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S Y S T E M S  B I O L O G Y

Domain adaptation in small-scale and heterogeneous 
biological datasets
Seyedmehdi Orouji1, Martin C. Liu2,3, Tal Korem3,4,5*†, Megan A. K. Peters1,5,6*†

Machine-learning models are key to modern biology, yet models trained on one dataset are often not generaliz-
able to other datasets from different cohorts or laboratories due to both technical and biological differences. Do-
main adaptation, a type of transfer learning, alleviates this problem by aligning different datasets so that models 
can be applied across them. However, most state-of-the-art domain adaptation methods were designed for large-
scale data such as images, whereas biological datasets are smaller and have more features, and these are also 
complex and heterogeneous. This Review discusses domain adaptation methods in the context of such biological 
data to inform biologists and guide future domain adaptation research. We describe the benefits and challenges 
of domain adaptation in biological research and critically explore some of its objectives, strengths, and weak-
nesses. We argue for the incorporation of domain adaptation techniques to the computational biologist’s toolkit, 
with further development of customized approaches.

INTRODUCTION
In the computational biological sciences, we are interested in learn-
ing informative “truths” about biological systems through machine 
learning or similar quantitative modeling techniques (1). Contrary 
to “irrelevant” or “purely statistical” correlations, which find statisti-
cal idiosyncracies in data that do not reflect scientifically meaning-
ful underlying patterns (e.g., when detecting COVID-19 from chest 
radiographs, a model may rely on confounding factors such as later-
ality markers or patient positioning, thus failing to generalize to new 
patients from other hospitals (2) and leading to misinterpretation of 
results within a single dataset), we expect such “truths” to generalize 
beyond a specific dataset or population, indicating that they offer a 
grounded biological meaning. However, collecting (and sometimes 
labeling) biological datasets is difficult, expensive, and time con-
suming, leading to many small but related datasets that are collected 
from different sources and under different environmental and ex-
perimental conditions (e.g., different laboratories, equipment, set-
tings, humidity, etc.). For example, in the widely used Autism Brain 
Imaging Dataset (ABIDE), functional magnetic resonance imaging 
(fMRI) data were collected at multiple sites, which hindered the 
ability to directly aggregate data (3). Beyond creating challenges in 
data curation and metadata standards (4, 5), this variability in the 
sources of small biological datasets creates different domains of data 
that have different statistical distributions.

While this variety is a strength that can facilitate discovery of 
generalizable truths, it also presents a major challenge to computa-
tional biology: Applying knowledge gained from one dataset (a 
source) to another (a target) will fail if the two datasets have highly 
divergent distributions—a phenomenon known as domain shift or 

data bias (6, 7). In short, we cannot blindly apply a model (of any 
kind) trained on a source dataset collected under one set of condi-
tions to new target data and expect it to perform effectively. In an 
age of open datasets and keen interest in adhering to FAIR princi-
ples (findability, accessibility, interoperability, and reuse of digital 
assets) to accelerate scientific discovery, it is increasingly urgent that 
we acknowledge the strengths and challenges of combining datasets.

To best extract generalizable insights while making use of all col-
lected data from varying sources—especially in biological disciplines 
where data are expensive—and to apply these insights to newly col-
lected data, we must find how to best leverage the use of all existing 
and continuously growing small biological datasets (8). Here, com-
putational biologists can borrow insights from machine learning to 
leverage transfer learning, which aims to use knowledge gained from 
learning a task on one dataset to perform a similar task on a different 
but related dataset, thereby transferring knowledge across datasets 
(9–13). More precisely, domain adaptation (DA), a subfield of trans-
fer learning, has been developed to address this issue of different sta-
tistical distributions by aligning the distributions of the source and 
target domains (Fig. 1). Of note, while there are some similarities to 
“batch correction” often applied in high-throughput molecular mea-
surements (14, 15), the objective is different: DA aims to learn gener-
alizable models across domains, while batch correction is primarily 
aimed at removing technical variation.

DA is more than just “lining up the features” and training a mod-
el on both datasets; not only is this often impossible to do (espe-
cially if features are unlabeled), but statistical differences between 
the domains can often guarantee that such a brute force aggregation 
is doomed to failure. Instead, through DA, a model is forced to learn 
domain invariant features, i.e., features that are common across all 
domains, such that the learned model can be generalized and thus 
perform relatively well on a separate target domain. Another benefit 
of DA is that the integration of multiple datasets effectively increases 
the sample size, allowing for improved inference of statistical sig-
nals. This allows better use of available data and resources, reducing 
the need to collect and annotate expensive data (16–18). Thus, in 
sum, it seems clear that applying DA to biological data can poten-
tially mitigate small sample sizes within individually collected data-
sets, and through transferring knowledge to other domains can 
ideally find generalizable truths (Table 1).
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However, DA is not a panacea, and computational biologists should 
be aware of the particular challenges of using such methods to 
analyze biological datasets. Compared to datasets typically used to 
train machine learning models (19–22), many “biological-scale” 
datasets are smaller in sample size, have many more features than 
samples, and have a complicated feature space (e.g., different numbers 

of features in each dataset, missing values, heterogeneous features, 
unique feature importance distributions, etc.). Therefore, while devel-
oping effective DA techniques that can work well with these small 
“biological-scale” datasets to find general truths about biological sys-
tems is highly desirable, it presents a specific set of challenges to 
machine learning research.

Fig. 1. Diagrammatic overview of the machine learning pipeline and modifications needed to engage in transfer learning or domain adaptation (DA). (A) In 
traditional machine learning, each domain has its own model, trained on domain-specific features. This means that the model can make predictions about data from that 
domain, but transferring the model to apply it to other domains is typically difficult or even impossible (indicated by red Xs). (B) In transfer learning or DA, data from one 
or more source domains are aligned (denoted by dashed outlines) with those in the target domain to find common feature spaces with similar statistical distributions such 
that a single model can be trained on aggregate source domain data and evaluated on target domain. This process can produce generalizable knowledge that is not 
domain specific. Of note, in some cases, target data will only be used after the model has been trained and not in the alignment stage (152).

