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LONGITUDINAL ANALYSIS OF PATIENT-REPORTED OUTCOMES IN CLINICAL
TRIALS: APPLICATIONS OF MULTILEVEL AND MULTIDIMENSIONAL ITEM
RESPONSE THEORY

L1 CaAl
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VECTOR PSYCHOMETRIC GROUP, LLC

CARRIE R. HoOUTS

VECTOR PSYCHOMETRIC GROUP, LLC

With decades of advance research and recent developments in the drug and medical device regulatory
approval process, patient-reported outcomes (PROs) are becoming increasingly important in clinical trials.
While clinical trial analyses typically treat scores from PROs as observed variables, the potential to use
latent variable models when analyzing patient responses in clinical trial data presents novel opportunities
for both psychometrics and regulatory science. An accessible overview of analyses commonly used to
analyze longitudinal trial data and statistical models familiar in both psychometrics and biometrics, such
as growth models, multilevel models, and latent variable models, is provided to call attention to connections
and common themes among these models that have found use across many research areas. Additionally,
examples using empirical data from a randomized clinical trial provide concrete demonstrations of the
implementation of these models. The increasing availability of high-quality, psychometrically rigorous
assessment instruments in clinical trials, of which the Patient-Reported Outcomes Measurement Informa-
tion System (PROMIS®) is a prominent example, provides rare possibilities for psychometrics to help
improve the statistical tools used in regulatory science.

Key words: item response theory, multilevel modeling, growth modeling.

1. Introduction

After years of research and continued investment, patient-reported outcomes (PROs) have
emerged as important outcomes in clinical research and studies, especially as regulators, such as
the US Food and Drug Administration (FDA), are increasingly focused on ensuring that patient-
centered outcomes are used in clinical trials to evaluate the usefulness of drugs and medical
devices (e.g., FDA, 2020). The National Institutes of Health (NIH)’s Patient-Reported Outcomes
Measurement Information System (PROMIS®) initiative (NIH, n.d.) and the resulting measures
have begun impacting clinical trial design and data analysis. Furthermore, there is increasing
use of PROs in observational studies. A search using keywords that include “patient reported
outcomes” and “observational studies” on PubMed.gov returns a 53-fold increase in the number
of relevant articles from 2000 to 2019. The proliferation of PROs also brings interesting statistical
modeling challenges and opportunities for readers of Psychometrika, particularly because of
the penetration of item response theory (IRT) in PRO development and applications, together
with typical clinical trial design features such as patient recruitment in multiple sites, use of
randomization, and multiple follow-ups.
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The typical use of PROs in a clinical trial involves the calculation of individual patients’
scores on the PRO measurement instrument. Traditionally, these are often summed scores. That
has changed since PROMIS was developed. The rigorous psychometric work that has gone into
the development of the PROMIS family of measures offers researchers the possibility of obtaining
response pattern-based IRT-scaled scores (e.g., expected a posteriori [EAP] scores) using item
parameters calibrated in large, representative national samples. For convenience, PROMIS has also
provided summed score to EAP conversion tables to mimic full response pattern scoring, provided
that all items for a given individual have no missing responses. Those pre-calculated scores then
serve as the dependent variable, and important information such as treatment assignment and
other variables of interest is entered into the model on the predictor side. Regardless of how the
scores are obtained (summed, response pattern, summed-to-EAP conversion), a typical clinical
trial analysis of such PRO data involves the examination of changes (between Baseline and
end of treatment, or other follow-up periods) by randomized treatment assignment, and/or via
the modeling of the outcomes directly with a general or generalized linear (or mixed) model,
controlling for other covariates. In brief, the standard approach involves (1) psychometrically
derived and scored outcomes and (2) the modeling of those outcome variables using standard
statistical models. Importantly, the two parts are distinct, procedurally and often organizationally,
with data management teams and biostatisticians handling each part (score derivation and analysis)
separately.

In our view, however, the treatment of PROMIS scores as yet another set of observed vari-
ables fed into the tried-and-true regression models developed for single-variable, routine clinical
trial outcomes such as heart rate, blood pressure, and other biological markers, discards many
interesting and informative methods that could be applied to examine treatment effectiveness
in a broad, multilevel, and multidimensional IRT modeling framework. First, unlike biological
or physiological measures, the PROMIS measures are psychometrically validated, multi-item
instruments. The calibrated item parameters, along with the built-in linking ability of the IRT
models, provide crucial reference points with which comparability between and within studies
can be achieved, thereby substantially improving cumulative science and replication. Second,
while IRT can handle measurement error and improve precision, its benefit is maximized if the
model simultaneously includes the necessary regression model parameters to take into account
clinical trial design. This is a well-known statistical consideration, going as far back as Lind-
ley and Smith (1972), at a minimum, who distinguished between unconditional and conditional
exchangeability in Bayesian analysis. Similar ideas have also been applied in the large-scale edu-
cational assessment field (Mislevy, 1991), where latent regression models with multidimensional
IRT on the outcome side of the regression equation have, for decades, supported unbiased popu-
lation inference in assessment programs such as the National Assessment of Education Progress
(NAEP). Such latent regression models assume the existence of calibrated items that can define
the location and scale of the student achievement/proficiency variables of interest, akin to the
calibrated PROMIS item banks. Mislevy et al. (1992) noted the paradoxical result that seriously
biased population inference can result even from individually optimal latent proficiency estimates
(such as IRT scaled scores), with the same paradox also arising in the estimation of change (p.
137). The IRT calibration can of course be included in a joint estimation approach along with
the estimation of population /regression parameters, but the benefit of leaving IRT-based item
calibration as a separate step is substantial simplicity of procedure and the possibility of leverag-
ing results from existing large-sample calibrations to randomized or quasi-experimental studies
having much smaller N-count. Therefore, if individual scores are never produced and marginal
inference procedures such as the approach advocated here are adopted, one can obtain consistent
estimates of population characteristics even when the sample size in the analysis may not fully
support the simultaneous estimation of all item parameters and latent regression parameters.
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TABLE 1.
PROMIS short form V.1.0-sleep disturbance 8a T-scores descriptive statistics by treatment group and visit.

