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ABSTRACT OF THE DISSERTATION 

 
 

Development of Methodologies for the Use and Application of Air Quality 

Sensors to Enable Community Air Monitoring 

 

by 
 

 

Brandon J. Feenstra 

 

Doctor of Philosophy, Graduate Program in Chemical and Environmental Engineering 

University of California, Riverside, June 2020 

Dr. David Cocker, Chairperson 

 

 

Recent advances in air quality sensor technology have allowed for governments, 

academia, and communities to use sensors to measure air pollution at unprecedented spatial 

and temporal scales. While use of low-cost sensors in ambient air monitoring applications 

has dramatically increased in the past several years, there remain unanswered questions 

and challenges with designing, implementing, and deploying low-cost sensors. These 

challenges include quantifying the performance of sensors, developing defensible methods 

for deploying sensor networks, and communicating sensor data to the public in an 

understandable and meaningful way. This body of work addresses portions of these 

challenges by systematically evaluating the performance of sensors, deploying sensors 

with scientifically defensible methodology for a specific application, and developing 

methodologies and tools for disseminating and communicating community air monitoring 

data as information to the public. The main objective of this research is to provide clarity 

and vision on the appropriate use and applications of low-cost air quality sensors for 

ambient air monitoring. Systematically evaluating the performance of commercially 

available low-cost sensors with respect to regulatory grade instrumentation and 
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understanding the measurement error associated with sensors is critically important when 

choosing a sensor for a specific monitoring application (i.e. fence-line monitoring, 

community monitoring, hot spot identification, mobile monitoring) or drawing conclusions 

from data collected by low-cost sensors. The first part of this research investigates the 

performance of 12 commercially available low-cost particulate matter (PM) sensors against 

regulatory-grade instrumentation. The next phase of this research includes the design of an 

ozone sensor node for a specific ambient air monitoring application - parallel monitoring 

to select a relocation site for a regulatory ambient air monitoring station. The sensor 

selection, sensor node development, and network deployment methodologies were 

designed to collect defensible data for determining a relocation site. In the last phase of 

this research, data tools are developed to store, process, analyze, and visualize large data 

sets generated by low-cost sensors to provide communities with information from their 

community monitoring networks.
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1.1 Background and Significance 

Air pollution is associated with adverse human health effects and is a significant 

contributor to the global disease burden (Cohen et al., 2017). Particulate Matter (PM), an 

important contributor to air pollution, is a mixture of solid particles and liquid droplets in 

the air. PM is categorized by the size of particle and is regulated in the United States (U.S.) 

by mass according to PM size fractions. Fine particulate matter or PM2.5 is comprised of 

particles with an aerodynamic diameter less than 2.5 µm. PM2.5 has been linked to 

respiratory illness, cardiovascular disease, stroke, lung cancer, reproductive issues, and 

premature death (Pope et al., 2002; Pope et al., 2009; Harris et al., 2014; Apte et al., 2015).  

In 2015, an estimated 4.2 million people died prematurely due to PM2.5 exposure putting it 

in the top five mortality risk factors worldwide (Cohen et al., 2017). Model predictions 

estimate that the number of premature deaths attributed to ambient air pollution could 

double by 2050 (Lelieveld et al., 2015). The World Health Organization (WHO) estimates 

that 92% of the world’s population is exposed to PM2.5 concentrations exceeding WHO’s 

recommended annual mean of 10 µg/m3
; indicating the ubiquity of particle pollution across 

the globe (World Health Organization 2016). In addition to health impacts, PM pollution 

can impair visibility, damage the environment, and cause material damage to infrastructure 

(Al-Thani et al., 2018; Wu et al., 2018). Ozone (O3), another important contributor to air 

pollution, is a highly reactive gas that is harmful to public health and the environment. The 

effects of O3 on human health include reduced lung function and irritation of the respiratory 

system. Increases in exposure to O3 have been associated with increases in school 

absenteeism (Romieu et al., 1992; Gilliland et al., 2001; Park et al., 2002) and increases in 
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the risk of death from respiratory causes (Jerrett et al., 2009; Turner et al., 2016; Cohen et 

al., 2017; Song et al., 2019). In a long-term study on children, reductions in air pollutants 

have been associated with statistically significant decreases in bronchitis symptoms like 

asthma (Gauderman et al., 2015; Berhane et al., 2016). In 2015, an estimated 254,000 

people died prematurely due to O3 exposure (Cohen et al., 2017). High concentrations of 

O3 have been recognized as a phytotoxic threat to forests, crops, and vegetation (Ashmore 

2005; Bytnerowicz et al., 2008).   

The U.S. Environmental Protection Agency (EPA) regulates air pollution levels under 

the Clean Air Act (CAA) and establishes the National Ambient Air Quality Standards 

(NAAQS) for the criteria pollutants: carbon monoxide (CO), lead (Pb), nitrogen dioxide 

(NO2), ozone (O3), particulate matter (PM), and sulfur dioxide (SO2). The NAAQS are set 

to protect public health and the environment with the attainment of these standards 

determined by regional monitoring networks equipped with instrumentation that has been 

approved by the U.S. EPA as a Federal Reference or Federal Equivalent Method (FRM or 

FEM). These networks of air monitoring stations (AMS) are typically operated by 

regulatory air monitoring agencies at the local regional (e.g., South Coast Air Quality 

Management District in Southern California), state, and/or federal government level. While 

high quality regulatory air monitoring data is essential for the determination of regional 

attainment of the established national or international air quality standards, the spatial 

extent of these measurements may be limited especially for communities impacted by 

nearby air pollution sources (e.g., freeways) requiring the spatial resolution of 

measurements to be in the tens of meters (Ahangar et al., 2019). An increasing number of 
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studies have found the spatial and temporal resolution of these regional monitoring 

networks to be insufficient to characterize air pollutants at a community or neighborhood 

scale for pollutants that exhibit high spatial variability such as traffic-related PM (Apte et 

al., 2017; Gu et al., 2018; Ye et al., 2018). Additionally, the spatial distribution of 

regulatory-grade (FRM or FEM) instrumentation internationally is limited with only 24 of 

234 countries have more than 3 monitors per million inhabitants and with nearly 60% of 

countries having no regular PM monitoring. This lack of monitoring across the globe leads 

to the statement that “No one knows which city has the highest concentration of fine 

particulate matter” in 2019 (Martin et al., 2019). In contrast to regulatory-grade 

instrumentation, low-cost air quality sensors are often more “plug and play” or “plug and 

sense” than their regulatory counterparts and do not require rigorous maintenance 

schedules. Additionally, many sensors are coupled with web-based platforms or 

applications that make it easy to engage with data either in real-time or download for 

further analysis. Due to their low cost, air quality sensors have the potential to fill in this 

spatial gap in air quality measurements with the development of large sensor networks 

allowing researchers to investigate the spatial and temporal gradients of air pollution in 

areas previously unmeasured or at finer spatial scales than previously monitored.  

1.2 Air Quality Sensors 

Air quality sensors offer great opportunity, when used properly, to enhance our 

understanding of physical phenomena around us. While a person can often differentiate 

between changes in few degrees in temperature, people can often struggle to differentiate 

between good, moderate, and unhealthy air quality unless that poor air quality is coupled 
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with visibility impairment, an unpleasant odor, or attributed to a specific point source 

(Sucker et al., 2008; Stenlund et al., 2009; Claeson et al., 2013; Orru et al., 2018). Due to 

their lower cost in comparison to regulatory monitoring instrumentation, air pollution 

sensors offer the ability to be deployed in dense sensor networks that can enhance the 

spatial and temporal resolution of the current monitoring networks. The emergence of low-

cost air quality sensors for measuring both gas and particle pollutants has initiated a 

paradigm shift in the way air quality data is measured and shared with the public (Snyder 

et al., 2013). Numerous sensor models with prices ranging from $150 to $3,000 USD are 

available to the public. These consumer-grade (low-cost) sensors can provide real or near-

real time air pollutant information at increased spatial resolutions with the potential to 

provide meaningful measurements at the local scale and complement and expand the 

capabilities of existing ambient air monitoring networks equipped with commercial-, 

research-, and regulatory-grade air monitoring instrumentation (Sadighi et al., 2018). Many 

potential applications exist for low-cost sensors, including stationary ambient monitoring, 

mobile ambient monitoring, and personal exposure assessment with wearable sensors. Due 

to the diversity of these applications, researchers and other stakeholders working on sensor 

projects often design sensors or select commercially available sensors to be “fit for 

purpose” based on the desired monitoring application (Morawska et al., 2018).  

The utility of these low-cost sensors for specific applications depends on the 

performance of the sensor in that specific environment and application. As low-cost sensors 

become increasingly popular for ambient air monitoring for both researchers and the 

general public, characterizing the performance of these sensors and educating the public 
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about their appropriate applications and limitations becomes increasingly important.  For 

example, sensors with low intra-model variability could be spatially deployed in a 

community to supplement existing regulatory-grade measurements and obtain hyper local 

measurements to better understand pollutant gradients within a community even if that 

sensor over- or under-estimates actual air pollution levels. Performance characterization of 

sensors will minimize confusion, particularly when low-cost sensors report information 

that conflicts with data generated from reference-grade instrumentation operated by the 

local air pollution control districts (APCD).  

The South Coast Air Quality Management District (South Coast AQMD) created the 

Air Quality Sensor Performance Evaluation Center (AQ-SPEC) in 2014 to provide the 

public with information on sensor performance. AQ-SPEC evaluates commercially 

available low-cost air monitoring sensors in both ambient field and controlled laboratory 

conditions. Evaluation results are communicated to the public through field and laboratory 

evaluation reports and sensor summary tables for gas and PM sensors, which are available 

at www.aqmd.gov/aq-spec. In the field, air quality sensors are operated at an air monitoring 

station (AMS) where FRM or FEM instruments measure the ambient concentration of 

gaseous or particle pollutants for regulatory purposes. AQ-SPEC examines the 

performance of low-cost sensors against these regulatory-grade (FRM or FEM) 

instruments, as well as sensor-specific parameters such as intra-model variability and data 

recovery. Sensors that demonstrate an acceptable performance in the field are then 

evaluated under controlled conditions in a chamber. The chamber testing allows for the 

evaluation of sensor performance across a broader range of pollutant concentration, 

http://www.aqmd.gov/aq-spec
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temperature, and humidity than may have been experienced during the 2-month field 

evaluation. The capabilities of the chamber also allow for the evaluation for cross-pollutant 

sensitivities that could impact sensor performance. While the AQ-SPEC field and 

laboratory testing results evaluate the performance of sensors, AQ-SPEC does not rank or 

endorse specific sensors or make recommendations as to which sensor devices should be 

used for specific applications. Sensor selection is application and project specific with the 

application defining performance requirements and requirements for connectivity (e.g., 

Wi-Fi, cellular, Bluetooth), data visualization (e.g., mobile application, screen display on 

sensor, web-based mapping application), power requirements (e.g., battery-powered, 

power supply to a wall outlet), and sensor mobility (e.g., stationary, mobile, wearable).   

Due to the low hardware and operational cost of these emerging air quality sensors, 

dense networks of air quality sensors can be deployed. These environmental monitoring 

networks are increasing in complexity and size with an increasing number of devices 

reporting data to online data systems. These networks are enabled by technological 

advances and cost reductions for environmental monitoring sensors along with advances 

in connectivity with Internet of Things (IoT) devices and cloud-based computing offerings 

and services. Community scientists are now able to deploy hyper-local community 

monitoring networks to supplement the established regulatory monitoring networks. As 

community scientists take an active role in collecting air monitoring data by hosting air 

quality sensors, they also become increasingly interested in viewing, analyzing, and 

understanding the collected data to derive hyper local information about their local 

environment. The increasing complexity and size of today’s environmental monitoring 
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networks have created big data challenges leading to the emergence of a new field: 

Environmental Data Science (Gibert et al., 2018). Data science combines computer 

programming skills, math and statistical knowledge, and subject matter expertise (Conway 

2013). Environmental data science often uses Free and Open-Source Software (FOSS) like 

Python and the R environment to develop specific software packages to address these data 

science challenges (Kadiyala and Kumar 2017a; Kadiyala and Kumar 2017b). Within these 

FOSS environments, specific packages or modules can be created to assist in processing, 

analyzing, and displaying data from air monitoring sensors. These FOSS tools allow 

community scientist to actively participate in the data analysis and visualization to better 

understand their local air quality conditions.   

1.3 Previous Studies and Approaches  

To date, there have been a limited number of systematic studies using established 

protocols to characterize the performance of PM sensors in ambient conditions where end-

users are likely to deploy these sensors (Morawska et al., 2018). Additionally, many low-

cost sensors are sold to the public with minimal testing, maintenance recommendations, 

and standard operating procedures. Prior published studies have evaluated the performance 

of several low-cost PM sensors under ambient conditions. These include the AirBeam (Jiao 

et al., 2016; Mukherjee et al., 2017; Borghi et al., 2018), Alphasense OPC-N2 (Mukherjee 

et al., 2017; Crilley et al., 2018), PurpleAir (Kim et al., 2019; Magi et al., 2019), and Foobot 

for indoor air quality (Moreno-Rangel et al., 2018). These examples represent a small 

fraction of the PM sensors currently available to consumers. Additionally, many of the 

performance evaluations in the literature are not performed according to a standard 
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protocol, but rather performed to determine the performance of a particular sensor or set of 

sensors as a “fit for purpose” for a specific monitoring project (Morawska et al., 2018). 

The U.S. EPA has evaluated the performance of low-cost sensors in ambient environments 

using a standard protocol with evaluation results for the TSI AirAssure, AirBeam, 

Alphasense OPC-N2, and Shinyei PM Evaluation kit (Williams et al., 2014; Jiao et al., 

2016; Feinberg et al., 2018; U.S. Environmental Protection Agency 2019). Rather than 

evaluating the performance of commercialized sensors, some researchers have evaluated 

the performance of Original Equipment Manufacturer (OEM) PM sensors that include 

Plantower, Shinyei, and Nova Fitness OEM sensors (Austin et al., 2015; Kelly et al., 2017; 

Badura et al., 2018; Johnson et al., 2018; Zheng et al., 2018; Bulot et al., 2019; Liu et al., 

2019; Sayahi et al., 2019; Zamora et al., 2019). While the evaluation results on OEM 

sensors add to the literature and assist sensor manufacturers and/or researchers in selecting 

OEM sensors for developing sensor solutions or final commercialized products, these 

evaluation results are not transferable to commercialized end products offerings as the 

sensor housing, sampling mechanism, and electronics can impact the performance of final 

commercialized product. A review of air sensor performance metrics and targets indicated 

that the performance metrics, types and duration of performance evaluations, and types of 

reference equipment by which sensors are evaluated varied widely in the literature 

(Williams et al., 2018). This review highlights the diversity of sensor evaluation work 

currently being published and the need to evaluate sensors according to a documented 

protocol for consistency across evaluations with regards to performance metrics, reference 

equipment, duration, and time-resolution used for sensor performance evaluations. Filling 
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this gap in the literature for sensor performance evaluations performed according to a 

documented protocol with consistency across evaluations is the goal of the sensor 

evaluations performed and presented in Chapter 2.  

Deploying networks of sensors presents researchers with challenges with regard to 

maintaining the sensors over time and ensuring that the sensors are producing accurate and 

reliable data. Developing defensible methods for deploying sensor within a network is 

important to verify the data produced and quantify the measurement error of the sensor 

network. The performance of air quality sensors is highly dependent on the methods of 

deployment chosen and implemented. Calibration methods that are feasible for small 

networks may not be feasible for large sensor networks. For small networks, researchers 

often perform a co-location of their sensors with regulatory-grade monitors at ambient air 

monitoring sites for a pre-deployment calibration and then may verify performance with a 

post-deployment co-location test (Masson et al., 2015; Sadighi et al., 2018; Badura et al., 

2019). Performing a pre-deployment co-location calibration of low-cost air quality sensors 

with a regulatory-grade instrument, in the same environment as the deployment, can 

provide more accurate and precise measurements throughout a deployment. Verifying the 

sensor performance at the conclusion of a deployment or during deployment through co-

location with regulatory-grade instrumentation allows for the quantification of the 

measurement error of the sensor and/or sensor network and identification of potential drift 

or degradation over time. In contrast to small sensor networks, performing co-location 

testing for every sensor in a large sensor network at a reference site may not be feasible so 

researchers often turn to other methods to calibrate or evaluate the performance of large 
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sensor networks. These network performance evaluations or calibration methods include 

developing models or machine learning techniques (Bart et al., 2014; Zimmerman et al., 

2018; Malings et al., 2019; Vikram et al., 2019) and the use of proxy sites for calibrating 

the network based on land-use regression within a hierarchical network of low-cost and 

regulatory-grade instruments (Miskell et al., 2019; Weissert et al., 2020a; Weissert et al., 

2020b). Generally, these networks are deployed for the purpose of developing high 

resolution pollution maps, identifying peak pollution events, and/or linking pollution levels 

to exposure (Morawska et al., 2018). One of the challenges with the emergence of low-cost 

air quality sensing is developing specific sensor use applications that go beyond the 

purpose of increasing the spatial or temporal resolution of current air quality maps. The 

development of an accurate ozone sensing node for parallel monitoring in a site relocation 

study provides a sensor use application that all agencies performing regulatory air 

monitoring may face: the relocation of an ambient air monitoring site. The application and 

methodology presented in Chapter 3 allows for the quantification of the measurement error 

of a small sensor network. This quantification of measurement error provides the ability to 

apply the collected data and subsequent analysis to make decisions with regards to the 

desired monitoring application: identify which location would be most suitable to replace 

the current regulatory ozone monitoring site. The work presented in Chapter 3 adds to the 

literature on how sensor nodes can be designed and how deployment methodology can be 

utilized for a specific ambient monitoring application to obtain accurate defensible data 

and make informed decisions.    
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As sensing networks grow and are often deployed within communities, dissemination 

and communication of the collected data with that community becomes increasingly 

important. While large-scale low-cost sensor networks are now recording air pollutant 

concentrations at finer spatial and temporal scales than previously measured, the large 

environmental data sets generated by these sensor networks can become overwhelming 

when considering the scientific skills required to analyze the data and generate 

interpretable results. Online platforms for viewing regulatory-grade data are available with 

various features (BreezoMeter 2020; IQAir 2020; OpenAQ 2020; Plume Labs 2020; World 

Air Quality Index Project 2020). These data viewing sites are useful and provide 

information to the public at varied granularity spatially and temporally. Online platforms 

for viewing sensor data are also available but vary in terms of whether they are proprietary 

or FOSS, what they provide, and whether they are provided by the manufacture, project 

team, or through a citizen science model. Proprietary platforms are typically available 

through the manufacturer and offered as a Software as a Service (SaaS) or Platform as a 

Service (PaaS) requiring accounts with monthly or yearly subscriptions costs. In contrast 

to this subscription-based model, several sensor resources are available for open-access 

viewing of data collected from low-cost sensors. These platforms include but are not 

limited to the HabitatMap AirCasting map, Air Quality Egg Portal, Luft Daten project map, 

PurpleAir Map, Smart Citizen Kit Map, and the uRADMonitor Network map (Air Quality 

Egg 2020; HabitatMap 2020; Luftdaten 2020; PurpleAir 2020; Smart Citizen Kit 2020; 

uRADMonitor 2020). PurpleAir provides open access to the data collected by the 

PurpleAir network of sensors through an API and provides open viewing and downloading 
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of sensor data through the PurpleAir map. The Luft Daten project is a Citizen Science 

project with citizen scientist sensors reporting to a map and invites programmers to 

collaborate in this FOSS development through GitHub (OK Lab Stuttgart 2020). When 

selecting a sensor in either the PurpleAir or Luftdaten GUI, the user is currently limited to 

viewing only the last 7-days of data in a time series plot and current data on the map (tested 

January 2020), which means they do not provide the end-user with historic data to 

understand the spatial and temporal trends of air pollutants in their community. A project 

specific site, Breathe London, provides a map displaying sensor monitoring data along with 

the option to add the regulatory network data to the map (Breathe London 2020). Broadly, 

these online platforms for both regulatory and sensor data are map centric with point values 

or interpolated modelled data displayed with options for viewing recent time series data. 

While these map centric websites work well for viewing real-time data, communities that 

are monitoring air quality with long term deployments need additional plotting and viewing 

capabilities to access and understand their local historical air monitoring data. A data 

dashboard for viewing and analyzing historical data would provide a better understanding 

of local air quality levels for the community to understand their historical local spatial and 

temporal air pollutant trends. Chapter 4 of this thesis looks to fill this gap in the currently 

available data platforms by providing a FOSS R package to deal with community 

monitoring data sets for a low-cost sensors and providing a DataViewer web application 

that allows the community to explore historical data and perform trend analysis on the 

collected data.   
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1.4 Study Approach and Design: Overall Objective 

Designing, developing, implementing, and deploying projects with low-cost sensors 

for air monitoring applications comes with many challenges. These challenges include 

quantifying the performance of commercially available low-cost sensors, developing 

defensible methods for deploying sensor networks, and communicating sensor data to the 

public in an understandable and meaningful way. This work aims at addressing portions of 

these three challenges by systematically evaluating the performance of sensors, deploying 

sensors with scientifically defensible methodology for a specific application, and 

developing methodologies and tools on how disseminate community air monitoring data 

as information to the public.  

Chapter 2 of this thesis presents the field evaluations results of 12 commercially 

available “low-cost” PM sensors under ambient conditions as part of the ongoing sensor 

evaluation work in the AQ-SPEC program that commenced during the summer of 2014. 

To date, more than 80 consumer-grade air quality sensors measuring particle and/or gas-

phase pollutants have been evaluated by the program. The evaluation results in Chapter 2 

provide performance metrics for low-cost sensors with calculations for measurement error 

and investigation into the impact of environmental conditions on the performance of PM2.5 

sensors in field evaluations. The approach of this work is to evaluate sensors systematically 

in triplicate according to a documented protocol at one monitoring location with data 

analysis performed at the 1-hr time interval against a single FEM PM2.5 instrument. These 

performance evaluation results can be used globally to help researchers and community 

members select sensors to best fit their monitoring needs. This work aims at adding to the 
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body of literature on sensor performance for PM2.5 sensors in field conditions and provides 

guidance on appropriate performance metrics to evaluate sensor performance against 

regulatory-grade instrumentation. 

Chapter 3 of this thesis presents an application for the development and deployment of 

air quality sensors as part of an Internet of Things (IoT) network. The ambient air 

monitoring application was to perform parallel monitoring to determine the 

appropriateness of three potential relocation sites for an air monitoring station measuring 

ozone. This application required accurate and defensible data, which in turn guided the 

sensor selection, deployment methodology, and sensor performance metrics. The 

deployment methodology included an initial calibration, pre-deployment co-location 

calibration, and post-deployment co-location verification. Quantifying the measurement 

error of the sensor network allowed for the creation of defensible data allowing for high 

confidence in the results and analysis of the data to determine an appropriate relocation 

monitoring site. The development of the sensor node and the methodology of the field 

deployment of sensors for parallel monitoring can be duplicated and expanded to other 

applications, especially when the monitoring application requires quantification of the 

measurement error of the sensing nodes.  

When performing air monitoring studies in a community, communicating the collected 

data back to the public in an understandable and meaningful format is key to engaging, 

educating, and empowering the community. Having the right tools to view and understand 

local air monitoring data allows the community to take appropriate actions and/or make 

decisions to reduce exposure to harmful air pollutants. With the varied interest and 
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knowledge in air quality and atmospheric sciences within the community, displaying 

community air monitoring content to the public that is both meaningful and understandable 

to all or most community members is challenging. Chapter 4 provides an overview of the 

AirSensor R package and DataViewer web application that addresses the challenges with 

the data management and visualization of low-cost air quality sensors networks. The R 

package allows users to download sensor data, add spatial metadata, perform data fusion 

with other relevant data sets, and create maps and plots for viewing data collected by air 

monitoring sensors. AirSensor was built with useful functions so that minimal coding 

would be required to complete tasks within the R software environment. The DataViewer 

web application was developed to provide an interactive data experience allowing users to 

make selections and explore the community air monitoring data sets by generating pre-

defined data visuals based on their user selected inputs. The data is processed and coupled 

with additional data sets to provide useful and informative data visualizations. Informative 

plots rendered on the DataViewer application provides the local community member with 

interactive plots to better understand their local environment and determine when air 

pollution is typically higher within their community by hour of the day, day of the week, 

and which direction the pollution may be coming from when entering the community. The 

DataViewer application provides an example of how data from low-cost sensors deployed 

in a community can be visualized to understand historical air quality trends. The R-package 

and DataViewer application provide insights into how to process and display data collected 

by sensor networks. This work was performed as FOSS and can therefore be expanded 
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upon by a community of users or duplicated for other communities that are engaged in 

community air monitoring.  

In each of the main chapters of this thesis (i.e., Chapter 2, 3, and 4), the reader will 

come across both low-cost sensor data and regulatory-grade instrumentation data sets. The 

reason for this is that the low-cost sensor data must be analyzed against regulatory-grade 

instrumentation to determine performance of sensors, measurement error of sensor 

networks, and trend differences between the nearest regulatory monitor and low-cost 

sensors located within a community. The data from low-cost sensors can rarely be used in 

a vacuum and coupling low-cost sensor data to the already established regulatory-grade 

monitoring networks is recommended as a best practice for implementing sensor networks. 

