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Abstract

Affine Solutions of Two Dimensional Magnetohydrodynamics and Related
Quadratically Coupled Transport Equations
by

Jay Roberts

This is a dissertation on the motion of incompressible charged and non charged par-
ticles in a fluid. Specifically, we are concerned with the affine motion of such two dimen-
sional fluids. The physical quanitities of the fluid are derived in terms of the deformation
gradient which reduces the Incompressible Euler Equations (EE) and the Incompress-
ible Ideal Magnetohydrodynamical (MHD) equations to ordinary differential equations
on SL(2,R). The EE and MHD become the equations of a free particle and harmonic
oscillator, respectively, constrained to SL(2,R) with the magnetic field strength acting
as a bifurcation parameter between the two types of dynamics. We analyze the geometry
of SL(2,R) and completely characterize the behavior of all affine solutions.

Inspired by the decay of the pressure for affine solutions to EE we analyze a related
system of quadratically coupled transport equations. By smoothing the equation we show
local well posedness in a generalized Sobolev space along with coupled energy estimates
for a low and high energy. These estimates are inherited by the non-smoothed solution
which, along with weighted energy estimates, allow us to show global well posedness for

small data.
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Chapter 1

Introduction

The first portion of this work is devoted to the study of affine solutions to the Incompress-
ible Euler Equations (EE) and the incompressible equations of Magnetohydrodynamics
(MHD). Without getting bogged down in the derivation or boundary conditions, these

are saved for a later chapter, the EE and MHD equations are

du+u-Vu = —=Vp
{ V-u = 0 (1.1)
and
du+u-Vu = —Vp+(VxB)xB
OB+u-VB = V x(Bxu) : (1.2)

V-u=V-B = 0

Here u, B, and p, are the fluid velocity, its magnetic field, and pressure, respectively.
The physical fluids we are interested in are those which are surrounded by a vacuum with
no external forces present and are moving at non relativistic speeds. Importantly, these
fluids have a free boundary which moves along with the fluid.

These models are used for various astrophysical plasmas such as coronal magnetic
loops and solar coronal flux tubes. In two dimensions they can be used to model labora-
tory plasmas with toroidal symmetry such as tokamaks [30, 11]. We will be studying the

two dimensional version of these equations as the analysis becomes much more tractable
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while still admitting rich dynamics that has been seen to qualitatively mirror the long
term behavior of the full three dimensional problems in certain instances [35].

Our work begins with a review of the fluid mechanical setting for the problem and a
layout of the physical assumptions about the fluid and its magnetic field. We then begin
the business of establishing the boundary conditions that are required for (1.1) and (1.2)
to model plasmas surrounded by a vacuum. Here is where we review much of the work
on the equations and emphasize some differences between the equations’ well posedness
theory. Both EE and MHD require constraints on the acceleration at the boundary of
the fluid. This constraint comes in the form of the Rayleigh Taylor Sign Condition on the
normal derivative of the total pressure at the boundary. However, for the MHD this is
not enough. The magnetic field’s boundary conditions depend on the assumptions of how
the magnetic field travels with the plasma boundary and its coupling with the magnetic
field of the vacuum. Even after imposing these we need to make additional boundary
constraints on the size of the pullback of our magnetic field in material coordinates in
order to uniquely identify the magnetic field.

Before we derive the dynamics of the affine motions we devote a chapter to the space
of solutions. Our motions are identified with SL(2,R) which we view as a Riemannian
manifold where the metric is the induced metric from the ambient Euclidean space M.
This geometric point of view highlights the importance of the (Lie)subgroup SO(2,R).
It is SL(2,R)’s unique closed geodesic, and corresponds to absolute minimums of the
potential energy associated to the MHD equation. This “neck” created by SO(2,R) is
manifested in motion of the fluid as a limiting disk for the motions. That is, for a fixed
initial volume of plasma there is a minimal volume disk that the plasma may, though
many do not, reach. The family of motions which manage to squeeze down to this size
form the more interesting of the motions we describe.

We also introduce various coordinates on SL(2,R). Our primary coordinates will

emphasize the role that the magnitude of our path plays in the motion’s dynamics. In



fact, in these coordinates the metric is diagonal and we will be able to describe “generic”
motions here. However, these coordinates will be a two branched cover of SO(2,R) and
so will be unable to capture the motions which shrink from an ellipse to a disk. This
is overcome by restricting to two dimensional embedded submanifolds of SL(2, R) where
we will be able to fully describe such motions.