Treatment group Baseline Follow-up 1 Follow-up 2
n M (SD) n M (SD) n M (SD)
Placebo 137 60.81 (8.56) 133 55.08 (8.46) 126 53.02 (9.20)

Treatment group 112 61.79 (7.97) 107 50.88 (10.60) 103 48.54 (10.66)

Third, over the past decade or more, multidimensional and multilevel IRT models have
developed to such an extent, including its statistical theory and software readiness, that typical
research questions in clinical trial settings can be implemented directly within multilevel and
multidimensional IRT. Finally, the proposed integrative analytical approach combines methods
popular in psychometrics, largely out of discrete multivariate analysis, with methods popular in
biometrics, largely out of generalized linear and mixed effects modeling. The intersection of these
two often-disparate fields potentially yields more flexible and powerful methods to understand
treatment effectiveness in randomized controlled trials (see, e.g., Cai et al., 2016).

The main purpose of the current work is to demonstrate empirically practicable latent variable
analyses that may be informative for understanding change over time in PRO data from clinical
trials. In the process of this modeling exploration, we will highlight connections between various
models and, in the analysis section, provide practical demonstrations of models and relationships
and equivalences among methods previously described (e.g., Bock & Bargmann, 1966; Cai et al.,
2016; Curran et al., 2008; Curran, 2003; Embretson, 1991; MacCallum et al., 1997; McArdle,
2009; Paek et al., 2014).

2. The Motivating Data Set

The data analyzed stems from a previously completed phase-2 clinical trial. The data were col-
lected from a multicenter, individually randomized, double-blind, placebo-controlled study. The
specific disease area and compound are withheld as the full trial results have not yet been made
public. Participants were randomly assigned to either the placebo or active treatment condition.

Sleep disturbance (SlpDist), though not the primary endpoint, was measured and studied
here, given the known significant relation between the disease of interest and sleep issues. The
PROMIS Short Form V.1.0-Sleep Disturbance 8a (Yu et al., 2011), an 8-item self-report measure,
was used in the trial. All items use a 7-day recall period and are answered using a 5-category
ordinal response scale (1: Very poor/ Not at all, to 5: Very good/Very much, depending on item
content). In the current analyses, item responses from assessments at three visits will be analyzed:
Baseline, Follow-up 1, and Follow-up 2 (end of treatment). The total baseline sample size for this
study is 249. One participant does not have baseline data to analyze, but is present in the follow-up
data, making the unique number of cases 250. We elected to include the particular case because
all models described here can handle missing observations. The PROMIS Short Form V.1.0-
Sleep Disturbance 8a scores are derived from item parameters based on large, national calibration
samples. The scores are reported on the PROMIS T'-score metric, which has a population mean
of 50 and standard deviation (SD) of 10; to add in score interpretation, it is useful to know that
in the SlpDist item bank, the sample used to calibrate the items was a mixture of participants
from the US general population and a clinical sample (Buysse et al., 2010). Basic descriptive
information of the PROMIS Short Form V.1.0-Sleep Disturbance 8a scores T-scores (found by
conversion from summed scores) by treatment assignment and visit is reported in Table 1 and
Fig. 1; no individual assessment had item-level missingness, making these values acceptable to
use.
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3. Notation and Models

The notation and models described here are simplified version of Cai et al.’s (2016) general
multilevel multidimensional item response theory framework, but without much of their added
complexities due to the presence of discrete latent variables to accommodate diagnostic classi-
fication models (e.g., von Davier & Lee, 2019) in their framework. We will first examine the
latent structural models, including the specification of regression parameters, before adding the
nonlinear link functions of IRT to complete the specification of measurement models. Finally, the
structural and measurement models will be combined with the help of the conditional indepen-
dence assumption.

In a non-trivial manner, the models presented here draw their inspirations from how NAEP
dealt with the challenge of unbiased aggregated population inference by combining measurement
error-prone individual-level item response data with background covariates in a regression model,
wherein the outcome variables are latent (e.g., Mislevy et al., 1992). Interested readers are referred
to the special issue edited by Cai (2019) for further details. The main differences are trifold. First,
NAEP conducts its own item calibration before using the item parameter estimates in the latent
variable regression, whereas PROMIS measures arrive already IRT-calibrated. This is convenient
for clinical researchers because not all clinical trials have the sample size needed for stable IRT
model calibration. Second, NAEP does not emphasize the interpretation of the latent regression
parameters, but in our analysis, those parameters are critical. Third, the NAEP machinery aims at
producing institutionally generated multiple imputations in the form of plausible values so that
researchers external to NAEP could model the data on their own. Schofield et al. (2015) con-
tain more discussions on the use of NAEP-provided scores. In contrast, our models emphasize
likelihood-based inference for regression coefficients and variance components that carry sub-
stantive meaning, just as in the application of a standard regression analysis, mixed models, or
growth curve models for clinical trial data.

3.1. The Latent Structural Model

3.1.1. Backto Basics  Consider the situation where 7;, represents a latent outcome variable of
interest (e.g., depression, physical functioning, or sleep disturbance). The subscripts indicate that
this is a value from site i, individual j = 1, ... J; inthatsite, and at occasiont = 1, ..., T. For the
moment, let us omit the site subscript (to be added back in Sect. 3.1.3). With this simplification,
for individual j, the following multivariate regression model should be a familiar sight:

nj1
nje | =n; =Bx; + €, (1)
n;r

where x; is a vector of fixed predictor values (e.g., dummy variables coding the cells of the
experimental design), B contains the matrix of regression coefficients, and €; is the error term
with mean 0 and a typically unstructured covariance matrix.