Table 1. Specific benefits of using DA with biological datasets. 

Problem DA benefit Example

﻿Mitigate poor sample- to- feature ratios﻿

Complex biological systems often need to be 
modeled with many free parameters, while training 

samples remain quite few. 

Integrate individual datasets to increase the num-
ber of training samples, providing a larger and 

more diverse dataset and preventing overfitting.

Combining fMRI datasets across individuals or 
scanning sites (139).

﻿Transfer knowledge﻿

 Some domains are poor in data due to either small 
sample size or missing labels. 

Transfer knowledge from existing rich datasets to 
related, smaller datasets.

Transferring insights gained from MRI in adults to 
newborns (155); annotations from preclinical cell 
lines to more data-scarce clinical settings (136).

﻿Find generalizable patterns﻿

In the age of big data sharing through FAIR 
principles, biological datasets are often composed 

of many different small cohorts collected from 
different laboratories and under different 

environmental and experimental conditions 
(  19 , 53 ). These many smaller datasets drive models 

to finding patterns that turn out to be statistical 
anomalies or idiosyncracies unique to each 

dataset*. 

Combining as much data as possible while min-
imizing statistical differences between domains 

can minimize the risk of models finding statistical 
idiosyncrasies rather than patterns shared  

across domains.

Finding cohort-independent generalities across 
multiple studies of the vaginal microbiome in 

preterm birth (133, 134) or the gut microbiome in 
colorectal cancer (156, 157) despite the variability 

in microbiome profiling (154).

*The statistical anomalies and idiosyncracies noted here are also related to two other related concepts: batch effects (153), when nonbiological artifacts change 
the distribution of the data for a subset of an experiment (e.g., plates for DNA extraction in microbiome cohorts (154); days or machines for MRI data collection), 
and batch confounding, when batches are associated with the outcome of interest.
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In this Review, we aim to critically discuss the benefits and chal-
lenges of applying current DA methodologies and frameworks to 
such biological datasets. To this end, we use the token examples of 
fMRI and microbiome datasets, two seemingly different disciplines 
in biology, to show the common considerations critical to developing 
effective DA techniques in such data. Our goal is to lay out the key 
components that require consideration in selecting an effective DA 
technique and highlight important areas of future methodological 
research in DA methods that can be maximally effective in biological 
datasets—especially as data sharing and metadata curation continues 
to mature. Our hope is that this discussion and synthesis will be of 
value both to biologists seeking to apply DA to their own data and to 
machine learning researchers driving state-of-the-art advances in 
DA methodology.

CHALLENGES OF DOMAIN ADAPTATION IN BIO-SCALE DATA 
AND A PATH FORWARD
As briefly introduced above, successful application of DA to small 
datasets with complex features comes with substantial challenges—
many of which stem from the very reasons we would want to use it 
in the first place. We next explore several of the most pressing limi-
tations in greater detail, both to help researchers learn to evaluate 
DA approaches for appropriateness in their own research and to 
highlight deficiencies in current DA applications to biological ques-
tions, which may be alleviated through improved collaboration be-
tween DA researchers and computational biologists. We introduce 
and expand on several challenges below and summarize the chal-
lenges covered here in Table 2.

Number of samples and features
Most DA methods have been designed in the fields of computer 
vision, text mining, or language processing (23–26) with reference 
to—and evaluation on—large-scale text and image data, where 
there can be tens of thousands (or even millions) of samples avail-
able for training [e.g., MNIST, CIFAR10; (27–29)]. In contrast, the 
number of samples in biological datasets is often small, but they 
simultaneously have many features, a problem known as the curse 
of dimensionality (30). For instance, in a typical fMRI or microbi-
ome dataset, we might only have a few dozens to hundreds of sam-
ples, while the number of features could exceed thousands (31–33). 
This imbalance between the number of samples and features can 
potentially lead to overfitting problems (34, 35) or cases where the 
model performs well on training data but fails to make accurate 
predictions or conclusions from any other data; this, of course, hin-
ders the effectiveness of DA techniques on biological datasets (30). 
There do exist several datasets typically used to benchmark DA ap-
proaches that may be somewhat closer in size to biological-scale 
data, including Office31 (36), which contains image data of objects 
collected from three source domains with different resolutions, for 
a total of 4110 images from 31 object categories (132 images per 
category). However, while one might hope that DA methods that 
have shown success on Office31 (37–39) could be useful for bio-
logical data with similar sample size per category, it must be acknowl-
edged that many biological datasets have very different properties 
than imaging data (40–43), and are even smaller, with only several 
hundred training samples in total. There is a need for DA algorithm 
development to specifically target success in the face of fewer 
training samples.