With the solution manifold in hand we will derive the equations of affine dynamics
and the corresponding physical quantities. The velocity, pressure, and magnetic field
of the fluid are all given in terms of the path in SL(2,R). In particular the magnetic
field decomposes into an initial, material, magnetic field which is then carried along by
the path. We show that this initial magnetic field is the unique magnetic field which is
compatible with affine motion. At this point we have fully translated the analysis of EE
and MHD into a question about ODEs on SL(2,R). Kinematically, these ODESs represent
a free particle and harmonic oscillator constrained to SL(2, R).

The dynamics of our affine solutions emphasize the advantage of working in two
dimensions. For two by two matrices the cofactor operator is linear, in fact it is unitary,
and so our ODE’s have only a scalar nonlinearity. We derive various geometric invariants
which allow us to write this nonlinearity as a function of just the magnitude of the path
which justifies our choice of coordinates and reduces our six dimensional phase space to
a two dimensional one. Next we handle the complicated work of carefully describing the
dynamics for various relationships between the geometric and physical invariants of the
system. After this detailed work we present an alternative description of the dynamics
by taking advantage of the Hamiltonian structure. Since this section essentially restates
the results of the previous ones we omit some of the formal arguments in favor of a more
illustrative description of the dynamics. The upshot of all this is a complete description
of the (affine) motion of incompressible fluids with and without magnetic fields in two
dimensions surrounded by a vacuum with a free boundary.

In the presence of the magnetic field generically the motion of the fluid is an ellipse



which rotates and whose diameter expands and contracts periodically. The ellipse never
becomes a disk and in coordinates we see the motion is quasi periodic. The magnitude
has a period, and there are two “rotation” components which have their own periods.
Here the vorticity plays a role in the size of all these periods along with another mystery
parameter related to the geometry of SL(2,R). For special geometric arrangements these
two invariants agree and the magnetic field strength acts a a bifurcation parameter. If the
magnetic field is strong with respect to the vorticity then the magnitude is still periodic
but every ellipse now shrinks to a disk. At which point the major and minor axis of the
ellipse exchange roles, leading to a magnitude with period that is half the period of the
magnitude-velocity pair in phase space. In the case where the magnetic field is small
with respect to the vorticity there is a critical energy for which solutions are oscillating
ellipses which limit in time to a constant rotating disk. Energies lower than this critical
energy behave the same way as the generic case. Higher energies exhibit the double
period behavior seen in the strong magnetic field case.

For EE solutions generically are rotating ellipses whose area grows like t2. Eventually
these motions slow their spin and expand along an axis. There are also motions which
begin as rotating ellipses and then decay to a rotating disk.

This domain spreading leads us to the second focus. In [14] the authors showed that
for compressible fluids the Sobolev Space of affine solutions was in a sense stable. That is
they constructed global in time solutions which started near affine solutions and remained
close to these affine counterparts. If we let F' be the deformation gradient of our motion

then in material coordinates EE can be written

Dtu +

1
det(F)cof(F)Vyp = 0. (1.3)

The deformation gradient of an affine motion is precisely the path in SL(2,R) and so

if F' remains near such a motion we expect its determinant, or at least a piece of it, to



decay like t2. Further, since we are in two dimensions the cofactor operator is linear so
(1.3) resembles a type of quadratically coupled transport equation. It was also noted in
[18] and [27] that this type of coupling occurs in the Alfve'n waves which propogate in
MHD [2]. Though these are quadratically coupled wave equations.

In our work we consider a one dimensional quasi-linear model problem

Oyu + Ad,u = u; B;(t)0,u.

The components B;(t) satisfy certain decay conditions based on whether the wave
packets resulting from the propagation matrix, A, are interacting for a long or short
time. For instance when A is diagonal the wave packets are just the components of u. In
this case Bi1z need not decay as fast as By;(¢) since for the former the packets will cross
paths for a short time where as the latter are self interacting and so they never disperse.
The reason for adding decay on the non interacting terms is to further mirror the decay
of solutions to the three dimensional wave equation.

In order to show global existence of small solutions we use an energy splitting tech-
nique, see for instance [6, 34, 38]. The result comes from coupling the high and low
energy estimates together with a low weighted energy. This allows us to show that the
high energy grows polynomially in time with a rate that is controlled by the size of the
initial data in the weighted and non weighted lower energies. The weighted estimates
allow us to improve our low energy estimates and are gotten by a commuting vector
field technique similar to those in [23]. For energy which is sufficiently small in the low
weighted and non weighted energy these growth controls will allow us to bound the low
energy, on a compact time interval, uniformly in time.

