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Abstract

Imido complexes of early transition metals are key intermediates in the synthesis of many 

nitrogen-containing organic compounds. The metal—nitrogen double bond of the imido moiety 

undergoes [2+2] cycloaddition reactions with various unsaturated organic molecules to form new 

nitrogen—carbon and nitrogen—heteroatom bonds. This review article focuses on reactivity of the 

terminal imido complexes of Group 4—6 metals, summarizing their stoichiometric reactions and 

catalytic applications for a variety of reactions including alkyne hydroamination, alkyne 

carboamination, pyrrole formation, imine metathesis, and condensation reactions of carbonyl 

compounds with isocyanates.
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1. Introduction

Early transition metal imido complexes bearing a dianion of primary amines, [RN=]2−, as a 

supporting ligand have attracted considerable attention in the field of organometallic 

chemistry due to their diverse utility as reactive intermediates in organic synthesis as well as 

electron-donating supporting ligands for many types of metal catalysts, such as those used in 

olefin polymerization and alkene metathesis [1–3]. The metal—nitrogen double bond of 
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terminal imido complexes undergoes various types of reactions, including cycloaddition 

with unsaturated bonds [4]; aliphatic and aromatic C—H bond activation [5,6]; and imido 

group transfer [7,8]. Among them, [2+2] cycloaddition of imido ligands with unsaturated 

organic molecules such as alkynes, alkenes, carbonyls, and imines is perhaps the most 

attractive fundamental reaction owing to its wide applicability to various stoichiometric and 

catalytic organic transformations. Many nitrogen-containing organic compounds can be 

produced via the corresponding four-membered [2+2] cycloadducts A and B followed by 

protonation or further insertion of additional unsaturated organic molecules, as 

representatively shown in Scheme 1.

Given the synthetic attractiveness of terminal imido complexes, comprehensive studies on 

the synthesis of the terminal imido moiety have been conducted [9]. The most common 

routes for metal imido synthesis are shown in Figure 1, and include: (1) 

dehydrohalogenation of metal halides and primary amines in the presence of two equivalents 

of base (Figure 1(a)) [10]; (2) deprotonation of primary amines by alkyl- and amidometal 

complexes (Figure 1(b)) [11]; (3) 2-electron oxidation of a low valent metal center by 

organic azides (R-N3), with expulsion of N2 (Figure 1(c)) [12]; (4) metathesis of metal oxos 

and isocyanates along with release of CO2 (Figure 1(d)) [13]; and (5) bimetallic 4-electron 

cleavage of the N=N double bond of azo compounds (R-N=N-R) by low-valent metal 

centers (Figure 1(e)) [14]. Each of these methods have advantages and disadvantages; for 

example, while dehydrohalogenation reactions rely on the coupling of simple reagents, 

removal of salt byproducts is can be challenging; similarly, organic azides benefit from 

having N2 as the only byproduct, but suffer from potential explosion hazards.

Depending on the coordination environment of the metal and the stereoelectronic properties 

of the imido fragment, bridging coordination modes are also possible due to the presence of 

the L-type lone pair on the nitrogen atom; however, such imido-bridged complexes are often 

unreactive and are rarely seen in catalytic reactions except as off-cycle intermediates.[15a] 

In this review, we focus on the reactivity of mononuclear group 4—6 metal complexes 

having terminal imido ligands, and summarize their stoichiometric and catalytic organic 

transformations initiated by cycloaddition of the M=N bond with unsaturated organic 

molecules.

2. Stoichiometric reactions

2.1. Cycloaddition reactions

The terminal imido fragment, M=NR, of mononuclear imido complexes undergoes [2+2] 

cycloaddition with various unsaturated organic compounds such as alkynes, nitriles, alkenes, 

phosphaalkynes, imines, carbonyls, and heterocumulenes to give the corresponding four-

membered azametallacycles. Bergman et al reported that the Zr=NtBu fragment of 

Cp2Zr(=NtBu)(thf) (1) reacted with alkynes, alkenes, imines, and carbodiimides to provide 

the corresponding [2+2] cycloaddition products (Scheme 2), during which a coordinatively 

unsaturated terminal imido species 2 was generated in situ by releasing the coordinated THF 

[15]. Terminal and internal alkynes reacted smoothly to give the corresponding 

azazirconacyclobutenes 3, while the reactions with alkenes such as ethylene and norbornene 

to give the corresponding azazirconacyclobutanes 4 were reversible. When imines or 
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carbodiimides were used as the substrates, cycloaddition reactions with their C=N bonds led 

to the formation of diazazirconacyclobutanes 5 and 6, respectively. In contrast, treatment of 

1 with carbonyl compounds such as aldehydes, ketones, and isocyanates gave an oligomeric 

oxozirconocene 9 along with the corresponding imines and carbodiimides through a 

metathesis-type fission of the nascent intermediates 7 and 8 due to the thermodynamic 

stability of the Zr—O bond (Scheme 2) [15e,f]. Organic azides underwent [3+2] 

cycloaddition with 1 to yield five-membered tetraazametallacyle 10 via the same 

intermediate 2 (Scheme 2) [15d].