Differences in feature complexity
Simply checking that DA approaches can perform adequately on 
small datasets is unfortunately unlikely to be enough. Another bar-
rier to applying DA approaches to biological data is that features in 
biological domains are inherently much more complex than those in 
image data. For example, in many machine learning datasets such as 
MNIST or Office-31, image data are essentially pixel luminance val-
ues in the RGB and alpha channels that can be relatively simple to 
aggregate with other source data, for example by resizing the image 
(6, 44–47). In the case of biological datasets, however, the inherent 
complexity of features can substantially hinder our ability to aggre-
gate different sources of data. For example, biological datasets often 
contain missing values (48–51) or have different numbers of fea-
tures with unknown mapping between domains (52) (i.e., which 
features in a source are “the same” as which features in a target do-
main). They can also exhibit nonlinear relationships or interactions 
between features (51,  53–55), and unique data preprocessing re-
quirements for each source can substantially increase the complex-
ity of developing DA techniques for biological datasets. In other 
words, in addition to feature-to-sample ratio and number of catego-
ries, we need to take into account the complexity and heterogeneity 
of biological domains before using DA techniques on biological da-
tasets. This increased complexity stems from several sources, which 
we next discuss in more detail.
Missing values
Biological samples often contain many missing feature values. For 
example, microbiome data typically only consists of only a few 
taxa that are shared by most samples and even less so across co-
horts. Many taxa are rare, a phenomenon known as zero infla-
tion in statistics (56). In human neuroimaging, positron emission 
tomography or MRI scans combined with patients’ genetic infor-
mation can help with early diagnosis of Alzheimer’s disease. How-
ever, the very common problem of missing values (i.e., not every 
subject has completed multimodality data) can impede the ability 
of these multimodal models to make reliable predictions (57–59). 
Missing data are less problematic in many traditional datasets used 
to train DA approaches, meaning that these approaches may not 
deal with missing data well; to be successful with biological data, DA 
algorithms need to adequately handle both small data and miss-
ing values.
Heterogeneity of features
Biological domains also often have different numbers of features, 
and the features also often do not lie in the same rank order across 
domains. For example, fMRI data from a given brain region will 
have different numbers of voxels from one human subject to the 
next, and the information represented, for example, in voxel 1 in 
person A is unlikely to functionally align with the information en-
coded by voxel 1 in person B. While functional alignment approach-
es have been developed (52, 60), they do not explicitly perform DA 
operations. In microbiome research, it can be unclear whether par-
ticular taxa are the same across datasets, especially because, some-
times, the measurement techniques differ (e.g., taxa are characterized 
using different regions of a marker gene such that the same taxa 
might be represented by different features in different datasets). These 
examples are in stark contrast to most image-based DA approaches, 
which can exploit physical proximity of features (pixels) through 
spatial convolution or learn feature importance maps based on spa-
tial features alone (e.g., the center of an image may often be more 
informative than the edges).
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Table 2. Challenges of DA that are specific to biological datasets. 

Challenge Description

 Poor sample- to- feature ratios

State-of-the-art DA approaches often require tens of thousands 
(or even millions) of samples to train [e.g. (27–29)], but biological 

datasets have a few dozens or hundreds of samples despite 
having thousands of features (31–33). DA models should be 
evaluated on biological-scale datasets [e.g., Office31 (36)].

Complex features

 Missing values

Traditional DA models are not as often evaluated on data with 
many missing feature values, which is common in biological 

data [e.g., rare taxa in microbiome research (56–59)]. DA models 
should be evaluated in the context of missing data.

 Heterogeneous features

Biological data often have different features in different 
domains, only some of which are shared across domains (61). 

Traditional DA approaches often assume that features are shared 
and alignable (e.g., pixels with Cartesian coordinates), and in 

the face of poor labeling (62) or unavailable information about 
which features are shared (12) may simply deal with nonshared 

and non-alignable features by removing them from the DA 
model’s inputs. DA for biology should focus on targeting feature 

alignment in the context of some shared and some unique 
features across domains.

 Feature importance distributions

In traditional machine learning benchmark datasets, many 
features can be similarly important to the performance of a 

model (40–43), but in biological datasets, sometimes only a few 
features are very important. Thus, feature importance distribu-

tions are quite different in biological data than in DA benchmark 
datasets. DA models should be evaluated on datasets with 

varying feature importance distributions, ideally matching those 
found in biological data.

 Data collection and preprocessing contributions

Biological data must be extensively preprocessed after primary 
data collection. Choices about which preprocessing steps to 
take, and which software packages to use, can meaningfully 

alter statistical distributions of feature behavior. Machine learn-
ing models thus can easily fall prey to preprocessing-induced 

statistical idiosyncracies (75), even when standardization efforts 
are made (76). DA approaches should be evaluated on their 

robustness to preprocessing choices for biological data.

 Feature interpretability

Biological dataset features can be difficult to interpret: They are 
not simply pixel luminances at specific image coordinates, for 

example. Especially in the case of latent features found through 
DA (83–86) or simply dimensionality reduction techniques, care 
should be taken to integrate DA approaches with emphasis on 

interpretability to maximize their utility for biology.

 Theoretical limitations

DA can only be successful if the source and target domains 
are adaptable—i.e., theoretically joinable (89–92). Adaptability 
(89, 91) is highly understudied in biology, and failures of adapt-
ability can lead to negative transfer, or cases where DA causes 

more harm than benefit (89, 90, 93). Methods development and 
empirical study are crucial to understanding theoretical limits on 

adaptability in biological domains.
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In addition, domains may have some overlapping features but 
also some nonshared (distinct) features—i.e., those that are specific 
to one domain but not the other (61). Current DA techniques may 
not be very effective on such datasets since domains may lack sup-
plementary information such as labels (62) or information about 
matching features or samples between datasets (12). This limitation 
could force researchers to remove domain-specific features and 
hence lose the capacity of DA models to benefit from these unique 
features in the learning process. Ideally, DA for biology could benefit 
from a specific focus on both feature alignment (ideally unlabeled) 
and principled ways to deal with shared versus nonshared features.
Distribution of feature importance
In biological datasets, feature importance distributions can be more 
highly skewed than in many standard benchmarks used to test DA 
approaches. That is, in biology, a few features can be very important 
for the ultimate performance of a model; in contrast, in typical 
benchmark datasets, many features can have similar importance 
(40–43). This difference in skewness of feature importance distribu-
tions can lead to extreme challenges for many DA approaches such 
that DA models that succeed even on small “typical” benchmark 
datasets may fail in biological applications.