1.5 Dissertation outline 

The dissertation is structured into five chapters. Chapter 1 provides an introduction to 

air pollutants, air monitoring, and the emerging role of air quality sensors in ambient 

monitoring. Chapters 2, 3, and 4 add to the literature on the emerging use and application 

of low-cost sensors and includes quantifying the performance of commercially available 

low-cost sensors, developing defensible methods for deploying sensor networks, and 

communicating sensor data back to the public. Chapter 2 provides the performance 

evaluation results of 12 commercially available low-cost PM2.5 sensors. Chapter 3 provides 

the design of an ozone sensing node and the development of a sensor network to perform 

parallel monitoring in a site relocation study in the San Bernardino mountains in Southern 

California. Chapter 4 provides a summary of the R package and DataViewer application 
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for communicating sensor data back to the public in an understandable and meaningful 

manner. Chapter 5 provides a summary and conclusions of the work performed. 
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Abstract 

A variety of low-cost sensors are now available on the consumer market for 

measuring air pollutants. The use of these low-cost sensors for ambient air monitoring 

applications is increasing and includes fence-line or near-source monitoring, community 

monitoring, emergency response, hot-spot identification, mobile monitoring, 

epidemiological studies, and supplemental monitoring to improve the spatial-temporal 

resolution of current monitoring networks. Evaluating and understanding the performance 

of these devices is necessary to properly interpret the results and reduce confusion when 

low-cost sensor measurements are not in agreement with measurements from regulatory-

grade instrumentation. Systematic and comprehensive field and laboratory studies 

comparing low-cost sensors with regulatory-grade instrumentation are necessary to 

characterize sensor performance. This paper presents the results of 12 particulate matter 

(PM) sensors measurement of PM2.5 (particles with aerodynamic diameter less than 2.5 μm) 

tested under ambient conditions against a federally equivalent method (FEM) instrument 

at an ambient air monitoring station in Riverside, CA spanning over a 3-year period from 

02/05/15 to 03/27/18. Sensors were evaluated in triplicate with a typical time duration of 

8-week. Performance evaluation results found 6 of the 12 sensor triplicates with average 

R2 values ≥ 0.70 for PM2.5 concentrations less than 50 μg/m3. Within this subset, the Mean 

Absolute Error (MAE) ranged from 4.4 to 7.0 μg/m3 indicating the need for caution when 

interpreting data from these sensors. Additional analysis revealed that the impact of relative 

humidity on sensor performance varied between models with several models exhibiting 

increased bias error with increasing humidity. Results indicate that a number of these 
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sensors have potential as useful tools for characterizing PM2.5 levels in ambient 

environments when data is interpreted and understood correctly with regard to existing 

ambient air quality networks. The performance evaluation results are specific for Riverside, 

CA under non-repeatable ambient weather conditions and particle properties with the 

expectation that performance evaluation testing at other locations with different particle 

properties and weather conditions would yield similar but non-identical results. 

2.1 Introduction 

2.1.1 Particle Pollution 

Particulate matter (PM) is a ubiquitous environmental pollutant that has been linked 

to a host of health issues. Fine Particulate matter (PM2.5; particles with aerodynamic 

diameter less than 2.5 µm) have been linked to respiratory illness, cardiovascular disease, 

stroke, lung cancer, reproductive issues, and premature death (Pope et al., 2002; Pope et 

al., 2009; Harris et al., 2014; Apte et al., 2015)  In 2015, an estimated 4.2 million people 

died prematurely due to PM2.5 exposure putting it in the top five mortality risk factors 

worldwide (Cohen et al., 2017). Based on modelled data, the World Health Organization 

(WHO) estimates 92% of people are exposed to PM2.5 concentrations exceeding WHO’s 

recommended annual mean of 10 µg/m3(World Health Organization 2016). In addition to 

health impacts, PM pollution can impair visibility, damage the environment, and cause 

material damage. (Al-Thani et al., 2018; Wu et al., 2018)     

PM is regulated by the United States Environmental Protection Agency (EPA) 

under the Clean Air Act .(U.S. Environmental Protection Agency) The National Ambient 
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Air Quality Standards (NAAQS) are set to protect public health and the environment. For 

PM2.5 concentrations, the NAAQS is set at 12.0 μg/m3 (annual mean) and 35 μg/m3 (24-hr 

daily). Compliance with the NAAQS is determined by stationary ambient air monitoring 

sites (AMS) utilizing instrumentation operated as United States Environmental Protection 

Agency (U.S. EPA) Federal Reference Method (FRM) or Federal Equivalent Method 

(FEM). Networks of monitoring stations are typically designed to monitor air pollutants at 

a regional level to determine attainment of the NAAQS at a regional scale. An increasing 

number of studies have found the spatial and temporal resolution of these regional sites to 

be insufficient to characterize air pollutants at a community or neighborhood scale for 

pollutants that exhibit high spatial variability such as traffic-related PM (Apte et al., 2017; 

Gu et al., 2018; Ye et al., 2018).   

2.1.2  Low-cost Sensors  

Technological advancements have initiated a paradigm shift in the way air quality 

data is measured and shared to the public. This shift has been driven by the emergence of 

"low-cost" sensors for measuring both gas and particle pollutants. Numerous sensor models 

with prices ranging from $150 to $3,000 USD are available to the public with some vendors 

offering open data access and visualization (Snyder et al., 2013). These low-cost sensors 

can provide real or near-real time pollutant information at increased spatial resolutions with 

the potential to complement and expand the capabilities of existing ambient air monitoring 

networks and provide meaningful measurements at the local scale (Sadighi et al., 2018). 

While the utility of these measurements depends on the performance of the sensor in a 

specific environment, sensors with low intra-model variability could be spatially deployed 
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in a community to supplement existing regulatory-grade measurements and obtain hyper 

local measurements that could support emission reduction strategies such as those that will 

be designed for the California Assembly Bill (AB) 617. AB 617 was authored, passed, and 

signed to address the impacts of air pollution in disadvantaged neighborhoods by providing 

funding for emission reduction strategies and for air pollution monitoring at the local 

community scale.  

Many low-cost sensors are sold to the public with minimal testing, maintenance 

recommendations, and standard operating procedures. (Snyder et al., 2013; Lewis and 

Edwards 2016) To date, there have been a limited number of systematic studies using an 

established protocol to characterize the performance of PM sensors in ambient conditions 

where end-users are likely to deploy these sensors (Morawska et al., 2018). Without 

systematic evaluation of the performance of these devices and dissemination of results in 

an easy-to-understand manner, the consumers are left to making purchasing decisions 

based on manufacturer marketing strategies, compatibility with cellular devices, exterior 

appearance of the sensor, and online product reviews. Some examples of marketing quotes 

for sensors evaluated in this paper include “Most Advanced Air Quality Sensor,” 

“Professional grade, highly accurate indoor/outdoor air quality monitoring system,” “Buy 

the Best Air Pollution Monitor, and “Tested by AQ-SPEC.”   

Prior published studies have evaluated the performance of several low-cost PM 

sensors under ambient conditions that are also evaluated in this paper. To the best of our 

knowledge, these include the AirBeam (Jiao et al., 2016; Mukherjee et al., 2017; Borghi et 

al., 2018), Alphasense OPC-N2 (Mukherjee et al., 2017; Crilley et al., 2018), PurpleAir 
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(Kim et al., 2019; Magi et al., 2019), and Foobot for indoor air quality (Moreno-Rangel et 

al., 2018). This represents a small fraction of the PM sensors currently available to 

consumers and with many of the evaluations performed to evaluate the fit for purpose of a 

sensor for a specific project or deployment. The U.S. EPA has also evaluated the 

performance of low-cost sensors in ambient environments using a standard protocol  with 

evaluation results for the TSI AirAssure, AirBeam, Alphasense OPC-N2, and Shinyei PM 

Evaluation kit which are also evaluated in this work (Williams et al., 2014; Jiao et al., 2016; 

Feinberg et al., 2018; U.S. Environmental Protection Agency 2019). While this paper 

focuses on commercially available end user products, other researchers have evaluated the 

performance of the Original Equipment Manufacturer (OEM) PM sensors that include 

Plantower, Shinyei, and Nova Fitness OEM sensors (Austin et al., 2015; Kelly et al., 2017; 

Badura et al., 2018; Johnson et al., 2018; Zheng et al., 2018; Bulot et al., 2019; Liu et al., 

2019; Sayahi et al., 2019; Zamora et al., 2019). A comprehensive review of low-cost 

sensors technology, applications, and outcomes is available in the literature (Morawska et 

al., 2018) and a comprehensive review of air sensor performance metrics and targets has 

been published (Williams et al., 2018). These reviews point out the diversity of work 

currently being published with differences in performance metrics used, types and duration 

of performance evaluations, and types of reference equipment by which sensors are 

evaluated against. This work differs from prior studies in that it presents the results of a 

large number of PM sensors evaluated in triplicate under a systematic protocol at one 

location. Many of these sensors have not been previously evaluated for performance and 

published in the literature.  
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As “low-cost” sensors become increasingly popular for both researchers and the 

general public, characterizing the performance of these sensors and educating the public 

about their appropriate applications, limitations, and data interpretation has become 

extremely important. Performance characterization will minimize confusion particularly 

when low-cost sensors report information that conflicts with data generated from reference-

grade instrumentation operated by the local air pollution control districts (APCD). The 

South Coast Air Quality Management District (South Coast AQMD) established the Air 

Quality Sensor Performance Evaluation Center (AQ-SPEC; www.aqmd.gov/aq-spec) in 

mid-2014 to provide the public with unbiased information about the performance of 

commercially available “low-cost” sensors. AQ-SPEC performs a systematic and thorough 

performance evaluation of commercially available sensors in both field- and laboratory-

based testing. In the field, air quality sensors are evaluated in triplicate for a period of two 

months to provide adequate statistical information to evaluate overall sensor performance 

against reference-grade instrumentation (Polidori et al., 2017). In the laboratory, a state-

of-the-art characterization chamber is used to challenge the sensors with known 

concentrations of particle and gaseous pollutants under controlled environmental 

conditions (Papapostolou et al., 2017). AQ-SPEC has succeeded in providing potential end 

users (consumers and scientific researchers) with the necessary information to make 

informed product selections from a wide variety of commercially available products. This 

paper presents the field evaluations results of 12 commercially available “low-cost” PM 

sensors under ambient conditions as part of the ongoing AQ-SPEC sensor evaluation work. 

http://www.aqmd.gov/aq-spec
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Sensor performance is evaluated systematically according to a documented evaluation 

protocol. 

2.2 Methodology 

2.2.1  Field Deployment 

The methods used to evaluate “low-cost” sensors in the field are described in detail in 

the AQ-SPEC Field Testing Protocol (Polidori et al., 2017). Briefly, low-cost air quality 

sensors are evaluated under ambient conditions for an 8-week field deployment at a fully 

instrumented AMS. Commercialized sensors are typically tested as off-the-shelf and out-

of-the-box products without prior modification or calibration (i.e., zero, span). Sensors are 

operated according to the sensor manufacturer’s user guide or manual if available. The 

low-cost sensors are deployed in triplicate so that intra-model variability can be examined 

and to provide the ability to detect potential malfunctions or sensor failures in a single unit. 

Sensors that are ruggedized for inclement weather (designed for ambient air monitoring) 

are typically mounted outside on the protective railing of the AMS. Sensors that are not 

ruggedized (designed for indoor air monitoring) are deployed in a custom-built sensor 

shelter. During the field evaluations, sensors were checked roughly once per week to 

confirm normal sensor operation and continuous data collection. 

2.2.2  Site Location and Characteristics  

The sensors evaluations took place at the South Coast AQMD Riverside-Rubidoux Air 

Monitoring Station (RIVR AMS) as part of the ongoing AQ-SPEC sensor evaluations. 

RIVR AMS, shown in the Supplemental Information (SI) Figure S2.1 (a), is a fully 

equipped regulatory air monitoring station with particulate matter instrumentation 
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operating as FRMs and FEMs. This monitoring station is an inland location that is 

downwind of the Los Angeles Air Basin and is heavily impacted by transported PM from 

upwind sources as well as a nearby highway. The nearest major highway to the site is the 

California State Route 60 (SR-60) located 0.8 km to the north / northeast of the site. In the 

general vicinity of the station, land use includes apartment complexes and single-family 

residences, school grounds, retail outlets, and vacant lots. Figure S2.2 shows the typical 

seasonal average chemical composition of PM2.5 at RIVR AMS. Ambient PM2.5 in this area 

is mainly comprised of secondary inorganic aerosols (i.e., nitrate, sulfate, ammonia) which 

accounts for 49-68% of the total PM2.5 mass depending on the season. Organic matter is 

the second major contributor to PM2.5 mass in this area (19-32%), followed by elemental 

carbon (4-10%), crustal material (dust, 4-6%), trace ions (e.g., sodium, potassium; 1-3%), 

and other trace elements (e.g., arsenic, barium; ~1%) (Hasheminassab et al., 2014). 

2.2.3 Sensor Selection and Evaluation Timing 

The 12 commercially available “low-cost” sensors were tested between February 

2015 and March 2018. These sensors vary in cost from approximately $150 to $3000 USD.  

Table 2.1 provides a description of the 12 sensors with make, model, time resolution, 

estimated cost, and pollutants measured. Even though several of these sensors are 

developed for indoor air quality monitoring and not specifically for outdoor ambient 

monitoring, the evaluation of the technology provides valuable insights into the emerging 

market of air quality sensors with regards to their use in ambient air monitoring 

applications.  
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Manufacturer Model 

Pollutants Measured Time 

Resolution Cost 

Shinyei 

PM Evaluation 

Kit 

PM2.5 

1-min $1,000 

Alphasense OPC-N2 PM2.5 < 1-min $450 

TSI AirAssure PM2.5 5-min $1,000 

Hanvon N1 PM2.5, HCHO 1-min $200 

Airboxlab Foobot PM2.5, CO2, VOC 5-min $200 

Kaiterra LaserEgg PM2.5 < 1-min $200 

PurpleAir PA-II PM2.5, PM10, PM1.0 < 1-min $230 

HabitatMap Air Beam 1 PM2.5 1-min $200 

SainSmart 

Pure Morning 

P3 

PM2.5, CO2, HCHO  

< 1-min $170 

IQAir  AirVisual Pro PM2.5, CO2, < 1-min $270 

Uhoo uhoo 

PM2.5, O3, NO2, CO, CO2, 

TVOC 1-min $300 

Aeroqual AQY PM2.5, O3, NO2 1-min $3,000 

Table 2.1 List of sensors evaluated and sensor specifications.  

While more than 12 PM sensors have been evaluated in the AQ-SPEC program, the 

selection of these 12 sensors was based on whether the sensor is commercially available, 

measures PM2.5 (µg/m3), tested within the three-year time span, and exhibited acceptable 

data recovery during the evaluation time period. The sensors were exposed to ambient air 

for a period of approximately 30-60 days. The timing of the evaluation was dependent on 

when the sensors were received and when space was available at RIVR AMS or in the 

sensor shelter.  

2.2.4 Reference Instrumentation 

 While the RIVR AMS is equipped with both FRM and FEM instrumentation, the 

performance of the PM sensors selected for this study are evaluated against 1-hour FEM 

measurements of PM2.5. The gravimetric FRM 24-hour integrated filter mass 

measurements do not capture the high time resolution of low-cost sensors. For the purposes 
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of this paper, a Met One Beta Attenuation Monitor (BAM), U.S. EPA designated Class III 

FEM (EQPM-0308-170) for monitoring PM2.5, was used to compare against the low-cost 

sensor measurements. The Met One BAM provides 1-hr average PM2.5 concentrations and 

is shown in Figure S2.1 (b & c).  

2.2.5 Principle of Operation of Particulate Matter Sensors 

  The 12 PM2.5 sensors evaluated in this paper are categorized as optical sensors with 

regards to their principle of operation. Optical methods are based on the light scattering of 

aerosols which is a function of the wavelength of the light source along with the size, 

composition, and refractive index of the aerosol. Aerosols flow across a focused beam of 

light and a photodetector records the intensity of the scattered light. These sensors can be 

categorized into volume scattering devices and optical particle counters (OPCs). In volume 

scattering devices, light is scattered by the ensemble of particles and detected by a 

photodetector which provides a single digital or analog output. This output is converted to 

particle mass concentrations by a prior calibration with a test aerosol and collocation with 

some reference or research grade instrumentation. In OPCs, the aerosol particles are 

counted and categorized into distinct size bins. Particle mass concentrations are then 

calculated based on number, size, and assumptions with regards to the shape, density, and 

refractive index of the aerosol (Morawska et al., 2018). The OEM sensor manufacturer 

and/or end-product integrator often develops software algorithms to provide a corrected 

value for particle mass concentration and consider these algorithms as proprietary 

technology.  
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2.2.6 Sensor Shelter 

A louvered aluminum shelter was designed and constructed to house and protect 

the non-ruggedized air quality sensors from inclement weather conditions, such as rain, 

wind, and direct sunlight. The shelter is shown in appendix Figure S2.1 (d & e). The main 

compartment of the shelter is approximately 1 x 1 x 1 meter and designed with louvered 

vents and a mesh floor to allow for air circulation. The shelter has three aluminum mesh 

shelves upon which the sensors are placed for the field deployment. The shelter is designed 

in a manner to provide maximum movement of air through the enclosure and a sensing 

environment that is near-ambient conditions for pollutants and weather conditions.  

2.2.7 Data analysis 

Upon completion of the field deployment, the data was collected and joined for 

analysis. Data from the sensor triplicate was first validated following basic QA/QC 

procedures in which obvious time-series outliers, negative values, continuing zeros, and 

invalid data points (text, symbols, and blanks) were removed. Obvious time-series outliers 

were typically extremely high values that were found to be outside of the measurement 

range of a sensor or outside the bounds of typical ambient PM2.5 concentrations. The 

remaining data were then averaged over 1-hour time intervals and matched by date and 

time to the hourly FEM BAM PM2.5 data. Data recovery of at least 75% of the sub hourly 

raw sensor data was required for a 1-hr average data point to be considered valid. The 1-hr 

average reduces the noise associated with measurements at shorter time resolutions.  

Statistical analysis was conducted on the 1-hr time matched data to examine data 

completeness, intra-model variability, least-squares linear regression statistics, 
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measurement error, and impact of environmental conditions. Following the data recovery 

calculations, the 1-hr time matched data sets were subjected to two data reduction filters to 

improve inter- and cross-model comparability. First, all rows with a missing PM2.5 

concentration for either the reference instrument or one of the three sensors was dropped 

from further analysis. Secondly, as regression statistics can be dependent on the range of 

PM experienced during the evaluation, data rows where the FEM BAM PM2.5 

concentration exceeded 50 µg/m3 were removed from further analysis. The PM2.5 

concentration of 50 µg/m3 was selected to include nearly four average standard deviations 

(8.9 µg/m3) from the mean of means BAM PM2.5 concentration (14.2 µg/m3, SI Table S2.1) 

experienced during the 12 evaluations periods. This filter excludes only a small fraction (˂ 

3% filtered per data set) and improves the comparability between the sensor evaluations. 

The equations for data recovery are provided in the SI with Equation (Eq.) S2.1 and S2.2.      

Intra-model variability within a triplicate of sensors is defined as the degree to 

which the three sensors agree with one another. This is determined by calculating the mean 

PM2.5 concentrations as measured by individual sensors within a triplicate and comparing 

with the mean of means and standard deviation (SD) for the mean of means. The SD for 

the mean of means provides a metric for intra-model variability. A high SD for the mean 

of means indicates high intra-model variability whereas a low SD indicates low intra-model 

variability.   

Accuracy is defined as the degree to which the 1-hr average PM2.5 concentrations 

generated from the low-cost sensors conforms to the PM2.5 measurements from the FEM 

BAM instrument. Accuracy can be examined by looking at the regression statistics and 
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measurement error between sensor and reference instruments.  When reviewing the slope 

and intercept of the best fit line for determining accuracy, the importance of the R2 statistic 

must not be overlooked. The least squares linear regression provides a best fit linear 

equation that is shown in Eq. S2.3. In an ideal situation where the sensor perfectly matches 

the reference grade instrumentation, the slope (m) would be 1.0, intercept (b) 0.0, and the 

coefficient of determination (R2) would be at or near 1.0. The R2 statistic measures the 

scatter of the data points around the fitted linear regression line and provides a measure for 

how strongly variations in sensor-generated PM2.5 concentrations are related to variations 

in BAM-generated PM2.5 concentrations. When the R2 value is below a certain threshold 

(R2 < 0.70 for the purposes of this paper), examining the slope and intercept values to 

determine accuracy is not relevant due to the magnitude of scatter around the best fit line.  

Mean Bias Error (MBE) and Mean Absolute Error (MAE) are calculated in similar 

fashion with the MAE taking the absolute value of the hourly differences between the 

sensor and BAM measurements. The MBE between the sensor and the reference BAM 

instrument provides a metric that indicates the tendency of the sensor to either under- or 

over-estimate the reference PM2.5 mass concentrations. The units of both MBE and MAE 

are calculated in µg/m3 which is identical to the units of measurement for both sensor and 

FEM instrument. This provides a hands-on way to visualize the error especially with 

regards to identifying the cause of the error when reviewing the linear regression results. 

Care must be taken with the MBE statistic as over-estimated errors will cancel out under-

estimated errors in the calculation of MBE. The MAE provides a better metric for actual 

measurement error between sensor and reference. The equations for MBE and MAE are 
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found in Eq. 2.1 and 2.2, respectively. The Root Mean Square Error (RMSE) statistic is an 

additional metric for looking at the measurement error with the RMSE being 

disproportionately impacted by large errors with the equation for RMSE provided in Eq. 

2.3. 

Eq. 2.1          Mean Bias Error (MBE) =  
1

n 
∑  (Xi − Xt)

n

i=1

 

Eq. 2.2          Mean Absolute Error (MAE) =  
1

n 
∑  |(Xi − Xt)|

n

i=1

 

Eq. 2.3          Root Mean Square Error (RMSE) = √
∑ (Xi − Xt)2𝑛

𝑖=1

𝑛
 

Where,  

Xi is the 1-hr average measurement by the low-cost sensor 

Xt is the 1-hr average measurement provided by the FEM PM2.5 Met One BAM 

n is the number of 1-hr time-matched data pairs  

Some of the sensors have unique data recovery situations or unique methods for 

reporting data that require further attention and analysis. Due to a sensor malfunction, the 

Uhoo #2 sensor had a low data recovery of 47.2% and was therefore excluded from 

subsequent data analysis. The Purple Air PA-II has two OEM sensors and reports two 

similar but non-identical PM2.5 concentrations. Data from these two OEM sensors were 

time matched and then averaged to provide one PM2.5 concentration per PA-II sensor to 

compare with the reference instrumentation. The CF=atm measurement was selected for 

the Purple Air Sensor based on the OEM sensor manufacturer’s, Plantower, 

recommendation for ambient measurements according to their manual (Yong and Haoxin 

2016).  

 



   

42 

 

2.3 Results and Discussion 

2.3.1 Field Conditions and Data Recovery 

Twelve sensors were evaluated during specific and unique time periods taking place 

over three years: 02/05/15 to 03/27/18. The actual time periods of the evaluations are 

random and take place as the AQ-SPEC program receives sensors to evaluate and space is 

available in the sensor shelter. The ambient environment under which each triplicate of 

sensors is evaluated is characterized by specific, non-repeatable conditions for aerosol 

particles (size, count, shape, refractive index, speciation, and mass distribution) and climate 

conditions (temperature, relative humidity, wind, precipitation, etc.). Table S2.1 in the SI 

provides a summary of the field conditions for temperature, relative humidity, and hourly 

BAM FEM PM2.5 mass concentrations experienced for the 12 distinct evaluation periods. 

The mean ambient temperature varies between the 12 evaluations and ranges between 12.3 

and 25.2 ˚C indicating that seasonality differences in temperature do exist between the 

individual sensor evaluations. The mean RH between the 12 evaluations ranges from 48.1 

to 67.9 % with a mean of means at 54.3 ± 5.3 %. The average SD for RH for the individual 

evaluations is ± 23.3% RH indicating that while moderate seasonal differences in RH exists 

between evaluations, the individual evaluations experienced a wide range of RH 

conditions. The BAM PM2.5 mean concentration for the 12 evaluations ranged from 11.1 

to 17.2 µg/m3 with a mean of means at 14.2 ± 2.0 µg/m3. The average SD for PM2.5 

individual evaluation periods is 8.9 µg/m3 indicating that while moderate seasonality 

differences in PM2.5 exist, the individual evaluation periods experienced a range of PM2.5 

concentrations. The max PM2.5 values experienced during the 12 evaluations varied 
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significantly between evaluations with max hourly concentrations ranging from 38 to 133 

µg/m3 indicating the need to filter out these higher PM2.5 events to maintain a consistent 

concentration range between the evaluations.  

The 1-hr average data recovery for the sensor triplicates is high with recovery > 

79% for all sensors with most sensors nearing 99% data recovery as shown in SI Table 

S2.1. After processing the hourly matched data points for missing values (sensor triplicate 

or reference) and filtering out values for BAM PM2.5 concentrations > 50 µg/m3, the 

number of hourly matched data points (n) varied between the 12 evaluations ranging 

between 732 and 1917 data points with data recovery ranging from 71 to 98%.  

2.3.2 Summary Statistics and Intra-model variability 

Table 2.2 provides summary statistics with mean PM2.5 concentrations measured 

for the three sensors, the mean of means, and the ± SD around the mean of means which 

provides a metric for intra-model variability. Four sensors, namely Aeroqual AQY, Purple 

Air PA-II, SainSmart P3, and TSI Air Assure, indicate low intra-model variability with the 

SD less than 0.75 with regards to the mean of means. Three sensors, namely the Laser Egg, 

Shinyei PM evaluation kit, and IQAir AirVisual Pro, indicate low to moderate intra-model 

variability with 0.76 ≤ SD ≤ 1.5. Four sensors, namely Alphasense OPC-N2, Air Beam 1, 

Foobot, and Hanvon N1, indicate moderate to high intra-model variability with 1.51 ≤ SD 

≤ 2.75. The Uhoo indicates high intra-model variability with SD at ± 6.23.    
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 Sensor  Reference  

 Mean ± SD (µg/m3) 

Mean of 

Means 

BAM PM2.5  

Sensor 
1 2 3 

Mean ± SD 

(µg/m3) 

Mean ± SD 

(µg/m3) 

Shinyei PM 

Evaluation Kit 14.8 ± 13.1 14.6 ± 12.7 13.0 ± 11.5 14.1 ± 0.80 
15.2 ± 12.3 

Alphasense 

OPC-N2 14.3 ± 6.2 10.1 ± 6.1 11.4 ± 7.0 11.9 ± 1.74 
15.6 ± 6.6 

TSI AirAssure 15.6 ± 13.4 17.4 ± 13.0 16.7 ± 12.4 16.6 ± 0.75 13.2 ± 11.3 

Hanvon N1 32.0 ± 21.7 30.5 ± 19.7 27.6 ± 17.3 30.0 ± 1.80 15.2 ± 10.3 

Airboxlab 

Foobot 19.7 ± 10.3 17.3 ± 8.6 24.0 ± 10.3 20.3 ± 2.75 
14.4 ± 6.4 

Kaiterra 

LaserEgg 15.6 ± 9.2 13.5 ± 8.2 12.9 ± 8.0 14.0 ± 1.16 
14.0 ± 6.1 

PurpleAir PA-

II 16.9 ± 19.1 16.5 ± 18.6 16.7 ± 18.0 16.3 ± 0.13 
12.1 ± 11.3 

HabitatMap 

Air Beam 1 14.1 ± 9.3 17.0 ± 12.8 18.0 ± 14.5 16.4 ± 1.64 
11.1 ± 6.6 

SainSmart 

Pure Morning 

P3 14.6 ± 12.2 15.7 ± 12.8 14.7 ± 10.6 15.0 ± 0.51 

11.1 ± 6.6 

IQAir Air 

Visual Pro 17.5 ± 10.2 17.6 ± 10.2 20.7 ± 11.4 18.6 ± 1.51 
17.2 ± 7.3 

Uhoo 32.6 ± 14.9 - 20.1 ± 11.0 26.3 ± 6.23 17.1 ± 7.3 

Aeroqual AQY 9.8 ± 11.5 9.7 ± 11.7 9.3 ± 10.8 9.6 ± 0.24 13.8 ± 14.4 

Table 2.2 Summary statistics and intra-model variability for sensor triplicates. 