In the same manner as the formation of 8, Mountford et al discovered that the half-

titanocene imido complexes 11 and 12 add aryl isocyanates to form azaoxametallacycles 13–

16, which were isolated and crystallographically characterized, in which the Ti=N bond 

selectively underwent [2+2] cycloaddition with C=O bond of the isocyanates (eq 1) [16]. In 

sharp contrast, the C=N bond of the isocyanates preferentially reacted with a sterically less 

bulky Ti=N bond of 17–19 (eq 2) [17]. The different regioselectivity for the cycloaddition of 

the C=O and C=N moieties to the Ti=N bond is ascribed to the steric crowding around the 

metal, where the terminal atom or less sterically-hindered side of the substrate interacts with 

zirconium.

(1)

(2)

Titanium complex 24 reacted with carbon-heteroatom triple bonds, i.e. tert-
butylphosphaalkyne and acetonitrile, to give the corresponding four-membered 
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azatitanacycles 25 and 26, where the pyridyl arm has dissociated from the metal center due 

to steric crowding around titanium (Scheme 3) [18]. The cycloaddition with tert-
butylphosphaalkyne afforded titanacycle 25 with the phosphorous atom at the β-position, 

while cycloaddition with acetonitrile produced diazatitanacycle 26 with the two nitrogen 

atoms at the α-positions. The opposite regioselectivity for 25 and 26 was attributed to the 

different polarity of each triple bond.

Titanocene-based imido complexes 28 and 29, synthesized and recently reviewed by 

Beckhaus et al [19a,b], show similar reactivity patterns to zirconocene-based 2, including 

cycloadditions of alkynes, carbodiimides, nitriles, and other small molecules (Scheme 4). 

However, they are derived from the fulvalene complex 27, forming the imido group through 

internal deprotonation of the amine. Additionally, the hydrazido complex 30 is also 

accessible through this method and shows the same substrate reactivity patterns [19c].

Bis(imido) and tris(imido) complexes react with isocyanates in a manner similar to 2, where 

one imido ligand will undergo [2+2] cycloaddition but the other imido ligand will often act 

as an unreactive spectator ligand [20]. Exceptional examples are that both of the imido 

ligands of bis(imido) bis(alkoxide) molybdenum complex 31 and bis(imido) bis(amido) 

tungsten complex 33 reacted with isocyanates to give bis(diazametallacyclic) compounds 32 
and 34 (eqs 3 and 4) [21]. These are also notable as group 5 and 6 mono(imido) complexes 

are typically less reactive than group 4 complexes, and in many cases, the imido ligand on 

the group 5 and 6 mono(imido) complexes behave only as spectator ligands. Other 

exceptions are known, however, including a cationic vanadium mono(imido) complex that 

undergoes [2+2] reactions with alkynes. [22].

(3)

(4)
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Unusual [2+2] cycloaddition products were obtained when bis(imido)vanadium complex 35 
reacted with 2-butyne and ethylene (Scheme 5) [23]. Horton et al reported that the treatment 

of complex 35 with 2-butyne at 25 °C resulted in C—H bond activation of the imido SitBu 

moiety to give η3-azaallyl-coordinated complex 37 via σ-bond metathesis from the 

intermediate [2+2] cycloadduct 36. Ethylene also underwent cycloaddition to give 38, which 

was converted to an ethenyl complex 39 through retro-[2+2]-cycloaddition to regenerate 35 
and subsequent 1,2-addition of the vinylic C—H bond of ethylene. The unusual reactivity of 

35 with alkyne and alkene is probably related to high nucleophilicity of the imido nitrogen 

atom, resulting from competition for the π-donation from the imido nitrogen atom to the 

vanadium center.

Arnold et al investigated the cycloaddition reactivity of the monoazabutadiene 

bis(imido)niobium complex 40 toward alkynes and alkenes. Treatment of 40 with 

diphenylacetylene resulted in the formation of eight-membered metallacycle species 41 by 

the involvement of the phenylimido ligand, whereas reaction with 3-hexyne or norbornene 

showed different regioselectivity, incorporating the tert-butylimido ligand into the eight-

membered ring of 42 or 43 (Scheme 6) [24a]. Based on density functional theory (DFT) 

calculations, the reaction mechanism for the formation of eight-membered metallacycle 41 
was proposed to involve [2+2] cycloaddition step with the imido ligand followed by C—C 

bond formation through a conjugative addition to the monoazabutadiene moiety (Scheme 7). 

When para-bromobenzaldehyde was added to complex 40, the oxo-bridged imidoniobium 

dimer 42 was formed via a [2+2] cycloaddition-reversion sequence [24a]. The imido ligand 

of 40 underwent [3+2] cycloaddition with tert-butylazide to afford tetraazametallacyclic 

species 45 that reversibly converts to a γ-coordinated azido complex 46 [24b]. In addition, 

[4+2] cycloaddition was observed in the reaction between the Nb=N bond of 47 and (E)-4-

chlorochalcone [24a].

Azido group activation has also been reported in niobium complex 49 bearing a β-

diketiminate (BDI) ligand and an imido group (Scheme 8).[24c] An intermediate analogous 

to 45 is proposed in this reaction, however, unlike 45, photolysis of the azido-imido complex 

49 is required for its formation. The transient tetraazametallacycle intermediate is unstable 

and spontaneously releases dinitrogen to form the borane-capped nitride 50.