Contributions of data collection and 
preprocessing procedures
Biological datasets often require extensive preprocessing after the 
data collection stage, which can be inconsistent across datasets or 
laboratories. Preprocessing can refer to either specific steps that may 
be used or not to clean, align, or otherwise modify raw data, or to 
the specific software packages used to accomplish logically similar 
goals [e.g., DADA2 or deblur for 16S ribosomal RNA (rRNA) am-
plicon data (63, 64), fMRIPrep (65) versus AFNI (66, 67) or FSL 
(68–70) for fMRI images (71)]. These choices can be made because 
of individual laboratories’ conventions or because of development of 
new software or algorithm versions that challenge reproducibility 
even within a given dataset. For example, in MRI data, it has been 
clearly demonstrated that software selection at multiple stages of 
processing, atlas selection (e.g., Desikan-Killiany-Tourville versus 
Destrieux versus Glasser), and idiosyncratic quality control proce-
dural choices can strongly affect group- and individual-based infer-
ences (72); in extreme cases, some later preprocessing stages can 
reintroduce nuisance covariates that were originally filtered out. Hence, 
choices regarding the stage of processing at which to perform DA 
could strongly affect the success of DA approaches (73). Such effects 
can also be exacerbated when full pipeline details are not included 
in publications to aid in reproducibility or when specific preprocess-
ing steps are applied without appropriate attention to how they may 
alter statistical features specific to biological data [see (74) for a dis-
cussion relevant to microbiome data].

As a result, machine learning methods used in biology are typically 
limited to being highly context- and preprocessing-specific, requiring 
careful design and tailoring to test the desired hypothesis appropri-
ately (75). This often occurs even despite targeted efforts in bridging 
this gap by the means of setting up standards in generating and pre-
processing the data (76), since some laboratory- and individual-
specific idiosyncrasies are wholly unavoidable. For example, in fMRI 
data correction for subject’s head movement, using different scanning 
sequences or scanners can introduce data shifts that make applying 
DA techniques even more difficult (3,  77–81). Even preprocessing 
methods meant specifically to correct for batch effects in microbiome 

research can introduce pipeline-specific factors (82), which may be 
easily overlooked. Such preprocessing idiosyncracies can thus exacer-
bate or interact with other batch effects, including introducing or alter-
ing interdependencies among features (53).

Interpretability of features and feature spaces
Interpretability is an important aspect of biological research, in con-
trast to at least some other machine learning applications. However, 
alignment steps in DA, which often require finding a latent represen-
tation of data by projecting the domains into a shared feature space 
(83–85), are frequently carried out by machine learning and deep 
learning methods. This means that DA in biological data inherits the 
same problem that plagues machine learning more broadly: failures 
in interpretability due to the black-box nature of these machine 
learning and deep learning methods. The shared feature space is par-
ticularly challenging to interpret (86) because it is defined as a latent 
space that bridges two or more domains rather than the latent space 
defined by one domain alone. Therefore, DA research can and should 
aim particularly at understanding how input features are related to 
the common feature space when using these methods (87, 88).

Theoretical limitations of DA
It is also important that we discuss a critical theoretical limitation of 
DA, especially as it might affect biological data. The primary driver of 
DA’s potential success is the adaptability between the source and tar-
get domains (89, 90)—essentially, the theoretically maximal ability of 
an ideal model to jointly model them (91, 92). Failure of adaptability 
is thus a potentially fatal concern. While considering that additional 
source domains provide the benefits of a larger and more diverse sam-
ple set (or additional labels), these domains might have inherently 
different distributions of features or different joint distribution with 
the labels, which could mean that applying DA might ultimately bring 
more cost than benefit (90). In these worst-case scenarios, applying 
DA can result in what is known as negative transfer, which is when 
the application of knowledge from a source domain negatively affects 
the performance of a model in a target domain (89, 93). For instance, 
Wang and colleagues (93) applied a domain-adversarial neural net-
work (94) to transfer knowledge from product images as source do-
main to real-world images as target domain but found that the models’ 
accuracy on the target domain decreased by 10% because of diver-
gence in lighting, angles, and photo backgrounds between domains. 
Crucially, the potential for negative transfer can be amplified when 
working with biological data due to its already-heterogeneous nature 
and the smaller sample size of each dataset, and due to unknown 
adaptability between biological domains. Therefore, it is imperative 
that the adaptability of the particular biological datasets in question 
be explicitly quantified or estimated before applying DA methods. 
Unfortunately, while there exist a few methods to quantify adaptabil-
ity between domains (89, 91), analysis in the context of different bio-
logical subfields is exceedingly rare. The development of adaptability 
analysis methods thus may be a fruitful and critical area of future re-
search into DA application to biological datasets.

CONSIDERATIONS FOR SELECTING AND APPLYING 
DA APPROACHES
Despite the challenges noted above, even in their current state, DA 
approaches can still provide benefit in biological data at this critical 
expansion of data sharing and open science practices in biology. 
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However, there are a great many methods to choose from. How 
should a scientist select the best DA approaches for their own data-
sets or scientific questions? In this section, we outline specific con-
siderations for biologists in selecting and applying DA approaches 
in their own research.

We begin this section by presenting a formal definition of domain 
and DA. We then present a taxonomy that can be useful in gaining a 
better understanding of what to search for in the literature. In this Re-
view, we focus on the primary subcategory of DA that addresses data 
bias or covariate shift; this DA subcategory tries to align shifts in the 
feature spaces between domains (or the change in the marginal distri-
bution of data samples across domains). Other specialized subcatego-
ries of domain shift include label shift (95), which indicates that 
different domains contain different number of labels for each class, 
and concept shift (96), in which the data distribution remains the same 
but the conditional distribution changes [i.e., Ps

(

y ∣X
)

 ≠ Pt
(

y ∣X
)

]. In-
terested readers should refer to these surveys (97, 98) for a compre-
hensive overview of the different types of shifts in the DA field.