To make use of this bound, and in fact to properly justify the energy estimates, we
need a well developed local theory. The first part of the local section is devoted to

showing local existence with a precise continuation condition. The strategy is to smooth



the equations and show existence in the appropriate Sobolev space. We then derive the
analog of the energy estimates needed for global existence but now we must take care
of the commutators which arise from the smoothing operator. Convergence of these
approximations is messy but follows rather directly from another energy splitting. With
our approximations in hand we can bequeath the smooth energy estimates to our actual
solutions. These are then improved through coupling with the weighted energies giving

us global existence.



Chapter 2

Magnetohydrodynamic Equations

We start with the fluid mechanical set up of the problem. First we establish the reference
domains, their motions, coordinates and the various differential operators we will need
throughout this chapter. Then we will describe forces we are interested in. Starting with
the equations of state for the fluid and then coupling the fluid to Maxwell’s equations.
From here we use various physical assumptions on our body and its magnetic and electric

field to simplify the equation arrive at the Ideal MHD equations for compressible fluids.

2.1 Fluid Mechanics Set Up

Throughout this chapter B will be our reference domain. We assume that B is a
compact subset of R where d = 2 or 3. The boundary, 9B, will be assumed smooth

though in most cases C? would be sufficient.

Definition 2.1. A motion of a reference domain B is a smooth function

x:BxI—R?

where [ is a subinterval of R and for all ¢ € I the function z(-,¢) is a diffeomorphism

onto its image.



The reference domain can also be thought of as labeling the fluid particles along their
trajectory. The actual position in space occupied by the fluid will be referred to as the

spatial domain occupied by the fluid and is

Q) = (B, 1). (2.1)

When we describe a physical quantity in terms of the spatial domain, x variables, we
say we using the spatial (Eulerian) description of the fluid. If we use the reference body,
y variables, we say we are using the material (Lagrangian) description of the fluid. The
physics of the fluid are generally most easily described using the spatial coordinates but
for free boundary problems it can be more convenient to use the material coordinates.

Since our motion is injective at a fixed time the function x(-,¢) has an inverse which

we call the place of a fluid at point z, specifically

p: Q) xI1—B

where p(z(y,1), ) = y.

Definition 2.2. The spatial velocity of a motion x of a body B is
0

y:p(w,t)

We will now barrel through the various differential operators needed to describe trans-
ported quantities in the fluid. The reader is referred to [13] for a detailed derivation of

the transport theorems.

Definition 2.3. The material time derivative of a function f in the spatial coordi-

nates, x, is



Dif = 0uf + (u-Va) f,

where

(u-Vo)f =D.f u.

Definition 2.4. The deformation gradient of a motion x is

F(yvt) = Dy$<y, t)

We now describe the basic equations of conservation and motion. Let p: Q(-) x [ —

R* be the density of the fluid, then conservation of mass and momentum are given by

Dip+p V- u=0
thu = fint + femt-

Where f;,; and f.,; are the forces resulting from the fluid itself and from external
forces respectively. An Fulerian fluid is one where the only internal force is conservative

with potential p that we call the pressure. The Equations of motion for such a fluid are

{Dtp+pV$- u = 0 (2.3)

pDu+Vep = f
We have added a forcing term to the conservation of momentum equation to reflect the
fact that there will be more internal forces on our fluid due to the effects of the electric
and magnetic fields. A fluid is incompressible if its motion is volume preserving. That is
if the deformation gradient satisfies det(F") = 1. This is manifested in the spatial velocity

by the divergence condition



V.- u=0.

Incorporating this divergence condition makes the conservation of mass in (2.3) simplify
to p(xz,t) = po for some py € RT. Without loss of generality we can assume the density

of our fluid is 1. So we arrive at the familiar incompressible Euler equations (EE)

Ve-u = 0

The boundary conditions for these type of free boundary problems firstly require that

the boundary of the fluid move with the fluid

(Liu(z,t)) -n(z,t) =0 x € 0Q(t),

where n(z,t) is the space time outward normal vector to the hyper-surface I x (). Since
the fluid is surrounded by vacuum we require that p(x,t) = 0 on the boundary of our
fluid domain.

We note that for well posedness it was required that the initial pressure satisfy the
Rayleigh-Taylor sign condition, D,p(+,t) < 0, on the boundary of €(0). Here D, is the

directional derivative in the direction of the normal to the boundary of (). So we have

z € 00(t).