A low-valent (BDI)Nb imido complex has also reacted via addition of a Ph-C fragment to 

the imido bond. When 51 is subjected to hydrogenolysis in α,α,α-trifluorotoluene, the 

resulting Nb(III) fragment is initially stabilized by the coordination of α,α,α-

trifluorotoluene in an η6 manner in 52 (Scheme 9).[25] DFT studies propose that the bound 

PhCF3 is dearomatized via initial C-F bond abstraction, which then undergoes cycloaddition 

to the imido group. Subsequent C-F abstraction steps ultimately give the product 53 
containing a monoanionic η2-bound imine. In the presence of aryl fluorides, the C-F bonds 

are cleaved by niobium, but no cycloaddition occurs.[25b]

2.2. Insertion reactions into azametallacycles

Bergman et al demonstrated that it is possible to engender further insertion reactions into the 

four-membered azazirconacyclobutene 54, generated by [2+2] cycloaddition between 
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zirconocene imido complex with 1-phenylpropyne (Scheme 10) [26]. Reactions of 54 with 

aldehydes, imines, and carbodiimides gave the corresponding six-membered metallacycles 

55, 56, and 58 via insertion of the C=O and the C=N moieties into the metal-carbon bond of 

the metallacycle 54. Further heating these complexes over 100 °C in benzene resulted in the 

formation of Cp2Zr(=E) (9: E = O, Section 2.1; 57: E = NR) as well as the corresponding 

dimers and oligomers due to the formation of thermodynamically stable Zr-O and Zr-N 

bonds accompanied by the release of corresponding α,β-unsaturated imines. Addition of 

organic azides to 54 afforded seven-membered metallacycle 59. Insertion reactions of 

nitriles into azatitanacyclobutenes was reported by Livinghouse et al: titanacycle 

intermediate 62, which was generated by intramolecular [2+2] cycloaddition of 61, reacted 

with isobutyronitrile to give six-membered titanacycle 63 and further protonation afforded a 

vinylogous amidine (Scheme 11) [27].

Mountford et al demonstrated that tridentate diamidopyridine Ti imido complexes 64 and 65 
reacted with arylacetylenes to form four-membered azametallacyclobutenes 66—69 
followed by further insertion of one equivalent of arylacetylene into the titanium—carbon 

bond to give six-membered azametallacyclohexadienes 70—74 (Scheme 12) [28]. The four-

membered and six-membered metallacycles were each obtained as single isomers as a result 

of steric repulsion in the [2+2] cycloaddition between the aromatic ring of the arylacetylene 

and the imido substituent, and in the second insertion between the arylacetylene and the 

diamidopyridine ligand. Complexes 64 and 65 were found to be catalysts for the 

hydroamination of arylacetylenes with primary amines via four-membered intermediates 66
—69; however, the formation of six-membered azatitanacyclohexadienes 70—73 was 

regarded as a deactivation pathway in the catalytic system. Similarly, Odom et al reported 

that the reaction of bis(imido)metal complexes of molybdenum 74 and tungsten 75 with a 

ring-strained and highly reactive alkyne, cyclooctyne, gave the corresponding six-membered 

metallacycles 78 and 79 [29]. In this reaction, one of two imido ligands underwent [2+2] 

cycloaddition with cyclooctyne to give intermediate azametallacyclobutenes 76 and 77, 

followed by the subsequent insertion of cyclooctyne into the M—C bond of the 

metallacycle, giving the six-membered metallacyclic species 78 and 79 (Scheme 13). 

Notably, thermolysis of 78 and 79 resulted in the formation of the corresponding pyrrole 

derivative by reductive elimination together with the low-valent imido species 80 and 81.

3. Catalytic reactions

3.1. Catalytic hydroamination

Catalytic hydroamination reaction of alkynes with amines involves a typical [2+2] 

cycloaddition reaction as the initial step, and subsequent protonolysis of the resulting M—C 

bond of the four-membered azametallacyclobutene intermediate by amine is a key step to 

catalytically produce the hydroaminated compounds [30]. Bergman et al developed an 

intermolecular hydroamination reaction of internal alkynes with aniline derivatives using 

bis(amido)zirconocene, Cp2Zr(NHAr)2 (Ar = Xyl, 82), as a catalyst to give the 

corresponding imines (eq 5) [31]. As shown in Scheme 14 for the reaction mechanism, a 

catalytically active imido species 83, similar to 2 (Section 2.1), is generated by α-hydrogen 

elimination of one of two amido ligands of the bis(amido)zirconocene 82 with liberation of 
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one equiv of an aniline derivative, and in situ-generated 83 reversibly undergoes [2+2] 

cycloaddition with alkynes to form an azazirconacyclobutene intermediate 84, whose Zr—C 

bond is subsequently protonated by aniline derivatives, giving an amido-enamido species 85. 

Finally, α-elimination of 85 regenerates the imido species 83 together with enamines, the 

latter of which is isomerized to imines. A kinetic investigation for the catalytic reaction 

clarified that the reaction obeyed first order rate dependence on the concentration of 

zirconium catalyst 82 and alkyne, as well as inverse first order rate dependence on the 

concentration of amine, indicating that the rate-determining step is α-hydrogen elimination 

of the amido ligand in 82. Livinghouse et al reported an intramolecular version of the 

hydroamination reaction of γ- and δ-aminoalkynes catalyzed by half-titanocene trichloride, 

CpTiCl3 (86), in the presence of tertiary amines as bases to afford the corresponding five-

membered and six-membered cyclic imines (eq 6) [11d,27]. After these pioneering works by 

Bergman and Livinghouse, various metallocene, half-metallocene, and non-metallocene 

catalysts of Group 4 and 5 metals have been intensively investigated, with a wide variety of 

complexes and ligands discovered to perform this reaction, shown in Figure 2 [32]. Figure 3 

shows hydroamination reactions of other unsaturated organic molecules such as alkenes, 

allenes, and dienes, whose details were highlighted in recent reviews [30,33].