When the observations are fully stacked, as is typical in a multivariate regression model, sta-
tistical modelers of repeated-measures data should immediately recognize Eq. (1) as synonymous
to the multivariate linear model used in the multivariate approach to repeated-measures ANOVA
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v, [=H=xB+E @

where X is the design matrix, and the rows of E are assumed independent. When all values in H
are observable quantities, the linear least squares fitting of the model in Eq. (2) to data require
minimal assumptions or computational effort. With the additional (matrix) Gaussian distribution
assumptions on the error term E, classical hypothesis testing of various between- and within-
subject effects is routinely available (see, e.g., Mardia et al., 1979).

3.1.2. Adding Random Effects  Unfortunately, in our setting, where elements of H are latent,
this classical multivariate analysis of variance model is not directly applicable. Furthermore,
the advent of powerful linear mixed effects models (also called multilevel or hierarchical linear
models) as well as software packages afford the modeler increased flexibility over traditional
linear models (e.g., Searle et al., 1992). We now briefly return to the univariate case and choose to
model the outcome 7 j; using a combination of fixed and random effects, realizing that the random
effects are latent variables after all (e.g., Bauer, 2003; Curran, 2003).

The concept and notation popularized by Raudenbush and Bryk’s (2002) hierarchical linear
modeling textbook may be particularly useful here: individuals may have different initial status
and may also have different rates of change. Both may be randomly varying over a population
of individuals. To model the effect of time, a simple linear time code can be inserted into the
model as x(#) = ¢ — 1, though more complex variants exist (see, e.g., MacCallum et al., 1997
and references therein). The random intercept coefficient 6y ; represents the individual variability
in outcomes at baseline, and 61 ; is the random slope coefficient:

njr =00 +01;x() + €j;. 3)

When there are no explanatory variables for the random coefficients, we have an “uncondi-
tional” model, which may be expressed more compactly in matrix notation as

nj1 10 B €1 90j+091j+€j1
njz2 | =n;=|11 <61]->+ €2 | =106+ 161 +¢€; |, “®
nj3 12 ! €j3 Ooj +261; +€j3

Equation (4) makes it apparent that the model may be reformulated as a latent curve model
(Meredith & Tisak, 1990), following a long tradition in psychometrics. The reader is referred to
Bollen and Curran (2006) for a comprehensive treatment of this subject, as well as the equivalence
between the latent curve model and mixed models for repeated-measures data.

The random coefficients 6p; and 6;; may be regressed on design variables and covariates.
Consider the case of a single predictor x;, e.g., the treatment assignment indicator, the pair of
regression equations becomes:

toj = Boo + Bo1xj+vo;
01j = Bio + Buxj+yy;, (5)
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where the s are the fixed effect regression coefficients, and y’s are the random effects. Substi-
tuting Eq. (5) into (3) and collecting terms leave us with yet another familiar sight, namely the
linear mixed model for longitudinal data with so-called cross-level interactions

njte = Poo +x (t) Bro + x;Bo1 + Brixjx (1) + yo; +x (&) yij + €s- (6)

In our motivating example with 3 measurement occasions and two treatment groups, we see that
Eqg. (6) can be written more compactly in matrix form as

njt 10x; 0 go‘) 10 _ €1
nja | =n; = I1x; xj ,3(1)(1) +111 (Z?])—i- €2 |, @)
n;3 12x]' 2XJ' ,311 1 4 €53
or more generally
nj=X;B+Zjy;+e;, )

where X ; and Z are the fixed and random effects design matrix, respectively, y ; contains the
latent variables or random effects that are typically assumed to be jointly normally distributed
with zero means and a positive definite covariance matrix G, and the error term € ; is uncorrelated
with the random effects, with covariance matrix R. The variance components associated with the
two random effects indicate individual variability around those fixed effects, and their covariance
indicates whether the rates of change are correlated with the initial status. The implied covariance
matrix of y j isZ;,GZ " +R, which is factor-analytic in nature.

Had the 7;,’s been fully observed, fitting the mixed model (or latent curve model) in Eq. (8)
is now routine. A variant of Eq. (8) with an empty random effect design matrix G but a fully
unstructured covariance matrix for the error term R is equivalent to the multivariate regression
model in Eq. (2). This equivalence is important to note because it enables us to walk back-and-
forth between the univariate and the multivariate approach to longitudinal data modeling and
permits more versatile model specifications.

3.1.3. Multilevel and Multivariate Simultaneously =~ Recall that we omitted the site index i ear-
lier. Figure 2 provides a graphical depiction of the nesting of patients within sites and repeated
measurements within patients; the individuals recruited from the same site tend to be more corre-
lated than across sites due to this nesting. Using the study described in Sect. 2 as context, we may
wish to include additional latent variables (random effects) varying at the level of sites to handle
the lack of independence, such as by the addition of a site-specific random intercept. Returning
to the multivariate setup where occasions are represented as additional variables, we now bor-
row instead from the notation used in the multilevel structural equation modeling literature (e.g.,
Muthén, 1994) and decompose ; j into a between-site random intercept (6;) and a within-site
component (6;;).

Nij1 0; + 0;j1
Nijt =10 = 0 +0;;=1 6 +0ij; |, 9)

nijT i + Oijr



LI CAIL, CARRIE R. HOUTS 761

Site i
Subject Subject Subject
(i,1) (i.J) (i,J)
Time .. Time .. Time Time . Time .. Time Time .. Time .. Time
(i,1,1) (i1, (i,1,T) (i.j,1) (ij, t) (i4,T) (i),1) (iJ, t) (i,),7)
FIGURE 2.