What is a domain?
A domain can be defined as D = {χ, P(X)}, where χ is a feature 
space, X = {x1, x2,… , x

n
} is an instance set with xi denoting a 

given feature, n denotes the number of features or dimensions in the 
data (e.g., in fMRI data voxel activities or taxa in microbiome data), 
and P(X) denotes the marginal probability distribution of all sam-
ples in that dataset. This formal definition is typically used in discus-
sions of DA across a wide variety of disciplines (99, 100).

The terminology of DA
For a specific domain, we define the task (e.g., predicting what im-
age a subject is looking at from neuroimaging data or predicting a 
disease state from microbiome composition) as T = {y, f ( ⋅ )}, where 
y denotes the labels to be predicted and f ( ⋅ ) denotes a decision 
function [i.e., the posterior probability distribution of P

(

y ∣X
)

 of the 

joint distribution P
(

X, y
)

] that needs to be learned to map input 
features to the corresponding labels. Given these definitions, DA is 
faced with the following problem, in which the distributions or rela-
tive alignment of features across domains are different but the task 
remains approximately the same. Thus, a DA problem with covariate 
shift can be formally defined as follows

where s denotes the source domain, t  denotes the target domain, k is 
the number of source domains, P(X) is the marginal distribution of a 
specific instance set in a given domain, and T is the task performed in 
each domain. Here, the goal of DA is to improve the performance of 
target decision function f ( ⋅ )t in target domain Dt by leveraging the 
information from source domain Ds and decision function f ( ⋅ )s 
(which is learned on the source domain after the source and target 
domains are aligned). In other words, DA intends to adapt the 
model(s) trained from a source (or sources) to a different, but related, 
target dataset. It does this by aligning the distributions of features and 
samples belonging to different domains so that the models emphasize 
learning domain invariant features that are not dependent on a spe-
cific dataset (Fig. 2). The methods by which DA accomplishes this 
alignment differ depending on algorithm specifics; interested readers 
can refer to the Supplementary Materials for details, in which we cata-
log a number of different algorithms and their various applications.

A taxonomy of DA
In general, when undertaking a DA analysis, we should consider 
three main factors:

1) The data used to train a model may be collected from multiple 
sources or just from a single source.

P
(

Xs1

)

≠P
(

Xs2

)

≠…≠P
(

Xsk

)

≠P
(

Xt

)

Ts1
≈ Ts2

≈…≈ Tsk
≈ Tt

Source domain 1 Source domain 2 Target domain

After alignmentBefore alignment

Fig. 2. A cartoon representation of source and target domains before and after alignment. In this cartoon, features vary in their values along two dimensions, and 
each domain’s features take on a different mean and covariance. Unless the domains are aligned, these differences could both obscure other meaningful variation in the 
data that are shared across domains and prevent models trained on one domain from generalizing to another.
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2) Depending on the availability of labels in the target domain, we 
might choose supervised, semi-supervised, or unsupervised models.

3) The feature spaces in the source(s) and target domains can be 
homogenous, meaning that they have the same dimensionality and 
“meaning,” e.g., feature A in source 1 represents the same “type” of in-
formation as feature A in source 2, or heterogenous, meaning that the 
feature spaces may differ in terms of dimensionality and/or meaning.

In the following, we discuss these three factors in more detail. 
Table 3 also shows a summary of these categories accompanied by 
mathematical annotations.
Single versus multisource
In selecting a DA method, one question you will want to ask is how 
many domains are present. As mentioned above, DA techniques can 
be divided into two categories of “single source” and “multisource” 
(101). In single-source DA, the source domain is usually labeled, 
while the target domain belongs to another domain that has a differ-
ent distribution (13, 85). Single-source DA is simpler than multi-
source DA since there are only two distributions of data—source 
and target. Therefore, single-source DA is a good technique when 
there is enough data available in both the source and target domains 
to effectively train a model that can perform well on the target do-
main (38, 102–104).

However, in modern real-world data sharing initiatives, most bio-
logical data come from many sources (105, 106), and using these data 
to their full extent can facilitate novel insights. Therefore it is advanta-
geous to develop models that leverage all available sources. This 
problem can be addressed through multisource DA, which aims to 
combine multiple sources of labeled data to make predictions about a 
similar task on a target dataset (101, 105, 107, 108). A naive way 
to solve this problem is to combine multiple sources into one big 
source domain and then approach the problem as a single-source DA 
(101, 109). However, these methods can show very limited improve-
ment in performance—and sometimes even worse performance—in 
comparison to using only one source (110), specifically stemming 
from challenges of aligning the sources to begin with. Another way to 
tackle this problem could be to train a model on each source indepen-
dently, apply each trained model to the target domain, and then vote 
for the “correct” label in the target domain based on the prediction 
across sources (111). One could also attempt to first find domain-
invariant features among all source and target domains (112) or use a 
two-stage alignment technique that first tries to find domain-
invariant feature spaces for each source-target pairing and then align 
model outputs across these spaces (110). In all cases, though, multi-
source DA is more challenging than single-source DA—a problem 

Table 3. Difference among traditional machine learning, transfer learning, and various kinds of DA. ML, machine learning; DA, domain adaptation. χ 
represents feature space, and P(X ) is the marginal distribution of instance set X , T  denotes the performed task, and f ( ⋅ ) is the decision function to map each 
sample to the corresponding label. s denotes the source domain, t  denotes the target domain, and k is the number of source domains.

Categories | definitions Domains, D = {𝛘,P(X)} and tasks, T = {Y , f ( ⋅ )} Verbal description

 Traditional ML versus transfer 
learning

Traditional ML Ds = Dt and Ts = Tt When the source (i.e., training set) 
and target (i.e., test set) have the 
same distribution and the task is 

exactly the same.