(5)

(6)

When bis(imido)tantalum complex 111 was combined with 4-pentenylamine derivatives, the 

major product was determined to be a cyclic imine as oxidative amination product (OA) 

together with reduction product (RP) and small amounts of hydroamination product (HA) 

(eq 7) [34]. Several control experiments and DFT studies by Webster et al proposed the 

reaction mechanism as shown in Scheme 15 [35]. One of two imido ligands of 111 
exchanges with the substrate, followed by intramolecular [2+2] cycloaddition. The resulting 

metallacycle intermediate 113 undergoes β-H elimination to give enamido hydrido species 

114, which is protonated by the substrate to yield an enamine. Intermediate 115 catalytically 

isomerize the enamine to the imine OA. Bis(imido) intermediate 116 is regenerated from 

complex 115 by reduction of the substrate to RP. Such a highly active imido Ta=N moiety 

was achieved by introducing an electron-donating NHC ligand and a second imido ligand. 
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These factors lead to an extreme π-loading effect, in which the imido π bonds are weakened 

and rendered more reactive due to multiple π bonds with the same metal orbitals competing 

for electron density. Reflecting this property, no reaction was observed when 4-

pentenylamine was treated with 5 mol% of the mono(imido)tantalum complex bearing the 

same bis(carbene) ligand, even at 170 °C [36].

(7)

The hydroamination reaction of a C=N bond in carbodiimides with aromatic amines to give 

guanidines, so-called catalytic guanylation [37], was developed by Richeson et al using 

titanium imido catalyst 102 (eq 8) [38]. The reaction mechanism is essentially the same to 

the alkyne hydroamination, in which the reaction initiates by [2+2] cycloaddition between 

Ti=N and C=N bonds of carbodiimides (Scheme 16). Gade et al supported this mechanism 

by characterizing the diazametallacycle intermediate as well as the kinetic study of the 

hydrohydrazination of carbodiimide catalyzed by titanium hydrazido species [39]. Imido 

complexes of vanadium [40] and niobium [41] also acted as efficient catalysts for the 

guanylation reactions of amines with carbodiimides; however, the most plausible mechanism 

involves insertion of carbodiimides into metal—amido bond, where the imido M=N bond is 

intact.

(8)

3.2. Catalytic carboamination of alkynes

Carboamination of alkynes is one of the most useful and straightforward methods to form a 

new C—N bond in organic compounds. Bergman et al demonstrated that four-membered 
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zirconocene catalysts 120—122 derived from [2+2] cycloaddition of zirconocene aryl imido 

species (similar to the alkyl imido-derived complex 3, Section 2.1) with alkynes served as a 

catalyst for a carboamination reaction of alkynes with aldimines to give α,β-unsaturated 

imines (eq 9) [42]. Later, Mindiola et al found that cationic β-diketiminate (BDI) titanium 

imido complexes [(BDI)Ti=NAr(C6H5F)][B(C6F5)4] [43a] and [Ti(NMe2)3(NHMe2)]

[B(C6F5)4] [42b,c] catalyzed the carboamination of alkynes with aldimines. As shown in 

Scheme 17, the first step in the catalytic cycle is the formation of azametallacyclobutene 124 
via [2+2] cycloaddition, and further insertion of aldimines into the M—C bond expands to 

six-membered intermediate 125. [4+2]-Retrocycloaddition of 125 regenerates the imido 

species 123 along with α,β-unsaturated imines. Furthermore, titanium imido complex 126 is 

a catalyst for the three-component oxidative carboamination of alkynes with alkenes and 

azobenzenes, generating α,β-unsaturated imines and α-functionalized cyclopropanes (eq 

10), in which azobenzene was a source of the imido fragment via the N=N bond fission [44]. 

Scheme 18 shows a plausible reaction mechanism. After the [2+2] cycloaddition of 126 with 

alkynes to form azatitanacycle 127, alkene inserts into the metal-carbon bond of 127 
followed by β-H elimination and reductive elimination to produce α,β-unsaturated imines 

(Path A). The alternative pathway is alkene insertion followed by α,γ-reductive coupling to 

afford α-functionalized cyclopropanes (Path B). Substituents on alkynes differentiate the 

two reaction pathways from metallacycle 130. Although TiII/TiIV redox mechanism was 

proposed, a detailed DFT mechanistic study by Wang et al suggested that Ti-catalyzed 

carboamination prefers a redox-neutral mechanism wherein significant backbonding masks 

the low valent state [45].

(9)

(10)

Odom et al reported that a titanium complex 104 (Section 3.1) catalyzed addition reaction of 

amines and isocyanides to alkyne to produce α,β-unsaturated β-iminoamines along with a 

small amount of hydroamination byproducts (eq 11) [46]. The overall reaction is 
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iminoamination of alkynes; 1,1-insertion of isocyanides into the Ti—C bond of four-

membered metallacycle 133 is assumed to be an important step to generate 134, and 

subsequent protonolysis by amines gives the final product (Scheme 19).