For initial data satisfying the Rayleigh-Taylor sign condition, local well-posedness for
the incompressible free boundary Euler equations with bulk vorticity was established |5,
8] and for the incompressible free boundary MHD problem in [12], [40]. The use of affine
deformations is a well-established tool in continuum mechanics, first introduced in the

context of the vacuum free boundary incompressible Euler system in [37, 33].
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2.2 Deriving MHD

In order to incorporate the magnetic effects let B, F, j, and o be the magnetic field,

electric field, current, and electric conductivity. The force which the medium experiences

is given by Ampére Force:

1.
fa=-jxB.
C

The new quantities are also supplemented by Maxwell’s Equations

4

V. x B = %j (2.50)
V.- B=0

OB = —cV,xE (2.5b)

Equation (2.5a) allows us to eliminate the current, j, from our balance of momentum

1
Dyu+ V,p = E(V”” X B) x B.

The motion of the medium gives rise to its own electric field u x B/c which we can

relate to the current, j, through Ohm’s law if the following conditions hold:
1. The magnetic field is weak.
2. The motion is moving at non-relativisitic speeds.
3. The plasma is perfectly conducting.

The relationship is
jzo(E—i—%uxB),
where o is the electric conductivity of the plasma, which is perfectly conducting so this
becomes the Ideal Ohm’s Law
E+ %u x B =0.
11



We can substitute this into (2.5b) to get the dynamics of the magnetic field

DiB=(B-V,u—BV,- u
(B-Vy.)u.

Dyu+Vi(p+3|B*) = (
DtB — (
Ve u=V,- B = 0

V.)B
Vi )u (2.6)

B-
B-

Notice we have collected the conservative portion of the force coming from the mag-
netic field, V,(5|BJ?) which we refer to as the magnetic pressure, onto the left of the

equation. We put this and the usual pressure together into what we will refer to as the

total pressure of our fluid

q=p+ 1B

2.3 Boundary Conditions

The boundary conditions for a fluid in vacuum are of particular importance from both
a modeling and existence theory perspective. For EE it was shown by Ebin [10] that a
necessary condition for stability of the equations was the so called Rayleigh-Taylor sign

condition for the pressure at the boundary

Opp < —€<0

on the boundary of Q(t). Where 0, is the derivative in the direction of the outward
normal of 9€Q(t).
In the context of MHD an analog of the Rayleigh-Taylor sign condition was show to

also be necessary for stability [16]. Instead of the actual pressure, the total pressure, g,

12



which also must satisfy

Onq < —€ < 0.

The result was shown by using a geometric approach similar to the one used in [5]. Hao
and Luo then showed [17] that this modified Rayleigh-Taylor sign condition is in fact
necessary for well posedness of in two dimensions.

To show this they make use of the fact that in 2 dimensions MHD admits purely
rotating disk solutions. These types of solutions are not possible in three dimensions.
They then construct a sequence of initial data which converge to these rotating solutions
but whose motions diverge in some appropriate analog of H* for p > 2.

We make the usual assumption that the boundary of the plasma is a perfect conductor

and so

B-n=0,

on 09(t) and where n is the outward unit normal to the boundary.

Physically the energy which we are interested in is

/ (Juf? + 11 B]?) da,
Q(t)

which we note is the standard kinetic and potential energy for such a system. Putting
everything together and adding in that the outside is a vacuum and so the pressure there

should vanish gives us the boundary conditions for the plasma-vacuum interface

q =0
Onqg < 0 . (2.7)
B-n =0

These boundary conditions differ from those in for example [16] in that we require

the total pressure vanish at the boundary which will conserve energy. It was noted

13



in [16] that requiring |B| = cosnt on the boundary in (2.7) also conserves energy and
captures the case where the magnetic field vanishes at the boundary that was used by Hu
and Wang [20, 19] to show global existence of weak solutions to the compressible MHD
equations in a bounded domain. However, it can also represent more general and perhaps
physically realistic magnetic fields. We note it was later show in [15] that this was not
necessary and it is not used in the well posedness of the linearized and nonlinear MHD
in [12, 40] where the vacuum colinearity condition of [32, 29, 42] is of more importance.