2.3.3 Least Squares Linear Regression and Measurement Error 

Least squares linear regression was performed for each sensor within a triplicate 

with the results shown in Table 2.3. Six of the 12 sensors were found to have a triplicate 

average of R2 ≥ 0.70 and will be discussed further with regards to slope/intercept for 

accuracy. Four sensors, namely Aeroqual AQY, Purple Air PA-II, Sainsmart P3, and the 

Shinyei PM Evaluation kit indicated high linearity with R2 ≥ 0.75 and two sensors, namely 

TSI Air Assure and Air Visual pro, indicated linearity with 0.70 ≥ R2 ≥ 0.74. With regards 
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to slope as a measure for accuracy, four of these six sensors, namely Aeroqual AQY, 

Shinyei PM Evaluation kit, TSI Air Assure, and IQAir Air Visual Pro, were found to have 

slope values within ± 0.25 of the 1.0 ideal value. The Purple Air PA-II and the SainSmart 

P3 were found to generally overestimate FEM PM2.5 concentrations by roughly 50% with 

slope values between 1.31 and 1.68. With regards to intercept value as a measure for 

accuracy, three sensors, namely the Sainsmart P3, Shinyei, and IAQir Air Visual Pro were 

found to have intercept values |b| < 2.5 from the ideal 0.0 value. The remaining three 

sensors, namely the Aeroqual AQY, Purple Air PA-II, and TSI AirAssure, were found to 

have higher intercept values ranging from 2.6 < |b| < 4.0.  

 The calculated measurement errors (MBE and MAE) between sensors and the 

BAM PM2.5 measurements are shown in Table 2.3. Four sensors, namely the Aeroqual 

AQY, Kaiterra LaserEgg, Shinyei PM Kit, and IQAir AirVisual Pro, have MAE near or 

less than 5 µg/m3. Five sensors, namely the Alphasense OPC, Air Beam 1, Purple Air 

PA-II, Sainsmart P3, and the TSI Air Assure, have MAE in the 5 to 7.5 µg/m3
 range. 

Three sensors, namely the Foobot, Hanvon N1, and the Uhoo, have MAE greater than 7.5 

µg/m3. For 8 of the 12 sensors, namely the Aeroqual, Foobot, Alphasense OPC, AirBeam 

1, Hanvon N1, Purple Air PA-II, SainSmart P3, and TSI Air Assure, the proportion of 

MBE to MAE is greater than 0.65 indicating that the predominant error associated with 

these sensors is systematic in nature rather than random. Accounting for systematic bias 

errors could significantly reduce the measurement errors associated with sensors. 
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   Slope Intercept 

Measurement Error 

(µg/m3) 

Sensor # R2 Slope 

95% 

CI Intercept 

95% 

CI MBE MAE  

RMSE 

Shinyei PM 

Evaluation 

Kit 

1 0.75 1.18 0.04 -1.48 0.59 0.9 4.5 6.8 

2 0.73 1.13 0.04 -1.07 0.60 0.7 4.5 6.7 

3 0.75 1.03 0.03 -1.29 0.52 -0.9 4.2 5.8 

Alphasense 

OPC-N2 

1 0.67 0.78 0.04 2.08 0.67 -1.3 3.3 4.1 

2 0.38 0.57 0.05 1.18 0.90 -5.5 6.5 7.8 

3 0.40 0.67 0.06 1.03 1.01 -4.2 5.9 7.2 

TSI 

AirAssure 

1 0.73 1.10 0.04 1.61 0.60 2.9 5.1 7.6 

2 0.74 1.08 0.03 3.66 0.57 4.7 6.0 8.2 

3 0.72 1.01 0.03 3.81 0.56 4.0 5.6 7.6 

Hanvon  

N1 

1 0.56 2.13 0.10 0.91 1.71 17.4 18.1 24.1 

2 0.54 1.91 0.10 2.69 1.59 15.9 16.3 21.9 

3 0.58 1.73 0.08 2.39 1.34 13.1 13.5 18.1 

Airboxlab 

Foobot 

1 0.57 1.32 0.06 0.28 1.00 5.0 6.4 8.6 

2 0.54 1.08 0.05 1.35 0.86 2.6 4.7 6.4 

3 0.54 1.29 0.07 4.89 1.03 9.2 9.5 11.7 

Kaiterra 

LaserEgg 

1 0.57 1.15 0.06 -0.08 0.95 2.0 4.7 6.4 

2 0.56 1.02 0.06 -0.40 0.85 -0.1 4.1 5.4 

3 0.58 1.01 0.06 -0.80 0.82 -0.7 4.0 5.2 

PurpleAir      

PA-II 

1 0.95 1.68 0.03 -3.06 0.51 5.0 7.0 10.6 

2 0.95 1.63 0.03 -2.84 0.49 4.7 6.7 10.0 

3 0.95 1.58 0.03 -2.08 0.48 4.8 6.7 9.7 

HabitatMap 

Air Beam 1 

1 0.59 1.08 0.05 2.03 0.63 2.9 4.4 6.6 

2 0.57 1.47 0.07 0.46 0.90 5.7 6.5 10.6 

3 0.57 1.66 0.08 -0.62 1.01 6.8 7.5 12.4 

SainSmart 

Pure 

Morning P3 

1 0.76 1.52 0.05 -2.34 0.69 3.5 5.3 7.8 

2 0.77 1.61 0.05 -2.19 0.70 4.6 5.9 8.8 

3 0.74 1.31 0.05 0.06 0.62 3.5 5.0 6.8 

IQAir 

AirVisual 

Pro 

1 0.69 1.15 0.04 -2.38 0.73 0.2 4.4 5.8 

2 0.69 1.16 0.04 -2.42 0.73 0.3 4.4 5.8 

3 0.72 1.31 0.04 -1.97 0.77 3.4 5.3 7.3 

Uhoo 

1 0.00 0.09 0.11 31.11 2.03 15.4 17.7 22.4 

2 - - - - - - - - 

3 0.00 0.02 0.08 19.74 1.51 2.9 10.1 13.5 

Aeroqual 

AQY 

1 0.78 0.99 0.02 -2.75 0.39 -2.9  4.5 6.1 

2 0.79 1.01 0.02 -3.08 0.38 -3.0 4.7 6.2 

3 0.79 0.94 0.02 -2.63 0.35 -3.4 4.6 6.1 

Table 2.3  Linear Regression Statistics and measurement error for sensor triplicates. 
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Several interesting observations can be made with regards to the regression 

statistics and measurement errors. The Aeroqual AQY bias error (triplicate average: 3.1 

µg/m3) is strikingly close to the linear regression intercept values (triplicate average: 2.8 

µg/m3) indicating that the sensor may suffer from a zero offset and that correcting for this 

offset may potentially reduce measurement error. For the Hanvon N1, the MBE accounts 

for over 95% of the MAE indicating a strong positive bias error which is confirmed with 

slope values > 1.73 with the sensor often overestimating BAM PM2.5 concentrations by 

over 100%. The Kaiterra Laser Eggs regression statistics show near ideal slope and 

intercept values, but the R2 was found to be less than 0.60. The MBE/MAE ratio for the 

Laser Eggs is less than 0.5 indicating that the measurement error is dominated by random 

error rather that systematic or bias error. This sensor highlights the importance of 

evaluating accuracy not only on slope/intercept values, but also with the R2 statistic and 

measurement error to gain a more comprehensive understanding of sensor performance. 

2.3.4 Comparison of Results with Previous Sensor Evaluations 

Sensor performance evaluations from prior studies often differ with regards to 

methodology with differences in geographic locations, length of evaluation, 

meteorological conditions, particle properties, reference instrumentation, and purpose of 

evaluation. The most comparable sensor evaluations to this work have been performed by 

the U.S. EPA according to a standard EPA protocol at a reference air monitoring site with 

non-ruggedized sensors housed in a sensor shelter. The comparison between the results of 

the AQ-SPEC and U.S. EPA sensor evaluations for the TSI AirAssure, Habitat Map 

AirBeam, Alphasense OPC-N2, and the Shinyei PM evaluation kit are provided in Table 
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2.4. The differences in slope, intercept, and correlation between these distinct geographic 

locations indicate that sensor performance may vary by geographic regions that experience 

different concentration ranges and aerosol optical properties (Feinberg et al., 2018).  

  South Coast AQMD U.S. EPA U.S. EPA 

Location Riverside, California Denver, Colorado Atlanta, Georgia 

Reference  Feinberg, et al., 2018 Jiao, et al., 2016 

Comparison 

Instrument Met One BAM 1020  Grimm 180 EDM Met One BAM 1020 

Time-

period ~ 8 weeks Long-term > 30 days 

Time 

Average 1-HR 1-HR 12-HR 

 Avg Regression Stats  Avg Regression Stats Avg Regression Stats 

Sensor Slope Intercept R2 Slope Intercept R2 Slope Intercept R2 

TSI 

AirAssure 
1.06 3.03 0.73 1.15 0.41 0.63 - - - 

Habitat 

Map 

AirBeam 

1.40 0.62 0.58 - - 0.69 - - 0.43 

Alphasense 

OPC-N2 
0.67 1.43 0.48 0.47 -1.48 0.16 - - - 

Shinyei 

PM 

Evaluation 

Kit 

1.11 -1.28 0.74 0.56 0.52 0.51 0.72 7.48 0.36 

Table 2.4 Comparison between published sensor evaluation results 

The AirBeam and Alphasense OPC-N2 were also evaluated in Cuyama Valley, CA 

against a Grimm 11-R for 12 weeks. Average regression statistics for the AirBeam were 

slope of 0.38, intercept of 4.1, and R2 of 0.66 and for the Alphasense OPC-N2 were slope 

of 0.14, intercept of 2.5, and R2 of 0.41 for hourly data (Mukherjee et al., 2017). While the 

correlations are similar to the results presented in this study, the slope/intercepts between 

evaluations differ with the AirBeam overestimating PM2.5 in Riverside and underestimating 
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it in the Cuyama Valley. While both studies found the Alphasense OPC-N2 to 

underestimate PM2.5 concentrations, the magnitude of the negative bias was larger in the 

Cuyama Valley than in Riverside. In a long-term performance evaluation of the Purple Air 

PA-II sensor against a Met One BAM 1020 in Charlotte, North Carolina, regression 

statistics found slope at 2.2, intercept at 1.3, and R2 at 0.54 (Magi et al., 2019). These long-

term evaluation results differ from the findings in this study with 2-month evaluation 

average regression statistics finding a slope of 1.63, intercept of -2.66, and R2 of 0.95. This 

significant discrepancy between studies indicates that the length of the evaluation may also 

impact correlation against reference monitors especially if a sensor degrades or 

malfunctions during the time period of a long-term evaluation.   

2.3.5 Impact of Environmental Conditions on Bias Error   

A contributing factor for diminishing performance of low-cost sensors when compared 

against reference instrumentation is due to the impact of RH (Jayaratne et al., 2018). Some 

low-cost optical methods adjust or calibrate in real-time for the impacts of RH on the 

conversion from particle count to particle mass concentration (Hojaiji et al., 2017; Di 

Antonio et al., 2018). While the BAM FEM monitor is equipped with a heater to condition 

the aerosol to a set temperature and RH prior to sampling, the low-cost sensors measure 

PM at ambient temperature and RH. To examine the potential impact of RH on sensor 

response, hourly bias errors were plotted against the hourly RH for all 12 sensors (Figure 

2.1).  
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Figure 2.1 Impact of Relative Humidity (RH) on the bias error between Sensor and Met 

One BAM 

Ideally, the slope of the best fit line would be zero and would be located on the y = 

0 axis. The bias error by RH plot for the Aeroqual AQY, TSI AirAssure, and the Shinyei 

indicate that these sensors are not strongly impacted by increasing RH. The remaining 9 

sensors, except for the Uhoo, indicate increasingly positive bias error as RH increases and 

are ordered from left to right and top to bottom by magnitude of slope of best fit line. 

Addressing and correcting for the impact of RH on these optical devices, by either 

advancing OPC hardware or by developing software corrections algorithms for RH, would 
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likely result in a reduction in the measurement error associated with low-cost sensors. Care 

should be taken when developing these software correction algorithms so that the model 

or algorithm developed is based on scientifically relevant inputs (i.e. ambient Temperature 

and RH collected in real-time) so as not to over-fit the models to limited training data sets 

and to ensure that the measurement is still a measurement (Hagler et al., 2018). Extensive 

field testing to capture seasonal variabilities for temperature and RH will help 

tremendously towards understanding the impacts of RH on low-cost optical particle 

counters. Additionally, laboratory testing with a sophisticated heating, ventilation, and air 

conditioning (HVAC) system to control temperature, RH, and the particles environment 

can provide valuable insights into the impacts of local weather conditions and interferants 

on these devices (Papapostolou et al., 2017).  

To examine the potential impact of PM2.5 concentrations on sensor response, hourly 

bias errors were plotted against the hourly BAM PM2.5 for all 12 sensors (Figure 2.2). No 

consistent trends are seen across the 12 sensors as PM2.5 concentrations increase. 

Individually though, Figure 2.2 provides a telling story of where shifts between systematic 

and random measurement error occur along the PM2.5 measurement range. For example, 

the Purple Air sensor indicates predominant random error between 0-12 µg/m3 with scatter 

almost evenly distributed between positive and negative bias. However, between 13-50 

µg/m3 the sensor indicates systematic positive bias error. On the other hand, the Aeroqual 

AQY indicates systematic negative error that increases as concentrations rise from 0 to 25 

µg/m3. Above 25 µg/m3, the Aeroqual AQY bias is scattered around the y=0 line indicating 

random error. The Shinyei PM kit, AirVisual Pro, and Laser Egg indicate measurement 
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error dominated by random error with scatter evenly distributed between positive and 

negative bias. These sensors also exhibit lower MBE/MAE ratios. Understanding when 

measurement error shifts between systematic and random error, can provide insights on 

how to model sensor response to regulatory-grade equipment. It should be noted that these 

observations are limited to the PM2.5 concentration range of 0-50 µg/m3 and sensors may 

behave differently outside of this range.  

Figure 2.2 Impact of PM2.5 concentration on bias error between Sensor and Met One BAM 
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2.3.6 Limitations and future work 

Evaluating the performance of low-cost air quality sensors has limitations that must 

be acknowledged and understood. First, the ambient field environment is specific to 

location, time of year, weather conditions, and the pollutant physical/chemical properties 

experienced during the evaluation. The ambient environment experienced by a sensor 

within an evaluation time period cannot be controlled or duplicated for subsequent tests. 

The results of this limited evaluation provide an indication of the sensors performance 

under specific conditions at the RIVR AMS. A performance evaluation of a sensor under 

different environmental conditions and particle properties would likely provide similar but 

non-identical results. To address these limitations of field performance evaluations, sensors 

that perform well in the field are submitted to the AQ-SPEC laboratory for testing in a 

characterization chamber (Papapostolou et al., 2017). Secondly, a number of the sensors 

evaluated are designed for indoor air quality and are not ruggedized for ambient 

monitoring. These non-ruggedized sensors are installed inside an aluminum shelter 

enclosure which protects the units from ambient weather conditions. While the enclosure 

minimizes the effect of extreme weather conditions and is designed to provide a near 

ambient environment, the shelter environment is not identical to the ambient environment 

sampled by the FEM BAM PM2.5 instrument.  

The future development of performance targets for low-cost air quality sensors 

would drive technology advancement and provide a pathway to generate an increase in 

understanding and trust in low-cost sensors. A sensor certification program could perform 

more rigorous field testing that incorporates multiple sites across the country and multiple 
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seasons in a testing protocol similar to the process for instruments to achieve designation 

as a FRM or FEM. Rigorous field testing for PM sensors in various environments would 

be necessary as generating an aerosol environment in a laboratory identical to a local 

aerosol environment (e.g., in terms of particle count, shape, refractive index, speciation, 

source, size and mass distribution) is extremely difficult. A certification program with more 

rigorous field and laboratory studies can enhance the current understanding of how particle 

composition can impact low-cost sensor performance with understanding how these optical 

methods respond in environments dominated by regional specific aerosols like inland dust, 

course silt, coastline sea salt, secondary organic aerosol, and other regional specific aerosol 

compositions.  A certification center could provide guidance and catalyze the evolution of 

this technology, identify key data quality indicators, set performance requirements, and 

increase trust in data generated by low-cost sensors.  

2.4 Conclusions 

This paper presents the results of 12 “low-cost” PM2.5 sensors against reference 

instrumentation at the South Coast AQMD RIVR AMS in Southern California. The sensor 

products range in price from US$150.00 to US$3000.00 with varying performance for 

intra-model variability, linear regression statistics, and measurement errors. The high 

correlation coefficients between sensors and the FEM BAM indicate that a number of these 

low-cost units track the ambient PM concentrations of regulatory monitors well. For 

sensors that are highly correlated to the FEM BAM, the slope and intercept offsets of the 

regression statistics indicate that refinement or calibration of the sensors could be 

performed to improve sensor performance and reduce measurement error. Additionally, 
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sensors with a high MBE/MAE ratio are impacted predominantly by systematic error 

which could potentially be accounted for to reduce measurement error. The impacts of 

environmental conditions (RH and PM concentration) were investigated and indicate that 

the bias error for many low-cost optical particulate sensors on the market are impacted by 

changing environmental conditions. Future development by sensor manufacturers and 

sensor integrators that address the positive bias error associated with RH will likely 

produce sensors with less measurement error and that generate higher trust in data 

collected. Not accounting for RH effects may lead to the collection of measurements with 

a large bias error and may limit the usefulness of these low-cost tools and collected data. 

Due to the need for slope/intercept and potential RH corrections for some sensors, the 

actual utility of these devices may be limited to those who have access to reference grade 

instrumentation and the data science skill set to develop models and algorithms to correct 

the data. The technical requirements to develop and apply these corrections in real-time 

can potentially remove the usefulness of this technology from potential end-users and limit 

usefulness to those that are trained and able to perform the required corrections. For use by 

non-experts, low-cost sensors should be easily operated, installed, configured, and provide 

data with low measurement errors.   

The overall state of the technology for measuring PM is improving and 

commercially available products have the potential to provide meaningful results to citizen 

scientists, communities, researchers, and regulatory agencies. As the market continues to 

expand, air quality measurement techniques and methodology is changing dramatically. 

Validating the performance of these sensors is a critical step as this new paradigm of low-
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cost sensing takes effect. The potential applications for “low-cost” sensors are vast and 

properly characterizing of the performance of these devices will provide insights into 

interpreting their results and reduce confusion especially when low-cost sensor data does 

not agree with federally approved reference instruments.  
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Supplemental Information – Chapter 2 

1. Air Quality – Sensor Performance Evaluation Center (AQ-SPEC)  

2. Figure S2.1 

3. Figure S2.2 

4. Equations S2.1 to S2.3 

5. Table S2.1 

6. Table S2.2  

 

1. Air Quality – Sensor Performance Evaluation Center (AQ-SPEC) 

The South Coast Air Quality Management District (SCAQMD) established the Air 

Quality Sensor Performance Evaluation Center (AQ-SPEC) in July 2014 in an effort to 

provide the public with much-needed information about the actual performance of 

commercially available low-cost monitoring sensors. The performance of currently 

available low-cost sensors is characterized using both field- and laboratory-based testing. 

Evaluation results are communicated to the public through an information website 

(www.aqmd.gov/aq-spec). In the field, air quality sensors are operated at an air monitoring 

station (AMS) where FRM or FEM instruments measure the ambient concentration of 

gaseous or particle pollutants for regulatory purposes. Field testing is conducted, primarily, 

at one of SCAQMD’s fully instrumented air monitoring sites in Rubidoux, California. 

Sensors are typically tested in triplicate for 8 weeks to evaluate the performance against 

FRM or FEM instruments, as well as sensor-specific parameters such as intra-model 

variability, data recovery, and sensor lifetime. Sensors that demonstrate an acceptable 

performance in the field are then brought back to the laboratory for laboratory chamber 

testing. (Paragraph adapted from Appendix A in Papapostolou et al., 2017) 

http://www.aqmd.gov/aq-spec
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While the AQ-SPEC field and laboratory testing results evaluates the performance 

of sensors, AQ-SPEC does not rank or endorse specific sensors. Nor does AQ-SPEC make 

recommendations as to which sensor devices should be used for specific applications. 

Sensor selection is application and project specific with the application defining 

performance requirements and the project defining requirements for connectivity (Wi-Fi, 

Bluetooth, etc.), data visualization (mobile application, screen display on sensor, web-

based mapping application, etc.), power requirements (12v, 5v, or 120V), and sensor 

mobility (stationary vs. mobile). 

2.  

     

                              
Figure S2.1 (a-e) Left to Right: (a) Rubidoux-Riverside (RIVR) Air Monitoring Station; 

(b) Met One BAM inlets; (c) Met One BAM 1020 FEM PM2.5; (d) Sensor Shelter; (e) 

Sensor Shelter Mesh sides
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3. Figure S2.2 

 

Figure S2.2 Seasonal average chemical composition of PM2.5 between 2002 and 2013 at 

Rubidoux monitoring station. Data adapted from Hasheminassab et al. (2014).
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4. Equations S2.1 – S2.3 

Eq. S2.1          Data Recovery (%) =  
NValid Data

NTest Period
∗ 100 

 

where,  

NValid Data is the number of valid 1-hr data points generated during the testing period for 

sensor or reference 

NTest Period is the total number of hourly of data points expected for the testing period 

(from start to end) 

 

 

 Eq. S2.2        Filtered Data Recovery  (%) =   
NValid Filtered Data

Ntest perid
∗ 100 

 

Where,  

NValid Filtered Data is the number of valid 1-hr time/date matched data points after the two 

data reduction filters are applied 

NTest Period is the total number of hourly of data points expected for the testing period 

(from start to end) 

 

 

Eq. S2.3          Y = mX + b 

Where,  

Y is the 1-hr average PM2.5 measurement provided by a low-cost sensor 

X is the 1-hr average PM2.5 measurement provided by the Metone BAM 1020 

m is the slope of the best fit line 

b is the y-intercept of the best fit line 
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Table S2.1 Field conditions during sensor deployment and data recovery for BAM and Sensors. 

Sensor  
Temp. (˚C)   

Humidity 

(%) 

BAM PM2.5 

(µg/m3) Data Recovery (%) 

Manufacturer & 

Model Evaluation Dates Mean ± SD Mean ± SD Mean ± SD Max  BAM 
Sensor* 

Analysis 

(N) † 

Aeroqual AQY 12/22/17 - 03/27/18 14.9 ± 5.6 48.2 ± 27.1 13.8 ± 14.4 133 88 99 84 (1917) 

Airboxlab Foobot 07/14/16 - 09/15/16 25.2 ± 5.7 53.1 ± 21.6 14.4 ± 6.4 38 96 95 86 (1295) 

Alphasense OPC-

N2 07/10/15 - 08/10/15 
24.7 ± 4.9 58.8 ± 19.5 15.6 ± 6.6 45 99 99 

98 (732) 

HabitatMap Air 

Beam 1 03/17/17 - 05/12/17 
18.1 ± 5.3 53.5 ± 23.2 11.1 ± 6.6 47 98 99 

98 (1317) 

Hanvon N1 05/20/16 - 07/27/16 23.5 ± 6.7 54.1 ± 22.0 15.2 ± 10.3 131 98 88 77 (1264) 

Kaiterra LaserEgg 08/01/16 - 09/26/16 24.2 ± 5.8 54.6 ± 21.6 14.0 ± 6.1 38 96 92 71 (951) 

PurpleAir  

PA-II 12/08/16 - 01/26/17 
12.3 ± 4.0 67.9 ± 25.3 12.1 ± 11.3 

73 97 
99 

96 (1124) 

SainSmart Pure 

Morning P3 03/17/17 - 05/12/17 
18.1 ± 5.3 53.5 ± 23.2 11.1 ± 6.6 

47 99 
93 

78 (1047) 

Shinyei PM 

Evaluation Kit 02/05/15 - 04/08/15 
18.0 ± 6.1 48.1 ± 26.3 15.2 ± 12.3 

79 99 
99 

97 (1435) 

TSI AirAssure 12/18/15 - 02/15/16 13.5 ± 5.7 47.6 ± 27.3 13.2 ± 11.3 69 96 93 91 (1299) 

Uhoo 08/07/17 - 10/06/17 24.2 ± 6.3 55.7 ± 21.5 17.1 ± 7.3 51 99 79§  92 (1333) 

IQAir Air Visual 

Pro 08/02/17 - 10/05/17 
24.5 ± 6.2 55.9 ± 21.0 17.2 ± 7.3 

51 99 
99 

98 (1535) 

Mean of Means ± SD 20.1 ± 4.6 54.3 ± 5.3 14.2 ± 2.0     
* Average data recovery of the three sensors 
† Data recovery % and (N) number of 1-hr time matched data points after the two filters applied time matched data set.  
§ Uhoo 1 (98.3%), Uhoo 2 (47%), and Uhoo 3 (91%); Uhoo 2 excluded from further analysis
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Abstract 

Recent technological advances in both air sensing technology and Internet of Things 

(IoT) connectivity have enabled the development and deployment of remote monitoring 

networks of air quality sensors. The compact size and low power requirements of both 

sensors and IoT data loggers allow for the development of remote sensing nodes with 

power and connectivity versatility. With these technological advancements, sensor 

networks can be developed and deployed for various ambient air monitoring applications. 