Transfer learning (TL) Ds ≠ Dt or Ts ≠ Tt or both When the source and target domains 
have different distributions or the 

performed task on source and target 
are different, or both.

 Single-  versus  
multisource DA

Single-source DA P
(

Xs

)

≠ P
(

Xt

)

 and Ts ≈ Tt When there is only one source do-
main and the marginal distribution 

of the feature space between source 
and target domain is different. The 

task in the target domain is similar to 
that in the source domain.

Multisource DA P
(

Xs1

)

≠ P
(

Xs2

)

≠ … ≠ P
(

Xsk

)

≠ P
(

Xt

)

, and 

Ts1
≈ Ts2

≈ … ≈ Tsk
≈ Tt

When there are multiple sources 
available that can have different 

distributions, and when these distri-
butions differ from that of the target 

domain. The task is similar across  
all domains.

 Supervised, semi- , or 
unsupervised

Supervised P
(

Xs

)

≠ P
(

Xt

)

, with all target labels When source and target domains are 
both labeled.

Semi-supervised P
(

Xs

)

≠ P
(

Xt

)

, with some target labels When source is labeled but target is 
partially labeled.

Unsupervised P
(

Xs

)

≠ P
(

Xt

)

, with no target labels When source is labeled but target is 
not labeled.

Homogeneous versus hetero-
geneous

Homogeneous DA P
(

Xs

)

≠ P
(

Xt

)

 and χs = χt and Ts ≈ Tt When the feature spaces have the 
same dimensionality and the  

same meaning.

Heterogeneous DA P
(

Xs

)

≠ P
(

Xt

)

 and χs ≠ χt and Ts ≈ Tt When the feature spaces have  
different dimensionality or  

different meanings.
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made worse by the particular characteristics of biological data, as dis-
cussed above.
Supervised versus semi-supervised versus unsupervised
It is also important to assess what kinds of labels are available for 
your data, across all the domains you need to align; this will dictate 
whether you should select a supervised, semi-supervised, or unsu-
pervised DA method. These labels have been applied in varying 
ways (13,  101,  113–115). Here, we have chosen a categorization 
based strictly on the usage of target labels: In unsupervised DA, no 
label is available in the target domain (38, 85, 116, 117); in semi-
supervised DA (118–120), some labels are available to use; and in 
supervised DA, labels in the target domain are available for most 
samples (97). Although most DA techniques in existing literature 
focus on unsupervised DA (since it is often used for the purpose of 
annotating unlabeled data in the target domain), in the case of bio-
logical data, any of the supervised, semi-supervised, or unsuper-
vised scenarios is possible. This is because the primary goal of DA in 
biological settings is to uncover insights about biological systems 
that generalize across domains. Thus, even when labeled data are 
available in the target domain, one can still benefit from using 
DA techniques on different datasets to find generalizable patterns 
across domains.
Homogeneous versus heterogeneous
Last, it is important to understand how the features are related 
across your different domains. DA can be divided into two catego-
ries based on the relationships between these features: homoge-
neous or heterogeneous (97,  99,  101). In homogeneous DA, the 
source and target domains have the same feature space, χs= χt, but 
the data distributions of instances of these feature spaces are differ-
ent, P

(

Xs

)

≠ P
(

Xt

)

. That is, feature 1 in domain 1 represents the 
same meaning as feature 1 in domain 2—for example, they both rep-
resent a specific voxel at a specific coordinate in the brain or repre-
sent the same microbe. (Note that χs= χt means that the feature 
space in both domains is homogenous, but if Xs= Xt, then, it means 
that Xs and Xt are identical datasets such that there is no difference 
between the source and target datasets at all.) In heterogeneous DA, 
conversely, the feature space is related but different between the do-
mains. Many DA techniques that have been developed so far tend to 
focus on homogeneous DA (84, 121–129). For instance, the source 
data could be the fMRI data obtained from a subject with one scan-
ner and the target domain is the fMRI data obtained from the same 
subject with the same protocol but a different scanner. Alternatively, 
different domains could contain gut metagenomic sequencing data 
from different studies aligned against the same reference database. 
Addressing the domain shift in a homogeneous DA problem is rela-
tively simpler since it is possible to perform the feature alignment 
directly on the original instances of the domains without the need to 
project them into a common feature space.

Unfortunately, however, most biological datasets are heteroge-
neous in nature (51, 53) since these data are collected in different 
laboratories, under different environmental and experimental con-
ditions, and sometimes even for answering different but related 
questions. In other words, neither the feature spaces nor the mar-
ginal distributions are the same [i.e., χs ≠ χt,] P

(

Xs

)

≠ P
(

Xt

)

]. As a 
result, biological datasets very often have different feature dimen-
sionalities, and, sometimes, these features even have different la-
bels or come from different modalities of data collection (e.g., fMRI 
versus another neuroimaging modality like electroencephalogra-
phy). For instance, the fMRI data from the brains of two individuals 

have different numbers of voxels (features), which also are not 
meaningfully aligned across individuals with respect to their func-
tional properties (e.g., voxel 1 in person A is unlikely to encode the 
same information as voxel 1 in person B)—even when the scanner, 
protocol, and performed task are exactly the same.

Case studies and practical examples
Given the nature of most biological datasets, which often contain 
limited samples and originate from many different sources, the most 
common DA setting in this field is multisource heterogenous DA set-
tings. For instance, aggregating fMRI data from multiple subjects or 
even multiple sites (130–132) can be considered a multisource het-
erogeneous DA. It is multisource because the data are coming from 
multiple subjects or multiple sites with different MRI scanners, and it 
is heterogeneous because the number of voxels (i.e., features) from 
each subject and the information they represent is different. (Note 
that the number of voxels can be equated through spatial normaliza-
tion to a standardized template, but this does not address that each 
voxel will still represent different information across individuals.). In 
the microbiome field, integration of data from multiple microbiome 
datasets in order to predict a phenotype on a held-out study (133–135) 
is once again multisource and heterogeneous, as data are often ampli-
cons of different regions of the 16S rRNA gene. To illustrate the util-
ity of existing DA approaches and explore their categorization with 
the taxonomy discussed above, here, we select several methods to 
discuss in slightly more detail (summarized in Table 4).

