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Abstract

Shotgun proteomics generates valuable information from large-scale and target protein 

characterizations, including protein expression, protein quantification, protein post-translational 

modifications (PTMs), protein localization, and protein-protein interactions. Typically, peptides 

derived from proteolytic digestion, rather than intact proteins, are analyzed by mass spectrometers 

because peptides are more readily separated, ionized and fragmented. The amino acid sequences 

of peptides can be interpreted by matching the observed tandem mass spectra to theoretical spectra 

derived from a protein sequence database. Identified peptides serve as surrogates for their proteins 

and are often used to establish what proteins were present in the original mixture and to quantify 

protein abundance. Two major issues exist for assigning peptides to their originating protein. The 

first issue is maintaining a desired false discovery rate (FDR) when comparing or combining 
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multiple large datasets generated by shotgun analysis and the second issue is properly assigning 

peptides to proteins when homologous proteins are present in the database. Herein we demonstrate 

a new computational tool, ProteinInferencer, which can be used for protein inference with both 

small- or large-scale data sets to produce a well-controlled protein FDR. In addition, 

ProteinInferencer introduces confidence scoring for individual proteins, which makes protein 

identifications evaluable.

Keywords

Proteomics; Mass Spectrometry; Database Search; Protein Inference; False Discovery Rate 
(FDR); Peptide-Spectrum match (PSM)

Introduction

Mass spectrometry-based proteomics has been widely employed as a high-throughput and 

robust tool in biological research. Proteomics characterizes a variety of features of proteins 

in large-scale, and significant progress has been made in studies involving protein profiling, 

protein PTMs, protein complexes, and protein turnover.[1]

Mass spectrometry-based proteomics can be classified into two main categories: bottom-up 

(shotgun) [2] and top-down[3]. The top-down strategy analyzes intact proteins, whereas the 

bottom-up strategy measures peptides derived from digested proteins. Although top-down 

methods provide a direct measurement of proteins, the general and robust fragmentation of 

intact proteins is challenging. The bottom-up shotgun approach is based on the analysis of 

peptides, for which methods of separation, fragmentation and interpretation are more well 

developed. The shotgun strategy has enabled the most comprehensive proteome analysis, 

and is a widely used method in proteomics. The recent mapping of the human proteome 

used a large-scale shotgun approach.[4, 5]

In a typical shotgun experiment, a protein mixture is digested by a specific enzyme (e.g. 

trypsin) to produce a complex peptide mixture. The peptides are then subjected to peptide 

fractionation and separation in either one or multiple dimensions. Peptides eluted from the 

chromatographic column are ionized, and their m/z values are measured by the mass 

spectrometer. Certain peptides (e.g. those with the highest ion intensities) are chosen for 

fragmentation. The fragment ions from one precursor peptide produce a fragment ion 

spectrum, which is compared to theoretical spectra generated from a protein database using 

automated algorithms such as SEQUEST [6, 7], ProLuCID[8], or MASCOT [9]. A scoring 

evaluation (e.g. Xcorr and deltaCN in SEQUEST, Z-score in ProLuCID) is usually applied 

to describe the degree of matching between observed and in silico generated spectra. The 

peptide-spectrum matches (PSMs) passing a quality score cut-off are mapped to proteins by 

using algorithms such as DTASelect[10] and Search Engine Processor[11]. Due to the 

redundancy of protein sequence databases and protein isoforms derived from the same gene, 

not all peptides can be uniquely assigned to a single entry and are instead assigned to 

multiple entries or protein isoforms in the database. Therefore, a protein inference method is 

required to decide the best match among the possible identified proteins. Improper or 
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inconsistent protein inference will lead to either over- or under- counting of proteins 

identified.