This paper describes the development and deployment of a monitoring network of accurate 

ozone (O3) sensor nodes to provide parallel monitoring in an air monitoring site relocation 

study. The reference O3 analyzer at the station along with a network of three O3 sensing 

nodes were used to evaluate the spatial and temporal variability of O3 across four Southern 

California communities in the San Bernardino Mountains which are currently represented 

by a single reference station in Crestline, CA. The motivation for developing and deploying 

the sensor network in the region was that the single reference station potentially needed to 

be relocated due to uncertainty that the lease agreement would be renewed. With the 

implication of siting a new reference station that is also a high O3 site, the project required 

the development of an accurate and precise sensing node for establishing a parallel 

monitoring network at potential relocation sites. The deployment methodology included a 

pre-deployment co-location calibration to the reference analyzer at the air monitoring 

station with post-deployment co-location results indicating a mean absolute error (MAE) 

< 2 ppb for 1-hr mean O3 concentrations. Ordinary least squares regression statistics 

between reference and sensor nodes during post-deployment co-location testing indicate 
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that the nodes are accurate and highly correlated to reference instrumentation with R2 

values > 0.98, slope offsets < 0.02, and intercept offsets < 0.6 for hourly O3 concentrations 

with a mean concentration value of 39.7 ± 16.5 ppb and a maximum 1-hr value of 94 ppb. 

Spatial variability for diurnal O3 trends was found between locations within 5 km of each 

other with spatial variability between sites more pronounced during nighttime hours. The 

parallel monitoring was successful in providing the data to develop a relocation strategy 

with only one relocation site providing a 95% confidence that concentrations would be 

higher there than at the current site. 

 

3.1 Introduction 

3.1.1 Ozone Pollution 

Ozone (O3) is a highly reactive gas that is comprised of three oxygen atoms. In the 

stratosphere (10–50 km above the earth’s surface), O3 is generated naturally and provides 

a protective layer that shields the earth from harmful ultraviolet (UV) rays emitted by the 

sun. In the troposphere (0–10 km above earth’s surface), O3 is considered an air pollutant 

and harmful to public health and the environment. The effects of O3 on human health 

include reducing lung function and irritation of the respiratory system. Increases in 

exposure to O3 have been associated with increases in school absenteeism (Romieu et al., 

1992; Gilliland et al., 2001; Park et al., 2002) and increases in the risk of death from 

respiratory causes (Jerrett et al., 2009; Turner et al., 2016; Cohen et al., 2017; Song et al., 

2019). In a long-term study on children, reductions in air pollutants have been associated 

with statistically significant decreases in bronchitis symptoms like asthma (Gauderman et 

al., 2015; Berhane et al., 2016). High concentrations of O3 have been recognized as a 
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phytotoxic threat to forests, crops, and vegetation (Ashmore 2005; Bytnerowicz et al., 

2008). 

Tropospheric O3 or ground-level O3 is formed by chemical reactions between oxides 

of nitrogen (NOx) and volatile organic compounds (VOC) that occur in the presence of 

sunlight. This process is known as the photolytic cycle and is shown in Equations 3.1 to 

3.3 (Godish 1997). Prime conditions for generating O3 typically occur during the summer 

months when intense sunlight is coupled with mobile and stationary sources emitting 

carbon monoxide (CO), VOC, and NOx. Without sunlight, photolysis of nitrogen dioxide 

(NO2) in Eq. 3.1 ceases and Eq. 3.3 leads to the removal of O3 from the atmosphere when 

fresh emissions of NO are present. Commuter traffic in the late afternoon and early evening 

typically provides a source of fresh NO emissions leading to O3 titration. In rural 

communities, fewer sources of NO may cause less titration of O3 by NO which may lead 

to higher nighttime O3 concentrations than nearby urban environments (Duenas et al., 

2004). 

Eq 3.1 NO2 + hv → NO + O ∙ 

Eq. 3.2  O ∙ + O2  →  O3 

Eq. 3.3  O3 + NO → NO2 +  O2 

3.1.2 Regulation 

In the United States, O3 concentration levels are regulated by the United States 

Environmental Protection Agency (U.S. EPA) under the Clean Air Act (CAA). The U.S. 

EPA establishes National Ambient Air Quality Standards (NAAQS) for criteria pollutants 

which include CO, lead (Pb), NO2, O3, particulate matter (PM), and sulfur dioxide (SO2). 
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The State of California further regulates these pollutants with the California Ambient Air 

Quality Standards (CAAQS) established by the California Air Resources Board (CARB). 

These standards are designed to protect public health and the environment. The latest 

federal and state standards for O3 are shown in Table 3.1. 

Standard for Ozone 1-hr Average 
8-hr Average (Year 

Established) 

National Ambient Air Quality 

Standard 

120 ppb 

(1979) 

70 ppb (2015) 

75 ppb (2008) 

80 ppb (1997) 

California Ambient Air Quality 

Standard 
90 ppb - 

Table 3.1 Federal and State standards for ozone (obtained September 2019). 

3.1.3 Ozone Levels in the South Coast Air Basin and Monitoring in the San Bernardino 

Mountains 

The South Coast Air Quality Management District (South Coast AQMD) is the air 

pollution agency for the South Coast Air Basin (SCAB) which is in Southern California 

and includes all of Orange County and the urban portions of Los Angeles, Riverside, and 

San Bernardino Counties. In order to determine regional attainment for ambient air quality 

standards, South Coast AQMD operates a network of air monitoring stations (AMS) 

equipped with EPA approved instrumentation that measures criteria air pollutants across 

the basin. South Coast AQMD operates 29 Federal Equivalent Method (FEM) O3 

instruments. Significant improvement has been achieved in reducing O3 while population, 

vehicle miles traveled, economic activity, and goods movement in the region has been 

increasing. Large emissions of O3 precursors (NOx and VOCs) along with the topography 

and meteorology of the region lead to some of the worst O3 pollution in the nation (Air 

Quality Management Plan (AQMP) 2016). The San Bernardino Mountain (SBM) 
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Communities (SBMCs) are especially at risk for severe O3 episodes as polluted air travels 

inland with onshore wind from Los Angeles. Regional-scale temperature inversions that 

occur below the heights of the mountain crests lead to stagnant air conditions while clear 

skies and abundant sunlight provide conditions conducive for O3 formation (Lu and Turco 

1995). In 2015, one or more of the South Coast AQMD’s O3 reference analyzers exceeded 

the most current federal standard (2015 8-hr NAAQS: 70 ppb) on 113 days. Of the top ten 

monitoring sites in the nation for most frequently exceeding the 8-hr standard, seven are 

located within the SCAB. Monitoring sites within the San Bernardino County exceeded 

this standard 102 times in 2015 with the Central San Bernardino Mountains air monitoring 

site (Crestline AMS) exceeding the 8-hr O3 standard 86 times; more than any other O3 

monitoring location in the basin. The maximum 8-hr average O3 concentration recorded in 

the SCAB in 2015 was measured at the Crestline AMS at 127 ppb (AQMP, 2016). 

The main goal of this study is to determine if a relocation site in a nearby community 

would experience the same or similar O3 profile to the current monitoring site by testing 

the hypothesis that O3 concentrations in nearby communities are consistent spatially and 

temporally. While O3 is a secondary pollutant that is formed by reactions between primary 

pollutants (NOx and VOC) in the presence of sunlight and is often considered a regional 

pollutant, a recent community level O3 monitoring campaign in Riverside, CA found that 

O3 concentrations vary spatially across a community (Sadighi et al., 2018). In early 2017, 

South Coast AQMD was faced with the potential need to relocate the Crestline AMS due 

to uncertainty that the lease agreement would be renewed. If the lease was terminated, 

circumstances may prevent the option to perform parallel monitoring or perform parallel 
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monitoring during the high O3 season, typically occurring from July through September. 

At a minimum, parallel monitoring must be conducted during the season when maximum 

concentrations are expected (California Air Resources Board 1997). Since this monitoring 

station experiences some of the highest O3 concentrations in the basin, parallel monitoring 

at the current and potential relocation monitoring sites was determined to be necessary to 

develop an appropriate relocation strategy. While parallel monitoring is not required via 

statute or regulation when relocating a monitoring site, not performing parallel monitoring 

may have regulatory consequences if the relocation site does not meet the same monitoring 

objectives of the current monitoring location. Parallel monitoring provides a mechanism to 

determine if the relocation site can meet the current monitoring objectives. 

The current monitoring objectives of the Crestline AMS include evaluation of ambient 

air quality data, protection of public health, development and evaluation of control plans, 

and air quality research. The evaluation of ambient air quality provides data to determine 

the attainment of ambient air quality standards (NAAQS and CAAQS), assess progress in 

achieving standards, and track long term trends. The protection of public health is achieved 

through communicating the Air Quality Index (AQI) results to the public in a timely 

manner and documenting population exposure to air pollutants (AirNow). Data used for 

research involves long-term trend analysis and tracking impacts on the environment and 

the public health effects of air pollutants. Parallel monitoring can also provide insights into 

the continuity of measurements between an old and new monitoring site. Continuity of 

measurements in one location is ideal for tracking long term trends for assessing progress 

in achieving and maintaining national and state standards, developing and evaluating State 
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Implementation Plans (SIP) for attaining the standards, and providing long term data 

repositories for answering questions posed by researchers. The South Coast AQMD has 

been monitoring O3 in Crestline, California since 1973 and maintaining the continuity of 

measurements is ideal for long-term trend analysis (Site Survey Report for Crestline 2018). 

This study aims to investigate the spatial and temporal variability between Crestline 

and the three potential relocation sites by parallel monitoring during the high O3 season. 

With the expected results impacting the relocation strategy of a monitoring site with high 

O3 concentrations, the monitoring project required an accurate, precise, and reliable O3 

sensor that could be deployed in remote mountain locations with power and connectivity 

versatility. 

3.1.4 Evaluation of Ozone Sensing Technology 

In 2014, the South Coast AQMD established the Air Quality Sensor Performance 

Evaluation Center (AQ-SPEC) to evaluate the performance of consumer and research-

grade sensors against federally approved instrumentation. AQ-SPEC evaluates gas-phase 

and particle-phase sensors under both ambient field and controlled laboratory conditions. 

Results from these performance evaluations are publicly available on the AQ-SPEC 

website at www.aqmd.gov/aq-spec. The methodology of low-cost sensors that measure O3 

is typically categorized as either metal-oxide or electrochemical methods. The performance 

of low-cost gas-phase sensors can be impacted by changing environmental factors (e.g., 

temperature and humidity), long-term drift, and interfering pollutants (Gerboles and Buzica 

2009; Mead et al., 2013; Spinelle et al., 2016; Afshar-Mohajer et al., 2018). 

Electrochemical sensors for O3 detection often experience inference from other oxidizing 
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gases commonly found in ambient environments (Afshar-Mohajer et al., 2018). When 

deployed for ambient air monitoring, the electrochemical O3 sensors are often coupled with 

a NO2 sensor in order to subtract out interference from local NO2 concentrations. While 

metal-oxide O3 sensors are selective to O3, previous deployments of this technology have 

shown reduced sensitivity to O3 concentrations over time in extended field deployment 

studies (Masey et al., 2018; Williams 2018). 

AQ-SPEC evaluated the 2B Tech Personal O3 Monitor (POM, 2B Technologies, 

Boulder, CO, USA) with the field and laboratory evaluation results indicating that the POM 

is capable of accurate and precise O3 measurements. The POM is a miniature UV-

absorption based monitor that uses a folded optical path (“U” shaped) to achieve a path 

length similar to that used in a regulatory-grade O3 instrument that is designated as U.S. 

EPA FEM (Andersen et al., 2010). In August of 2015, the UV absorption methodology 

used in the POM was designated by the U.S. EPA as FEM for O3: EQOA–0815–227. In 

the two-month AQ-SPEC field evaluation, the coefficient of determination (R2) for a 

triplicate set of POMs was found to be 1.0 with a mean absolute error (MAE) less than 2 

ppb (AQ-SPEC 2018a; Collier-Oxandale et al., 2019). In the AQ-SPEC laboratory 

evaluation, the performance of the POM was found not to be adversely affected by the NO2 

interferent or extreme environmental conditions (i.e., high/low temperature and relative 

humidity) (AQ-SPEC 2018b; Collier-Oxandale et al., 2019). In a previous study to monitor 

O3 for the Hong Kong Marathon, the POM was selected due to its ability to measure O3 

without interferences from common oxidizing pollutants found in ambient air (Sun et al., 

2016). 
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3.2 Materials and Methods 

3.2.1 Node Design and Development 

Based on project monitoring requirements, the POM was selected as the O3 sensor to 

be incorporated into the sensing node. The POM weighs 0.3 kg with dimensions of 10 × 

7.6 × 3.8 cm and is shown in the Supplemental Information (SI) Figure S3.1. The POM is 

powered by 12-volt direct current (DC) and integrates well into battery, solar, or plugin 

(AC/DC converter) applications. Particular to this study, the POMs were equipped with a 

particulate filter at the sample inlet to prevent dust and aerosols from reaching the sensor 

optics. In contrast to many of the commercially available O3 sensors that use a fan or 

passive sampling, the sampling mechanism of the POM is a small pump that controls 

sample flow through the unit. The pump is one of the factors affecting the commercial price 

of the device. Since only a small network of three sensors would be deployed, the cost was 

not a primary concern in sensor selection for this monitoring application. Enough monetary 

resources or access to loaning such sensors via a sensor library program would be required 

for other researchers to deploy similar types of sensor networks. 

Due to the timeline requirements to build and deploy a network of O3 monitors in the 

region during the high O3 season, the decision was made to build a sensor network that 

would be easily deployed in contrast to deploying additional monitoring stations that would 

require constructing, building, and siting three additional ambient air monitoring shelters 

equipped with FEM O3 analyzers, zero air generators, and gas calibrators. Constructing, 

building, and siting additional monitoring stations with required equipment would have 
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been time and cost-prohibitive to meet project timeline requirements to monitor O3 in the 

region during the high O3 season. 

The POM is not an “Internet of Things” (IoT) connected device. Out of the box, POM 

data can be stored internally on the POMs internal memory (limited to ~6 days for 1-min 

averaged data) and/or data can be transmitted over a USB or serial port for logging data 

externally with a data acquisition solution. The POM was coupled with an IoT 

communications device for data acquisition, edge data processing, and data telemetry to a 

cloud-based platform for data storage and visualization. A remote IoT monitoring solution 

was selected, which included data acquisition hardware (i.e., model Thiamis 1000 (T1K), 

Netronix Inc., Philadelphia, PA, USA) and a cloud-based environmental monitoring 

software with web-based application functionality that provides access to real-time and 

historical monitoring data (i.e., Environet, Netronix Inc., Philadelphia, PA, USA). The T1K 

is equipped with both cellular and Wi-Fi data communication, a real-time clock, and 8 GB 

memory (see SI Figure S3.2). The real-time clock and internal memory allowed the T1K 

to continue recording data even if the data connection (Wi-Fi or cellular) was intermittent 

or unavailable for an extended period. The three POMs were configured to output data 

every 10 s. The 10-s data was transmitted to the T1K through the serial to 3.5 mm cable 

provided by 2B Technologies. The T1k recorded and performed edge data processing to 

average the 10-sec O3 values to 1-min average O3 concentrations and thus reduced the data 

transmission rate to 1/6 of the original data output from the sensor. These 1-min O3 

concentrations were then transmitted from the T1K via a cellular or Wi-Fi network to 

Environet for data storage and visualization. The 1-min data output was selected for this 
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monitoring network to allow the POM data to be time-matched with the output of the 

regulatory air monitoring station FEM ozone instrumentation for pre-deployment 

collocation calibration purposes. 

The T1K and the POM were housed in a weatherproof polycarbonate enclosure (Fibox, 

Glen Burnie, MD, USA) with dimensions of 35.5 × 30.5 × 17.8 cm. The box was fitted 

with the appropriate backing plate for mounting the components in the enclosure which 

allowed for easy access to remove hardware from the enclosure for potential repairs or 

replacement. Two vents were installed in the box for heat dissipation and to ensure that the 

sampling of the POM was not pumping air into a leak-tight box. The sensor node was 

powered via a 120/12V AC to DC power converter. The node could be optionally 

configured for solar power by adding a 12 V battery, 50 W solar panel, and charge 

controller. The total cost per node is roughly $6500 USD. The bill of materials (BOM) for 

the sensor node is shown in SI Table S3.1. Figure 3.1 shows the sensing node with the 

major components labeled. The result of this development was an accurate O3 sensing node 

that could be successfully deployed in rural communities with varied access to power and 

connectivity to transmit real-time data and visualize data remotely. 
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Figure 3.1 Ozone sensor node with labeled components. 

3.2.2 Nodes’ Deployment 

Three O3 sensor nodes were constructed and deployed for this parallel monitoring 

application. Prior to deployment, the POMs were calibrated against a calibration transfer 

standard (CTS) at South Coast AQMD headquarters in Diamond Bar, CA. The CTS, 

Thermo Scientific Model 49i O3 analyzer, was connected to a manifold along with the three 

POMs. The manifold was then inundated with varying O3 concentrations by an O3 

generator. The POMs were calibrated with the in-line particulate filter upstream of the 

sampling inlets to ensure that the calibration configuration matched the deployment 

configuration. The initial calibration was a 2-point calibration with a zero and span at 250 

ppb of O3. The calibration parameters, slope (S) and offset (Z), derived from the 2-point 

calibration were inputted into the POM via the POM’s user interface as outlined in the 2B 

Technology operational manual (POM Operational Manual 2015). After calibration, the 

POMs were verified against the CTS with ramping O3 in the following sequence: 0, 250, 

200, 150, 100, and 50 ppb (see SI Figure S3.3 a–c). The slopes ranged from 0.98 to 1.00 

with R2 values greater than 0.99. The intercepts ranged from 0.3 to 2.1 ppb. The results of 
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the verification indicate that the POMs accurately and precisely measured O3 over a wide 

range of concentrations that were inclusive of ambient levels not exceeding 200 ppb during 

the study. 

The experimental deployment design incorporated three phases: pre-deployment co-

location, deployment, and post-deployment co-location. The three phases of deployment 

are summarized in Table 3.2. The pre- and post-deployment co-location took place at the 

Crestline AMS, which is equipped with a FEM O3 reference analyzer (model 49i, Thermo 

Scientific, Waltham, MA, USA). The pre-deployment co-location at the AMS allowed for 

the implementation of an in-situ field calibration of the 3 POMs to the station reference 

analyzer. The post-deployment co-location at the AMS allowed for a verification of POM 

performance at the conclusion of the study in order to verify the in-situ field calibration 

and the deployment results. 

Period Dates # of Days 

Pre-deployment co-location  7/11/17 to 7/19/17 8 

Deployment 7/19/17 to 9/19/17 62 

Post-deployment co-location  9/19/17 to 9/29/17 10 

Table 3.2 Deployment dates and number of days per deployment period. 

The three additional deployment locations were selected based on their potential to 

serve as a possible relocation site for the current Crestline AMS. The deployment locations 

are shown on a map of the San Bernardino Mountains in Figure 3.2 (larger extent map in 

SI Figure S3.4). The three additional locations are on the south slope of the San Bernardino 

Mountains and located near the California State Route 18 (SR-18). SR-18 begins in San 

Bernardino at State Route 210 (SR-210) and travels to Big Bear City and then out to the 
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high desert region near Victorville and Interstate 15 (I-15). SR-330 which also originates 

in San Bernardino and merges with SR-18 in Running Springs. 

 

Figure 3.2 Map of deployment locations in Eastern San Bernardino Mountains. 

3.2.3 Data Processing and Analysis 

When examining the POMs during the co-location time periods, ordinary least squares 

(OLS) regression statistics along with mean bias error (MBE) and MAE were utilized to 

characterize the POMs performance against the Thermo 49i O3 measurements from the 

Crestline AMS. Information on the measurement error calculations and equations for MBE 

and MAE can be found in the SI with Eq. S3.1 and S3.2. 

When examining the POMs and the Crestline Thermo 49i during the deployment 

periods, OLS regression statistics and bias deviations between Crestline and the three 

alternative locations were utilized to characterize spatial and temporal differences between 
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sites. Equations for mean bias deviation (MBD) and mean absolute deviation (MAD) are 

found in SI Eq. S3.3 and S3.4. The MBD between the relocation sites and the Crestline 

location provides a metric that indicates the tendency of a relocation site to either under- 

or over-estimate O3 concentrations when compared to the Crestline AMS location. The 

MBD is a relative measure that can be either positive or negative based on whether the 

relocation site under- or over-estimates O3 concentrations when compared to the Crestline 

location. Care should be taken when examining the MBD since the positive and negative 

errors will cancel each other out. The MAD provides a better metric for examining the 

absolute deviations between the Crestline location and potential relocation sites. 

The 1-min data collected during the deployment phase was calibrated according to the 

OLS calibration factors derived from the pre-deployment co-location period. The 1-min 

data was processed to remove negative and extremely high concentrations (> 250 ppb) 

from the data set. The 1-min data was then run through a Hampel outlier detection 

algorithm to remove and replace temporal outliers (see SI Section S7). The rolling Hampel 

filter compares each data point to a rolling median value of the last 10 consecutive data 

points in a data series. A threshold of six standard deviations was used to characterize a 

value as an outlier and replace it with the rolling median value. The cause of the outliers 

may have been power surges or temporary glitches with the POM or data transmission. 

Data were then averaged to 1-hr mean O3 concentrations with a requisite of 42 or more 1-

min data points to generate a valid 1-hr mean O3 concentration. These 1-hr averages for 

the three POMs and Crestline reference monitors were then matched on date and time to 

enable the parallel monitoring comparisons between the reference site and three relocation 
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sites. Any row with a missing concentration value for either Crestline or the three relocation 

sites was removed from the analysis so the four locations could be compared across a 

complete matching data set. 

In following the CARB Air Monitoring Technical Advisory Committee (AMTAC) 

document providing guidelines for site relocation and parallel monitoring, a data set of high 

values was created by finding the daily maximum 1-hr O3 concentration for each location 

and then filtering to keep values that exceed a threshold value. The threshold value was set 

at 87.4 ppb which represents the top 20% of the prior three years of daily maximum 1-hr 

O3 concentrations collected at the Crestline AMS. From this data set, MBD could be 

calculated to determine if a relocation site would be higher or lower than the current 

monitoring site with calculating the upper and lower limits of the 95% confidence interval 

(CI) on the MBD. Calculations for the 95% CI on the MBD have been adapted from the 

CARB’s Guidelines for Parallel Monitoring (California Air Resources Board 1997) (SI 

Equation S3.5–S3.8). 

3.3 Results and Discussion 

3.3.1 Pre-Deployment Co-location Period at Crestline 

Data collection for the pre-deployment co-location at the Crestline AMS took place 

from 11 July to 19 July 2017, which provided for nearly eight days of co-location data. 

During the pre-deployment co-location, ambient temperature ranged from 16 to 30 °C with 

a mean temperature of 23.4 ± 3.3 °C and ambient relative humidity (RH) ranged from 21% 

to 70% with a mean RH of 46.4% ± 11.2%, as measured by the AMS meteorological 

equipment (model HC2-S3, Rotronic, Hauppauge, NY, USA). During these eight days, the 
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range of 1-min O3 concentration was 110 ppb with a maximum of 141 ppb measured on 

15 July, as recorded by the Crestline AMS FEM O3 instrument. The 1-min datasets from 

the POMs and FEM were filtered for values < −5 ppb and > 250 ppb. The 1-min data was 

then time-matched and OLS regression analysis was performed for the POMs against the 

Thermo 49i reference analyzer to perform an in-situ field calibration. The co-location OLS 

calibration offsets for the POMs were small with slope offsets < 0.07 and intercept offsets 

< 1.6 ppb (see SI Table S3.2). The in-situ field calibration is effective in correcting for 

slope and intercept offsets and reducing the MBE between the POMs and the Thermo 49i. 

The MAE calculated for the three POMs at the 1-min time interval is <4 ppb. Due to the 

inherent fluctuations of 1-min data points, the MAE was not effectively reduced by the in-

situ field calibration. By averaging to 1-hr mean O3 concentrations, the MAE between the 

three POMs and the Crestline O3 monitor was reduced to less than 1 ppb. Figure 3.3 shows 

the time-series for the pre-deployment co-location time period with Figure 3.4 showing the 

correlation plots of the POMs against the Thermo 49i after the in-situ field calibration was 

performed. The low measurement error of the POMs against the reference instruments 

indicates that these units are not adversely affected by weather fluctuations (temperature 

or RH) or interfering pollutants. 
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Figure 3.3 Pre-deployment co-location at Crestline time series for 1-hr mean O3 

concentrations after the in-situ field calibration was performed. 

 

Figure 3.4 Pre-deployment co-location correlation plots for 1-h O3 concentrations after 

the in-situ field calibration was performed.
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3.3.2 Post-Deployment Co-location Period at Crestline 

The post-deployment co-location at Crestline AMS took place for 10 days from 19–

29 September 2017. The post-deployment co-location results provide a mechanism to 

verify that the POMs maintained their calibration and collected valid and accurate O3 

measurements throughout the deployment period. Temperature conditions during the pre-

deployment co-location ranged between 4 and 25 °C with a mean temperature of 13.3 ± 

5.1 °C. The RH ranged between 13% and 99% with a mean RH of 54.3% ± 28.9%. The 

range for 1-hr mean O3 concentrations experienced in the post-deployment co-location was 

86 ppb with a maximum 1-hr value of 91.6 ppb measured on September 29th by the 

Crestline AMS Thermo 49i. For hourly mean concentrations, R2 values were greater than 

0.98 with slopes ranging from 0.98 to 1.02 and intercepts ranging from −0.03 to −0.57. The 

calculated MAE was less than 2 ppb with MBE calculated at −0.83, −1.24, and 1.30 ppb 

for POM 1122, 1145, and 1148, respectively. Figure 3.5 shows the time series for the post-

deployment co-location and Figure 3.6 shows the scatter plots for the POMs vs. the Thermo 

49i. These post-deployment co-location results indicate that the individual POMs 

maintained their calibration throughout the deployment period and collected accurate 

measurements with MAEs less than 2 ppb. Additionally, the performance was not 

adversely affected by changing weather conditions, interfering pollutants, or length of 

deployment. 
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Figure 3.5 Post-deployment co-location time series for 1-hr mean O3 concentrations. 