(11)

3.3. Catalytic pyrrole formation

Pyrrole skeletons are often present in highly valuable organic molecules [47], and efficient 

synthetic methods have been extensively investigated [48]. Tonks et al reported a catalytic 

[2+2+1] cycloaddition reaction of 2 equivalents of alkynes and 0.5 equivalent of azobenzene 

derivatives using titanium imido complex 135 to afford multi-substituted pyrroles in a 

regioselective manner (eq 12) [49]. The first step is [2+2] cycloaddition of the imido species 

135 with one equivalent of alkynes, giving an azatitanacyclobutene 136 (Scheme 20). The 

second alkyne insertion into the Ti—C bond of 136 produces a six-membered intermediate, 

azatitanacyclohexadienes 137, and subsequent reductive elimination affords the 

corresponding pyrroles and a low valent Ti(II) species 139, the latter of which is the key 

species to reductively cleave a N=N bond of azobenzene to regenerate a catalytically active 

imidotitanium 135. In fact, low-valent titanium chloride generated in situ from TiCl4(thf)2 

and zinc powder also worked as a catalyst for the pyrrole formation reaction [50]. Kinetic 

analysis and theoretical analysis by DFT suggested that the rate determining step is the 

second alkyne insertion into the titanium-carbon bond [51,52]. Symmetrical and 

unsymmetrical internal alkynes, terminal alkynes, and diynes were applicable to this pyrrole 

formation. In addition, chemo- and regio-selective [2+2+1] cross-coupling reactions were 

achieved when trimethylsilyl-substituted alkynes were used as the substrates (eq 13), in 

which trimethylsilyl-substituted alkynes are incapable of the initial [2+2] cycloaddition with 

the Ti=N bond but dominantly insert into the Ti—C bond of the four-membered 

azatitanacycle intermediate because electron-rich trimethylsilyl alkynes preferentially 

coordinate to the electron-deficient metal center of azatitanacyclobutenes [53]. 

Regioselectivity for the insertion of trimethylsilyl-substituted alkynes arises from the α-silyl 

effect in the transition state (Fig. 4(a)), favoring the SiMe3 group located at the α-C position 

in the pyrrole ring to give the 2-silyl pyrrole. Inverse selectivity was observed when the silyl-

substituted alkyne bears a Lewis basic directing group such as an o-OMe phenyl moiety (eq 

14) [54]. The coordination of o-OMe group to the Ti center in the alkyne insertion step leads 

to the selective formation of 3-silyl pyrroles (Fig. 4(b)). In addition, organic azides could be 

used as an alternative nitrogen source instead of azobenzenes for the [2+2+1] pyrrole 
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formation when more the Lewis acidic titanium complex, Ti(=NTol)I2(thf)3 (141), was used 

as a catalyst (eq 15) [55]. The use of alkyl azides allows access to N-alkyl pyrroles, which 

cannot be made from the corresponding dialkyl azo componds due to their radical 

decomposition under normal catalytic reaction temperatures.

(12)

(13)

(14)

(15)

Very recently, Tsurugi, Mashima, Tonks et al reported that vanadium(III) chloride THF 

adduct 142 served as an excellent catalyst in the presence of N,N-bis(trimethylsilyl)aniline 

as an imido source for the [2+2+1] pyrrole formation from alkynes and azobenzenes (eq 16) 

[56]. In contrast to the Ti-catalyzed system, the bis(imido)vanadium(V) species was found to 

be a catalytically active intermediate, wherein only one of the two imido ligands participates 

in the [2+2] cycloaddition with alkynes. Control experiments with a 

mono(imido)vanadium(V) complex exhibited no catalytic activity. Kinetic studies of the 

Kawakita et al. Page 11

Coord Chem Rev. Author manuscript; available in PMC 2021 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



vanadium-catalyzed system clarified that mono(imido)vanadium(III) species is the resting 

state, which is consistent with lower reducing ability of V(III) compared to Ti(II).

(16)

Odom et al reported a catalytic pyrrole formation using titanium complexes 96 and 104 (see 

Section 3.1) via an intermolecular hydroamination of 1,4- and 1,5-diynes with primary 

amines, giving the corresponding iminoalkyne intermediates [57]. These iminoalkynes were 

thermally converted to the corresponding pyrroles under heating at 100 °C, either by 5-endo-

dig or 5-exo-dig cyclization according to Baldwin rules (Scheme 21). When 1,4-pentadiyne 

was used as a substrate, a double hydroamination occurred prior to the cyclization of 

iminoalkynes. A similar hydroamination-cyclization protocol for pyrrole formation was 

developed by Ackermann et al using a simple TiCl4 (143) and tBuNH2 catalyst system. 

Hydroamination of a triple bond in chloroenynes followed by tautomerization generates α,β-

unsaturated imines, which undergoes an intramolecular nucleophilic substitution to yield the 

corresponding pyrroles (Scheme 22) [58]. Moreover, readily available α-haloalkynol 

substrates could be applied to the pyrrole synthesis when 1 additional equiv of TiCl4 (143) 

was used for in situ dehydration of the α-haloalkynols into haloenynes (eq 17).