PSM scores can be filtered (e.g. through the use of XCorr), influencing protein 

identifications, and corresponding false discovery rate (FDR), which is a widely used 

measurement to assess overall proteomic data quality. The FDR is usually estimated by 

using a target-decoy database strategy, [12] and can be measured at three different levels: 

PSM, peptide, and protein. The FDR for PSMs can be easily calculated and controlled by 

filtering the PSM quality score because each PSM is an independent event and the numbers 

of the forward and decoy PSMs are fixed for a given cut-off value. However, the peptide 

and protein numbers are not only determined by PSMs, but also by the data set itself (e.g. a 

large data set tends to have more PSMs and peptides assigned to each protein). Therefore 

with the same PSM FDR, larger datasets will have higher protein level FDR than smaller 

datasets. Another limitation of global protein FDR is that one cannot easily assess the 

confidence of individual proteins based on it. Obviously the confidence score for individual 

proteins should vary and should be of great importance to evaluate individual protein 

matches. To solve this problem, tools, such as ProteinProphet,[13] PANORAMICS,[14] 

Scaffold,[15] have been developed. These algorithms compute both peptide probabilities 

and protein probabilities.

Several algorithms have been developed to statistically assess peptide identification results 

from database search programs. A complication of bottom-up proteomics is the need to 

assign peptide identifications back to their respective proteins, which becomes complicated 

when redundant entries or protein isoforms exist. The rules used to infer a protein and 

control the protein FDR vary between programs, making it difficult to compare the results 

derived from different protein inference methods. (e.g. for those proteins with only shared 

peptides, to report only one representative protein or all possible proteins as a group is still 

an unresolved issue). An earlier practice for reporting protein identifications was to only 

include those proteins with two or more peptide identifications. This “rule” for protein 

identifications has changed with the widespread use of high mass accuracy mass 

spectrometers and now one high quality peptide identification is quite frequently used.[16, 

17] Some representative protein inference tools include ProteinProphet,[18] IDPicker,[19] 

IsoformResolver[20], ProValt,[21] Combyne,[22] Fido,[23] and Scaffold [15] etc. 

PeptideProphet [24] first computes peptide identification probabilities, which are further 

used to estimate the protein identification probabilities by ProteinProphet using a statistical 

model.[18] MAYU software can be applied additionally to control the protein identification 

FDR. [25] IDPicker builds a peptide-protein bipartite graph using the principle of 

parsimony, and controls data quality using a specific peptide identification FDR.[19, 26] 

The updated IDPicker version combines multiple scores produced by search engines to 

increase the protein identification confidence.[26] IsoformResolver uses a peptide-centric 

strategy,[20] in which proteins are grouped according to both in silico digestion and 

observed PSMs.

We developed a new tool, ProteinInferencer, to calculate protein FDR for both individual 

experiments and large-scale proteomics projects that combine multiple sample fractions or 

experiments. PSMs, together with their key quality scoring parameters, XCorr and Z-score, 
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are inferred into proteins. ProteinInferencer re-evaluates the confidence for both peptide and 

protein identifications. The PSM score, peptide occurrence and spectral count determine 

peptide confidence and this information is, in turn, used to calculate protein confidence. The 

protein confidence score is calculated with a protein local FDR using the peptide confidence 

score, protein occurrence, protein sequence coverage, and protein length. With 

ProteinInferencer, we are able to identify significantly more peptides compared to 

DTASelect at a given global protein FDR control. Therefore it is a valuable tool for large-

scale proteomics.

Materials and Methods

Sample preparation

Thirty micrograms of protein extract from MCF-10 cell lysate were precipitated with 5x 

volume of cold acetone. The protein pellets were obtained by centrifuging at 14,000g for 10 

min at 4 °C, and then solubilized and reduced with 100 mM Tris-HCl/8 M urea/5 mM DTT 

pH 8.5. Cysteines were alkylated with 10 mM iodoacetamide. The solution was diluted 1:4 

with 100 mM Tris pH 8.5 and digested with 1 μg of trypsin at 37 °C overnight. Adding 

formic acid to 2% terminated the digestion. Nineteen biological replicates were analyzed.