 

Figure 3.6 Post-deployment co-location at Crestline correlation plots for 1-hr O3 

concentrations.
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3.3.3 Results from Deployment 

The deployment of the sensors across the San Bernardino Mountains took place during 

the high O3 season for two months (17 July to 18 September 2017). Performing parallel 

monitoring during the high O3 season is critical for obtaining enough high concentration 

values to examine the relocation sites with the current monitoring site. Data recovery at the 

1-h time average was found to be 99.9%, 96.5%, 73.4%, and 100% for the Thermo 49i, 

POM 1122, POM 1145, and POM 1148, respectively. POM 1145 in Lake Arrowhead, CA 

experienced a power outage due to an unforeseen water leak requiring the power outlet 

supplying the node to be turned off. As a result, data was not collected from 8:00 a.m. on 

2 August 2017, to 4:00 p.m. on 18 August 2017, when the unit was outfitted with a solar 

panel, charge controller, and a 12-volt battery to provide power. Data rows with a missing 

value for any location were filtered out so a comparison between sites would have the same 

number of data points. After all rows with a missing value were dropped from further 

analysis, data recovery for the 1-hr matched data was 70.4% (1032 rows) by which the four 

sites are characterized and compared. Temperature conditions for Crestline AMS during 

the deployment ranged from 8 to 34 °C with a mean temperature of 21.6 ± 4.8 °C. The RH 

ranged from 9% to 99% with a mean RH at 49.0% ± 18.5%. Table 3.3 provides the 

summary statistics, OLS regression statistics, and the mean measurement deviations 

calculated for the monitoring locations during the deployment period. The difference in 

mean O3 concentration between Crestline (54.2 ppb) and the three locations varied with 

Skyforest, CA (54.2 ppb) being identical, Running Springs, CA (56.7 ppb) being slightly 

higher on average, and Lake Arrowhead, CA (64.0 ppb) being about 10 ppb higher on 
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average than the Crestline location. These spatial variations in O3 concentrations between 

locations could likely not have been predicted a priori without monitoring, highlighting the 

importance of developing less-expensive monitoring solutions to supplement the spatial 

resolution of current monitoring networks. The largest range of O3 concentrations was seen 

at the Crestline AMS which had the highest maximum and lowest minimum hourly 

concentration values. The summary statistics between the four locations are shown in 

Figure 3.7 by box plots for each of the sampling locations. The horizontal dotted line and 

dotted diamond indicate the mean and standard deviation of the sample. Note that the 

following figures and tables are ordered from left to right by distance from the Crestline 

AMS. 

 

Figure 3.7 Box plots for the 1-hr mean O3 concentrations for the four deployment 

locations. 

 

 



   

90 

  

Location Crestline 
Lake 

Arrowhead 
Skyforest 

Running 

Springs 
 

Instrument 
Thermo 

49i 

POM  

1145 

POM 

1122 

POM 

1148 
Units 

Population 10,700 12,400 300 4800 
no. 

residents 

Elevation 1390 1753 1733 1858 m 

Distance from 

Crestline AMS 
0 5.8 9.5 17.1 km 

Statistics (1-hr average)     

Mean Ozone Conc. 54.2 64.0 54.2 56.7 ppb 

Standard Deviation 24.2 18.9 21.8 20.0 ppb 

Minimum Conc. 4.5 21.5 13.4 15.4 ppb 

Maximum Conc. 146.2 137.1 135.2 137.3 ppb 

Hourly data points 1032 1032 1032 1032 count 

Slope - 0.65 0.81 0.62 - 

Intercept - 28.8 10.5 22.8 - 

R2 - 0.69 0.80 0.57 - 

Mean Bias 

Deviation (MBD) 
- 9.8 0.0 2.5 ppb 

Mean Absolute 

Deviation (MAD) 
- 11.7 8.3 12.1 ppb 

MAD—Daytime  7.1 6.7 8.7 ppb 

MAD—Nighttime  16.7 10.0 15.9 ppb 

Table 3.3 Summary information and 1-hr statistics for the four monitoring locations. 

The OLS regression statistics for the 1-hr matched data sets compare each of the 

potential relocation sites (y-axis) to the current Crestline AMS (x-axis) and provides 

insights into the similarity between the four locations. Immediately, the large intercept bias 

between the three locations stands out with intercepts at 28.8, 10.5, and 22.8 for Lake 

Arrowhead, Skyforest, and Runnings Springs, respectively. This intercept offset is 

primarily due to the night-time differences between Crestline and the relocation sites likely 

caused by varying degrees of available local NO emission to scavenge O3. Regarding 
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correlation, the three relocation sites correlate with Crestline with R2 values at 0.69, 0.80, 

and 0.57 for Lake Arrowhead, Skyforest, and Runnings Springs, respectively. Slope offsets 

between Crestline and the three relocation sites were found to be 0.65, 0.81, and 0.62 for 

Lake Arrowhead, Skyforest, and Runnings Springs, respectively. Of the three relocation 

sites, the Skyforest location most closely matches the Crestline location with the highest 

correlation and the smallest slope/intercept offset. If finding the location that most closely 

matches the diurnal trends of the Crestline AMS is required for relocation, then the 

Skyforest location would be the chosen relocation site as this site was found to have an 

identical mean O3 concentration throughout the deployment and regression statistics 

indicating the strongest commonality between Skyforest and the current monitoring site. 

The MBD and MAD of the three locations with respect to Crestline provided insights 

on the spatial variability in O3 between locations. The MBD between Crestline and the 

three alternative locations was found to be 9.8, 0.0, and 2.5 ppb bias for Lake Arrowhead, 

Skyforest, and Running Springs, respectively. The MAD from Crestline was found to be 

11.7, 8.3, and 12.1 ppb for Lake Arrowhead, Skyforest, and Running Springs, respectively. 

Looking at the MBD, the Skyforest location appears to be the most suitable location for 

relocation as this location matched the mean of the Crestline location. However, when 

examining the MAD, all three sites deviate from Crestline AMS with MAD > 8.0 ppb; 

indicating spatial variability between Crestline and these relocation sites. When separating 

the MAD between day and night hours, the predominant deviation between Crestline and 

the three locations takes place during nighttime hours. The MAD values for nighttime 

hours are 135%, 50%, and 83% higher than daytime MAD for Lake Arrowhead, Skyforest, 
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and Running Springs, respectively. The cause for the increased nighttime deviation from 

the Crestline AMS is likely due to local factors affecting the titration of ozone between 

locations during nighttime conditions. Local factors including topography, populations, 

and traffic counts are discussed below to better understand these local factors and their 

impact on the spatial variation of O3 between Crestline and the relocation sites. 

Since the Crestline AMS experiences some of the highest O3 concentrations in the 

SCAB, comparing the daily maximum O3 concentrations between the current monitoring 

site and the potential relocation sites is important to understand the difference between the 

locations with regard to daily 1-hr maximum concentrations that could lead to exceedances 

of the 1-hr standard. When considering relocating a site that experiences high O3 

concentrations, care needs to be taken to ensure that the relocation site experiences O3 

concentrations as high as or higher than the existing monitoring site. A data set of high 

values of the daily maximum 1-hr O3 concentration was created and after filtering for the 

threshold value and missing data, 30 daily maximum values remained with data 

summarized in Table 3.4. The mean of the high values in the data set for Crestline, Lake 

Arrowhead, Skyforest, and Running Springs was 100.8, 106.9, 101.9, and 104.6 ppb, 

respectively. While each of the relocation sites experienced higher O3 concentrations than 

Crestline on average, only the Lake Arrowhead location provides a relocation site with a 

95% confidence that the MBD would be greater than Crestline with a positive lower limit 

of MBD at 2.1 ppb, indicating that this location would likely be at least 2.0% higher than 

the Crestline AMS. Both Skyforest and Running Springs have negative values for the lower 

limit of the 95% CI of MBD at −2.6 and −1.5 ppb, respectively. These negative values 
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indicate that these relocation sites, Skyforest and Running Springs, could potentially yield 

O3 concentrations lower than the current monitoring site by 2.6% and 1.5% respectively. 

If the requirement were set that the relocation site must on average experience higher 

concentrations than the existing site with a 95% CI on the MBD, then the Lake Arrowhead 

location would be chosen as the relocation site to meet this criterion. The regression 

statistics of the high values data set (n = 30) are similar in nature with the 1-hr regression 

statistics (n = 1032) shown in the preceding section. Between the three relocation sites, 

Skyforest has the highest R2 value (0.70), slope nearest to one (0.90), and lowest intercept 

(11.3) which indicates this location most closely matches the diurnal trends experienced at 

Crestline. 

Location Crestline 
Lake 

Arrowhead 
Skyforest 

Running 

Springs 
 

Instrument Thermo 49i POM 1145 POM 1122 POM 1148 Units 

Mean Conc. 100.8 106.9 101.9 104.6 ppb 

MBD  - 6.08 1.08 3.81 ppb 

SD MBD - 8.89 8.29 11.93 ppb 

Lower limit of 

MBD (95% CI) 
- 2.10 −2.63 −1.53 ppb 

Upper Limit of 

MBD (95% CI) 
- 10.05 4.79 9.15 ppb 

Lower Limit % - 2.0 −2.6 −1.5 % 

Upper Limit %  - 9.7 4.7 8.9 % 

Slope - 0.61 0.90 0.63 - 

Intercept - 45.7 11.3 41.5 - 

R2 - 0.59 0.70 0.40 - 

Table 3.4 Summary Statistics and 95% confidence interval for the daily 1-hr maximum O3 

concentration. 
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The temporal differences between locations are shown in the time series plot shown in 

Figure 3.8 that is a subset from 21 August to 1 September 2017. The time series indicates 

that the three locations deviate from Crestline AMS predominantly during nighttime 

conditions when O3 concentrations are typically decreasing. The typical wind patterns of 

the region with daytime onshore winds blowing in from the west/southwest and daytime 

upslope flow for the mountains provide a steady source of O3 precursors for the elevated 

mountain communities. During the day, these upslope air masses are pushed up towards 

the boundary layer. In Figure 3.9, the timing of daily peak values between locations differs 

from the western sites (Crestline and Lake Arrowhead) peaking around 3 p.m. while the 

more eastern sites (Skyforest and Running Springs) peak an hour later around 4 p.m. 

During the evening time, wind patterns typically shift to an offshore direction with winds 

blowing from the northeast. These nighttime wind patterns lead to downslope air 

movement on the mountain which can lead to potential increases in O3 concentrations as 

polluted air masses near the boundary layer fall in elevation and pass through the mountain 

communities. An example of this can be seen in Figure 3.9 with O3 concentrations 

increasing in nighttime conditions on 25 August at 9 p.m. when hourly O3 concentrations 

increase by 10 and 15 ppb from the previous hour at Lake Arrowhead and Skyforest, 

respectively. A similar trend with regional-scale air flows and increasing nighttime O3 

concentrations in mountain communities has been seen in the Front Range of the Colorado 

Mountains (Sullivan et al., 2016). 
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Figure 3.8 Timeseries for deployment, subset between August 22 and September 1, 2017. 

 

Figure 3.9 Time series for deployment subset between August 24 and 26, 2017. 

Comparing the four locations regarding the number of exceedances of the 2015 U.S. 

EPA 8-h O3 standard (70 ppb) provides another way for understanding the spatial 

variability of O3 between these locations. For the time-matched deployment data set, the 
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Crestline location exceeded the 8-hr O3 NAAQS standard 35 times while Lake Arrowhead, 

Skyforest, and Running Springs exceeded the standard 38, 27, and 28 times, respectively 

(Table 3.5).  

Location—Unit No. of Exceedances (Days) 

Crestline—Thermo 49i 32 

Skyforest—POM 1122 27 

Lake Arrowhead—POM 1145 38 

Running Springs—POM 1148 28 

Table 3.5 Exceedances of the U.S. EPA 2015 8-hr ozone standard of 70 ppb. 

In comparison to Crestline, the Arrowhead location experienced six additional 

exceedance days, while Skyforest and Running Springs had five and four fewer days 

exceeding the standard, respectively. These differences indicate the spatial variability of 

O3 across the San Bernardino Mountains and provide an indication of how relocating the 

site may impact the number of 8-hr exceedances recorded for the region. The O3 spatial 

variability with 10 additional days exceeding the standard at Lake Arrowhead in 

comparison with Skyforest is surprising as these two sites are located less than 5 km apart. 

This significant difference between locations in close proximity was surprising, not 

expected prior to monitoring, and could likely not have been predicted by simulation prior 

to monitoring. Many physical and chemical processes influence ambient O3 concentrations. 

Models that predict O3 concentrations simulate these physical and chemical processes. The 

simulation of atmospheric processes is challenging with the introduction of errors due to a 

lack of understanding of the physical and chemical processes, model assumptions, and data 

limitations (Kang et al., 2008). Chemical process simulations include but are not limited to 
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photolytic reactions and radical chemistry, while physical process simulations include but 

are not limited to emission sources and sinks, dispersion and diffusion, and meteorological 

conditions. An important physical process for air quality forecasting is the planetary 

boundary layer (PBL) which is the lowest layer of the atmosphere starting at the earth’s 

surface and capped by a stable layer (Lee and Ngan 2011). The PBL layer height is difficult 

to predict when frontal boundaries (i.e., mountains) are present or multiple level thermal 

inversions are formed (Dabberdt et al., 2000). When the sun is setting, a second thermal 

inversion can form with the rapid loss of solar flux at the surface of the earth. This second 

layer forms the stable nocturnal boundary layer leaving a residual layer above that can 

potentially trap pollutants aloft. Simulations can be performed at varied spatial (regional to 

neighborhood) and temporal resolutions (yearly to hourly). The National Weather Service 

provides a national air quality forecast for the United States hour by hour at a spatial 

resolution of 12 km for O3 to provide advance notice of air pollution events (National 

Weather Service 2019). In an active open-source development project, the U.S. EPA has 

developed the Community Multiscale Air Quality Modeling System (CMAQ) that consists 

of a suite of programs for creating air quality simulations (U.S. Environmental Protection 

Agency 2019). The CMAQ model has been used to simulate air quality at finer spatial 

scales. With the addition of high-resolution input data, ozone concentrations were 

simulated for the Baltimore/Washington region at a 1 km spatial resolution. The bias 

between the simulation and surface ozone monitoring sites was found to follow a similar 

diurnal pattern with a positive mean bias in the early morning hours that decreases 

throughout the day until sunset when the bias starts increasing (Garner et al., 2015). CMAQ 
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was used in more complex topography in the San Joaquin Valley in California at 2–12 km 

and in the Colorado Front range at 4 km spatial resolution (Flynn et al., 2016). During O3 

exceedances in Colorado, the simulation was found to capture the timing and rate of the 

initial rapid O3 production well, but largely underestimated the persistence of elevated 

concentrations when compared to surface O3 measurements. While the model correctly 

simulated regional O3 concentrations, verification with the local air monitoring stations 

revealed under- and over-estimation errors (Sullivan et al., 2016). The spatial variability in 

O3 concentrations found between the locations in this study and the potential bias of O3 

simulations indicates the importance of developing accurate sensing nodes and monitoring 

air pollutants in spatially dense networks to investigate the spatial variability of air 

pollutants and identify such spatial phenomena. This is especially true for regions with 

complex topography, meteorology, and atmospheric chemistry. 

The topography and population of the distinct locations may have a factor in the 

differences in O3 concentrations between the four monitoring locations. The Crestline 

community has a population of roughly 10,000 residents with a valley topography with 

homes distributed around Lake Gregory and the Crestline AMS. The Lake Arrowhead and 

the Skyforest monitoring locations are at the outer southern edge of the populated Lake 

Arrowhead region (12,400 population) and are located along the SR-18 highway. Both 

Lake Arrowhead and the Skyforest location are higher in elevation by an estimated 350 m 

when compared to the Crestline location and have views looking into the lower San 

Bernardino County valley communities. This topography with an overlooking view is quite 

different than the valley topography of the Crestline location. Running Springs has a 
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population of roughly 4800 residents with the monitor located at the southeastern edge of 

the community near an elementary school. The location of the Crestline AMS in the middle 

of a mountain community in contrast to the other three monitoring locations may 

potentially explain the differences in evening O3 concentrations. As commuters return 

home in the late afternoon/early evening, vehicle tailpipe emissions of NO titrate O3 from 

the Crestline community. Other stationary sources located within a mile of the Crestline 

AMS that may potentially play a role in O3 production and/or titration include two gasoline 

fuel stations, a wastewater treatment plant, and other establishments that may increase local 

traffic. The Crestline valley topography may also contribute to the stagnation of air which 

in turn leads to higher maxima during the day and lower minima concentrations at night. 

Prior research between urban and rural sites show similar trends seen in this work with a 

nighttime minimum for O3 more pronounced in urban locations (Duenas et al., 2004). 

These differences in topology, population, and siting location provide an explanation for 

why nighttime MAD is larger than daytime MAD between Crestline and the potential 

relocation sites. 

The local traffic patterns in the region may also have an impact on O3 patterns and 

evening titration of O3 from the atmosphere. The California Department of Transportation 

(Caltrans) provides Annual Average Daily Traffic (AADT) estimates for state highways. 

AADT data for 2017 was retrieved from www.data.ca.gov as a geodatabase (GDB) with 

shapefiles for AADT which were viewed using ESRI ArcGIS Pro mapping software. 

Figure 3.10 shows the AADT estimates for relevant locations within the monitoring region. 

From the base of the mountains, AADT for California State Route 18 (SR-18) near 
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Waterman Canyon is estimated at 16,800 daily counts. SR-18 is a common route for daily 

commuters who live in the mountain communities and work in the valley communities 

below. Roughly 40% of the AADT heading into the mountain communities on SR-18 

diverts into Crestline via SR-138 with traffic counts estimated at 6800 counts for SR-138. 

The remaining 60% of the daily traffic continues along SR-18 towards Arrowhead with 

AADT estimated at 10,000 counts along SR-18 past Crestline. While Crestline has two 

significant corridors into the city from SR-18 with SR-138 and Lake Gregory Dr., Lake 

Arrowhead has four significant corridors into the community with Daley Canyon Rd to 

SR-189, SR-173, Arrowhead Villa Rd., and Kuffel Canyon Rd. These additional 

entrance/exit routes serve to spatially spread out the daily commuter traffic and may reduce 

the impact of evening commuter traffic emissions scavenging O3. The SR-330 travels from 

the valley in San Bernardino and merges with SR-18 in Running Springs. SR-330 is the 

primary route for commuters heading into Running Springs and one of several routes that 

lead to the Big Bear region. AADT measured at the base of the mountain at SR-330 and 

Highland Ave. indicates AADT at the base of the mountain is estimated at 11,500. After 

the merging of SR-18 and SR-330 in Running Springs, SR-18 has increased traffic counts 

with AADT estimated at 10,700. This increased traffic flow on SR-18 with the merging 

with SR-330 in the Running Springs community contrasts with the Crestline monitoring 

location that is embedded in the community and located away from the SR-18. 
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Figure 3.10 Annual Average Daily Traffic estimates by location for the monitoring 

region of interest. * SR: State Route. 

The spatial scale of the Crestline AMS is considered to be a neighborhood scale 

monitoring site (Site Survey Report for Crestline 2018). A neighborhood scale monitoring 

station is one that is defined to extend throughout an area of a city with relatively uniform 

land use with a range of 0.5 to 4.0 km (40 CFR Part 58 2017). The spatial variability of O3 

between the Crestline AMS and the three sites (5.8 to 17.1 km from Crestline) supports 

this scale with the changing topography, population, and local land use between the 

mountain communities. When relocating a site, the data uses of the current site need to be 

examined to ensure the relocation site meets the desired data uses. The primary data uses 

for the Crestline O3 data are the evaluation of ambient air quality, protection of public 

health, and scientific research. Since Crestline is a site were high O3 concentrations are 

recorded in the SCAB, the evaluation of ambient air quality and determination of the 

NAAQS and CAAQS stands in the forefront. Therefore, the Lake Arrowhead location, 
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which was the only site with a 95% CI on the MBD to be on at least 2% higher than the 

current site, would be the best choice for a relocation site. The Lake Arrowhead relocation 

option with higher O3 concentrations also suits the monitoring purpose of protecting public 

health as this location would likely indicate higher calculated AQI values and provide the 

associated AQI health messaging to warn residents during high O3 pollution events. 

Relocating to the Lake Arrowhead site would likely yield O3 monitoring data between 

2.0% and 9.7% higher on average (95% confidence on MBD) than the Crestline AMS. This 

lack of continuity between measurement locations with higher concentrations at the 

relocation site would not be beneficial for the tracking of long-term air quality trends. Since 

the Lake Arrowhead relocation site would likely experience more O3 exceedances than the 

Crestline location, assessing the progress in achieving the air quality standards, with regard 

to regulatory or incentive actions taken to meet the standard, would not be measurable until 

several years of monitoring data is collected for trend tracking. Data uses involving long-

term trend analysis and tracking of impacts on the environment and public health effects 

are benefited from long-term continuous measurements in one location. With that in mind, 

other than maintaining the site in Crestline, relocating to the Skyforest location would be 

the most likely relocation option since this site nearly matches the average concentrations 

at Crestline and most closely tracks the Crestline diurnal trends with the best regression 

statistics between the three relocation sites. With protecting public health and welfare as 

one of the ultimate goals of monitoring air quality, monitoring stations are strategically 

placed in locations with high population density. The current monitoring site in Crestline 

is the most strategically located as this location is situated near the center of a mountain 
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community in contrast to the potential relocation sites located at the edges of their 

respective population centers. 

In this study, the sensor nodes were developed to obtain O3 concentration across a 

region to determine potential alternative siting locations for an ambient air monitoring 

station with uncertainty around the renewal of the lease agreement for the current 

monitoring site. While these sensing nodes were purposely built for parallel monitoring of 

O3, the sensing platform could be used in other ambient applications due to the ease of 

installation, versatility with power and connectivity options, and accuracy of the O3 

monitors. Each of the four locations monitored in this work included areas where the 

physical activity took place and ranged from water sports activities, high school athletics, 

biking/mountain biking, ice-skating, and softball/baseball. Two of the locations are 

adjacent to schools where physical education classes and school sporting events are 

conducted. Deployment of real-time O3 sensors in O3 pollution impacted communities at 

schools could provide data to school administrators and coaches on their current hyper-

local O3 concentrations that could be used to make determinations on the appropriateness 

of conducting physical activities. Threshold values based on health and exposure studies 

could be established to set up alert notifications to inform decision-makers when O3 

concentrations reach unhealthy or unsafe conditions. 

3.4 Conclusions 

This paper presents the development and deployment of a small network of a highly 

accurate remote O3 sensor node for performing parallel monitoring to examine three 

potential relocation sites for a regulatory air monitoring site. The deployment methodology 
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of the three O3 sensing nodes included a pre-deployment co-location calibration to a 

reference O3 analyzer with post-deployment co-location results indicating a MAE for 1-hr 

O3 concentrations to be less than 2 ppb between the POMs and the O3 reference instrument 

at the monitoring site. The O3 sensing nodes provided accurate, precise, and real-time O3 

measurements that were displayed on an online dashboard for real-time viewing and 

reporting. The high-level of confidence in the data generated by these sensing nodes allows 

for investigating the spatial and temporal trends across the distinct locations that could 

serve as a relocation site for the current regulatory monitoring station in the San Bernardino 

Mountains. The results indicate that spatial variability exists between these locations with 

differences more pronounced in the evening hours. When examining exceedances of the 

2015 8-hr standard at 70 ppb, locations within 5 km from each other differed by more than 

10 exceedance days over the deployment period. The parallel monitoring was successful 

in providing the data to adequately defend a relocation strategy for the current O3 

monitoring site with only one site providing a 95% confidence that concentrations would 

be higher than the current monitoring location. 
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9. Table S3.2 Ordinary Least Squares Calibration Offsets 

 
 

 

 

1. Tech Personal Ozone Monitor (POM)  

 

 
Figure S3.1 2B Tech Personal Ozone Monitor (POM)  

Source: https://twobtech.com/docs/manuals/model_POM_revF-4.pdf 

 

 

 

 

 

https://twobtech.com/docs/manuals/model_POM_revF-4.pdf
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2. Netronix Thiamis 1000 

 

 
 

 

Figure S3.2 Netronix Thiamis 1000 

 

3. Bill of Materials for O3 Sensing Node 

 

Materials Manufacturer Part number Est. Cost 

(USD) 

POM 2B Technologies MODELPOM $5,000 

Filter housing 2B Technologies FILTERHS 

(25mm) 

$150 

Thiamis 1000 Netronix T1K $1,000 

Enclosure + pole 

mount kit + back 

panel kit 

Fibox AR14127CHSSL $100 

Vent Attabox AH-V60 $10 

120V to 12V 

converter 

Aiposen S-60-12 $15 

50-watt solar 

panel 

Renogy RNG-50D $75 

Charge controller Renogy CTRL-PWM10 $20 

12V 15 AHR 

Battery 

Bioenno BLF-1215AS $130 

Total Est. Cost: $6,500 

Table S3.2 Bill of Materials for O3 Sensing Node 
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4. Figure S3.3 (a-c) Calibration Verification of 2B POMs 
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Figure S3.3 (a-c) Calibration Verification of 2B POMs  
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5. Figure S3.4. Extended Map of Southern California with Deployment Locations.   

 

 
Figure S3.4 Extended Map of Southern California with Deployment Locations.   
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6. Calculations and Equations 

Mean Bias Error (MBE) and Mean Absolute Error (MAE) calculate the measurement 

error by examining the hourly differences between the 2B POM and the Crestline AMS 

Thermo 49i O3measurement. The MBE between the sensor and the reference O3 instrument 

provides a metric that indicates the tendency of the sensor to either under- or over-estimate 

the reference O3 concentrations during the pre- and post-deployment collocation periods. 

The units of both MBE and MAE are calculated in ppb, which is identical to the units of 

measurement. Care must be taken with the MBE statistic, as over-estimated errors will 

cancel out under-estimated errors in the calculation of the bias error. The MAE provides a 

better metric for actual measurement error between sensor and reference. The equations 

for MBE and MAE are found in equation S1 and S2, respectively.  