(17)

Another attractive pyrrole formation is a four-component coupling reaction of alkynes, 

amines, and two equivalents of isocyanides catalyzed by a titanium complex 144, giving 2,3-

diaminopyrroles (eq 18) [59]. In the catalytic cycle, five-membered titanacycle 147 is 
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formed in the same manner as the Ti-catalyzed iminoamination of alkynes with isocyanides 

shown in Scheme 23. Further 1,1-insertion of isocyanides into the Ti—C bond followed by 

protonation of the resulting 148 by amines provides enamine formimines, which 

spontaneously undergo an intramolecular nucleophilic attack and subsequent 

tautomerization of the five-membered ring to afford the corresponding pyrrole (Scheme 23). 

The electron-donating indolyl ligand on the catalyst is crucial to achieve the four-component 

coupling reaction, where the electron-rich metal center diminishes the protonolysis rate of 

intermediates 146 and 147 which would normally give hydroamination and iminoamination 

products, allowing the further insertion of isocyanides into the Ti—C bond.

(18)

3.4. Catalytic imine metathesis

Various imido complexes of Ti (135) (Section 3.3) [60], Zr (149) [61], Nb (150) [62], Ta 

(151) [63], and Mo (74) (Section 2.2) [64] served as catalysts for metathesis reaction of 

carbon—nitrogen double bonds of imines (imine metathesis reaction) (Scheme 24). Two 

different pathways have been proposed: one is a Chauvin-type mechanism via the formation 

of four-membered diazametallacycle 151, derived by [2+2] cycloaddition of the imido ligand 

with imines, similar to olefin metathesis via metal alkylidene species (Scheme 25(a)), and 

the other is an amine-mediated mechanism involving transamination between the imine and 

a trace amount of amine (Scheme 25(b)). The first mechanism was revealed by Bergman et 
al for the reaction of CpCp’Zr(=NR)(thf) (Cp’ = Cp, Cp*) with imines [14d,61]. The second 

mechanism was proposed by Mountford et al on the basis of kinetic studies for the 

stochiometric reaction of Ti(=NtBu)Cl2(py)3 with N-benzylidenetoluidine, showing that the 

reaction rate did not depend on the concentration of titanium complex [60]. Various imido 

and oxo complexes of early transition metals are also catalysts for the metathesis reaction of 

C=N bonds of carbodiimides to afford mixtures of symmetrical and unsymmetrical 

carbodiimides as shown in Scheme 27 [65–67]. A four-membered diazametallacyclic 

species, similar to 152, was proposed as a reaction intermediate in the catalytic carbodiimide 

metathesis.

3.5. Catalytic condensation reactions

Some metal oxo complexes can also catalyze the condensation reaction of two isocyanate 

molecules, giving the corresponding carbodiimide with evolution of CO2. (Scheme 27) 

[68,69]. The evolution of CO2 was attributed to the formation of an imido species 167 from 
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the metathesis reaction of the metal oxo species 165 and isocyanate via a four-membered 

[2+2] cycloadduct 166 (Scheme 28). Titanium oxo complex 163 bearing a phthalocyanine 

ligand and vanadium imido and oxo complexes shown in Scheme 29 worked as effective 

catalysts, whereas V(=NTol)Cl3 (156) (Section 3.4) displayed no catalytic activity, 

indicating that the π-donating ability of the ancillary ligands such as alkoxido and amido 

plays a critical role to activate the M=N bond and accelerate the catalytic reaction. Similarly, 

Espenson et al reported an imine formation reaction between isocyanates and aldehydes, in 

which vanadium and molybdenum oxo complexes 169–171 reacted with isocyanate or N-

sulfonylimine to give an imido species via metathesis, and subsequent metathesis of the 

imido species with an aldehyde affords the corresponding imines (Scheme 29) [70]. 

Molybdenum bis(imido) complex 172 catalyzed the condensation of N-sulfinylamines with 

both aromatic and aliphatic aldehydes, while neither oxo complexes of vanadium (169) nor 

molybdenum (170 and 171) were effective for the reaction with aliphatic aldehydes.

3.6. Catalytic isocyanide and carbon monoxide imination reactions

Another method of catalytically forming carbodiimides is from one equivalent of isocyanide 

and one equivalent of azide, releasing dinitrogen in the process. Unlike isocyanate 

condensation reactions, these catalytic cycles involve redox changes due to the organic azide 

acting as an oxidizing agent to regenerate the imido moiety, and consequently are relatively 

rare among early metal catalysts. Arnold et al have demonstrated this with a BDI-niobium 

complex 173, where an alkyl isocyanide and tert-butyl azide are coupled to form a mixed 

carbodiimide (Scheme 30).[81] This type of nitrene metathesis is stoichiometric under 

certain conditions (see below) but is made catalytic upon the addition of azide. In the 

catalytic cycle, one of the imido groups inserts into a bound isocyanide to give an η2-bound 

carbodiimide 174. Reductive elimination of the carbodiimide product occurs to give an 

isolable niobium(III) complex 175 containing an unusual terminal azide, and elimination of 

dinitrogen regenerates the bis(imido) catalyst 169 through azide complex 176.