Mass spectrometry

Mass spectrometry and data analysis were performed as previously described previously.

[27] Briefly, the protein digest was analyzed using an 11-step MudPIT.[2] In each salt step, 

peptides were eluted from the C18 microcapillary column over a 2 hr chromatographic 

gradient, and electrosprayed directly into an LTQ Velos Orbitrap mass spectrometer 

(ThermoFisher, San Jose, CA) with the application of a distal 2.5-kV spray voltage. A cycle 

of one full-scan mass spectrum (400–1800 m/z) at a resolution of 60,000 followed by 20 

data dependent CID MS/MS spectra at a 35% normalized collision energy was repeated 

continuously throughout each step of the multidimensional separation.

PSM identification and DTASelect

PSM identification was performed with the Integrated Proteomics Pipeline - IP2 (Integrated 

Proteomics Applications, Inc., San Diego, CA. http://www.integratedproteomics.com/) 

using ProLuCID [28]. The tandem mass spectra were searched against an EBI IPI human 

(version 3.87, 91 464 sequences) protein database. A target-decoy database containing the 

reversed sequences of all the proteins appended to the target database was employed in the 

database search. Cysteine carbamidomethyl was set as a stable modification. Four data sets 

of different sizes, which consist of 1, 5, 10, and 19 MudPIT runs, respectively were used in 

the analysis. Each data set, containing unfiltered PSMs, was subjected to DTASelect2 [29] 

with varied global protein FDR cut-off thresholds, ranging from 0% to 10%. The DTASelect 

controls global protein FDRs by ranking PSM scores, assembling proteins, counting target/

decoy hits. (Figure 2A) The PSMs were pre-filtered at a FDR of 1% for each MudPIT 

experiment, and the resulting PSMs were used as input in ProteinInferencer.
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Protein inference and Confidence score

Peptides identified in all the experiments are used collectively to infer the protein 

identification and calculate a confidence score for each protein group. Proteins identified 

with the same set of peptides were put into a protein group (Figure 1) in a similar manner as 

described by others.[30]

The first step of protein identification is to assemble PSMs to protein entries based on their 

amino acid sequences in the protein database. It is not unusual for a peptide sequence to be 

shared by multiple protein identifiers in a database. While there is not a standard for how to 

report protein identifications, two methods are frequently used. The first method reports a 

single representative protein rather than all possible proteins; the second method reports 

protein groups. A general rule of the protein grouping method is that proteins are placed into 

one group if all the identified peptides can be shared among proteins. ProteinInferencer uses 

the group strategy.

There are at least four possible scenarios for protein groupings as shown in Figure 1. In the 

first case, a protein entry (Protein A) is exclusively identified by unique peptides in the 

database, thus the single protein can itself be a protein group (protein group A′). Second, the 

same peptides can be mapped to multiple protein entries (Protein C and D), and these entries 

are then classified as one protein group (protein group C′). The third type of protein group 

can inferred from both unique and ambiguous peptide matches (protein group D′ and F′). 

The last protein group contains only peptides that have been simultaneously matched to 

other protein groups (protein group B′ and E′) that also possess additional unique peptide 

evidence or a higher protein confidence score.

After the first step of protein grouping, a parsimonious protein group can be obtained by 

removing those protein groups without any unique identifying peptides. For example, the 

protein group E′ contains two peptide identifications, (Figure 1) however it is not mandatory 

to include E′ to explain the existing peptides. Protein group E′ can be subsumed by other 

protein groups. Similarly, protein group B′ is a subset of protein group C′ that should be 

eliminated by protein parsimony. Notably, elimination of these protein groups affects the 

protein number, but it can still be advantageous to report these proteins because they may be 

present in the sample.