Graphical depiction of nesting seen in clinical trial patient data

In this model, the variance component related to 6; indicates the extent to which there is extra site-
level correlations. Obviously more complex site-level random effects may be specified. The ;;
latent variables effectively become deviations from the site-level intercept, with their covariance
matrix representing correlations in the longitudinal data, and the estimates of their means show
trends over time. Equation (9) forms the core of the primary tier of latent variables in Cai’s
(2010a) two-tier item factor analysis model for longitudinal item response data, but also extends
it by adding latent variables to account for another level of nesting.

Equation (9) is not the only possible model that one can choose. One can adopt an alterna-
tive parameterization that draws its inspirations from the growth models laid out by Bock and
Bargmann (1966), Embretson (1991), and McArdle (2009), wherein each subsequent occasion is
represented by a uncorrelated latent difference:

nij1 0 + 6ij1
nijr | =mij = | 0 +6ij1 + - +biji . (10)
nijT 0i + OijT + -+ 6ijt + -+ Oij7

A favorable aspect of the specification in Eq. (10) is that the occasion-specific effects 6;;, are
already latent change scores, with estimable means and variances, and the site random effect is
interpretable as the site-level variation at time point.

As far as the predictors are concerned, regardless of the model specification, we may regress
0;; on individual-level predictor values contained in a vector x;;

0;j =Bx;; +€;j, (11
and the site random effect ; on site-level predictors x;

6, =x,B+e¢. (12)
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Rather than using observed change scores, regressing the latent differences in Eq. (10) on
appropriately coded predictors leads to coefficients that have clear meaning. For example, the
regression of 6;;, on the treatment assignment indicator x; (assumed to be a dummy coded vari-
able) leads to the contrast between how much the active treatment and placebo groups changed in
the outcome of interest from the prior occasion to occasion ¢, while holding site-level initial differ-
ences constant. This is effectively a latent variable version of the familiar difference-in-differences
estimator widely used in econometrics for evaluating treatment effect in quasi-experimental stud-
ies (Imbens & Wooldridge, 2008).

3.2. Multidimensional IRT Measurement Models

With the latent structural models laid out as in Sect. 3.1, we are ready to discuss the IRT-based
measurement models. In principle, any multidimensional IRT model may be used, but because
PROMIS measures are routinely calibrated with the logistic version of the graded response model
(Samejima, 1969), which uses a cumulative logit link, we will focus on that model here. To handle
the fact that the item parameters are already available and that the items are typically repeatedly
administered to the patients in the clinical trial, we make two slight modifications.

In our setting, a graded response model for item k = 1,..., K possessing Cy ordered
categories may be expressed as the difference between two cumulative probabilities

P (Yijre = clnije. &) = P (Yijke = clnije. &) — P (Yijee = ¢ + Unijs, &) » (13)

where Y; i, denotes the item response at occasion ¢ to item k from individual j in site i, and
c=0,1,...,Cr — 1. The cumulative probabilities are as follows:

1
1 +exp [— (c,’gﬁ1 +agmije + Skék)]

P (Yijke = Unijr. &) =

1
1 + exp [— (C;ck,l +agnij + SkEk)]

P (Yijxe = Cr — Unmije, &) = (14)

Obviously P (Yijkt > 0Inijr. fk) =1land P (Y,-jkt > CrlInijes Ek) = 0 are required for consis-
tency.

As one can see, the first modification from the standard graded model lies in the addition of
an item-specific random effect &. This addition draws directly from Cai’s (2010a) two-tier item
factor model for longitudinal item analysis. The items are repeatedly administered, so the extra
dependence among the same item over time should be handled explicitly, or a violation of the
conditional independence assumption could result. It amounts to the residual correlations found
in latent curve models or in multilevel models for repeated-measures data. We shall assume the
&;’s to have zero means and unit variance. With the item slope of s on &, we can also understand
it to mean the item residual dependence variance component is s,%.

The second modification is more subtle. Instead of assuming the item parameters (cx’s and
ay’s) have to be estimated, PROMIS has already provided banked values of intercepts and item
discrimination values. We add a superscript of * to the item parameters to indicate that they are to
be fixed to PROMIS item bank values. This practice mimics that of the operational procedure in
NAEP, and it fully identifies the means and covariance matrices of the latent variables, particularly
those of 5. In other words, the regression models in Sect. 3.1 function almost as if the outcomes
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TABLE 2.
Unconditional random-intercept model applied to PROMIS Short Form V.1.0-Sleep disturbance 8a T-scores from the
PROMIS-provided summed score to EAP conversion table.

Parameter Est SE Z value p value

Covariance parameter estimates

Variance(intercept) 33.09 6.28 5.27 < 0.0001
Variance(slope) 12.01 3.27 3.68 < 0.0001
Covariance(intercept, slope) —-0.23 3.47 —-0.07 0.95
Residual 35.23 3.28 10.74 < 0.0001
Effect Num. DF Den. DF F value p value
Type 3 tests of fixed effects

Visit 1 238 220.22 < 0.0001
Treatment 1 228 0.04 0.84
Visit * treatment 1 228 13.92 < 0.001
Effect Est SE T value p value
Solution for fixed effects

Intercept 60.27 0.67 89.08 < 0.0001
Visit -3.97 0.47 —8.30 < 0.0001
Treatment (ref = placebo) 0.21 1.01 0.21 0.84
Visit * treatment —2.67 0.72 —-3.73 < 0.001

Est, estimate; SE, standard error; Num. DF, numerator degrees of freedom; Den. DF, denominator degrees
of freedom; Ref, reference group.

were observed, and we are back in the familiar territory of multivariate regression and analysis
of variance.