Regarding the above-mentioned catalytic nitrene transfer to the coordinated isocyanide, 

bis(imido) complex 177 undergoes nitrene metathesis through an isocyanide adduct 178 and 

a carbodiimide intermediate 179, where alkyl imido groups are replaced by 

thermodynamically-favored aryl imido groups upon addition of aryl isocyanide to 177, 

forming the mixed aryl-alkyl bis(imido)niobium 180 (Scheme 31).[81] Some alkyl 

isocyanides can be substituted for other alkyl groups when heated with a large excess of the 

corresponding alkyl isocyanide; for example, the t-butylimido group on 181 can be replaced 

with a cyclohexyl group to make 182, and when excess t-butyl isocyanide is added to 182, it 

again exchanges to the t-butylimido complex 183. DFT calculations propose that these imido 

metathesis reactions proceed through two η2-bound carbodiimide intermediates similar to 

179.

Rather than using a redox-active metal, a redox-active ligand can accomplish catalytic 

carbodiimide formation through isocyanide imidation. Heyduk et al. have used this approach 

with an aminocatechol-type NNN ligand on zirconium, 184 (Scheme 32).[71] The same 

insertion of the imido group into the isocyanide to form 186 with an η2-bound carbodiimide 

occurs, however, there are notable differences between this and the reaction in Scheme 30. 
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None of the intermediates 185–187 are isolable or detectible by NMR spectroscopy, 

however, the rate law shows a first-order dependence on azide but an inverse first-order 

dependence on isocyanide, so the rate determining step is the coordination of azide between 

184 and 185 rather than the C-N bond forming step. The imido moiety is only present in the 

intermediate 185 rather than an isolable complex, although the analogous reaction using aryl 

isocyanides offers the dimer with bridging imido groups rather than performing catalysis.

Similarly, redox-active ligands can be applied in catalytic nitrene carbonylation to make 

isocyanates. Wolczanski et al have demonstrated this reaction using titanium bearing an 

NNNN tetradentate α-diimine system that enforces pseudo-square planar geometry (Scheme 

33).[72] CO appears to directly insert into the Ti-N bond of 188, as direct binding of CO to 

the titanium is both electronically and sterically unfavorable. Once the C-N double bond is 

formed in 189, the isocyanate is released to give a 4-coordinate titanium species 190. 

Subsequently, adamantyl azide coordinates to afford 191, and dinitrogen is released to 

regenerate 188. This reaction was also tested with isocyanides; however, unlike CO, the 

isocyanide ligand coordinates too strongly to the titanium and the resulting isocyanide 

adducts are unreactive.

3.7. Catalytic hydrogenation reactions

The high reactivity of bis(imido)metal complexes, as often used for reactions described 

above, is exemplified for hydrogenation of alkenes. Arnold et al reported that cationic 

bis(imido)vanadium complex, [V(=NtBu)2(PMe3)3][Al(pftb)4] (192, pftb = perfluoro-tert-
butoxide), acted as a catalyst for semi-hydrogenation of alkynes to selectively produce Z-

alkenes, in which 1,2-addition of H2 to the imine moiety was involved as the key step 

(Scheme 34)[73]. Two reaction pathways were proposed based on the isolation of the 

intermediate as well as the DFT calculation. Cationic bis(imido)vanadium 192 activates H2 

via 1,2-addition to give imido-amido species 193. Further insertion of alkynes into the V—H 

moiety affords alkenylvanadium 194. The V—C bond of the alkenylvanadium 194 
undergoes σ-bond metathesis with H2 to release the semi-hydrogenated product with 

regeneration of imido-amido species 193 (Path A). An alternative pathway is α-NH-

elimination from the alkenylvanadium 194 to directly produce the alkene and 

bis(imido)vanadium species 192 (Path B). The corresponding niobium variant also shows 

catalytic activity for semihydrogenation of alkynes.

4. Conclusion

Cycloaddition reactions of the M=N fragment of early transition metal imido complexes 

with unsaturated organic compounds are important steps in bond forming reactions to 

produce various nitrogen-containing molecules. Stoichiometric reactions of the imido-metal 

species with unsaturated multiple bonds produces azametallacyclic compounds as key 

intermediates via [2+2] cycloaddition. Protonation of the four-membered metallacycle by 

amines is the final step to produce hydroamination compounds, while further insertion of 

unsaturated organic molecules into the metal-carbon bond of the 4-membered metallacycle 

is involved in carboamination of alkynes and pyrrole formation. In addition, the 4-membered 

azametallacycle intermediate was observed in metathesis reaction of C=N bonds in imines, 
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carbodiimides, and condensation of isocyanates. Modification of supporting ligands for 

reactivity of the four-membered metallacycle intermediates has been further developed for 

achieving more versatile transformations starting from imido complexes of early transition 

metals.

Acknowledgements

Our research projects described in this review were supported in part by the JSPS Research Fellow-ships for Young 
Scientist (K.K.), JSPS KAKENHI Grant Numbers 15H05808 and 15K21707 in Precisely Designed Catalysts with 
Customized Scaffolding (No. 2702) (K.M.), the National Institutes of Health (1R35GM119457) (I.A.T.) and the 
Alfred P. Sloan Foundation (I.A.T. is a 2017 Sloan Fellow). We also acknowledged financial support by 
International Joint Research Promotion Program (Osaka University) and Multidisciplinary Research Laboratory 
System (Graduate School of Engineering Science, Osaka University) for strengthening our international 
collaboration network.