We take a different approach. As opposed to controlling the magnetic field on the
free boundary of the fluid we pull the control back onto the material boundary. The
flux condition of (2.11) implies that the magnetic field is in fact a vector field on 9€(¢),
and so to analyze it in material coordinates we ought to consider its pull back to the
boundary of the material domain. That is we should control |F~!B(x(y,t),t)|, y € OB.

specifically,

|IF'B(y,t)| =cy y € IB. (2.8)

Notice this allows for a a magnetic field with varying norm in the fluid domain.
Past the interface we have the vacuum and must decide how we will handle its mag-
netic field. Since by definition it has nothing to carry the charge its electric field, E,

must be stationary. This assumption gives rise to the pre-Mazwellian vacuum dynamics

where B is the magnetic field of the vacuum.
To impose continuity across the plasma-vacuum interface we impose various jump
conditions. We let f*, f~ refer to the plasma and vacuum value of a physical quantity

f, respectively, and define the interface jump value of f to be
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fl=f"=f"

Our first condition is the balance of total pressure across the plasma-vacuum interface

and our second requirement is that the net magnetic flux across the interface vanishes,

1.e.

[B - n]] =0, (2.9)

where again n is the normal to the boundary of Q(¢).
The perfect conduction assumption of (2.7) together with (2.9) implies that on the

vacuum side of the interface

B-n=0.

We could then restrict ourselves to magnetic fields in the vacuum that match our plasmas’

magnetic field’s norm at the interface, that is

B =B,

as was done in [16, 15] which would decouple the magnetic fields or we could require the
same norm matching but for the pullback of the verctor fields on the material boundary
like in equation (2.8) and get the same result.

We note that Trakhinin in [42] and together with Secchi in [32] showed that the
linearized compressible MHD were ill-posed in the plasma-vacuum interface case if the

magnetic field in the plasma and vacuum failed a colinearity condition
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IBx B|=6>0.

However, we do not explicitly find the vacuum magnetic field and so this comparison is

left to future work.

Finally, we have our incompressible MHD equations which we repeat here for easy of

reference.

Diuw+V.q = (B-V,)B
DB = (B-V,)u x € Qt) (2.10)
Ve-u = V,- =0
subject to the boundary conditions
Ohg < 0
q = 0, x € 08(t) (2.11)
B-n =0

and the material boundary condition

|[F Yy, t)B(x(y,t),t)| = co y€IB

16



Chapter 3

Function Space of Motions

Here we will discuss the space in which our motions will reside. We work in SL(2, R) C M?
and so we describe the inner-product space M? along with various operators. Then we
describe the actual motion space SL(2,R) with the induced metric given by its inclusion
in M2, Finally, we rewrite the equations of MHD (2.6) in material coordinates as a
final. We will begin with a quick review of some matrix calculus. Then we translate the
equations into material coordinates and derive the physical quantities in terms of the

affine motion.

3.1 Matrix Inner Product Space and Groups

Definition 3.1. By M2, we denote the set of 2 x 2 matrices over R with the Euclidean

inner product

i?j

and norm

A" = (A, 4).
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The inner product satisfies the permutation relations

(AB,C) = (B,ATC) = (A,CB"). (3.1)

For all A,B,C € M". If A, B € M" then

|AB| < [A]|B]. (3:2)

The following basis will be useful for our derivation of the Affine MHD equations and

in our study of the geometry of SL(2,R).

Definition 3.2. Let

S R A B (R

then the usual basis of M? is 8 = {I,Z, K, M'}. For the representation of a matrix in

this basis we write [A]g.

Some properties of 8 and useful quantities’ expression in this basis are given below.

Lemma 3.1
The ususal basis is an orthogonal basis of M2, has only idempotent elements of norm

V2, and if A, B € M? have usual basis representations

then

det(A) = af + ai — (a3 + a3), (3.3a)
(A, B) = 2[A]s - [Bls, (3.3b)
s1AP = 1[A]s)*. (3.3¢)

18



where - and |[A]s] are the usual R* innerproduct and norm.

Proof. The properties of 3, orthogonality, idempotentency, and size of its elements, are
trivial.

For Equation (3.3a):

For (3.3b) since 3 is an orthogonal basis and each element has norm /2’

<A, B> = tr((aol —I— (11Z —f- CLQK + agM)(b[)I —f- blZ —I— bQK + b3M))

(3.3c) follows from (3.3b).

The cofactor operator will play a leading role in our analysis of affine motions.