One DA method, the PRECISE method (136), has been used 
to predict patients’ drug response based on available preclinical 
datasets such as cell lines and patient-driven xenografts (PDXs). To 
achieve this, the authors first extracted factors from cell lines, PDXs, 
and human tumors using principal component analysis (PCA). 
Then, they aligned these subspaces from human tumor data with 
preclinical data using geometric transformations and extracted com-
mon features associated with biological processes followed by train-
ing a regression model using consensus genes and validated with 
known biomarker-drug associations to accurately predict drug re-
sponse in patients. In this study, DA was homogenous, as the features 
(genes) in the source and target domains were the same; multisource, 
as various source domains were used (i.e., cell lines), and supervised, 
as the labels of all samples were used.

Another method, Adversarial Inductive Transfer Learning (AITL) 
(137), similarly aims to use largely available source domains such as 
cell lines and clinical trials to predict drug responses on small and 
hard-to-obtain gene expression data from patients. To this end, re-
searchers first used a feature extractor network to map the source 
and target into a common feature space. This mapping aimed to al-
leviate the domain shift by using a global discriminator to learn 
domain-invariant features. Then, these domain-invariant features 
were used to build a regression model for the source task (i.e., pre-
dicting median inhibitory concentration) and a classification net-
work to make predictions on the target task (i.e., predicting whether 
there is reduction in the size of the tumor). This study aimed to ad-
dress both prior and covariate shifts in the source and target do-
mains. The data used in this study came from multiple heterogeneous 
sources including thousands of cell lines from different cancer types. 
Last, the target samples were labeled. This study can thus be charac-
terized as a multisource and supervised heterogeneous (i.e., drug 
response is categorized differently between preclinical and clinical 
settings) DA scenario.
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Other methods such as WENDA (138) (Weighted Elastic Net for 
unsupervised DA) aim to predict a human’s age using DNA methyla-
tion data, which are known to be different across different tissues. 
WENDA aims to use the available DNA methylation data from some 
tissues (source domains) to predict the age of the human subject using 
DNA methylation from a different tissue (target domain) by giving 
more importance to features that are more robust and behave in a simi-
lar fashion across source and target domains. In this study, data from 19 
different tissues with chronological age ranging from 0 to 103 years old 
were used as the source domain. The target domain came from 13 
different tissues, with chronological age ranging from 0 to 70 years old. 
In the application of WENDA, the source domain remained unchanged, 
while each tissue type was viewed as a distinct target domain. This thus 
represents a multisource, unsupervised, homogenous DA scenario.

In another study, Li and colleagues (3) propose a multisource DA 
approach by using resting-state fMRI ABIDE datasets (139) from mul-
tiple academic sites (UMI, NYU, USM, and UCLA). Their goal was to 
improve the classification accuracy of autism diagnosis by detecting 
biomarkers. In this study, the feature space, denoted as χ, was extract-
ed features from fMRI sites such that χi = χj, with i and j representing 
different institutions (the data can be spatially normalized across par-
ticipants by warping to MNI space). From this perspective, this prob-
lem is a homogeneous DA scenario. Subsequently, the authors used a 
Mixture of Experts (140, 141), combining multiple neural networks—
each of which is specialized in solving a specific task—to improve the 
overall performance of the model, and adversarial domain alignment 
methods to minimize the discrepancies between the domains, and 
successfully demonstrated the advantage of using federated DA tech-
niques in using multisite fMRI dataset to classify autism. In addition, 
they were able to reveal possible biomarkers in the brain for autism 
classification. Therefore, in this framing, this can be considered as a 
multisource and supervised homogeneous DA problem.

Last, Gao and colleagues (142) proposed the deep cross-subject 
adaptation decoding (DCAD) method: a single-source, unsupervised, 
and heterogeneous DA technique. DCAD uses a three-dimensional 
(3D) feature extraction framework using 3D convolution and pooling 
operations based on volume fMRI data to learn common spatiotem-
poral patterns within a source domain to generate labels (142). Subse-
quently, an unsupervised DA method minimizes the discrepancy 
between source and target distributions. This process considers differ-
ent subjects as different sources and aids in the precise decoding of 
cognitive states (in working memory tasks) across subjects. To vali-
date the approach, they applied task-fMRI data from the Human Con-
nectome Project (143) dataset. The experimental outcomes revealed 
exceptional decoding performance, achieving state-of-the-art accura-
cy rates of 81.9 and 84.9% under two conditions (four brain states and 
nine brain states, respectively) during working memory tasks. In addi-
tion, this study demonstrated that unsupervised DA effectively miti-
gates data distribution shifts, offering an excellent solution to enhance 
cross-subject decoding performance without relying on annotations.

FUTURE DIRECTIONS
What is missing from DA approaches in 
biological applications?
Despite these exciting successes, continued development of DA ap-
proaches tailored to the challenges of biological data is critically 
needed. This is especially important in light of the increasing avail-
ability of curated open datasets, complemented by increasing meta-
data standardization (4, 5). We thus hope that the machine learning 
community will continue to develop techniques that can address 
relevant limitations of biological datasets, including:

1) Models must be able to capture the nonlinear and complex pat-
terns in biological systems, ideally with minimal or no assumptions. 

Table 4. Case studies and their categorization according to our DA taxonomy. 

Method Goal Single or multi source? Supervised, semi-, or  
unsupervised?