A confidence score is calculated for each of the protein groups using local FDR. Assume 

that we are given a list P of protein groups and a list F of features associated with each 

protein group in P. P is comprised of both decoy protein groups (decoy hits) and forward 

protein groups (forward hits) and our goal is to calculate a confidence score for each protein 

group in P using the features present in the list F. By default, F contains 2 features, the sum 

of peptide confidence scores and average of the peptide confidence scores for each protein 

groups. In this note, we describe a method to calculate such a score.

a. There are m protein groups in P and n features in F. Protein groups are indexed by i, 

features by j.
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b. The local FDR will ultimately be based on calculating the decoy hits ratio in the local 

neighborhood. Let K be a nonnegative integer parameter used to define the number of 

elements in the local neighborhood. For each feature j, protein group list P is sorted in 

descending order based on feature j. For protein group i and feature j, use K to define the 

local neighborhood of i w.r.t. j. let Dij
K be the number of decoy hits in the local 

neighborhood and Lij
K be the number of protein groups in the local neighborhood. Define 

the local FDR for i and j as sij = 2XDij
K / Lij

K and the confidence score for protein group i 

on feature j as cij = 1 - sij,

C. Finally the confidence score of protein group i the local FDR calculated based on the sum 

of cij over all features j as described in b.

Results and Discussions

ProteinInferencer provides solutions for protein inference, protein global FDR control/

computation, and individual protein confidence assessment. ProteinInferencer uses 

identified PSMs from a target-decoy database search as input. The PSM FDR can be 

estimated by measuring the ratio between decoy and target spectral counts. Currently, the 

PSMs must be obtained from the search engine SEQUEST [7] or ProLuCID [28], as the 

scoring features from these search engines are implemented in the subsequent calculation.

When combining individual data sets to form larger ones, the previously determined peptide 

and protein FDRs will change because each peptide can have multiple PSMs and each 

protein can be assembled by many peptides. This is because when data sets are merged, true 

and false protein matches accumulate differentially. PSMs corresponding to true positives 

tend to concentrate into the same proteins, which are usually a subset of a total protein 

database. Matches to the reverse sequences are falsely identified and accumulate among 

proteins in a whole reverse database randomly. Consequently, a forward protein match is 

usually supported by many peptide identifications and PSMs whereas a reverse protein hit 

typically has a very limited number of peptide identifications and PSMs. When protein 

inference is carried out across large data sets, true proteins will be identified by repeated 

assignment of PSMs, quickly leading to protein identification saturation (all proteins in the 

sample above the detection limit as determined by experimental set-up). Reverse hits/false 

proteins are saturated (i.e. complete reverse database) much more slowly, since each protein 

hit in the reverse database is random and inferred with few PSMs. Therefore, a well-

controlled FDR for PSMs does not ensure an acceptable FDR for proteins especially for a 

large-scale data set. [31, 32]

Protein FDR

By using the target-decoy database search strategy, the inferred protein groups, identified 

peptides, and fragment ion spectra from both target and decoy hits can be obtained, and the 

corresponding FDRs can be calculated. Of these FDRs, protein FDR is not readily available 

but of great importance. There are typically two approaches to control the protein FDR. 

First, the protein FDR can be controlled by applying a stringent score filter on PSMs (e.g. 

DTASelect) (Figure 2). [10] Protein identifications are initially based on PSMs, therefore 

PSM quality influences protein confidence. Protein level FDR is set by the stringency of the 
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PSM cutoff. Alternatively, the protein FDR can be controlled by filtering based on protein 

probabilities, which is the approach used by ProteinInferencer. [18] In this case, the proteins, 

rather than PSMs, are treated as individual identities (Figure 2). Decoy protein hits usually 

contain a limited number of PSMs and therefore will be scored lower at the protein level. As 

demonstrated previously,[33] (Figure 2) to exclude the false proteins Y and Z with 

DTASelect, extremely stringent criteria are required which may also deplete many true 

PSMs and peptides. With ProteinInferencer, the proteins Y and Z are discarded because of 

their low protein scores. As a result, the protein FDR can be controlled by ProteinInferencer 

but with more peptide evidence (sequence coverage).