Definition 3.3. Let A € M™ and define its ij minor A,; to be the determinant of the
(n — 1) x (n — 1) matrix gotten by removing the i*" row and j* column of A. Then its

cofactor matrix, cof(A), is defined to be
[cof(A))y; = (=1)" Ay,

Lemma 3.2

The map

cof : MI? — M?
19



is an automorphism of the algebra M? and is represented as conjugation by the basis

vector Z. Further, if A is invertible then

1

-1 _ T
A = det(A)COf(A) :
Proof. Let
a b
A=l
then

=—ZAZ
=ZAZ 1.

(3.4)

Conjugation is always an automorphism. The inverse formula (3.4) is a quick com-

putation.

]

The first useful fact about the usual basis is that it diagonalizes the cofactor operator.

Lemma 3.3

In the basis £

{COf]g = dlag(17 17 _17 _1)7

and satisfies

(A, cof(A)) = 2det(A).

20

(3.5)



Moreover, the determinant map det : M? — R is C* and

0
N det A = cofA. (3.6)
Proof. For the diagonalization result we can apply the conjugation result in Lemma 3.2

to each basis vector. Notice

as required.

For (3.5) we work in § coordinates and use (3.3b)

% (A, cof(A)) = [A] - diag(1,1, -1, —1)[A]s

2 2 2 2
=ap+a; —a; —ag

= det(A).

The gradient result (3.6) follows from the conjugation representation of cofactor and

differentiating (3.5). O

Another reason the usual basis is preferred to the standard basis is its connection to

the complex coordinate representation of M?.

Definition 3.4. Given a matrix A € M? we define its complex coordinates z,w € C by

Ax = zz + wz.

Where on the left we do the usual matrix vector product and on the right we use the

usual embedding of R? into C. For a representation of a matrix in these coordinates we
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write [A]c = (2, w).

To connect the complex coordinates with the usual basis we will use various repre-

sentations of elements of C as vectors in R? and special subsets of M?2.

Lemma 3.4

Let

z=a+1 w=u-+1w

be complex numbers. Then, when viewed as complex numbers, the following products

are all equivalent

Proof. This equality of zw with the matrix product at the end is simply the fact that

the map

) {a —b}
a+ib—
b a

is a a homomorphism of C into M2. To get the middle equality we simply compute

B i e

which when be viewed as an element of C embedded in M2 becomes

au—>bv  —(av + bu)
—(av+bu) au—bv |’
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Lemma 3.4 allows us to connect the usual basis representation with the complex

coordinates. Specifically

Az = (aol + a1 Z + asK + azM)x
_ Zo —I Zo T
= alpra D]l 5] e
_ |0 —Z1| |Qo n To T1| |Q2
- 1 Xg a1 —Z1 To| |a3

= (ap +iay)x + (az + iaz)x.

It is quick to see that this representation is also unique. The next lemma gives a

dictionary of common matrix quantities in terms of their complex coordinates.

Lemma 3.5

Let A € M? have complex representation (z,w), then

AT = (z,w), (3.72)
det(A) = |z — |w|?, (3.7b)
AP =121 + [w]?, (3.7¢)

cof(A) = (z, —w),

and if A is invertible

!
E TR

At (Z, —w).

Proof. Notice that the only basis vector of 8 which is not symmetric is Z and so trans-
position only acts on the z complex coordinate; moreover, it corresponds to conjugation
in the complex coordinates, giving us (3.7a). The determinant relation (3.7b) and norm

relation (3.7c) come from (3.3a) and (3.3c) respectively.
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We now describe a few important subgroups of M?2.

Definition 3.5. The special linear group is given by

SL(2,R) = {A € M?:det A = 1}

and the special orthogonal group is

SO(2,R) ={U € SL(2,R): U ' =U"}.

It is clear that the action of SO(2,R) on R? is an isometry and it turns out this

property extends to its action M?.

Lemma 3.6

For all A € M? and U,V € SO(2,R),

UAV| = |A].
The left and right action of SO(2,R) on M? and on SL(2,R) is an isometry.

Proof. Any U € SO(2,R) has complex representation U = zx + 0z and since det(U) = 1
(3.7b) |z| = 1.

Let A € M2 have complex representation Az = ux + v, then

UA = zuz + 20T

and by (3.7¢)

HUAP = |zu)® + |zv]?
= ol + o
= l|A|27

2
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and similarly for [UAV. O

The subgroup SO(2, R) will play a special role in the sequel. Here is the first of several

characterizations that we shall repeatedly use.