As is customary in multidimensional IRT, the item responses are assumed independent con-
ditional on all the latent variables and structural parameters in the model. Maximum marginal
likelihood parameter estimation would require numerically integrating the latent variables out
of the model and iterative optimization via an algorithm such as the expectation-maximization
(EM) algorithm (Bock & Aitkin, 1981; Dempster et al., 1977;). Two recent methods aid compu-
tational efficiency substantially. First, the item random effects satisfy Cai’s (2010a) two-tier item
factor patterns, so despite the potentially large number of items, the additional increase in the
dimensionality of integration is limited because dimension reduction techniques can be applied.
Second, with the increase in number of occasions, the size of # necessarily increases. Stochastic
optimization algorithms such the Metropolis—Hastings Robbins—Monro (MH-RM; Cai, 2010b,
2010c) algorithm will yield considerable computational savings.

4. Empirical Illustrations

4.1. Standard Approach

As mentioned earlier, one can score the PROMIS Short Form V.1.0-Sleep Disturbance 8a with
the original T -score conversion table. Such scores may be used as the outcome variable in a linear
mixed model. We used SAS 9.4’s PROC MIXED to fit a standard random intercept, random slope
growth model to the data, conditional on treatment group. Results of this analysis are presented
in Table 2; a brief review finds that in addition to significant variability in intercepts and slopes
across individuals, the visit, and the treatment by visit interaction were all statistically significant.
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As noted, however, we believe that much more interesting and useful results can leverage the
psychometric work that has gone into calibrating PROMIS tools and we will also fit the data with
several latent variable models previously described.

4.2. Latent Variable Models

All latent variable models were fit in flexMIRT®3.62 (Cai, 2020) using either the Bock-
Aikin EM (BAEM; Bock & Aitkin, 1981) or the MH-RM algorithm (Cai, 2010b, 2010c). When
a model was estimated with BAEM, standard errors (SEs) were estimated via the Richardson
extrapolation method (e.g., Jamshidian & Jennrich, 2000). When a model was estimated with
MH-RM, SEs were estimated recursively (e.g., Cai, 2010b). For all the reported models, the
logistic graded response model (Samejima, 1969) item parameters for the PROMIS Short Form
V.1.0-Sleep Disturbance 8a items were treated as fixed parameters, set at the values specified in
the item bank.! The prior psychometric validation work conducted by the PROMIS team allows
us to make additional assumptions of measurement invariance over groups and time, in turn
allowing for the statistical modeling to focus on studying change in the latent variables over time,
and how best to associate and explain such change with available variables (such as treatment
assignment). Full flexMIRT®syntax and output files for all reported models are available in the
online supplemental materials.

4.2.1. An Unconditional Latent Curve/Multilevel Model  The first and most obvious model that
comes to mind when discussing change in the latent variable framework is the latent curve model
(e.g., Meredith & Tisak, 1990) as specified in Eq. (4). Figure 3 provides a graphical representation
of such a model. For this model, our data set is structured in the typical “wide” format, in which
each observation is a unique individual and individual items at each time point are in columns
(Fig. 4a). In the model, the latent growth model is specified as having five dimensions/factors.
The first two will be used to define the Intercept (6p) and Slope (6) latent variables (similar to
Fig. 3). The remaining three (€1, €2, €3) are timepoint-specific factors, used to address residual
variability remaining between the PROMIS Short Form V.1.0-Sleep Disturbance 8aitems within
each timepoint, with only items from a given timepoint loading on a specific factor. In this simple
model, we omit the item-specific random effect & for the ease of illustration. An important point
to note is that the Intercept and Slope latent variables are in fact “general” dimensions in a two-tier
model setup, with the residual terms (€, €2, €3) group/specific dimensions as in a bifactor (e.g.,
Gibbons & Hedeker, 1992) or, more generally, a two-tier model. With the item parameters set at
the PROMIS banked values, we also freely estimate the means of Intercept and Slope factors, as
well as their variances and covariance. These estimates (top half of Table 3) characterize the study
sample relative to the PROMIS scale-setting population for the specific outcome of interest.

To illustrate that the equivalence between latent curve and multilevel growth models continues
to hold even in a setting where the outcome variable is also latent, we now reparameterize the
five-factor single-level IRT model into a three-factor multilevel IRT model, in which two of the
factors are at Level-2 (“between”) and represent the Intercept and Slope random effects and the
third factor is at Level-1. To fit this model, however, we need to restructure the data from “wide”
format to what we refer to as a “block” format (Fig. 4b), in which each subject is represented in
the dataset as many time as there are timepoints (in our case three), and while all observations
have columns for all items by visit, observed responses for a given timepoint are only present on
the rows associated with that timepoint. Restructuring the data in this way allows us to, in essence,
collapse the three time-specific factors used in the single-level model so they are represented on
a single factor.

1 (Sleep Disturbance_Sleep Related Impairment V1.0 banks.xIsx) dated 3-17-2015.
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Intercept Slope
B0 e1
1
g 1 1 2 2
T1.V8 T2.V1 T2.V8 T3.V1l T3.V8

Jof

Note. T1.V1 —T3.V8 are observed item responses. &) - €5 are specific latent factors for

Timepoints 1-3, respectively

FIGURE 3.
Structural model of a generic latent growth curve with three timepoints.

As with the first parameterization, the item parameters have been fixed to PROMIS item bank
values and the only estimated parameters are the Level-2 latent variable means, variances, and
covariance (bottom half of Table 3). The model is estimated with the BAEM algorithm. As can be
seen from the observed estimated values, the single-level and multilevel model parameter point
estimates are exactly the same as are the negative 2 log-likelihood, AIC and BIC (not shown;
full results available in online supplemental materials), further demonstrating that these two are
equivalent parameterizations.