Equation S3.1          Mean Bias Error (MBE) =  
1

n 
∑  (Xi − Xt)

n

i=1

 

Equation S3.2          Mean Absolute Error (MAE) =  
1

n 
∑  |(Xi − Xt)|

n

i=1

, 

where,  

       Xi is the 1-hr average measurement provided by the low-cost sensor 

       Xt is the 1-hr average measurement provided by the Crestline Thermo 49i 

             n is the number of 1-hr time-matched data pairs  

 

Mean Bias Deviation (MBD) and Mean Absolute Deviation (MAD) calculate the 

deviation in O3 concentrations between deployment locations by examining the hourly 

differences between the POM unit and the Crestline AMS Thermo 49i O3measurements. 

The MBD between the POM and Crestline provides a metric that indicates the tendency of 

a relocation site to either under- or over-estimate O3concentrations when compared to the 
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Crestline AMS. The equations for MBD and MAD are found in equation S3 and S4, 

respectively.  

Equation S3.3          Mean Bias Deviation (MBD) =  
1

n 
∑  (Xi − Xt)

n

i=1

 

Equation S3.4          Mean Absolute Deviation (MAD) =  
1

n 
∑  |(Xi − Xt)|

n

i=1

, 

     where,  

      Xi is the 1-hr average measurement provided by the POM 

      Xt is the 1-hr average measurement provided by the Crestline Thermo 49i 

      n is the number of 1-hr time-matched data pairs  

 

7. Hampel Filter 

The Hampel Filter function applies a filter along a rolling sample of an input vector. 

The median and standard deviation of the median are computed for the rolling sample 

window. Points that exceed a set threshold for the standard deviation of the median of the 

rolling sample window are characterized as outliers and replaced with the rolling median 

value. The sample window consists of ten data points which would constitute 10 min of 

data. If a sample value differed from the rolling median by more than six standard 

deviations, the sample value was replaced with the median value for the rolling window.  

 

8. 95 % Confidence Interval Calculations 

These calculations are adapted from the California Air Resources Board’s (CARB’s) 

Air Monitoring Technical Advisory Committee (AMTAC) document that provides 

guidelines for site relocation and Parallel Monitoring.  

Equation S3.5          Lower Limit of 95% CI (L)  =  𝑑̅  − (𝑡 ∗  
𝑠

√𝑛
) 

Equation S3.6          Upper Limit of 95% CI (U) =  𝑑̅ + (𝑡 ∗  
𝑠

√𝑛
), 
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        where,  

                       d̅ = Mean Bias Deviation (Eq. S3) 

       s = standard deviation of the MBD 

             n = number of matching pairs 

            df = degree of freedom = n-1 

       t = T score found in from at T-score distribution table, specific to degree of 

freedom and confidence interval level of certainty   

 

Equation S3.7          Lower Limit  % =  
𝐿

(𝑋̅ +  𝑌̅) 2⁄
∗ 100 

 

Equation S3.8          Upper Limit % =  
𝑈

(𝑋̅ +  𝑌̅) 2⁄
∗ 100, 

 where,  

        L = Lower Limit of Confidence Interval (Eq. S5) 

        U = Upper Limit of Confidence Interval (Eq. S6) 

         𝑋̅ = Mean of Existing Monitoring Site 

                       Y̅ = Mean of Relocation Site 

 

 

9. Table S3.2 Ordinary Least Squares Calibration Offsets 

POM # Slope 

offset 

Intercept offset 

1122 1.066 -1.566 

1145 1.002 0.679 

1148 1.039 1.207 

Table S3.3 In-situ collocation calibration offsets based on ordinary least squares 

regression
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Abstract 

While large-scale low-cost sensor networks are now recording air pollutant 

concentrations at finer spatial and temporal scales than previously measured, the large 

environmental data sets generated by these sensor networks can become overwhelming 

when considering the scientific skills required to analyze the data and generate 

interpretable results. This paper summarizes the development of an open-source R package 

(AirSensor) and interactive web application (DataViewer) designed to address the 

environmental data science challenges of visualizing and understanding local air quality 

conditions with community networks of low-cost air quality sensors. AirSensor allows 

users to access historical data, add spatial metadata, and create maps and plots for viewing 

community monitoring data. The DataViewer application was developed to incorporate the 

functionality and plotting functions of the R package into a user-friendly web experience 

that would serve as the primary source for data communication for community-based 

organizations and citizen scientists. 

4.1 Introduction 

A paradigm shift in air quality monitoring is occurring with community scientists able 

to develop hyper-local community monitoring networks to supplement the established 

regulatory monitoring networks that are designed for regional monitoring (Snyder et al., 

2013). These environmental monitoring networks are increasing in complexity, size, and 

resolution (both spatial and temporal) due to technological advances and cost reductions 

for environmental monitoring hardware, connected Internet of Things (IoT) devices, and 

cloud computing. Community scientists can take an active role in monitoring air quality at 
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the neighborhood level by installing low-cost air quality sensors that collect and report air 

pollutant data. The ability to record and visualize hyper-local data in an intuitive and 

informative interface will likely spawn an increase in interest and interaction with 

environmental data sets due to the locally relevant nature of the information. On the other 

hand, non-intuitive user interfaces and confusing user experiences may discourage 

community scientists from interacting with the collected data. The increasing complexity, 

size, and resolution of today’s environmental monitoring networks have created big data 

challenges leading to the emergence of a new field of study: Environmental Data Science 

(Gibert et al., 2018). Data science combines computer programming skills, math and 

statistical knowledge, and subject matter expertise (Conway 2013). Free Open Source 

Software (FOSS) platforms play a vital role in the progress of research towards developing 

new methods for addressing environmental data science challenges. The R-environment 

and Python are two FOSS programing languages that are often used in environmental data 

science applications (Kadiyala and Kumar 2017a; Kadiyala and Kumar 2017b). Open 

access to air monitoring data and related tools is foundational for environmental data 

science to thrive and develop. Environmental monitoring data can be considered open 

access when the data is available through a stable and consistent Application Programming 

Interface (API) that allows software and application developers to build systems to display 

and report that data in transparent and meaningful ways. 

Open access to regulatory-grade air monitoring data is available through APIs. These 

open-access data resources provide the opportunity for the development of web-based 

graphical user interfaces (GUIs) to view the regulatory-grade air monitoring data. For 
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access to regulatory-grade data within the United States (U.S.), the AirNow API provides 

access to real-time data while the Air Quality System (AQS) Data Mart API provides 

access to historical data (AirNow 2020; U.S. Environmental Protection Agency 2020a). 

The raqdm R package provides access to the U.S. EPA AQS data mart for further analysis 

in R (Bailey 2015). For access to regulatory data collected internationally, OpenAQ 

aggregates, standardizes, and provides open API access to air monitoring data from over 

92 different countries (Hasenkopf 2016; OpenAQ 2020). The ropenaq R package and the 

py-openaq python package provide software tools to access data from the OpenAQ API 

and perform data analysis and create plots (Hagan 2017; Salmon 2019).  

Environmental data scientists with programming experience can access regulatory data 

via these open API’s to create custom web applications for displaying air monitoring data. 

These data view sites are useful and provide information to the public at varying granularity 

spatially and temporally. The OpenAQ map and the World’s Air Pollution: Real-time AQI 

(WAQI) map display international air quality monitoring data (OpenAQ 2020; World Air 

Quality Index Project 2020). OpenAQ uses a color scale to display air pollution 

concentrations that deviate from the common AQI color scale found on many air 

monitoring sites and is shown in the Supplemental Information (SI) Figure S4.1. A special 

feature in the WAQI site is their use of calendar plots to display air monitoring information. 

Data view sites that display maps with modeled or interpolated air pollutant or AQI values 

with additional data inputs are also available (BreezoMeter 2020; IQAir 2020; Plume Labs 

2020). The IQAir AirVisual Map provides a global heat map for air quality and weather 

information and includes both regulatory and low-cost PM sensor data. The Plume Labs 
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map provides street-by-street air quality maps for several large cities while the 

Breezometer air quality map provides a high spatial resolution air quality heat map for 

much of the world. When displaying both regulatory- and consumer-grade data on a map, 

the source and type of data displayed for individual sites needs to be readily apparent. A 

lack of differentiating and identifying data sources may cause confusion for the end-user, 

especially if the regulatory- and consumer-grade measurements do not agree. With 

interpolated or modeled maps, often the user is not readily aware of the input parameters 

used to model air quality data at these fine spatial resolutions. When viewing such maps, 

the viewer should be cautious especially when data sources are not readily apparent and 

input parameters, whether defendable or questionable, for the data model are unknown to 

the end-user/viewer (Hagler et al., 2018). Broadly, these platforms are map-centric with 

point values or interpolated modeled data displayed with options for viewing recent time 

series data.  

The available international regulatory monitoring data is spatially limited by the 

distribution of the regulatory monitoring instrumentation and partnering data providers. 

Only 24 of 234 countries have more than 3 monitors per million inhabitants and nearly 

60% of countries have no regular particulate matter (PM) monitoring (Martin et al., 2019). 

While regulatory air monitoring data is essential for the determination of regional 

attainment of the established national or international air quality standards, the spatial 

extent of these measurements may be limited especially for communities impacted by 

nearby air pollution sources (i.e. freeway) requiring spatial resolution in the tens of meters 
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(Ahangar et al., 2019). To fill this spatial gap, online resources for accessing and displaying 

data collected from networks of sensors have emerged.  

Resources for accessing and displaying data collected from networks of air quality 

sensors are available, though they vary in terms of software (FOSS or proprietary), what 

they provide, and whether they are provided by the manufacturer, a project team, or through 

a citizen science model.  While many sensor manufacturers have software and platforms 

in place for ingesting, storing, and analyzing data that is generated from their respective 

sensors, these are often proprietary and offered as a Software as a Service (SaaS) or 

Platform as a Service (PaaS) requiring accounts with monthly or yearly subscriptions costs. 

In contrast to the SaaS and PaaS business model, several sensor resources are available for 

open-access viewing of data collected from low-cost sensor networks. These platforms 

include but are not limited to the HabitatMap AirCasting map,  Air Quality Egg Portal, 

Luft Daten project map, PurpleAir Map, Smart Citizen Kit Map, and the uRADMonitor 

Network map (Air Quality Egg 2020; HabitatMap 2020; Luftdaten 2020; PurpleAir 2020; 

Smart Citizen Kit 2020; uRADMonitor 2020).  PurpleAir provides open access to the data 

collected by the PurpleAir network of sensors through an API and provides open viewing 

and downloading of sensor data through the PurpleAir map. The Luft Daten project is a 

citizen science project with citizen scientist sensors reporting to a map and invites 

programmers to collaborate in this FOSS development through GitHub (OK Lab Stuttgart 

2020). When selecting a sensor in either the PurpleAir or Luftdaten GUI, the user is 

currently limited to viewing only the last seven days of data in a time series plot and current 

data on the map (accessed January 2020), which means they do not provide the end-user 
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with historic data to understand the spatial and temporal trends of air pollutants in their 

community. The Breathe London project-specific website provides a GUI with a map 

displaying sensor monitoring data along with the option to add the regulatory network data 

to the map (Breathe London 2020).  Other community-oriented project websites to note are 

the IVAN network in the Imperial Valley, CA and the AirWatch San Francisco Bay area 

site which provide access to air monitoring data and allow community members to report 

environmental issues through the website (Air Watch 2020; IVAN Imperial 2020). While 

concentration maps provide a great tool for viewing real-time data and understanding 

current spatial variability between locations, they do not provide substantive information 

to guide community members on how to reduce their exposure to local air pollution. 

Additionally, these sensor-specific online resources for viewing air monitoring sensor data 

often do not include the regulatory monitoring data that may be publicly available through 

the AirNow or OpenAQ API. Additionally, often the online data websites for low-cost 

sensors do not indicate what, if any, quality control (QC) measures are taking place on the 

collected data before displaying.  

A more in-depth analysis of historical data is required to understand local pollution 

trends to provide community members the information needed to make actionable 

decisions to reduce their exposure based on historical air monitoring data. While map-

centric GUIs work well for viewing real-time data, communities that are monitoring air 

quality in long-term deployments need additional plotting and viewing capabilities to 

access and understand their local historical air monitoring data. A data dashboard for 

viewing and analyzing historical data would provide a better understanding of local air 
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pollution levels, particularly spatial and temporal air pollutant trends for a community. For 

those with varying levels of technical programming skill, there are software resources 

available that support individual data analysis of air quality data. If data can be organized 

and loaded into a software system, then a more in-depth analysis can occur, and custom 

visualizations can be produced. The U.S. EPA developed a web-based tool to explore 

stationary or mobile environmental data; named Real Time Geospatial Data Viewer 

(RETIGO) that allows users to upload data and create interactive plots and maps (U.S. 

Environmental Protection Agency 2020b). While RETIGO offers an interactive way for 

users to explore sensor data, there are several types of plots that are effective for engaging 

citizen scientists that are not currently available through the RETIGO tool, for example 

calendar plots. FOSS software packages have been developed in the R and Python 

environments specifically for accessing and visualizing freely available air monitoring 

data. These include the R packages openair, PWFSLSmoke, ropenaq, and raqdm.  OpenAir 

provides a useful package for developing visualizations from collected air monitoring data. 

When air monitoring data is properly formatted and loaded into R, that data can be 

visualized by openair plotting capabilities to create plots like calendar plots, scatter plots, 

and time variation plots along with wind roses, pollution roses, and bivariate polar plots 

when wind speed and direction data is available (Carslaw and Ropkins 2012; Carslaw and 

Beevers 2013).  

If we leverage advanced analysis tools and the air quality data more directly, then we 

can facilitate more organized, robust, systematic, and repeatable data processing, analysis, 

and visualization of this data. Furthermore, using FOSS tools allows for increased iteration 
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and development. An example of this would be the U.S. Forest Service (USFS) led 

Wildland Fire Air Quality Response Program (WFAQRP) AirFire tools development of 

the PWFSLSmoke R package and the associated PM2.5 Monitoring Site web application 

(Air Fire Tools 2020). These tools were developed to access regulatory grade air 

monitoring data via the AirNow API and display that data graphically to assist the USFS 

Air Resource Advisors (ARAs) to gather air quality data and create air quality reports 

during wildfire smoke events. The PWFSLSmoke R package provides functions to 

download, parse, and plot air monitoring data (Callahan et al., 2019) and provides the back-

end software necessary to generate plots for displaying on the front-end web application.  

The AirFire web application was developed as an extension to the PWFSLSmoke R 

package to assist ARAs with the ability to quickly and easily create reports without writing 

or running R scripts or code. The application provides a data dashboard for viewing 

historical data with interactive plots with the ability to create custom data reports based on 

user selections. A similar model in which an R-package is used for accessing and 

processing sensor data would save users time and would allow the development of custom 

functions for different approaches to QC and more complex analysis, which are gaps we 

see in the current offerings. Additionally, the R-package could provide the back-end 

software to support a front-end web application to display historical air monitoring data to 

provide communities with more useful analysis and visualizations. This web application 

would allow community members to answer their questions about their local environment, 

which are not readily answered with the current offerings of real-time maps and limited 

historical data analysis. 
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In 2016, South Coast Air Quality Management District (South Coast AQMD) was 

awarded a U.S. EPA Science to Achieve Results (STAR) grant, titled “Engage, Educate 

and Empower California Communities on the Use and Applications of ‘Low-cost’ Air 

Monitoring Sensors” under Assistance Agreement No. R836184. The main objective of 

this STAR grant was to provide communities with the necessary knowledge to 

appropriately select, use, and maintain low-cost sensors and to correctly interpret the data 

collected by air sensor networks. South Coast AQMD has engaged 14 California 

communities through a series of workshops to introduce the STAR grant project, provide 

technical guidance on sensor technology and deployment (siting, installation, 

configuration, and registration) of air quality sensors, review deployment progress and 

examine community data sets, and provide software tools and resources for community 

scientists to engage with collected data sets and create informative data visualizations. 

Roughly 400 PM sensors (i.e., PurpleAir PA-II, Draper, UT USA) were distributed to 

community members under the STAR grant. 

The objectives of the software development associated with this project were to build 

an FOSS R package and data viewer web application that would address the challenges 

identified with the data management and visualization of low-cost air quality sensors 

deployed within the U.S. EPA STAR grant project. This paper summarizes the 

development of an R package and web application designed to address the environmental 

data science challenges created by deploying 400+ air quality sensors in 14 different 

communities. We wanted an open source R package that would allow users to download 

sensor data, add spatial metadata, perform data fusion with other relevant data sets, and 
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create maps and plots for viewing data collected by air monitoring sensors. We also wanted 

the package designed with functions so that minimal coding would be required to complete 

tasks. Understanding that many would prefer to interact with an online GUI application, 

we wanted to build a web application that would provide an interactive data experience 

allowing users to make selections and explore the community air monitoring data sets by 

generating pre-defined data visuals based on their user input selections. The South Coast 

AQMD collaborated with Mazama Science to develop the R package AirSensor and web 

application AirSensor DataViewer (DataViewer) to meet these software development aims.   

4.2 Methods - Software Design and Characteristics 

4.2.1 Community Engagement 

The on-going engagement with the STAR grant communities has provided the 

motivation to develop software tools to enhance the community members' ability to interact 

with historical data and extract meaningful information about their local environment. 

After displaying a static time of day bar chart showing the diurnal PM2.5 trends during a 

community workshop, one community group leader asked, “How do I generate that plot on 

a regular basis and share with my community members?” In one STAR grant community, 

a sensor host wanted to know the best time to walk her dog to reduce her exposure to 

particulate pollution. Additionally, multiple participants from different communities 

shared their difficulty downloading and analyzing the publicly accessible PA-II data 

especially with regards to the time/date reformatting required for plotting in Microsoft 

Excel. These discussions with community members on the data science challenges 

provided the motivation to build additional software tools to address the difficulty and 
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challenges posed by analyzing these large community air monitoring data sets. Increasing 

the number of data-sharing events with effective data visualizations should provide 

participants with a better understanding of the principles of air quality, their local air 

pollution, and the proper use and application of low-cost air quality sensors (Sandhaus et 

al., 2019). Table S4.1 in the SI provides a summary of the environmental data science 

challenges that are addressed in this project. 

4.2.2 Software Tools (R environment, RStudio, R Packages, and Shiny)  

The R environment is an integrated suite of software facilities that is designed on a 

simple yet effective computer programming language, R. The R environment provides 

tools and functions for data processing, storage, calculation, and graphical display. Since 

R is designed essentially on a computer programming language, users are able to add 

further functionality to existing packages by defining new functions and developing 

packages of functions (The R environment 2019). RStudio, a public benefit corporation, 

provides a FOSS version of their Integrated Development Environment (IDE) for R which 

supports code execution, debugging, and workspace management (RStudio 2019; Allaire 

2020).  Instructions for installing R and RStudio can be found on the web and in the 

literature (Kadiyala and Kumar 2017b). The fundamental unit of shareable code in R is a 

package. Packages bundle together R code, data, documentation, and tests. Packages are 

sharable on the Comprehensive R Archive Network (CRAN), which is the public clearing 

house for R packages. CRAN hosts a wide variety of FOSS packages that allow researchers 

to collaborate and build upon already developed R code. The development of AirSensor 

leveraged R packages available on CRAN; most notably MazamaSpatialUtils, openair, 
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PWFSLSmoke, and worldmet. AirSensor is designed to be used with R version ≥ 3.3. This 

paper describes version 0.5 of the AirSensor package which is available on GitHub. The 

latest or master branch of AirSensor is also available on GitHub. The AirSensor package 

can be installed using the devtools package within R using the following code:  

devtools::install_github("MazamaScience/AirSensor@version-0.5") 

devtools::install_github("MazamaScience/AirSensor", ref = 

“master”) 

Shiny is a FOSS R package that provides a framework for building interactive web 

applications. Shiny allows the user to turn R derived analysis and plots into interactive web 

applications without requiring HTML, CSS, or JavaScript programming. Shiny allows for 

the development of an online GUI for viewing and sharing R data analytics. Since not all 

users would be comfortable using the R environment which does require coding, R Shiny 

was leveraged to develop the DataViewer web application to provide an interactive data 

experience for community members that would prefer to interact with the sensor data in a 

web application rather than in the R programming environment.  

4.2.3 AirSensor - R Package  

Rather than describing each individual function in AirSensor, the following examples 

will showcase the three primary data objects available through the package, how to apply 

quality control measures on the imported data, and how to generate plots for each of the 

data objects.  A complete guide to AirSensor functions and operations can be found within 

the R-environment after the package has been loaded. Helpful R vignettes are also available 

within the package to provide the user with code examples for using the AirSensor 

functions and working with the sensor data.  
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4.2.4 Data access, extraction, and data objects overview 

AirSensor currently accesses data generated by PurpleAir sensors. AirSensor accesses 

real-time data from www.purpleair.com/json and historical data from PurpleAir through a 

ThingSpeak Representational State Transfer (REST) API. Extracted data is enhanced with 

spatial metadata and transformed into efficient data objects for downstream analytics. 

Within the AirSensor package, the three primary data objects are the Purple Air Synoptic 

(PAS), Purple Air Timeseries (PAT), and AirSensor (sensor) data object. Functions exist 

for creating or loading these data objects as well as manipulating and visualizing them. An 

overview of the AirSensor R package data access, data objects, and functions is provided 

in Figure 4.1. After installing or loading the package, a data archive repository can be set 

to access archived data. These data directories allow access to archived data from a specific 

network of sensors (i.e. STAR grant sensors) or for a specific geographic area (i.e. Southern 

California) so that the R user can access and load historical data more efficiently from a 

data archive rather than the ThingSpeak REST API. The data archives are kept current with 

cron jobs that are scheduled to run every hour to pull and add the most recent data to the 

archive. Loading data into R from an existing data archive is more efficient than creating 

new data objects from the ThingSpeak API. For the U.S. STAR grant sensors deployed by 

the South Coast AQMD, the specific data archive can be accessed at 

“http://smoke.mazamascience.com/data/PurpleAir” or 

"http://“aqmd.com”/data/PurpleAir". The archives allows STAR grant 

community group members access to historical sensor data starting from 10/01/2017. 

Within AirSensor, a base archive can be set by the following code:    

http://www.purpleair.com/json
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setArchiveBaseUrl("http://smoke.mazamascience.com/data/PurpleAir"

) setArchiveBaseUrl("http://“aqmd.com”/data/PurpleAir") 

 

Figure 4.1 Flow Chart for data flow and functionality of the AirSensor R package.  

4.2.5 Purple Air Synoptic - Data Object  

The Purple Air Synoptic (PAS) data object provides an instantaneous view of the 

measured values from a network of sensors. A PAS can be created from the JSON data 

available at www.purpleair.com/json or loaded by accessing a data archive (Figure 4.1). At 

the time of this writing, the time resolution of the PA-II sensors is 120 seconds and 

http://www.purpleair.com/json
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therefore a new PAS data object would be available roughly every 120 seconds. The 

available functions for manipulating PAS data object include pas_filter(), pas_filterArea(), 

and pas_filterNear(). The PAS data can be plotted on a map to display the instantaneous 

data collected by the sensor network with the pas_leaflet() and pas_staticMap() functions. 

Figure 4.2 shows a PAS data object displayed on an interactive map using the pas_leaflet() 

function which maps sensor locations and colors the locations according to Air Quality 

Index (AQI). The map is interactive in that the user can select an individual sensor and 

view the values recorded at that location for the time the PAS object was created. If a user 

is interested in loading specific states or air districts, the user can apply filters when 

generating the PAS data object. The leaflet map can be modified with options for map tiles, 

parameter displayed, and what type of sensors to display (i.e. inside or outside sensors). 

Note that the current data archives only contain PAS data for the U.S. To create a PAS for 

an alternative country, the user will need to use the pas_createNew function and specify 

which country or countries by their ISO 3166 alpha-2 country code. Figure 4.2 was 

produced by the following two lines of code:     

pas_example <- pas_load() # Load synoptic PurpleAir Data for U.S. 
pas_leaflet(pas_example) # Create an interactive map of synoptic data for U.S.  
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Figure 4.2 Interactive leaflet map created from a PAS data object. 

4.2.6 Data Fusion Enhancements 

Data fusion with other relevant data sources provides benefits for custom analytics, 

for applying data quality checks, and for providing information on local weather 

conditions. Data fusion provides the ability to tell a more complete story about local air 

pollution by fusing collected sensor data with other publicly available data sets. AirSensor 

has been integrated with the PWFSLSmoke R package for access to regulatory air 

monitoring data via the AirNow API and integrated to the worldmet R package for access 

to the U.S. National Oceanic and Atmospheric Administration (NOAA) Integrated Surface 

Database for meteorological data (Callahan et al., 2019; Carslaw 2019). These data fusion 

enhancements provide the ability to generate comparison plots between a low-cost sensor 

and the nearest regulatory-grade instrument and allow for sensor data to be joined with 

nearest meteorological data so that wind roses, pollution roses, and bivariate polar plots 



   

134 

   

can be generated to provide insights into local air pollution trends. Data fusion 

enhancements are performed on both the PAT and sensor data objects.  