Protein identification FDR is a useful estimate for overall data confidence, and the 

corresponding protein and peptide numbers represent the robustness of the method being 

employed. We compared two different protein inference approaches: DTASelect alone 

versus ProteinInferencer following PSM pre-filtering. Their ability to identify proteins/

peptides from data sets of various sizes as a function of protein FDR was investigated. The 

four data sets consisted of 1, 5, 10, or 19 shotgun experiments respectively, and each 

experiment consisted of ~11 LC-MS/MS runs (or 11, 55, 110, 209 LC/MS/MS runs, 

respectively). Notably, a peptide here is not the same as a PSM. A unique amino acid 

sequence is counted as one peptide. The same sequence identified from different charge 

states, for example +2 and +3 charge states, are counted separately.

As described previously, target protein matches get saturated more quickly than decoy hits 

because decoy hits are random matches whereas target matches map to a subset of the entire 

database. Therefore, if the same threshold is applied during PSM filtering on data sets of 

varied sizes, the resulting protein FDRs can differ significantly. For DTASelect, a PSM 

FDR of 0.01% (which is extremely stringent) could result in a protein FDR of 0.26% for a 

single MudPIT run and a protein FDR of 1% for a large data set consisting of 19 MudPIT 

runs (Figure 3). If the PSM FDR is loosened to 0.04%, the single MudPIT data set returns a 

protein FDR of 0.94%, but the large 19 MudPIT data set generates a protein FDR of 5.9%. 

For both DTASelect and ProteinInferencer, to obtain a given protein FDR, the larger data set 

requires a more stringent PSM cut-off than the small data set. For instance, to obtain a 

protein FDR of 1%, the large data set required a PSM FDR of 0.012% while the small data 

set required a PSM FDR of 0.043% (Figure 3 B). Notably, the increased stringency required 

to discriminate forward and reverse hits within data sets of increasing size was not as great 

for ProteinInferencer, indicating that it is better at controlling protein FDR. For a single 

MudPIT, ProteinInferencer and DTASelect generated comparable FDR values (blue curves 

in Figure 3). However, as more experiments are included in the data set, DTASelect required 

a much more stringent PSM cut-off. ProteinInferencer also used a higher PSM cutoff for 

larger data sets, but it was not as great as that used by DTASelect. Consequently, for a large 

data set at a given protein confidence level, many more PSMs are included in the final 

protein list when using ProteinInferencer.

The use of mass spectrometry-based proteomics allows the characterization of thousands of 

proteins in one experiment, and the global protein FDR is used to evaluate the global protein 

confidence. A protein FDR of 1% is a well-accepted standard for large-scale proteomic data. 

However, the number of identified proteins and protein FDR are two interdependent 
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conflicting factors in proteomic data. An optimal balance has to be achieved, at which the 

inclusion of false proteins is minimized and the inclusion of confident proteins is 

maximized. To determine this balance, we investigated the correlation between protein 

FDRs and their corresponding protein and peptide numbers.

The protein numbers were first plotted against protein FDRs for both DTASelect and 

ProteinInferencer (Figure 4A–D). The difference between DTASelect and ProteinInferencer 

was not significant when a small data set (1 MudPIT run) was used (Figure 4A). 

ProteinInferencer worked slightly better than DTASelect (at a protein FDR of 1%, 

ProteinInferencer returned 6280 target protein hits while DTASelect had 6068 hits). With a 

larger data set, ProteinInferencer always generated more target proteins than DTASelect at 

the same protein FDR. This difference was especially pronounced for very high confidence 

protein matches. Taking data set consisting of 10 MudPIT runs as an example, 

ProteinInferencer produced 6518 proteins at protein FDR of 0%, whereas the DTASelect 

produced 5083 proteins at protein FDR of 0.04% (Figure 4C). This trend was observed in 

larger data sets (5 or 19 MudPIT runs), where ProteinInferencer always identified more 

proteins at the same FDR (Figure 4B,D).