This observation of equivalence is important, even though it is a side note to the main line of
development in this paper, because it tells us that bifactor/testlet/ two-tier type of (single-level)
“hierarchical” item factor models have been multilevel IRT models all along. The “hierarchical”
factor pattern enables dimension reduction within a level. With the ability of modern IRT software
to handle both multilevel data and these “hierarchical” models at the same time, one can already fit
the multilayered models that Jeon et al. (2018) developed in a computationally efficient manner.

When parameterized as a single-level model, one benefit is that modern limited-information
fit statistics (e.g., Maydeu-Olivares & Joe, 2005) are immediately available. The statistics suggest
that the linear latent growth /multilevel model provided a very poor fit to the observed data (M5-
based RMSEA = 0.09). While some of the poor fit may be attributable to the reported models not
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Subject Baseline Baseline FU1 FU1 FU2 FU2
1D Item 1 Item 8 Item 1 Item 8 Item 1 Item 8
1 4 3 2 1 1 2
2 3 3 3 3 3 4
3 2 4 2 2 2 2
248 4 2 3 0 2 0
249 2 0 2 1 3 2
250 1 1 0 3 2 1
a. Wide structure for single-level IRT growth model
Subject Baseline Baseline FU 1 FUI FU2 FU2
ID Item 1 Item 8 Item 1 ... Item8 Tteml . Item 8
1 4 3 9 9 9 9 9 9
2 3 3 9 9 9 9 9 9
3 2 4 9 9 9 9 9 9
248 4 2 9 9 9 9 9 9
249 2 0 9 9 9 9 9 9
250 1 1 9 9 9 9 9 9
1 9 9 9 2 1 9 9 9
2 9 9 9 3 3 9 9 9
3 9 9 9 2 2 9 9 9
248 9 9 9 3 0 9 9 9
249 9 9 9 2 1 9 9 9
250 9 9 9 0 3 9 9 9
1 9 9 9 9 9 9 1 2
2 9 9 9 9 9 9 3 4
3 9 9 9 9 9 9 2 2
248 9 9 9 9 9 9 2 0
249 9 9 9 9 9 9 3 2
250 9 9 9 9 9 9 2 1

b. Block structure for two-level IRT growth model in which 9 indicates a missing value

Note. FU = Follow-up visit

including information about treatment assignment (which could be added), a larger issue with this
growth model is the assumption of linearity over time. As seen in Fig. 1, the observed PROMIS
Short Form V.1.0-Sleep Disturbance 8aT -scores are not decreasing at a constant rate over the
course of the trial. Rather, there is a noticeable decline in scores from Baseline to Follow-up 1
and then a less steep decline from Follow-up 1 to Follow-up 2. It is not unreasonable to assume
that the trends in the latent variables would follow a similar pattern, and this suggests that moving

FIGURE 4.
Data structures used in the latent variable model analyses.

to a model that does not assume linear change over the course of the trial would be wise.
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TABLE 3.
Single-level and multilevel latent variable growth model estimates.

Single-level growth model estimates
Parameter Intercept Slope Baseline residual Follow-up 1 residual Follow-up 2 residual

Mean (SE) 1.34 (0.07) —0.55 (0.05) 0(-) 0() 0(H)
Covariance matrix 0.15 (0.06)
0.07 (0.02) 0.05 (0.03)

0() 0(-) 1.00 (-)
0= 0= 0= 1.00 ()
00 0 0 0 1.00 ()
Multilevel growth model estimates
Intercept Slope Residual
Mean (SE) 1.34 (0.07) —0.55 (0.05) 0=

Covariance matrix 0.15 (0.06)
0.07 (0.02) 0.05 (0.03)
0= 0= 1 (=)

4.2.2. A Two-Tier Model  To address the concern regarding the assumption of linear change
over time, we move to a two-tier model (Cai, 2010a), which models our three timepoints as
individual factors and, per the suggestions of Paek et al. (2014), also includes specific factors
for each of the eight PROMIS Short Form V.1.0-Sleep Disturbance 8a items to account for the
residual dependence of responses to the same items over repeated visits. The basic form of this
model is presented graphically in Fig. 5, and the factor pattern matrix for such a model is presented
in Table 4. This model has a total of 11 (3 timepoint/general + 8 item/specific) dimensions, which
would typically be computationally impractical using the BAEM algorithm due to the so-called
curse of dimensionality. However, because of the dimension reduction capabilities of the two-tier
model (Cai, 2010a) when models conform to certain specifications (which this model does), the
total dimension of integration required to estimate this model with BAEM is 4, rather than 11.
The slope values for all 11 latent variables (both fixed and estimated parameters) are presented
in the top half of Table 5. The estimated latent variable means and covariance matrix values from
this model are presented in the top half of Table 6. The estimated latent variable means have
a ready interpretation (relative to a standard normal distribution [M = 0, SD = 1]), the latent
SlpDist scores derived from the PROMIS items are rather high at Baseline (almost 1.4 SDs
over the population mean), indicating significant sleep disturbance in the sample, and decrease
over the course of the trial. Standardizing the covariance values reported in the lower section of
Table 6, we find the correlation between the latent variable at Baseline and at Follow-up 1 is 0.39,
between Baseline and Follow-up 2 is 0.31, and between Follow-up 1 and Follow-up 2 is 0.85; this
supports the previously discussed issue with nonlinear change and highlights that the majority of
the change/improvement that occurs over the course of the trial happens between Baseline and
Follow-up 1 with patients’ SlpDist relatively more stable from Follow-up 1 to Follow-up 2.
While we were able to fit the two-tier model with BAEM under dimension reduction, the
four-dimensional integration is near the practical limit of what can be efficiently estimated using
this method. If additional timepoints were to be included in the model, BAEM would become
computationally burdensome. To estimate truly high-dimensional MIRT models, it is necessary
to switch to more recently developed estimation methods (e.g., Cai, 2010b, 2010c; Edwards,
2010) that eschew multidimensional numerical integration. However, these new algorithms are
less well-known and shrouded in more mystery. We hope to dispel some of the mystery here.
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TL.V1

T1.V8

T2.V8

T3.V8

Note. 01 - 013 are latent factors for Timepoints 1-3, respectively. 0s1 — Oss are specific dimensions to model dependence among the

same items given at multiple timepoints. T1.V1 — T3.V8 are observed item responses.