4.2.7 Purple Air Timeseries (PAT) - Data Object and Quality Control functions 

The PAT timeseries data object provides timeseries data on a per-sensor basis. Data 

manipulation functions for the PAT data object include filtering, sampling, and joining. A 

PAT can be loaded from a data archive using the pat_load() function or can be created from 

the PurpleAir ThingSpeak API with the pat_createNew() function. To load a PAT data 

object, the user will need to specify the sensor label (name) and a start and end date. The 

code example below loads a PAT data object for a sensor in Seal Beach, CA that was 

deployed as part of the STAR grant community deployments. The PAT data object includes 

data from January 01 to December 31, 2018. Subsequent example code and plots displaying 

the AirSensor functions will be performed on this PAT data object or a filtered PAT data 

object created from the SCSB_20 sensor located in Seal Beach, CA. The PAT data object 

can be loaded into the R environment and filtered by date with the following code: 

pat_example <- pat_load( 
  label = "SCSB_20", 
  startdate = 20180101,  
  enddate = 20181231, 
  timezone = "America/Los_Angeles", 
) 
# Create a PAT filtered for June/July 2018 
pat_JuneJuly <- pat_filterDate( 
  pat_example, 
  startdate = "20180627",  
  enddate = "20180708" 
) 

Time series data can be processed for time averaging, QC algorithms, and outlier 

detection and removal or replacement. The user can create their own framework for 
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applying QC functions depending on their project requirements. The pat_aggregate() 

function returns a data frame with aggregate statistics for a PAT data object. The returned 

dataframe includes the mean, median, standard deviation, minimum, maxima, and count 

for the aggregate time period chosen. Note that the PA-II sensor has two identical sensors 

(model PMS 5003, Plantower, China) that report the same types and amounts of data and 

for reference purposes are labeled as channel A and channel B, respectively. For the paired 

channel A and B PM2.5 data columns, the function also returns the t-test statistic (based on 

an unpaired, two-sample student’s t-test), p-value, and degrees of freedom. Several built-

in QC algorithms exist and are labeled as pat_qc, hourly_AB_01, and hourly_AB_02. The 

pat_qc function allows the user to perform a first-level QC check for values that are 

considered “out-of-spec” with regards to the manufacturer defined specifications for the 

acceptable ranges for PM2.5, temperature, and humidity. The 

PurpleAirQC_hourly_AB_00() function allows the user to perform an hourly average of 

the A and B sensor channels when sufficient sub-hourly data exists for both channels within 

each hour. The default min-count for sub-hourly data is set to 20 data points; requiring a 

data recovery for A and B channels > 66% for the current time-resolution at 120-seconds. 

No further QC is applied with this function. Note that the PA-II’s time resolution has 

changed with firmware updates over time. As firmware updates have not been performed 

across the board simultaneously for all sensors in the PurpleAir network, the following 

dates are estimates for firmware releases and data resolution. Time resolution for data prior 

to February 2017 is 20 seconds, from February 2017 to March 2017 is 40 seconds, from 

March 2017 to May 2017 is 70 seconds, from May 2017 to May 2019 is 80 seconds, and 
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data recorded after May 2019 is 120 seconds. The function PurpleAirQC_hourly_AB_01 

allows the user to perform an hourly average of the A and B sensor when sufficient sub-

hourly data exists and when data is considered statistically similar. Data is invalidated 

when (1) minimum count < 20 values, (2) when both the means of channels A and B are 

not statistically the same (two-sample t-test p-value < 1e-4) and the mean difference 

between channels A and B is greater than 10 µg/m3, and (3) when the mean difference 

between A and B is greater than 20 µg/m3 for PM2.5 values less than 100 µg/m3. These 

conditions assume that the air entering the channel A and B sensors is the same and 

therefore the means of the two channel measurements should be statistically similar. When 

measurements from these sensor channels agree, the user can have higher confidence in 

the low-cost air quality measurements and the subsequent data averaging of the two sensors 

into one value. The two-sample t-test is a statistical technique to determine whether the 

difference between two means is significant. The default settings of these QC checks can 

be modified to adjust the QC check to individual project requirements. Additionally, new 

QC functions can be created or adapted from these available functions and AirSensor users 

are encouraged to create their own custom QC functions and submit these functions to be 

added to the AirSensor package through GitHub. These QC procedures can be visualized 

with the PurpleAirQC_validationPlot() function which creates a series of timeseries plots 

for channel A and B, the difference between channel A and B, t-test p-value, min count, 

and the hourly averaged final output (Figure 4.3).  
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Figure 4.3 Plot generated to visualize the QC_01 algorithm for SCSB_20 located in Seal 

Beach, CA. 

The AirSensor pat_outlier() function provides an outlier detection function that 

allows the user to apply a rolling Hampel filter to identify points that may be outliers, and 

if desired, replace those identified outliers with a rolling median value. The Hampel Filter 

is an outlier detection technique that uses the Median Absolute Deviation (MAD). For each 

data point, a median and standard deviation are calculated using neighborhood values 

within a sample window size. If the MAD of a single data point is a specified number of 

standard deviations (threshold minimum) from the median value for the sample window, 

then the data point is flagged as an outlier. Default values for the pat_outlier() function 
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include sample window = 23 and a threshold minimum = 8. These default values can be 

altered by the end-user to meet the specific QC requirements of their monitoring project 

and data analysis. Adjusting the parameters on the function for identifying outliers would 

adjust the number of points detected as outliers. Figure 4.4 provides an example of the 

pat_outlier function with potential outliers identified as red asterisks.  

 

Figure 4.4 Plot generated with the rolling Hampel filter identifying potential outliers in 

red asterisks for SCSB_20 from June 27 to July 8, 2018.  

In this example, a date filter was applied to the pat_example previously generated to only 

include the June 27 to July 8, 2018 time period that would be impacted by a special event: 

4th of July fireworks. The default window size was left at 23 allowing for an estimated 30-

min rolling time window with the 80-second time-resolved data. The outlier detection 

function appears to identify many of the one-off high values as outliers but does not 

considered the elevated PM2.5 concentrations due to the fireworks to be outliers. This 
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function allows AirSensor data users to quickly implement sophisticated outlier detection 

and visualize the results of their outlier detection functions. Figure 4.4 was produced by 

the following R-code:   

pat_outliers(pat = pat_JuneJuly)  # generate the outlier plot 

Most of the plotting functions within AirSensor are performed on the PAT 

timeseries data objects. Data visualization functions for the PAT include plotting raw data 

time series, interactive time series, multiplot time series (A, B, Temp, RH), scatter plot for 

a channel A vs. B comparison, and scatter plot with regards to the nearest reference 

monitor. The channel A and B PM2.5 concentrations generated by the PA-II can be 

compared using the pat_interalFit() function as shown in Figure 4.5.  

 

Figure 4.5 Scatter plot and timeseries rendered using the pat_internalFit function to 

compare channel A and B within a single PA-II sensor, SCSB_20, for 2018. 
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In this example for SCSB_20 for 2018, the A and B sensors agree with each other with an 

R2 > 0.98, slope of 1.05 and an intercept of -0.8. Since the two sensors perform similarly 

for 2018-time frame, the blue points representing the B sensor are plotted over top of the 

red points representing the A sensor. The code to generate the Figure 4.5 plot is:   

pat_internalFit(pat_example) #Create A/B Channel comparison plots 

A sensor can also be compared to the nearest reference station with the 

pat_externalFit() function (Figure 4.6). In this example, the sensor is 3.1 km away from the 

regulatory monitoring station equipped with a Met One Beta Attenuation Monitor (BAM), 

which is a U.S. EPA designated Class III FEM (EQPM-0308-170) for PM2.5. As the time 

resolution of the reference data is hourly, the QC procedures previously described are 

applied to hourly aggregate the sensor data in the pat data object in this function. 

Additionally, the pat_externalFit() function allows the user to specify which QC algorithm 

to apply. This external fit plot shown in Figure 4.6 indicates that while the sensor follows 

the typical daily PM2.5 trends of the nearby regulatory-grade monitor for PM2.5 with R2 > 

0.73, the sensor tends to estimate higher concentrations in comparison to the nearby 

regulatory-grade instrument. This slope/intercept offset could be due to a local emission 

source impacting this particular sensor location or could be due to sensor measurement bias 

error that has been identified in prior publications (Feenstra et al., 2019; Magi et al., 2019). 

For the time-series in Figure 4.6, the purple colored points represent the 1-hr PurpleAir 

sensor data and the black colored points represent the 1-hr regulatory-grade instrument 

data. If the two agree closely within an hour, the black point would be plotted on top of the 

purple point for that hour. The plot in Figure 4.6 is created with the following:    
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pat_externalFit(pat_example) 

 

Figure 4.6 Scatter plot and timeseries plot rendered using the pat_externalFit() function 

which compares the PA-II sensor, SCSB_20, in Seal Beach, CA to a nearby regulatory-

grade PM2.5 instrument in Long Beach, CA.  

The pat_scatterplot function provides a multi-panel scatterplot for variables in the 

PAT data object with an example of the plot shown in Figure 4.7. This plot allows the 

researcher to determine if there is a lack of correlation between the A and B sensor channels 

or if there are higher than expected correlations between PM2.5 concentrations and weather 

conditions (temperature and humidity). This plot also provides the timeseries and 

distribution of data points for PM, temperature and humidity.  In Figure 4.7, the distribution 

plots for the A and B sensor channels indicate PM2.5 concentrations for this sensor are 
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typically less than 25 µg/m3.  The datetime column provides an indication of periods of 

downtime with a noticeable downtime seen in August and September of 2018.  

 

Figure 4.7 Figure generated using the pat_scatterplot function to graphically view the 

distribution variables in the PAT timeseries data object 

The pat_dygraph function provides a useful exploratory plot that provides an 

interactive time-series plot for both channel A and B allowing the user to zoom in/out and 

investigate date/times when PM2.5 concentrations may be higher than normal (Figure 4.8). 

Using the interactive time-slider located below the plot allows the user to quickly zoom in 

to dates and times with high particle pollution events to further investigate these events, 

which may be due to special circumstances (i.e. Jan 1st
 or July 4th

 fireworks or wildfire 

smoke event). With a small amount of code, the dygraph provides a versatile, interactive 

plot, where the user can explore a large amount of data at customizable levels with the time 

slider and zoom in/out features. Figure 4.8 is created with the following:    
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pat_dygraph(pat_example) 

 

 

Figure 4.8 Dygraph plot with interactive time-slider generated by the pat_dygraph 

function 

4.2.8 Hourly QC data object (sensor) 

The sensor data object is generated from a PAT data object with the 

pat_createAirSensor() function which creates a data object on a per sensor basis. The user 

will need to specify a PAT data object, time averaging period, parameter, channel, QC 

algorithm, and min count. The QC algorithms applied in creating the sensor data object are 

described earlier in Section 4.2.7 with regards to the QC functions that can be applied to a 

PAT timeseries data object. The functions with AirSensor that can be performed on a 

sensor data object begin with “sensor_”. An example creating a sensor data object is shown 

in the code below:  
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AirSensor_example <- pat_createAirSensor( 
pat=pat_JuneJuly,  
period = "1 hour",  
parameter = "pm25",  
channel = "ab",  
qc_algorithm = "hourly_AB_01",  
min_count = 20 

) 

Plots available for the sensor data object within the AirSensor package include a 

bivariate polar plot and pollution rose, which wrap functions from the openair R package. 

Meteorological data is retrieved from the NOAA worldmet R package. The nearest 

meteorological monitoring station is coupled with the sensor data object to build the 

bivariate polar plot and pollution rose, which are shown in Figure 4.9 and Figure 4.10. 

These two plots provide the user with the ability to couple wind direction and wind speed 

with PM2.5 pollutant data to determine whether pollution events can be attributed to specific 

meteorological conditions and potentially identify pollution sources. A more in-depth 

analysis of these plots and their application in analyzing air monitoring datasets is 

accessible within the published literature on the ‘open-air’ R package development 

(Carslaw and Ropkins 2012) and use of bivariate polar plots (Carslaw and Beevers 2013; 

Grange et al., 2016).  The code to create the pollution rose and polar plot is as follows:  

sensor_pollutionRose(AirSensor_example) # Code for Pollution Rose  
sensor_polarPlot(AirSensor_example)     # Code for Polar plot 
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Figure 4.9 PM2.5 Pollution Rose generated by the sensorpollutionRose() function for 

SCSB_20 located in Seal Beach, CA for June 27 to July 8, 2018.   
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Figure 4.10 PM2.5 Bivariate Polar Plot generated by the sensorpolarPlot() function for 

SCSB_20 located in Seal Beach, CA for June 27 to July 8, 2018. 
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4.2.9 Timestamp and Time Averaging for AirSensor Data Objects and Functions 

AirSensor and AirSensor functions have been designed to appropriately handle 

timestamps and various time zones of potential users. Users should understand how time 

stamps are stored and visualized within AirSensor and take appropriate steps when creating 

and visualizing AirSensor data objects; especially if using plotting functions outside of the 

AirSensor package to visualize data. The PurpleAir API provides access to data stored in 

Coordinated Universal Time (UTC). The AirSensor data objects (PAS, PAT, and sensor) 

all store data with a UTC timestamp. When creating or loading either a PAT or a sensor 

data objects, the user can specify the local time zone of the sensor selected. If a time zone 

is not specified when creating a data object for a single day, the date/time parameters will 

be passed as UTC, which for a sensor located in the Pacific Time Zone (+8h UTC) would 

return a data object with data from 08:00 AM to 08:00 AM local time of the following day. 

In AirSensor, time stamps are labeled and time averages are coded as “time beginning”. 

For example, a 1-hr time average with a timestamp of 14:00 would be an average of the 

data collected between 14:00 and 14:59. This holds true even with the 2-min time-matched 

channel A and B sensor data available in AirSensor. The PurpleAir PA-II channel A and B 

sensors report at different times within a 120-sec time interval. In AirSensor, the seconds 

are dropped and data from the A and B sensor are assigned to a 2-min time beginning time 

stamp for matching purposes between the two raw sensors within a PA-II sensor. Since 

data is stored as UTC, the plotting functions within AirSensor are coded to appropriately 

apply time shifts based on the sensor’s location (time zone) so that data will be plotted and 

displayed in the local time.  
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4.2.10 AirSensor DataViewer Web Application Overview 

The DataViewer application was developed to provide an online interactive data 

experience for the community air monitoring networks deployed under the U.S. EPA 

STAR grant. These communities and sensor names are listed in SI Table S4.2.  This 

interactive online user experience provides access to the functionality of the AirSensor R 

package for users that would not be able to download R and run code or scripts to access, 

process, and visualize community data. While the infrastructure to generate the types of 

plots that had resonated with community group members during the workshops was 

developed in the AirSensor package, the ability for community group members to use that 

infrastructure and generate visualizations in an interactive web accessible user-friendly 

online GUI without writing a single piece of code is provided in the DataViewer 

application. Plots that generated the most interest with community group members, 

including calendar plots, concentration maps, community time-lapse videos, and sensor 

performance plots between the A and B internal sensors and between the sensor and nearest 

reference PM2.5 monitor, were prioritized for incorporation in the DataViewer. The 

following sections will provide an overview of the back-end infrastructure required for the 

DataViewer application and the methodology for the DataViewer color scale and timelapse 

videos. The front-end of the DataViewer, which is the online GUI and the primary point of 

interaction for community members, will be highlighted in the results section.  Examples 

will be provided using data from sensors in the community of Seal Beach, California.  
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4.2.11 Cloud Computing Resources 

Cloud computing provides computing services over the internet using a pay-as-you-go 

pricing model. Computing services typically include computing power, storage, 

networking, and analytics. Cloud computing can provide benefits by allowing 

programmers to focus on building new and innovative applications rather than acquiring 

and maintaining the infrastructure required for their computational needs. The cloud can 

provide benefits with cost reductions for IT infrastructure and can increase the scalability, 

elasticity, reliability, and security of computational services in comparison to computation 

services provisioned locally or on-premise. Azure, which is Microsoft’s public cloud 

computing platform, was used to support the computational requirements of the 

DataViewer application. The application could also be run on another public cloud 

platform or on premise if desired. The computation services required include running 

scheduled tasks (cron jobs) for creating data objects, storing data in structured data 

directories, and hosting the DataViewer application. The data archive consists of a set of 

flat files defined by a simple directory and naming protocol with the data ingest scripts 

written in the R programming language. A virtual machine (VM) was configured on Azure 

with the structured directories for the data directories along with required software (i.e., 

Git, Apache, Docker, and R). A second VM was configured to host the DataViewer 

application. Figure 4.11 provides a simplified system architecture for the DataViewer 

application.   
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Figure 4.11 System Architecture for the DataViewer Application 

4.2.12 DataViewer Color Scale 

Determining an appropriate color scale for pollutant concentrations generated by low-

cost sensors is challenging. Historically, air quality has been colored according to the Air 

Quality Index (AQI) with values ranging from 0 to 500 with six distinct color categories; 

good (green), moderate (yellow), unhealthy for sensitive groups (orange), unhealthy (red), 

very unhealthy (purple), and hazardous (maroon). Historically AQI has been calculated at 

24-hour averages due to the scientific information about air pollution exposure and public 

health. In 2013, the U.S. EPA released a new AQI calculation method (NowCast Reff 

method) for PM2.5 that calculates AQI hourly based on the previous 12 hours with the most 

recent hourly pollutant concentrations given larger weighting when air quality is changing 

rapidly (Mintz et al., 2013). The NowCast method is more responsive to real-time changes 

in air quality and responds faster to air quality events like smoke from wildfires. The U.S. 

EPA in the Air Sensor Toolbox suggested a new pilot version color/concentration scale 

that could be used for 1-min high time resolution data from  low-cost air quality sensors 



   

151 

   

(U.S. Environmental Protection Agency 2019). This scale uses four shades of blue for low, 

medium, high, and very high PM2.5 concentrations and is shown in SI Figure S4.2.  The 

scale from the AirSensor Toolbox was created for 1-min sensor data in contrast to this work 

in which low-cost sensor data is processed with QC algorithms and time-averaged to 1-hr 

concentrations prior to being displayed in the DataViewer application. Furthermore, the 

authors wanted to provide users with a clearer differentiation among the higher pollutant 

levels sometimes indicated by the sensors. Hence, a new color scheme was developed for 

the DataViewer that includes 5 concentration categories represented by two colors (blue 

and purple) with variations in the hue and luminance as shown in Table 4.1.  

Color Hex # 

(RGB) 

PM2.5 Concentration 

(µg/m3) 

#ABE3F4 

(171,227,244) 
PM2.5 ≤ 12 

#118CBA 

(17,140,186) 
12 < PM2.5 ≤ 35 

#286096 

(40,96,150) 
35 < PM2.5 ≤ 55 

#8659A5 

(134,89,165) 
55 < PM2.5 ≤ 75 

#6A367A 

(106,54,122) 
PM2.5 >75 

Table 4.1 DataViewer color/concentration scale for 1-Hr PM2.5 concentrations 



   

152 

   

4.2.13 FFmpeg and digital stills and video stills creation.  

One of the desires of the community groups was to view historical time-lapse 

concentration maps to view past air quality events in their communities. To accomplish 

this task, time cron jobs run hourly to create video still images for each of the 14 STAR 

grant communities. These community time-lapse images are stored in the structured data 

directory in sequence and converted into mp4 video files using FFmpeg, which is a FOSS 

(Dawes 2019; FFmpeg 2019).    

4.3 Results  

4.3.1 Leveraging the AirSensor package   

The AirSensor R package meets the community needs for those desiring to work with 

the data programmatically in the R environment. Through the AirSensor package, real-time 

and historical data from the STAR grant communities (listed in SI Table S4.2) can be 

accessed, loaded into R, and visualized used pre-built plotting functions. These plotting 

functions allow the user to create useful and interactive plots that can be shared within a 

community group and deliver actionable information for the community members to 

answer questions like “When is particle pollution highest in my community?” and “What 

time of day or day of week would be best to plan an outdoor activity (i.e. walk dog or golf 

game) to reduce my particle pollution exposure?” AirSensor creates a data flow for the end-

user to create data objects for synoptic data, time-series data, and QC hourly PM2.5 data. 

With the functions of this R package highlighted in the methods section, the user can easily 

create informative plots for community members to understand their local environment 

with minimal coding required. The AirSensor R package and associated functions provide 
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the necessary back-end software analysis and plotting functions to create the front-end 

DataViewer web application, which is usable and useful to a much broader segment of the 

public. The DataViewer application is the front-end interface that is the primary point of 

interaction for community members in this project to gain insights into their local air 

quality conditions. This solution provides an example of how these types of tools and 

solutions can enhance public engagement with data from low-cost sensor networks.  

4.3.2 DataViewer Application 

The DataViewer application, version 0.9.7, has a hierarchical page and tab structure 

with 4 top-level pages: Explore, View Data, Latest Data, and About. The View Data page 

is for viewing tabled data and provides the ability to download data in 3 to 30-day intervals 

on a per sensor basis. For sensors deployed within the STAR grant, historical data can be 

accessed back to the start of the U.S. EPA STAR grant sensor deployments: 10/01/2017. 

The View Data page includes high resolution (2-min) time-matched PA-II PM2.5 data from 

the A and B sensor channels, temperature (°F), and relative humidity (%). This data output 

provides the user with a clean time-matched data set for the A and B sensor. Creating a 

similar data set outside of the AirSensor R package or DataViewer application would likely 

be time consuming and difficult; especially if the user were not proficient with Microsoft 

Excel or data science environments. Attempting to create a similar dataset in Excel would 

require downloading two separate data files (A and B), modifying date/time column 

appropriately to work in Excel, and merging the two files based on the time stamp. The 

Latest Data page provides visual access to the latest non-QC data on a per sensor basis with 

timeseries plots provided for sensor channel A, channel B, humidity, and temperature. The 
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“About” page provides an overview of the DataViewer, its intended purpose, QC 

procedures, and a disclaimer message.  

The Explore page has the most functionality for exploring and analyzing community 

air monitoring data and includes six tabs: Overview, Calendar, Raw Data, Daily Patterns, 

Compare, and Timelapse. In the Overview tab, the user can select a community, a single 

sensor (sensor name), a date (end date), and view past data with options for viewing the 

prior 3, 7, 15, or 30 days to the selected end date. The Overview tab (Figure 4.12) provides 

a map that displays the average PM2.5 for all sensors within the selected community for the 

time period selected (3, 7, 15, or 30-day average) and a bar chart that displays hourly PM2.5 

concentrations for the selected sensor.  

 

Figure 4.12 Overview tab in the DataViewer application showing PM2.5 concentrations 

and sensor locations for Seal Beach, CA.  
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This overview tab provides the user with access to historical pollutant concentrations for 

the user-selected timeframe for their community and individual sensor. By changing the 

date, the user can quickly identify spatial differences between locations since the map 

indicates an average PM2.5 concentration for the entire timeframe chosen (3-30 days). 

Additionally, the user can examine the bar chart below the map to view the recorded PM2.5 

concentrations for a single selected sensor. 

In the Calendar tab, a 1-year calendar plot is rendered for a single selected sensor. 

The user selects a community, sensor, and date with a calendar plot being generated for the 

entire calendar year of the date selected (Figure 4.13). The calendar plot is interactive and 

when the user hovers over a date, the 24-Hr averaged PM2.5 concentration is displayed. The 

calendar plot is easily understood by community members and provides an intuitive view 

of a complete year of PM2.5 data for a single sensor. The calendar tab is great place to start 

when exploring a community data set in order to find dates with atypical 24-hr PM2.5 

concentrations. The user can then further examine these atypical pollution events at higher 

time resolution with other tabs available within the Explore page. The calendar plot 

especially resonated with the community members and sensor hosts; and therefore, was a 

priority for inclusion in the DataViewer application. Calculating and rendering the calendar 

plot is computationally expensive and may take a few moments to display when interacting 

with the DataViewer application, but the result is well worth the wait to provide this 

informative plot. Throughout the workshops, we received the most feedback and discussion 

from community members when showing the calendar plot. Additionally, we did not 
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receive any negative feedback or confusion from community members on how to interpret 

calendar plots.  

 

Figure 4.13 Calendar Plot generated using the AirSensor DataViewer Application. The 

darker shades indicate higher levels of pollution as set forth in the color scale provided in 

Table 4.1. 

 The Raw Data tab (Figure 4.14) provides the raw time-series data for channels A 

and B, humidity, and temperature. Below the time series plots, the Raw Data tab provides 

a comparison between the channel A and B sensors. This comparison provides both a time-

series and a scatterplot that indicates the regression statistics between the channel A and B. 

This functionality is leveraged from the pat_internalfit() function in the AirSensor R 

package. These comparison plots provide the user with the ability to check on the 

performance of an individual sensor by viewing how well the two internal raw sensors 



   

157 

   

within the PA-II agree for the selected time period. If a user is concerned with the 

performance of an individual sensor, this tab can be used to determine if both the raw 

sensors are responding to changes in particle concentrations similarly. Low correlation 

and/or a large slope/intercept offset are indicative of a sensor performance issue and that 

one or both sensors may be experiencing a malfunction.   

 

Figure 4.14 Example of Raw Data tab in the DataViewer application 

 The Daily Patterns tab (Figure 4.15) provides a bar chart illustrating the diurnal 

trend for PM2.5, a pollution rose, and a summary table for the NOAA weather data for the 

time period selected. The daily patterns bar chart provides the average concentration by 

hour of day for the time period selected. With this tab, the DataViewer user can determine 

on average what hour of the day has the highest and lowest particle pollution. This plot 

helps to inform users as to when the best time of day would be for scheduling physical 

activity to reduce particle pollution exposure. The pollution rose allows the user to 

determine if pollution can be attributed to specific meteorological conditions. For the 

example in Figure 4.15, the plot indicates that higher concentrations are consistently 
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coming from the east of the sensing location; potentially indicating that a source of particle 

pollution may be present east of the sensing location.  

 

Figure 4.15 Snapshot of the Daily Patterns tab in the DataViewer application 

 The Compare tab provides a comparison between the sensor data and the nearest 

continuous regulatory PM2.5 monitoring site.  The Compare tab provides a map indicating 

the location of the sensor and nearest monitoring site along with a timeseries and scatter 

plot comparison for the two data sources, allowing the user to determine if the selected 

sensor follows the typical trends for PM2.5 recorded at the nearby reference station for the 

time period selected. The DataViewer application is leveraging the AirSensor 

pat_externalfit() plotting function which was shown prior in Figure 4.6. While the distance 

between the regulatory monitor and the low-cost sensor is provided on the Sensor-Monitor 
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Comparison timeseries plot, the map provided in the DataViewer on this tab allows the 

user the opportunity to visualize the distance between and spatial context of the two 

monitoring locations. Understanding the siting of the low-cost air quality sensor and the 

air monitoring station is crucial to understanding the information provided by the 

comparison plot. If either the sensor or regulatory monitor is installed in a near-source 

environment (i.e. near-road), the user should not expect the two measurements to agree.  

 The final tab in the Explore page is the Timelapse tab.  This tab provides the user 

with the ability to generate a 6-day timelapse PM2.5 concentration video on a per 

community basis and is shown in Figure 4.16. Right-clicking on the video allows the user 

to save a MP4 video to their computer and share if desired. This timelapse concentration 

map allows the user to view pollution events that may have taken place within a community 

during a selected time frame and visualize the flow of pollutants in/out of a community. 