Peptide numbers were also investigated at different protein FDRs. In all the comparisons 

made between DTASelect and ProteinInferencer, ProteinInferencer showed significantly 

higher peptide numbers than DTASelect (Figure 4E–H). For example, in the 19-run data set, 

at a protein FDR of 1%, DTASelect identified 86,638 peptides whereas ProteinInferencer 

identified 157,221 peptides (Figure 4H).

Protein confidence

ProteinInferencer is designed in a way that new features can be easily added. However, with 

the current implementation, we use the sum and average of the peptide confidence scores for 

each protein groups to calculate confidence of this protein group. Unlike PSM-based 

filtering algorithms, ProteinInferencer first control FDR at peptide level. PSMs in all 

experiments match to the same peptide are grouped into a PeptideItem. The number of 

PSMs in each experiments are stored as spectral count for this PeptideItem. The same 

peptide hit with different charge states are considered as different PeptideItems. Different 

PTM decorations on the same peptide sequence are also considered as different 

PeptideItems. PeptideItems are sorted based on the highest ProLuCID Z score [8, 34] value 

of all the PSMs match to this PeptideItem in a descending order. A confidence score of each 

PeptideItem is calculated as the local FDR based on a window of 200 neighboring 

PeptideItems. Only PeptideItems satisfy the user specified peptide false positive rate are 

accepted (the default value is 0.05). Local and global FDRs can be used to determine the 

confidence of protein identification at different levels: local FDR assesses the confidence of 

a given individual protein, whereas global FDR is used to evaluate the overall quality of a 

population of proteins.

Protein confidence is assessed by a local false discovery rate, which is determined using a 

score combining the sum and average of peptide scores (Figure 5A). As shown in the ROC 

curves the combined score showed the greatest power of discrimination compared to either 

sum or average of Z scores. By looking at the distribution curves for forward and reverse 
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hits, the combined scores also demonstrated great ability to distinguish forward and reverse 

proteins. Based on this score, nearly 80% of the forward hits have a confidence score of 

approximately 1, while only a few reverse hits have a protein confidence score greater than 

0.5 (Figure 5B). Notably, ProteinInferencer performs the pruning of subset and subsumable 

proteins precede confidence estimation to cut down on duplicate information.

A number of factors contribute to protein confidence determination in large-scale data sets. 

We investigated the influences of protein occurrence, identified peptide number, protein 

length, and the percentage of identified tryptic peptides out of the total in silico tryptic 

peptides expected (reflecting the sequence coverage). The data set being used is the largest, 

containing 19-shotgun experiments.

Protein occurrence represents the frequency a protein is identified in multiple experiments/

replicates. Obviously, a higher occurrence number implies a higher probability of a true 

match. For proteins with only a single occurrence, there were more reverse matches 

compared to forward matches (2328 and 1745, respectively). In contrast, 99.8% of proteins 

with an occurrence number equal to or greater than 8 were forward matches (Figure 6A). 

The fraction of forward matches (orange curves in Figure 6) increases with the occurrence 

number, indicating a reverse match was not as repeatedly identified as forward hits. If a 

protein FDR of 1% was applied in protein confidence filtering, most of the false protein 

matches with low occurrence numbers could be removed.

Next, we investigated the influence of identified peptides per protein on protein 

identification confidence (Figure 6B). Similar to the protein occurrence number, more 

peptide identifications suggested a higher probability of true protein identification. The 

majority of reverse hits (2526 of 2888) were concentrated in the category where proteins are 

only identified by one peptide. The fraction of forward hits increased rapidly with the 

identified peptide number. Over 99% of proteins with more than 7 peptides were forward 

protein hits.

The correlation between the size of the protein as measured by the number of amino acids 

for identified proteins and their corresponding confidence score was also studied. The ratios 

between forward and reverse hits were mostly consistent across varied protein lengths. 