FIGURE 5.

Structural model diagram for a two-tier, longitudinal model with 3 timepoints and 8 items per timepoint.

TABLE 4.

Factor pattern matrix of the fitted two-tier latent variable model.

Item ID Baseline Follow-up 1 Follow-up 2 Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8

t1_iteml
tl_item?2
tl_item3
tl_item4
tl_item5
tl_item6
tl_item7
tl_item8
t2_iteml
t2_item2
t2_item3
t2_item4
t2_item5
t2_item6
t2_item7
t2_item8
t3_iteml
t3_item2
t3_item3
t3_item4
t3_item5
t3_item6
t3_item7
t3_item8

11
12
13
14
15
16
17
18

11
12
13
14
15
16
17
18

19

110
19

110
19

110

111
112
113
114
115
116
111
112
113
114
115
116
111
112
113
114
115
116

11-18 fixed at PROMIS calibration values. 19-116 freely estimated.
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In the lower half of Tables 5 and 6, we have re-estimated the same two-tier model with the
MH-RM algorithm. As one can see, both the point estimates and SEs of the estimated item and
group parameters are extremely similar across the two estimation methods. We run this replication
to provide further assurance that a stable solution is being obtained and that a more modern method
such as MH-RM does provide optimization results on par with the venerable BAEM algorithm.
Crucially, MH-RM takes about 10% of the time required for BAEM to reach convergence for
this 11-dimensional model. The largest differences across the two estimation methods are for the
estimated item-specific slope values for Item 3; in the BAEM results, this slope value appears
to poorly estimated (as evidenced by the larger SE) in any case. While producing comparable
maximum likelihood solutions, the move to newer estimation methods, as a key benefit in addition
to speed, affords us additional flexibility in fitting high-dimensional models.

An interesting question to ask at this moment is whether the more complex model necessar-
ily leads to improvements in model fit relative to the models in Sect. 4.2.1. With BAEM, log-
likelihood-based fit indices are readily available and may be used to compare models. The uncon-
ditional growth models described in Sect. 4.2.1 have a —2x log-likelihood value of 13,810.51
(AIC = 13,820.51, BIC = 13838.12). The two-tier model described above has a —2x log-
likelihood of 13334.19 (AIC = 13,368.19, BIC = 13,428.06). This represents a substantial
improvement in model fit, while taking into account additional model complexity.

With the MH-RM algorithm, it is effortless to build on the previously fit two-tier model by
incorporating treatment groups as coded design variables. The study contains placebo and active
treatment. A reasonable approach would be to use a coded variable (x;) to represent treatment
group membership, with the omitted group (the placebo condition) serving as the reference cell.
Using this formulation, we can obtain estimates of the degree to which treatment group influences
each of the visit-specific latent variables in the form of regression coefficients. While full results
(item and group parameters) are available in the online supplemental materials, Table 7 provides
the estimated group parameters from this model. Because of the inclusion of treatment assignment
indicator, the reported latent variable means have effectively become intercepts, representing the
reference cell.

The newly added regression coefficients are the contrasts between the active treatment con-
dition vs. the placebo. Based on the coefficients and the error covariance matrix, one can also
conduct an omnibus test of the effect of treatment (using a Wald Chi-square statistic) or any other
linear hypothesis test with specialized contrasts. This could be especially useful in trials with
multiple treatment conditions.

4.2.3. An Alternative Model with Latent Differences An alternative model to examine the
change over time in the SlpDist of the clinical trial subjects can be formulated along the lines
of Eq. (10). This is similar to the model set out in Cai et al. (2016; Sect. 4.2), which they
note is motivated by longitudinal models previously described (e.g., Bock & Bargmann, 1966;
Embretson, 1991; McArdle, 2009). While there are still three latent variables representing our
timepoints the meaning of the latent variables is different from the previous two-tier model. The
variable at the first timepoint continues to set a baseline, while the remaining two timepoints are
interpretable as latent deviations or differences from the previous timepoint. The factor pattern that
allows for the latent variables to be interpreted in this fashion is provided in Table 8. The primary
results of interest from the latent difference model are the estimated group parameters, presented
in Table 9. While the baseline latent variable mean estimate (1.42) is similar to previous estimates
from other models, the Follow-up 1 and Follow-up 2 mean values are noticeably different due
to the alternative interpretation. Rather than describing the “average” state at Follow-up 1, the
Follow-up 1 latent variable mean in this model describes the average difference from Baseline to
Follow-up 1. Similarly, the Follow-up 2 mean is interpreted as the difference from Follow-up 1 to
Follow-up 2, rather than status of SlpDist at Follow-up 2. Parameterizing the change in this way
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TABLE 8.

Factor pattern of a latent difference model.

