRS symbiotic radio system. We exploited the UAV

mobility to maximize the data information transferred from several IRSs to a given BS. We first

studied a weighted sum BER minimization problem by jointly optimizing the UAV trajectory, IRS

phase shifts, and IRS scheduling, and proposed a low-complexity relaxation-based method to solve

it. We proved that the solution to the relaxed problem provides binary scheduling results, and hence

no additional operation is needed to enforce this constraint. We then considered fairness among the

IRSs, and developed a fairness BER optimization problem. To handle the resulting mixed integer

non-convex problem, we transformed the binary constraints into an equivalent set of equality

constraints, and proposed a penalty-based method to address the constraints. The effectiveness of

this approach was justified by the numerical simulations. Simulation results demonstrated that the

system performance can be significantly improved by optimizing the UAV trajectory as well as

the IRS phase shifts.
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APPENDIX A

PROOF OF THEOREM 1

To show Theorem 1, we first define the function f (z) = log2 (1 + z) , z ≥ 0. It can be readily

checked that f(z) is concave with respect to z. Thus, based on Jensen’s inequality [49], we have

E {f (z)} ≤ log2 (1 + E {z}). Therefore, the following inequality holds

E
{
R̄u,k [n]

}
≤ρlog2

1 +
PE

{∣∣h3 [n] + hH2,k [n] Θk [n] h1,k [n]
∣∣2}

σ2

+

(1− ρ) log2

(
1 +

PE
{
|h3 [n]|2

}
σ2

)
. (54)

Since the small-scale fading channel coefficients hNLoS
3 [n], hNLoS

1,k [n], and hNLoS
2,k [n] are independent

of each other, we can obtain

E
{∣∣h3 [n] + hH2,k [n] Θk [n] h1,k [n]

∣∣2} =

|x0,k [n]|2 + E
{
|x1,k [n]|2

}
+ E

{
|x2,k [n]|2

}
+ E

{
|x3,k [n]|2

}
+ E

{
|x4,k [n]|2

}
, (55)

where x0,k [n] =
√

K3β3[n]
K3+1

hLoS
3 [n] +

√
K1K2β1,k[n]β2,k
(K1+1)(K2+1)

(
hLoS

2,k [n]
)H

Φk [n] hLoS
1,k [n],

x1,k [n] =
√

β3[n]
K3+1

hNLoS
3 [n], x2,k [n] =

√
K1β1,k[n]β2,k

(K1+1)(K2+1)

(
hNLoS

2,k [n]
)H

Φk [n] hLoS
1,k [n],

x3,k [n] =
√

K2β1,k[n]β2,k
(K1+1)(K2+1)

(
hLoS

2,k [n]
)H

Φk [n] hNLoS
1,k [n], and

x4,k [n] =
√

β1,k[n]β2,k
(K1+1)(K2+1)

(
hNLoS

2,k [n]
)H

Φk [n, l] hNLoS
1,k [n]. We first calculate

E
{
|x2,k [n]|2

}
=

K1β1,k [n] β2,k

(K1 + 1) (K2 + 1)

(
hLoS

1,k [n]
)H

(Φk [n])HE
{

hNLoS
2,k [n]

(
hNLoS

2,k [n]
)H}

Φk [n] hLoS
1,k [n]

(a)
=

K1Mβ1,k [n] β2,k

(K1 + 1) (K2 + 1)
, (56)

where (a) holds since E
{

hNLoS
2,k [n]

(
hNLoS

2,k [n]
)H}

= IM , (Φk [n])HΦk [n] = IM , and(
hLoS

1,k [n]
)H

hLoS
1,k [n] = M . We can obtain the remaining terms as follows:

E
{
|x1,k [n]|2

}
=
β3 [n]

K3 + 1
,E
{
|x3,k [n]|2

}
=
K2Mβ1,k [n] β2,k

(K1 + 1) (K2 + 1)
,E
{
|x4,k [n]|2

}
=

Mβ1,k [n] β2,k

(K1 + 1) (K2 + 1)
.