Definition 3.6. Define the one-parameter family of rotations

coso —sino
sinoc coso

U(o) = exp(cZ) = { 1 , cER

As we saw in Lemma 3.3 if U € SO(2,R) then it has complex representation [U(o)|c =
(€?,0). Moreover, the elements of SL(2, R) which commute with Z have complex repre-

sentation [A]c = (z,0) with |z| = 1 giving us the characterization of SO(2,R):
SO(2,R) ={A e SL(2,R) : [A, Z] =0}.

Lemma 3.7

Elements of SO(2,R) are norm minimizers in SL(2,R). There holds

min{|A]> : A € SL(2,R)} =2
and
SO(2,R) = {A € SL(2,R) : §]A[* = 1}.

With the notation of Definition 3.6, we have

SO(2,R) ={U(0) : 0 € R}. (3.8)
Finally,

SO(2,R) = {A € SL(2,R) : [4, Z] = 0}. (3.9)
25



Proof. Let A have complex representation Ax = zx 4+ wz with |z| = r and |w| = p. Since

A € SL(2,R) we have by (3.7b)

r?—pt=1 (3.10)

and the quantitiy we would like to minimize is %|A[2 = 72 + p* whose level sets in the

(r, p) plane are circles. In the r — p pane the unit circle is tagnent to the hyperbola (3.10)

and so the smallest magnitude is 2| A[* = 1, which by (3.7c) this implies p =0 and r = 1
so A = zz for a unit length z which implies that A € SO(2,R).

0

Narrowing the result of Lemma 3.6 is the fact that the Z basis vector represents an

orthogonal rotation in M2. Specifically

(A, ZA) = (ZT A, A)
= — (A, ZA)

and so by similar argument we have the orthogonality relations

(A, ZA) = (ZA,AZ) =0

3.2 The Geometry of SL(2,R)

Here we collect some basic facts about the geometry of SL(2,R). We will view it as
an embedded submanifold of M? and moreover a Lie Group with the corresponding Lie
Algebra s[(2,R). Since SL(2,R) is a level set of the determinant map, Lemma 3.3 allows

us to characterize its tangent space as
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T4SL(2,R) = {B € M? : (B, cofA) = tr BA™" = 0}.
We use the notation A=" = (A~1)T.

Definition 3.7. Define the special linear Lie algebra

sl(2,R) = T;SL(2,R) = {L € M? : tr L = 0} = span{K, M, Z}.

Further given A € SL(2,R), we define the unit normal vector field

N(A) = |A| cofA = |[A|TFATT. (3.11)
Lemma 3.8
A € SL(2,R) is normal to T4SL(2,R) if and only if A € SO(2,R).

Proof. This follows from Lemmas 3.7 and Definition 3.7. O]

To abbreviate notation we denote the tangent bundle of SL(2,R) by

D ={(A,B) e M?> x M?: A € SL(2,R), B € T4SL(2,R)}.

It is clear that D is a smooth 6-dimensional embedded submanifold of M?. Specifically
1 is a regular value of the det map and so the by the local immersion theorem SL(2, R)
is an embedded submanifold of M?. Using the standard embedding of s[(2,R) into M?

and taking the product topology on D gives the result. The reader is referred to [43].

Definition 3.8. Given A € SL(2,R) \ SO(2,R) and Z as in Definition 3.2, define
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n(A) = ZA+ AZ,
m(A) = ZA— AZ,

Al 2
T3(A) = Af—1 A—WcofA :

We also define 7;(A) = 7;(A) /|7 (A4)].

The choice of normalization for 75(A) is motivated by Lemma 3.12 below. In situations
when the base point A € SL(2,R) is fixed, we shall occasionally find it convenient to

write simply 7; instead of 7;(A).

Lemma 3.9
The functions 7; : SL(2,R) \ SO(2,R) — T4SL(2,R) are smooth tangent vector fields for
which: if A € SL(2,R) \ SO(2,R), then

1. gij(A) = (ri(A), 7;(A)) defines the metric on T4 SL(2, R) in local coordinates relative
to the basis {7;(A)}, and g(A) is given by

A
A[* —4]"

g(A) = diag |2|A]2 +4, 2|A? — 4, (3.12)

2. the set {7;(A)}2_, spans T4SL(2,R),

3. and for any B € T4SL(2,R), we have

B:Zci 7i(A),  with ¢ = (B,7:(A)) /gi(A).

Proof. The orthogonality results follow from the relations in Lemma 3.3 and 3.1 and

orthogonality together with a dimension count gives us the spanning property. O

Corollary 3.10

If A € SL(2,R)\SO(2,R), then the set {7;(A)}?_; is an orthonormal frame in T4SL(2, R).
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A quick application of Lemma 3.3 gives us the following lemma.