773

Item ID Baseline Follow-up 1 Follow-up 2 Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8

tl_iteml 11 19

t1_item2 12 110

tl_item3 13 111

tl_item4 14 112

t1_item5 15 113

tl_item6 16 114

tl_item7 17 115
t1_item8 18 116
t2_item1 11 11 19

t2_item?2 12 12 110

t2_item3 13 13 111

t2_item4 14 14 112

t2_item5 15 15 113

t2_item6 16 16 114

t2_item7 17 17 115
t2_item8 18 18 116
t3_iteml 11 11 11 19

t3_item?2 12 12 12 110

t3_item3 13 13 13 111

t3_itemd 14 14 14 112

t3_item5 15 15 15 113

t3_item6 16 16 16 114

t3_item7 17 17 17 115
t3_item8 18 18 18 116

11-18 are all fixed at PROMIS-calibrated slope values. 19-116 are freely estimated.

allows us to conduct more detailed examinations into change over time and the prediction of that
change.

4.2.4. Latent Difference Model with Site Random Effect ~ We now fully build out the model
in Sect. 4.2.2 with predictors and other important design features. In addition to including a
treatment assignment variable as a predictor, we also include information regarding clinical site
(as this was a multinational, multisite trial). The participants available at Baseline were collected
from 67 different sites, with sample size per site ranging from 1 to 12. To incorporate the site
information into the model, we now add a single level-2 (site-level) factor to account for the
possible between-site variability. This is the full model as shown in Eq. (10). In this model, the
Baseline, Follow-up 1, and Follow-up 2 latent difference variables are at level-1 (individual-level).
The level-1 Baseline latent variable can be interpreted as further deviations from the site random
intercept, which itself represents Baseline deviations among sites from the grand mean. These
level-1 latent variables are regressed on the reference-cell-coded treatment assignment dummy
variable, as before, to obtain estimates of treatment effects.

The estimated group parameters from this model are presented in Table 10. From the reported
values, we can make several interesting inferences. First, on average the placebo and active
treatment groups do not differ significantly at Baseline (beta = 0.12, SE = 0.09). Second, there
is statistically significant variability between the sites (variance of the level-2 site factor = 0.17,
SE = 0.07) in the initial level of SlpDist. Together with the Baseline individual-level variance
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TABLE 9.
Group parameters and SEs from a latent difference model.

Parameter Baseline Follow-up 1 Follow-up 2 Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8

Latent 1.42 (0.05) —0.81 (0.06) —0.25(0.05) 0 (=) 0(-) O0(-) O O O0(-) 0 0(
Mean
(SE)
Covariance 0.66 (0.07)
matrix
0(-) 0.96 (0.09)
0() 0 0.34 (0.03)
00 0= 00 1)
0 0 0 0 1)
00 0 0 0 0 I
00 0= 00 0D 0 0 1
0 0 0 0 0 0= 0 1=
00 0 00 0 0 0 0 0= 1(
00 0= 00 00 0 0 0 0 0 1
0 0 0 0 0= 0= 0= 0= 0= 0 1)

component of 0.47, this translates into an intra-class correlation of 0.27, which is not trivial.
Note that additionally, on the efficacy of treatment with regard to changes in SlpDist, there is
a statistically significant decrease in SlpDist (improvement in sleep) from Baseline to Follow-
up 1 in general, even for the placebo group (Follow-up 1 latent difference M = — 0.55, SE =
0.06). Furthermore, the change is significantly predicted by active treatment group membership
(beta = —0.56, SE = 0.10), relative to the placebo group. Finally, while the placebo group
continues to significantly decline in SlpDist from Follow-up 1 to Follow-up 2 (Follow-up 2 latent
difference M = — 0.22, SE = 0.04), there is no appreciable additional improvement due to active
treatment from Follow-up 1 to Follow-up 2 (regression coefficient is not significantly different
from 0). Due to the use of MH-RM algorithm, the final model’s marginal log-likelihood must be
approximated by Monte Carlo integration. Chib and Jeliazkov’s (2001) method was used here over
250 additional samples, resulting in a — 2x log-likelihood of 12,763.35 with two-side 95% CI
of (12,736.54,12,790.15). The corresponding 95% CIs for AIC and BIC can be derived similarly,
with AIC = (12,774.54, 12,828.15) and BIC = (12,841.45, 12,895.06). Again, these represent
substantial improvements over the models that do not take site effect or the study design into
account.

With the availability of the regression coefficients and their error covariance matrix, one could
also conduct Wald tests for any linear hypothesis. For example, if our trial had multiple treatment
groups (say, 5 in a dose-finding study), at Baseline, the overall difference among treatment groups
could be formulated as a 4 degrees-of-freedom Wald test of the hypothesis that the coefficients
for the regression of 6;;1 on the treatment assignment dummy variables are null (supporting
successfully randomization). Analogously, the Chi-square for overall treatment group differences
in the latent difference outcome 6; ;> at Follow-up 1 or 6; ;3 at Follow-up 2 could also be constructed
and formally tested.
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5. Discussion

PRO measures that were developed with and can be scored using IRT methods are seeing
increasing adoption in the clinical trial space. This includes PROMIS measures, as shown, but
is not exclusive to PROMIS. The models presented here will work with patients’ item responses
on any high-quality measure that has been calibrated with regular IRT (e.g., Keller et al., 2014;
Wirth et al., 2016), or more restricted IRT models in the Rasch family. Furthermore, they provide
familiar inferential statistical methods that are analogous to linear models for repeated-measures
analysis of variance or linear mixed-effects models. These models are well within practical reach
with modern IRT software.

Our goal is not to propose any fundamentally new models previously unseen in the statistical
literature. The hope is that by providing a convenient overview that connects various modeling
frameworks together, both theoretically and empirically, we may start a productive conversation
between psychometricians and other researchers in regulatory science. Building such a bridge
could also evoke further research collaborations on innovative statistical methods that can enhance
the usefulness of PROs in clinical trials.
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