Abbreviations

Bn benzyl

Cp cyclopentadienyl

Dipp 2,6-diisopropylphenyl

iPr isopropyl

Mes mesityl

py pyridine

tBu tert-butyl

THF tetrahydrofuran

Tol 4-methylphenyl

Xyl 2,6-dimethylphenyl
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Fig. 1. 
Typical synthetic methods of terminal imido complexes
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Fig. 2. 
Examples of early transition metal catalysts and precatalysts for hydroamination of alkynes 

via cycloaddition.
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Fig. 3. 
Catalytic intermolecular hydroamination reactions of alkenes, allenes, and dienes.
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Fig. 4. 
Proposed transition states of alkyne insertion into titanacyclobutene
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Scheme 1. 
Representative Cycloaddition and Subsequent Organometallic Reactions of the Metal Imido 

Group
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Scheme 2. 
Cycloaddition Reactions of Cp2Zr(=NtBu) (2) with Alkynes, Alkenes, Imines, Carbonyls, 

Heterocumulenes, and Organic Azides
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Scheme 3. 
Cycloaddition Reactions of Titanium Imido Complex 24 with Phosphaalkyne and Nitrile
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Scheme 4. 
Reactivity of Fulvalene-Derived Titanium Imido Complexes 28–30
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Scheme 5. 
[2+2] Cycloaddition of Bis(imido)vanadium 35 with 2-Butyne and Ethylene
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Scheme 6. 
Cycloaddition Reactions of Bis(imido)niobium Complex 40 with Alkyne, Alkene, 

Aldehyde, Organic Azide, and α,β-Unsaturated Carbonyl Functional Groups.
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Scheme 7. 
Proposed Mechanism for Complex 41 Formation
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Scheme 8. 
Formation of 50 through Photolysis of Imido-azido Complex 49
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Scheme 9. 
Formation of a Niobium-Imine Complex 53 from Defluorination of α,α,α-trifluorotoluene
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Scheme 10. 
Insertion Reactions of Aldehydes, Imines, Carbodiimides, and Organic Azides into 

Azazirconacyclobutene 54
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Scheme 11. 
Insertion Reaction of Isobutyronitrile into Azatitanacyclobutene 62
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Scheme 12. 
Formation of Azametallacyclohexadiene Complexes through [2+2] Cycloaddition followed 

by Aryacetylene Insertion
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Scheme 13. 
Formation of Six-Membered Azametallacyclohexadienes 74 and 75 via Four-Membered 

Azametallacyclobutenes 76 and 77 and Reductive Elimination of Pyrrole Derivative
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Scheme 14. 
Proposed Mechanism for Zr-Catalyzed Hydroamination of Alkynes
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Scheme 15. 
Proposed Mechanism for Ta-Catalyzed Oxidative Amination
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Scheme 16. 
Proposed Reaction Mechanism for Ti-Catalyzed Guanylation of Amines

Kawakita et al. Page 48

Coord Chem Rev. Author manuscript; available in PMC 2021 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 17. 
Proposed Mechanism for Carboamination of Alkynes with Aldimines
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Scheme 18. 
Proposed Mechanism for Ti-Catalyzed Carboamination of Alkynes with Alkenes and 

Azobenzenes
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Scheme 19. 
Proposed Mechanism for Titanium-Catalyzed Iminoamination of Alkynes
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Scheme 20. 
Proposed Mechanism for Ti-Catalyzed [2+2+1] Pyrrole Formation from Alkynes and 

Azobenzenes
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Scheme 21. 
Catalytic Pyrrole Formation from Diynes and Amines by Titanium Catalysts
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Scheme 22. 
Catalytic Pyrrole Formation by Hydroamination of Chloroenynes

Kawakita et al. Page 54

Coord Chem Rev. Author manuscript; available in PMC 2021 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 23. 
Proposed Mechanism of the Ti-Catalyzed Four-Component Coupling Giving 2,3-Diamino 

Pyrroles
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Scheme 24. 
Catalytic Imine Metathesis by Early Transition Metal Catalysts
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Scheme 25. 
Two Proposed Mechanisms for Catalytic Imine Metathesis
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Scheme 26. 
Catalytic Carbodiimide Metathesis by Early Transition Metal Catalysts
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Scheme 27. 
Catalytic Isocyanate Condensation to Give Carbodiimides
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Scheme 28. 
Proposed Mechanism for Isocyanate Condensation to Give Carbodiimides
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Scheme 29. 
Catalytic Isocyanate or N-sulfonylimine Condensation with Aldehydes to Produce Imines
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Scheme 30. 
Catalytic Nitrene Metathesis to form Carbodiimides
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Scheme 31. 
Imine Metathesis Reactions of Niobium Bis(imido) Complexes
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Scheme 32. 
Catalytic Carbodiimide Formation Utilizing a Redox-active Ligand on Zirconium

Kawakita et al. Page 64

Coord Chem Rev. Author manuscript; available in PMC 2021 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 33. 
Catalytic Isocyanate Formation by Direct Addition of CO to an Imido Group
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Scheme 34. 
Proposed Mechanism for Catalytic Z-Selective Semihydrogenation of Alkynes by the 

Cationic Vanadium Imido Catalyst [V(=NtBu)2(PMe3)3][Al(pftb)4] (pftb = perfluoro-tert-
butoxide) (192).
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