 
Figure 4.16 Community timelapse video tab  



   

160 

   

An informative approach to using this timelapse video is to first use the calendar plot 

feature to identify dates with elevated PM2.5 mass concentrations (μg/m3). After identifying 

those dates, the user can then choose an inclusive time period to view the community 

timelapse to better understand the pollution event with the hourly time-resolved data 

provided by the timelapse video.  

4.4 Discussion 

While online systems exist to view real-time and recently recorded measurements, 

FOSS tools for accessing, processing, and analyzing historical air monitoring data collected 

by low-cost sensors are less available to the public. Developing FOSS tools for archiving, 

interpreting, and communicating data from sensors has been identified as a concrete next 

step towards building a system for filling the air quality data gap (Pinder et al., 2019). This 

work provides a FOSS R package and a web application designed to fill that air quality 

data gap by providing the software tools to view both real-time and historical hyper-local 

air quality information generated by networks of air monitoring sensors. Access to hyper-

local air quality information is expected to spawn an increased desire to interact with air 

quality information and allow community members to take appropriate actions based on 

results generated from their community monitoring networks. The AirSensor R package 

and DataViewer application provide a framework and data flow for communities to 

transform their community monitoring data sets into insightful information through 

interactive data experiences and data explorations. When meaningful results and 

observations are formulated, community members can take appropriate actions to reduce 

their exposure to air pollutants. These actions could include planning transportation (e.g., 
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walk, bike, motor vehicle) routes to reduce air pollution exposure and scheduling physical 

activity events (e.g., golf game, sporting practice, sporting event) during hours of the day 

or day of the week that have been identified to have lower PM2.5 mass concentrations based 

on historical data analysis. Using these local measurements and access to historical data 

for pollution trend analysis for time of day, community members can make a judgement 

on what hours of the day would likely provide lower particle pollutant conditions for 

activities like walking their dog. Our experience with sharing the DataViewer with the 

community leaders and members participating in the STAR grant has been positive with 

users enjoying the interactive data experience provided within the DataViewer. These 

community members have shared how this DataVeiwer provides them with the analysis 

capabilities to better understand their local air quality conditions. Plots that previously 

seemed out of reach due to required technical data analysis skills and coding experience 

are now readily available and generated with only a few selections and mouse clicks within 

the DataViewer application.    

FOSS software developments provide efficiency by building a community of proactive 

data users around shared tools and allowing for multiple parties (i.e. agencies, entities, 

individuals) to contribute to software development and enhancing software functionalities. 

This benefit has already been realized as with the USFS AirFire group is funding a 

development to AirSensor for functions to calculate state-of-health metrics designed to 

access sensor performance to create a list of sensors that appear to be functioning properly. 

This information will be used in the context of wildfire air quality response. FOSS allows 

for researchers to collaborate and build upon the foundation established in this 
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development. FOSS developments can also provide a high level of transparency in terms 

of data analysis and integrity as the end-user is able to select which post-processing steps 

are appropriate for their data analysis. With FOSS tools and publicly available data sets, 

researchers can reproduce data analysis techniques and develop additional functions with 

the interoperability associated with FOSS development.  

4.5 Conclusions 

This novel work brings these software systems to the end-users or community members 

in a FOSS format with all the advantages of open software developments. Not only is the 

end-user able to access, process, and analyze historical sensor data, but the user also has 

access to the source code and functions with the option to create their own custom functions 

for QC, filters, and advanced analytics. Allowing the community to build upon this existing 

work provides benefits to the sensing community as a whole. Developing this software in 

the R-environment also provides for data fusion enrichment by coupling the collected air 

monitoring sensor data with meteorological data and regulatory air monitoring data through 

other open-source packages in the R environment. The AirSensor package has established 

a foundation upon which further enhancements and refinements can be developed. Both 

AirSensor and DataViewer source codes are available on Github with links provided in the 

SI.  Collaboration and input to help shape the AirSensor open source project is encouraged 

to best meet the needs of the air sensing community.  

The AirSensor R package is sensor specific, working with any publicly registered 

Purple Air PA-II sensors. The DataViewer solution is both sensor- and project-specific and 

therefore limited to the PA-II sensors deployed by South Coast AQMD under the STAR 
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grant. The authors believe that the data flow works well for air monitoring sensor data with 

the data objects going from synoptic data to time-series data and then to hourly QC sensor 

data. The blueprint developed to make the DataViewer operational could be applied to 

other projects and communities to visualize data collected by their PA-II sensor networks. 

The work discussed in this paper focused on the initial data handling and analysis 

capabilities required for a community air monitoring network of PM2.5 sensors. Planned 

future work will focus on several improvements to the AirSensor R package, the data 

archive database design, and the DataViewer application. The AirSensor R package and 

archive will be improved by adding functionality to handle unique timeseries identifiers 

and incorporating PM1 and PM10 data. Additional plotting functionality will include 

enhancements to create multi-sensor comparison plots and visualize sensor state-of-health 

metrics for both individual sensors and sensor networks. The DataViewer will be enhanced 

by improving the appearance, usability, data handling, and performance of the application.
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1. OpenAQ color scale 

 

Figure S4.1 OpenAQ color scale for PM2.5 

Source:  https://openaq.org/#/map; accessed 12/31/19 

 

2. Table S4.1 Challenges to Address with Software Development 

The discussions with community members that took place during the STAR grant 

workshops helped South Coast AQMD become aware of the need for additional tools. 

These tools could be used by the community members to address the difficulties with and 

challenges posed by analyzing large community air pollution data sets. These discussions 

along with knowledge of common environmental data science challenges resulted in a list 

of challenges to address that are provided in the table below.  

https://openaq.org/#/map


   

 

 

1
6
9
 

# Challenge Addressed 

(AirSensor) 

Addressed 

(DataViewer) 

Future improvement 

1 Access both real-time and historical data Y Y Add import functions for additional 

PM fractions 

  2 Transform UTC times to local time stamps Y Y  

3 Store, process, and work with large data sets Y Y  

4 Work with other relevant datasets for advanced 

analysis 

Y Y Enhance spatial metadata with 

additional fields 

5 Build meaningful, easy-to-interpret plots  Y Y  

6 Apply quality control measures on data Y Y Create additional QC functions and 

sensor state of health metrics 

7 Create timeseries plots and pollution maps Y Y  

8 Build animations of past data N Y Provided in DataViewer application. 

Future AirSensor releases may provide 

for animations. 

9 Create updated plots (calendar plot, time of day 

bar chart, etc.) to share with community 

members 

Y Y  

10 Share and reproduce analysis  Y Y  

11 Create visualizations with no data science 

experience or experience with Microsoft Excel 

N Y  

12 Merge community geographic information (i.e. 

potential sources of concern, sensitive 

locations, demographics, etc.) with the 

collected community air monitoring sensor 

network data to better understand our local 

environment with the goal of improving public 

health 

N N The ability to do this in the R-

environment does exist, but the user 

would need to develop their own 

custom functions. Future AirSensor 

releases may provide additional data 

fusion enhancements with other 

publicly available data sets. 

Table S4.1 Environmental Data Science Challenges with Low-cost Air Sensor Networks 
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3. Table S4.2. Communities Sensor Networks included in the DataViewer application   

   

Community 
Sensor List 

(Distributed) 

# of Sensors 

(Distributed) 

Oakland 
SCAH_01 to 

SCAH_30 

30 

Richmond 
SCAN_01 to 

SCAN_30 

30 

Alhambra / Monterey Park 
SCAP_01 to 

SCAP_50 

50 

Big Bear Lake 
SCBB_01 to 

SCBB_02 

2 

El Monte 
SCEM_01 to 

SCEM_07 

7 

Sycamore Canyon 
SCSH_01 to 

SCSH_30 

30 

Imperial Valley SCIV_01 to SCIV_25 25 

Nipomo 
SCNP_01 to 

SCNP_25 

25 

Paso Robles 
SCPR_01 to 

SCPR_25 

25 

Seal Beach 
SCSB_01 to 

SCSB_33 

33 

South Gate 
SCSG_01 to 

SCSG_29 

29 

Temescal Canyon 
SCTV_01 to 

SCTV_55 

55 

West Los Angeles 
SCUV_01 to 

SCUV_30 

30 

Table S4.2 Communities Sensor Networks included in the DataViewer application 
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4. EPA Pilot version color/concentration scale for PM2.5 

 

Figure S4.2 EPA Pilot version color/concentration scale for PM2.5 

Source: https://www.epa.gov/air-sensor-toolbox/what-do-my-sensor-readings-mean-

sensor-scale-pilot-project; accessed 12/07/19 

https://www.epa.gov/air-sensor-toolbox/what-do-my-sensor-readings-mean-sensor-scale-pilot-project
https://www.epa.gov/air-sensor-toolbox/what-do-my-sensor-readings-mean-sensor-scale-pilot-project
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5. Helpful Resources and Links 

Resource Link 

AirSensor R package ver. 0.5  

(GitHub Repository) 

https://github.com/MazamaScience/AirSensor/tree

/version-0.5 

AirSensor R package  

(GitHub Repository) 

https://github.com/MazamaScience/AirSensor 

AirSensor DataViewer  

(GitHub Repository) 

https://github.com/MazamaScience/AirSensorShin

y 

  

DataViewer access link 

(SCAQMD) 

http://asdvdev.aqmd.gov/airsensor-test/app/ 

DataViewer access link 

(Mazama) 

http://tools.mazamascience.com/airsensor-test/app/ 

  

Data Repository (Mazama) http://smoke.mazamascience.com/data/PurpleAir  

Data Repository (South Coast 

AQMD)  

http://“aqmd.com”/data/PurpleAir  

Table S4.3 List of AirSensor open access code repositories and data archives

https://github.com/MazamaScience/AirSensor/tree/version-0.5
https://github.com/MazamaScience/AirSensor/tree/version-0.5
https://github.com/MazamaScience/AirSensor
https://github.com/MazamaScience/AirSensorShiny
https://github.com/MazamaScience/AirSensorShiny
http://asdvdev.aqmd.gov/airsensor-test/app/
http://tools.mazamascience.com/airsensor-test/app/
http://smoke.mazamascience.com/data/PurpleAir
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6. R-Script for generating all plots and visuals in this paper.  

 

# ----- Installation ----- 

 

# Install prerequisite libraries 

install.packages('MazamaCoreUtils') 

install.packages('MazamaSpatialUtils') 

 

# Additional spatial dataset required for spatial analysis  

library(MazamaSpatialUtils) 

 

dir.create('~/Data/Spatial', recursive = TRUE) 

setSpatialDataDir('~/Data/Spatial') 

installSpatialData() 

 

# Install AirSensor version 0.5 from Github 

devtools::install_github("MazamaScience/AirSensor@version-0.5") 

 

# Install latest version of AirSensor from GitHub  

# devtools::install_github("MazamaScience/AirSensor", ref = "master") 

 

# Load AirSensor library 

library(AirSensor) 

 

# Set archive base url location 

setArchiveBaseUrl("http://smoke.mazamascience.com/data/PurpleAir") 

#setArchiveBaseUrl("http://aqmd.com/data/PurpleAir") 

 

 

 

# ----- PAS Data Object ----- 

 

pas_example <- pas_load()     # Load current PAS for US 

pas_leaflet(pas_example)      # Create an interactive map of PAS 

 

# ----- PAT Data Object ----- 

 

# Load PAT for 2018 from Archive for sensor in Seal Beach, CA USA.  

# If sensor is not part of STAR grant or a data archive,  

# use pat_createNew() function 

 

pat_example <- pat_load( 

  label = "SCSB_20", 

  startdate = 20180101,  

  enddate = 20181231, 

  timezone = "America/Los_Angeles", 

) 
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# Filter pat by date for June July 2018 

pat_JuneJuly <- pat_filterDate( 

  pat_example, 

  startdate = "20180627",  

  enddate = "20180708" 

) 

 

# Quality Control for PAT Data object  

Table_1 <- pat_aggregate(pat_example) # returns data frame with 

aggregate statistics 

 

pat_exampleQC <- pat_qc(pat_example)  # apply quality control on PAT 

data   

 

PurpleAirQC_validationPlot( 

  pat_JuneJuly,  

  period = "1 hour",  

  qc_algorithm = "hourly_AB_01",  

  min_count = 20 

) 

 

# PAT outliers 

 

# Plot indicating outliers as red asterisk 

pat_outliers( 

  pat = pat_JuneJuly 

) 

 

 

# PAT Plots 

pat_internalFit(pat_JuneJuly) 

pat_externalFit(pat_JuneJuly) 

pat_scatterplot(pat_JuneJuly) 

pat_dygraph(pat_example) 

 

 

# ----- AirSensor Data Object ----- 

 

# Create an AirSensor data object 

AirSensor_example <- pat_createAirSensor( 

  pat = pat_JuneJuly,  

  period = "1 hour",  

  parameter = "pm25",  

  channel = "ab",  

  qc_algorithm = "hourly_AB_01",  

  min_count = 20 

) 

 

# Plots for Sensor Data object 

sensor_pollutionRose(AirSensor_example)     # Code for Pollution Rose  

sensor_polarPlot(AirSensor_example)         # Code for Polar Plot 
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Chapter 5: Conclusions
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5.1 Summary    

The main objective of this research was to provide clarity and vision on the appropriate 

use and applications of low-cost air quality sensors for ambient air monitoring. Designing, 

developing, implementing, and deploying low-cost air quality sensors for ambient air 

monitoring applications comes with many challenges. These challenges include 

quantifying the performance of commercially available low-cost sensors, developing 

defensible methods for deploying sensor networks for ambient air monitoring applications, 

and communicating sensor data to the public in an understandable and meaningful way. 

The ultimate goal of this research was to address these challenges by systematically 

evaluating the performance of sensors according to a documented protocol, deploying 

sensors with scientifically defensible methodology for a specific application, and 

developing methodologies and tools to disseminate community air monitoring data as 

information to the public.  

To systematically investigate the performance of low-cost air quality sensors, it was 

necessary to perform sensor performance evaluations according to a documented protocol. 

The protocol standardizes the performance evaluation process and provides for similarities 

across evaluations in terms of location, number of sensors evaluated, type of regulatory-

grade instrument used for comparison, length of evaluation, time-resolution, and 

performance metrics used. The performance evaluation of 12 low cost PM2.5 sensors 

provides guidance and clarity on the evolving market of low-cost PM sensors and 

significantly adds to the available literature on sensor performance evaluations due to the 

large number of sensors evaluated and that evaluations were performed according to a 
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standard protocol. This work provides guidance on appropriate performance metrics by 

which to evaluate sensor performance against regulatory-grade instrumentation and 

investigates the impact of environmental conditions on sensor performance. These 

performance evaluation results can be used globally to assist and aid researchers and 

community members in selecting sensors to best fit their ambient air monitoring needs. 

Additionally, these results provide clarity on how to interpret low-cost sensor data and how 

to reduce confusion when data between low-cost sensors and regulatory-grade 

instrumentation do not agree. The degree to which some sensors follow the trend of 

regulatory-grade instrumentation indicates that low-cost PM2.5 sensors can provide 

meaningful data, while the measurement error between sensors and regulatory 

instrumentation indicates improvement to hardware and/or software for sensors is still 

needed to reduce these measurement errors. This work also pointed to the increasing bias 

error between sensor and regulatory-grade instrumentation as RH increased, indicating the 

need for manufacturers to develop sensors that correct for the impact of RH on PM2.5 

sensors. Applying such corrections would increase the usefulness and usability of these 

low-cost tools, especially for the general public and community groups looking to deploy 

sensor networks.  

In the next stage of this research, an Internet of Things (IoT) air quality sensor node 

was developed and deployed to perform parallel monitoring to evaluate three potential 

relocation sites for a regulatory ambient air monitoring site measuring ozone. The 

requirement of an accurate sensor node guided the sensor selection, deployment 

methodology, and performance metrics used to quantify the measurement error of the 



   

178 

 

sensor network. The deployment methodology included an initial calibration, pre-

deployment co-location calibration, and a post-deployment co-location verification. This 

methodology allowed for the quantification of the measurement error of the sensor network 

with post-deployment co-location results indicating the Mean Absolute Error (MAE) to be 

less than 2 ppb. Properly quantifying the measurement error through the deployment 

methodology provided defensible data and established high confidence in the cross-site 

comparison analysis to select an appropriate relocation site. This research was a significant 

development both in terms of hardware design and methodology. This systematic approach 

can be used in other ambient air monitoring applications with sensors that require 

quantification of the measurement error. The development of the sensor node can also be 

duplicated in part or in whole for interested researchers desiring to build a sensor node that 

can be deployed remotely, transmit data wirelessly, and measure ozone or another air 

pollutant. This research is significant in that it provides a concrete example of developing 

and deploying sensors for a specific ambient air monitoring application: parallel 

monitoring. This framework, which includes choosing the right sensor for the application 

and applying a methodology for sensor calibration and verification, should be used when 

utilizing air quality sensors for ambient air monitoring applications.  

The last stage of this research involved how to communicate and disseminate 

community monitoring data as interpretable information to the public. Data 

communication and dissemination is key to engaging, educating, and empowering the 

community when performing air monitoring studies in a community. Developing tools to 

process, analyze, and view local air monitoring data allows the community to take 
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appropriate actions and/or make decisions to reduce exposure to harmful air pollutants. 

This work sets a framework for how to engage community members with varied interest 

in and knowledge of air quality and atmospheric sciences through an online application 

that provides both meaningful and understandable information. The development of the 

AirSensor R package addresses the challenges with the data management of large 

community monitoring data sets. The DataViewer web application was developed to 

provide an interactive data experience allowing users to make selections and explore the 

community air monitoring data sets by generating pre-defined data visuals based on their 

user selected inputs. Informative and interactive plots rendered on the DataViewer 

application provide the local community members with the information needed to better 

understand their local environment and determine when air pollution is typically higher 

within their community. The AirSensor R package and DataViewer application provide a 

framework and data flow for communities to transform their community monitoring data 

sets into insightful information through interactive data experiences and data explorations. 

This novel work brings these software systems to the end-users or community members in 

a FOSS format with all the advantages of open software developments. Not only is the end-

user able to access, process, and analyze historical sensor data, but the user also has access 

to the source code and functions with the option to create their own custom functions for 

QC, filters, and advanced analytics. Allowing the community to build upon the framework 

established provides benefits to the sensing community as a whole. The novel FOSS 

development sets the path forward and several entities (U.S. EPA and U.S. Forrest Service) 
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have already started considering these tools and their expansion for use in their 

applications.  

5.2  Limitations and Future Directions 

The use and application of low-cost air quality sensors for ambient air monitoring is 

increasing and evolving rapidly. Since the low-cost air quality sensor market is an 

emerging market with new devices becoming commercially available each quarter, 

continuing and advancing the sensor performance evaluation work is important. The sensor 

performance evaluation work will be continued and sustained through the AQ-SPEC 

program, which provides the much-needed information to the public on sensor 

performance. The evaluations performed in this work were limited to 30-60 days which 

may not identify potential drift or offset issues that may arise for long term deployments 

greater than 60 days. The evaluations are also limited in that they occurred at one location 

with specific particle properties and environmental conditions that may not be transferable 

to other regions. As the performance of low-cost sensors will improve with future 

technology advances and their use and applications become adopted more broadly, 

opportunity exists to create sensor performance verification and/or certification programs. 

Such standardization programs would develop more rigorous field testing and laboratory 

testing protocols to provide a more complete understanding of sensor performance under 

various ambient conditions. A verification or certification process would test sensors at 

multiple ambient air monitoring locations and include multiple seasons to ensure that the 

sensor performs across the potential conditions found in a specific region, state, or country. 

An approach for such a standardization program could be implemented either as a tiered 
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system or a single application system. In California with the recent passage of Assembly 

Bill (AB) 617, air monitoring agencies are monitoring and implementing measures to 

reduce air pollutants in communities. Creating a certification or standardization program 

for sensors to be used specifically for AB 617 community monitoring would provide 

guidance to both communities and local agencies on which sensors are appropriate for 

developing community monitoring networks under AB 617 funding. Since these sensors 

are deployed in sensor networks, the performance of the network can be verified with 

scientifically valid deployment methodologies. If such a standardization system was in 

place for community monitoring networks, the certification program may even exam the 

performance of the network of sensors rather than looking at individual sensor 

performance. Since many AB 617 monitoring communities do have regulatory air 

monitoring stations installed within their community boundaries, the sensor network 

deployments can be deployed and evaluated based on their performance within the 

monitored community. By narrowing the number of sensors that meet specifications and 

standards, researchers would be able to collaborate and focus on specific data quality 

control measures and data communication applications for the sensors which meet the 

performance requirements for AB 617 community sensor networks. This would allow for 

tools and applications to be developed and shared across communities within the state and 

maximize use of state funding. Long term performance over time should also be examined 

under various conditions to determine how sensors will perform when deployed in real 

world ambient conditions for extended periods of time. Since many potential applications 

do exist for the use of sensors in ambient air monitoring, a standardization program could 
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take a tiered approach based on application grouping. This approach would work well for 

implementing broader standards at a federal level with tiered performance requirements 

dependent on application (regulatory, fence-line, research, epidemiology, citizen science, 

community monitoring, and science education). Additionally, laboratory evaluations under 

controlled conditions would allow for the investigation of sensor performance under 

conditions that may not be attainable in ambient (uncontrolled) conditions. Laboratory 

experiments can be designed to evaluate performance of sensors under various 

combinations of concentrations, temperature, relative humidity, and controlled interferent. 

Chamber experiments will provide information on the sensor’s specificity and sensitivity 

to targeted pollutant, interferent pollutant, and environmental conditions. Sophisticated 

chamber equipment and experiments could examine sensor performance with regards to 

the impact of vibration, wind effects, and altitude changes, which will provide insights into 

the utility of sensors for both mobile and stationary sensing applications.  

With regards to the evaluation of the spatial and temporal ozone trends in the San 

Bernardino mountains, this study is limited due to the specific application of the project to 

locate an appropriate relocation site. This study was performed in a relatively tight 

geographical area and over a 2-month period during the high ozone season. A more 

comprehensive study to investigate spatial and temporal trends in the region could be 

designed and would include additional sites (urban/rural) and be performed for a longer 

duration to include multiple seasons. The sensor node cost is relatively high at $6,500 USD 

when equipped with the solar option. Much of this cost is actual ozone sensor itself which 

may be a limiting factor for use in community monitoring projects. Ideally, advancements 
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in technology may lead to less expensive sensors that are highly accurate and can be 

incorporated into integrated sensor solutions with less overall cost. 

The AirSensor R package version 0.5 is limited in that the package is sensor specific 

for working with Purple Air PA-II sensors that are registered as public. The DataViewer 

solution is both sensor- and project-specific and therefore limited to the sensors deployed 

by South Coast AQMD under the STAR grant project. The current AirSensor R-package, 

DataViewer, and data repositories are currently focused on PM2.5 data only. The blueprint 

developed to make the DataViewer operational could be applied to other projects and 

communities to visualize data collected by other networks of PA-II sensors. The initial 

development as presented in this work is the foundation of a suite of FOSS tools which are 

currently being expanded as this thesis is written. Additional developments for the 

AirSensor R package will include adding the PM1.0 and PM10 size fractions from the PA-II 

sensor, improving data processing R scripts, new data access functions, and the 

development of sensor state-of-health metrics. These upgrades to the AirSensor R package 

should be completed Summer 2020 with the software being released on the Comprehensive 

R Archive Network (CRAN), which is the public clearing house for R packages. Publishing 

on CRAN will allow for a wider audience to use and contribute to the AirSensor project 

due to the ease of installing the R package. Future work should identify scientifically 

relevant correction techniques for PA-II data using the data access functions to both sensor 

and regulatory-grade data in AirSensor along with already CRAN published R libraries for 

machine learning and modelling. If the data can be improved programmatically for a region 

or state, the data will become more relevant and provide end users with more accurate 
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measurements of their local air quality conditions. With regards to the DataViewer 

application, future work will look to improve the usability of the application through 

continuing the feedback loop between community members using the application and the 

development team. This will ensure the both community leaders and members are provided 

the needed data visualization tools to understand their local historical air quality trends. 

Future work can create similar type DataViewer environments for specific applications like 

wildfire response or sensor state-of-health metrics. The latter would allow researchers to 

examine a regional deployment of sensors and quickly identify sensors that are not 

performing well and schedule maintenance, repair, or replacement of non-operational 

sensors. Removing or replacing poor performing sensors from the sensor network will 

provide a higher trust in the data collected knowing that the sensors displayed are 

exceeding pre-determined sensor state-of-health metrics. Further developments should 

look to refine existing and create new QC algorithms to process the data from the two raw 

sensors within a PA-II to create a single data point per sensors. This ongoing development 

and collaboration will continue through the AirSensor Project available on GitHub.      

5.3  Closing Remarks  

This body of research is significant in that it develops methodologies for the use and 

application of air quality sensors to enable community monitoring. This research provides 

clarity and guidance on the performance for PM2.5 sensors, network applications for 

sensors, and data communication for community monitoring sensor networks. The sensor 

performance evaluations in Chapter 2 provide sensor performance metrics that are 

important in both sensor selection and in building out sensor networks. This research along 
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with research by others within the low-cost air quality sensing space has shown that this 

technology can provide an enhanced understanding of our local environment and has the 

potential to supplement the current regulatory monitoring networks for monitoring 

community air quality. The ability to collect hyper-local air quality information provides 

the data necessary for communities impacted by air pollution to take actions to reduce their 

exposure if data is appropriately communicated in an intuitive, user friendly, and 

understandable format. The DataViewer web application presented in Chapter 4 provides 

an example of how community air monitoring data from sensor networks can be visualized 

to allow the community to explore and understand their historical local air quality trends. 

The sensor network developed in Chapter 3 for parallel monitoring provides a sensor node 

design and deployment methodology to generate scientifically defensible sensor network 

data. As the technology and performance of air quality sensors improves, the potential 

ambient air monitoring applications for sensors will expand and provide additional 

opportunities to develop sensor networks that collect defensible data allowing for 

researchers to answer technical questions and discover    previously unknow air pollution 

phenomena. The future of air quality sensors is promising both in terms of technology 

advancement and ambient air monitoring applications. With developing scientifically 

sound methodologies and fostering by key stakeholders, the air quality sensing community 

will continue to thrive and discover more applications for the use and application of air 

quality sensors with the potential to help improve quality of live and public health in our 

communities.       

 

 