Homogeneous or  
heterogeneous?

 PRECISE ( 136 ) Predict patients’ drug  
Response based on  
preclinical datasets

Multi Supervised Homogenous

 Adversarial inductive transfer 
learning (AITL) (  137 )

Predict drug responses on 
small and hard-to-obtain 

gene expression data

Multi Supervised Homogenous

WENDA (  138 ) Predict a human’s age using 
DNA methylation data, which 

are known to differ  
across tissues

Multi Unsupervised Homogenous

 Li and colleagues’ ( 3﻿ ) Improve classification 
accuracy of autism diagnosis 
by detecting biomarkers in 
resting-state fMRI Autism 

Brain Imaging Data Exchange 
(ABIDE) datasets (139) from 

multiple sites

Multi Supervised Homogenous

 Deep cross- subject adaptation 
decoding (DCAD) (  142 )

Learn common spatiotempo-
ral patterns within a source 

fMRI domain (person) to 
generate labels for  

another person

Single Unsupervised Heterogeneous
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Therefore, many linear-based or parametric DA techniques (usually 
focused on some sort of predetermined transformation from source 
to target domain) might not be adequate. See the Supplementary 
Materials for detailed descriptions of some existing DA techniques, 
many of which rely on such predetermined parametric assumptions. 
We recommend a concerted research program to catalog the suc-
cesses and failures of existing DA approaches with respect to differ-
ent types of biological datasets, with attention to the impact of 
predetermined parametric assumptions.

2) Ideally, we want to use DA to find the underlying mechanisms 
of biological phenomena rather than simply aggregating data for au-
tomatic annotation. Unfortunately, many existing techniques are 
primarily developed for addressing automatic annotation of unla-
beled data. Therefore, to fully unleash the power of DA in biological 
systems, we must focus on methods that seek to find domain-
invariant features that are common across datasets. This usually 
happens by mapping all domains into a common feature space. We 
recommend that DA research for biological application should pri-
oritize discovery of latent or shared spaces between domains and 
ideally those which are “interpretable” or “explainable.” [“Interpret-
ability” or “explainability” in machine learning may be defined as 
“how well a human could understand the decisions in the given con-
text” (144).]

3) This domain-invariant mapping should be done using meth-
ods that work with limited data in individual cohorts. Although 
deep learning models are great tools to uncover highly nonlinear 
and complex relations in data with no specific assumptions, they 
often require many samples. Recently, simpler neural network archi-
tectures such as TRACE (145) and Fader networks (78) have shown 
promise with small fMRI datasets. However, many of the powerful 
neural network architectures such as generative adversarial net-
works might not be suitable for biological datasets as they usually 
require vast amounts of data (146, 147). We recommend that DA 
research focuses on performance under data-scarce regimes, includ-
ing explicit truncation of training datasets to evaluate DA methods 
under highly undesirable sample-to-feature ratios.

4) While some methods do exist to quantify adaptability between 
domains (89, 91), limited attention has been paid to how such meth-
ods may fare in biological contexts. We recommend that DA re-
search develops adaptability assessment methodologies with specific 
focus on biological datasets.

In sum, it is incumbent upon us in the biological disciplines to 
challenge machine learning research to design more flexible and 
broadly applicable DA methods that can perform under the con-
straints of real-world biological datasets. An important step toward 
this goal will be to test and evaluate existing approaches on our own 
data and on data available through broad and consistently annotat-
ed shared data repositories, to comprehensively explore and catego-
rize their current shortcomings. Thus, we hope that, with the help of 
the topics discussed in this Review, researchers in biological disci-
plines will feel empowered to try out existing DA approaches and to 
help catalog their successes and shortcomings, which can then sup-
port the efforts of DA researchers to maximize the utility of such 
methods for biology.

If you would like to use DA techniques to augment your own data 
processing pipeline, we urge you to begin by gaining a comprehensive 
perspective on your data using the definitions and taxonomy de-
scribed above. For example, How many sources do you have avail-
able? What is the sample size in each source? Do these sources 

contain equal amounts of features? If not, what are the nature of fea-
tures in each source? Are these features in each source known and 
have a label? What task are you trying to achieve? Depending on the 
answers, you can choose the appropriate DA approaches and set 
about examining their successes or failures. We hope that the tools 
and information provided in this Review will encourage you to do so 
and to report your findings so that iterative improvements in DA ap-
proaches can be made to best serve our fields.

Promises for the future
In this piece, we have focused on human neuroimaging (specifically 
fMRI) and microbiome sciences as token examples to speculate the 
potential promises of DA in computational biology as a whole. We 
hope that these selected case studies have helped to show off the 
potential of DA in numerous and varied biological disciplines, from 
electrophysiology, multi-omics, DNA sequencing, and single-cell 
RNA sequencing to protein localization—all of which face similar 
challenges in data collection and labeling to the case study fields 
discussed here. Differences in equipment, experimental setup, or 
even individuals can lead to a shift in the distribution of data, even 
when the task is identical. In all cases, however, our goal as research-
ers and clinicians is to go beyond domain-specific or dataset-specific 
models to find domain-general and informative “truths” about bio-
logical systems.

Thus, DA could be extremely useful to aggregate diverse biological 
datasets available across the Open Science Framework, OpenNeuro, 
Neurosynth, Dryad, CEDAR, and more in search of meaningful and 
even clinically relevant outcomes (148–151). However, much work 
is needed to address the existing challenges. It is the intention of this 
paper to help and facilitate these processes by bringing more aware-
ness of DA and the need to develop new techniques that are compatible 
with the limitations of biological datasets in order to make it acces-
sible to biologists. If we are successful in identifying the challenges 
of performing DA on biological data, we are optimistic that DA and 
transfer learning methodologies can greatly benefit biologists.
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