(57)

In addition, we have E
{
|h3 [n]|2

}
= β3 [n]. Combining all of the above results, we can directly

arrive at (21).
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APPENDIX B

PROOF OF THEOREM 2

Here we derive a closed-form solution for the IRS phase shifts that maximize the primary rate
expression R̂u,k[n] in (21). We have the following inequality

|x0,k [n]| =

∣∣∣∣∣∣
√
K3β3 [n]

K3 + 1
hLoS3 [n] +

√
K1K2β1,k [n]β2,k
(K1 + 1) (K2 + 1)

(
hLoS
2,k [n]

)H
Φk [n]h

LoS
1,k [n]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
√
K3β3 [n]

K3 + 1
exp

(
−j 2πd3 [n]

λ

)
+

√
K1K2β1,k [n]β2,k
(K1 + 1) (K2 + 1)

exp

(
−j 2π (d1,k [n]− d2,k)

λ

)
M∑

m=1

exp

(
j

(
2πd (cosφ2,k − cosφ1,k [n]) (m− 1)

λ
+ θk,m [n]

))∣∣∣∣∣
(a)

≤

∣∣∣∣∣∣
√
K3β3 [n]

K3 + 1
exp

(
−j 2πd3 [n]

λ

)∣∣∣∣∣∣+
∣∣∣∣∣
√
K1K2β1,k [n]β2,k
(K1 + 1) (K2 + 1)

exp

(
−j 2π (d1,k [n]− d2,k)

λ

)

×
M∑

m=1

exp

(
j

(
2πd (cosφ2,k − cosφ1,k [n]) (m− 1)

λ
+ θk,m [n]

))∣∣∣∣∣ , (58)

where (a) is due to the triangle inequality, which holds with equality if and only if −j 2πd3[n]
λ

=

−j 2π(d1,k[n]−d2,k)
λ

+ j
2πd(cosφ2,k−cosφ1,k[n])(m−1)

λ
+ θk,m [n], ∀m. This indicates that the mth phase

shift at IRS k should be tuned such that the phase of the signal that passes through the UAV-IRS

and IRS-BS links is aligned with that of the signal over the UAV-BS direct link to achieve coherent

signal combining at the BS. Thus, we can obtain the closed-form IRS phase shift expression in

(25). In addition, it can be easily checked that θopt
k,m [n] in (25) is also the optimal solution that

maximizes the IRS reflecting rate in (22). This completes the proof of Theorem 2.

APPENDIX C

PROOF OF THEOREM 3

It can be readily verified that problem (32) satisfies Slater’s condition, and thus strong duality

holds and its optimal solution can be obtained by solving its dual problem [49]. Specifically, we

first introduce the dual variables {λ[n] ≥ 0} associated with the primary rate constraints (30b),

and derive the partial Lagrangian of problem (32) as follows

L (ak [n] , λ [n]) =
K∑
k=1

wk

N∑
n=1

ak [n]F (γk [n]) +
N∑
n=1

λ [n]

(
K∑
k=1

ak [n]Ru,k [n]−Rth

)

=
N∑
n=1

(
K∑
k=1

(wkF (γk [n]) + λ [n]Ru,k [n]) ak [n]− λ [n]Rth

)
. (59)
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The Lagrange dual function of (32) is defined as

g (λ [n]) = max
ak[n]
L (ak [n] , λ [n]) (60a)

s.t. (8), (31). (60b)

It can be seen that the dual function (60) can be divided into N subproblems that can be solved

in parallel. The n′-th subproblem of (60) can be written as

max
ak[n′]

K∑
k=1

(wkF (γk [n′]) + λ [n′]Ru,k [n′]) ak [n′]− λ [n′]Rth (61a)

s.t. 0 ≤ ak [n′] ≤ 1,∀k, (61b)

K∑
k=1

ak [n′] ≤ 1. (61c)

It can be easily derived that the optimal solution aopt
k [n′] that maximizes (61) is either aopt

k′ [n′] =

1 or aopt
k [n′] = 0 for k 6= k, where subscript k′ corresponds to the index that maximizes

wkF (γk [n′]) + λ [n′]Ru,k [n′] among all k ∈ {1, . . . , K}. This also holds for the case that there

are more than two IRS that have the same maximum value of wkF (γk [n′]) + λ [n′]Ru,k [n′] among

all k ∈ {1, . . . , K}. This thus completes the proof of Theorem 3.
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