Notably, for extremely large or small proteins, there is a slightly increased chance of a 

reverse match (Figure 6C). It may be that for small proteins, both forward and reverse hits 

are identified by a limited number of peptides, therefore their scores did not discriminate 

well. For large proteins, reverse protein sequences generated a large number of in silico false 

peptide candidates, increasing the probability of false matches.

The fraction of identified tryptic peptide number versus theoretical tryptic peptide number 

was plotted in Figure 6D. This number reflected the protein sequence coverage by identified 

peptides. As expected, higher sequence coverage resulted in a higher protein confidence. As 

demonstrated, almost all the reverse hits had fractions lower than 5%.
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Conclusions

Large-scale experiments can encompass tens to hundreds of experiments when different 

conditions and replicate measurements are involved. Assessing and controlling data quality 

is particularly important for these types of experiments so confident conclusions can be 

drawn from the results and decisions about future experiments can be made. Furthermore, 

proper assignment of peptides to proteins, or protein inference, is important so as to not 

over-estimate the number of proteins identified. ProteinInferencer was developed to infer 

proteins, compare multiple experiments, and assess confidence at both global and individual 

protein levels. ProteinInferencer utilizes the scoring features from SEQUEST and ProLuCID 

after obtaining confident peptide lists from these programs and then uses all the peptides 

identified to calculate protein level confidence. ProteinInferencer allows researchers to 

obtain more comprehensive protein and peptide coverage. The well-controlled protein FDR 

becomes more useful when pursuing large-scale data analysis.
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Biological Significance

The manuscript describes an approach to assess the analysis of large-scale proteomic 

projects by creating a consistent protein FDR across all experiments. A confidence score 

is calculated for each of identified proteins. ProteinInferencer provides a proper way to 

compare protein and peptides identification among large number of mass spectrometry 

experiments.
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Figure 1. 
Protein inference from peptide identification. Several possible protein group types are 

shown. Protein entries can be identified by unique or shared peptides. A protein 

identification can include unique peptides only, shared peptides only or both unique and 

shared peptides.
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Figure 2. 
Comparison of DTASelect and ProteinInferencer. (A) Work flow showing the data 

processing pipelines for DTASelect and ProteinInferencer. DTASelect controls global 

protein FDR through PSM scores, whereas ProteinInferencer controls global protein FDR 

through individual protein confidence. (B) Filtering diagram contrasting DTASelect and 

ProteinInferencer. DTASelect filters at the PSM level, whereas ProteinInferencer filters at 

the protein level.
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Figure 3. 
Correlation between protein FDR and PSM FDR. The influence of data set size on protein 

FDR is much larger using (A) the DTASelect method compared to (B) the ProteinInferencer 

method at the same PSM FDR.
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Figure 4. 
Identified protein and peptide numbers from DTASelect and ProteinInferencer. (A–D) The 

correlation between protein FDRs and the corresponding protein number is shown. 

ProteinInferencer consistently generated more protein identifications compared to 

DTASelect at the same protein FDR. (E–H) The correlation between protein FDRs and the 

corresponding peptide number is shown. Using ProteinInferencer resulted in many more 

peptide identifications compared to DTASelect at the same protein FDR.
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Figure 5. 
Distribution of peptide and protein confidence. (A) Receiver operating characteristic (ROC) 

curves testing three scores (sum, average or combined) are graphed. The combined score 

showed the best discrimination power. (B) The distributions of protein confidence scores of 

forward and reverse proteins are shown. The proteins were divided into bins according to 

their protein scores. The majority of forward protein hits have a confidence score of 

approximately 1, while the majority of reverse hits have a protein confidence score less than 

0.4.
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Figure 6. 
Protein confidence determined by protein occurrence (A), identified peptide number (B), 

protein length (amino acid number) (C), and sequence coverage (% identified tryptic 

peptides) (D). Protein occurrence, identified peptide number, and sequence coverage 

positively contribute to the protein confidence score, whereas the protein length has less 

influence.
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