Lemma 3.11

The cofactor map acts on the tangent basis as follows:

COle (A) =T (A),
cofry(A) = —1(A),

—&Tgm) + L na).

cofrz(A) = A

The next lemma gives a convenient set of local coordinates for SL(2,R) \ SO(2,R).
Lemma 3.12
Define a mapping A : R? x [1,00) — M? by
A(s) = U(sy + s2) H(s3) U(sy — s9), s = (s1,59,53) € R* x [1,00)

with U(o) as in Definition 3.6 and

(c+1DV2 (0 —1)Y2

H(o) = —= (0_1)1/2 (0+1)1/2 .

1
V2
Then

1. the range of A is equal to SL(2,R),
2. 1| A(s)]? = s3,

3. A(s) € SO(2,R) if and only if s3 =1,

4. the restriction

A:R? x (1,00) = SL(2,R) \ SO(2,R)
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is a local diffeomorphism with

9; A(s) = mi(A(s)), =123

Proof. Since det A(s) = det H(s3) = 1, we see that A(s) € SL(2,R), for every s €
R? x [1,00). Moreover, by Lemma 3.6, |A(s)|* = |H(s3)|* = 2s3, so A(s) € SO(2,R) if
and only if s3 = 1, by Lemma 3.7.

Let A € SL(2,R). Using the polar decomposition, we can find a U € SO(2,R)
such that A = UVATA'. Since VATA is a symmetric matrix in SL(2,R), there exists
V € SO(2,R) such that

V(VATA)V' =diag [o, 1/a] =D, with a>1.

Finally, taking

we have W € SO(2,R) and WDW T = H(o), for 0 = (a* + a~2)/2 € [1,00). Thus, we
see that
A= (UVWH(@)(WTVT),

with UVW, WTVT € SO(2,R). By Lemma 3.7, this shows that the mapping

A :R? x [1,00) — SL(2,R)

is surjective.

We next verify the formulas for the derivatives. Since
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U'lc)=2U(0) =U(0)Z,

we find that

A simple calculation yields

H'(0) = 73(H(0)).

Therefore, by Lemmas 3.6, 3.7 and 3.3, we have that

3 A(s) = U(s1 + s2)713(H(83))U(81 — 82) = 13(A(58)).
Finally, by Lemma 3.9, {7;(A)}?_, is a frame in T4SL(2,R), if A € SL(2,R)\SO(2,R).
Thus, we see that the mapping
A:R? x (1,00) = SL(2,R) \ SO(2,R)
is locally invertible. O

Corollary 3.13
In local coordinates, %|A(s)]2 = s3, and hence, the metric g(.A(s)) is a function only of

s3. It has the form

53

g(A(s)) = diag |4(s3 + 1), 4(s3 — 1), 22 —1) |

With abuse of notation, we shall sometimes write g(s3) instead of g(A(s)). It will
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turn out that the main coordinate describing the motion is s3. The previous corollary
then identifies H (o), a hyperbolic rotation, as the main term in the description of the
motion in local coordinates.

This decompostiiont into tow “circular” coordinates and one “hyperbolic”, or mag-
nitude, coordiantes is a double edged sword. On the one hand, this isolation of the
magnitude in one coordinate is why the metric is diagonal. On the other as ¢ — 1 then
the tori from before collapse to SO(2,R) in a doubly wrapped way. That is, these coor-
diantes are a two branched cover of SO(2,R). An unfortunate fact that makes its wrath

known by the singularity our metric faces as we approach it.

Lemma 3.14

For s € R? x [1,00), the coordinate map can also be expressed as

Als) = <S3 ; 1)1/2 U(2s1) + <S32_ 1)1/2 U(2s2) M,

and the normalized tangent vector fields have the form

71(A(s)) = LU (2812,
7o A(s) = —5U(2s2) K,

f(A(s)) = % [(Sf” - 1)1/2 U(281) + <S3 * 1) v U(252)M] |

S3 S3

Proof. The first statement follows from Lemma 3.12 by writing

1 1/2 1\ /2
H(a):<"2 ) 1+("2 ) M,

and then using the fact that
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Differentiating the new expression for A(s) with respect to s yields alternate expres-

sions for 7;(A(s)). The formulas for 7;(A(s)) follow after normalization. O

We also note that Lemma 3.14 provides an extension of the normalized tangent vectors
7i(A) to T4SL(2,R) for A € SO(2,R). In this case, the parameter sy is independent of

A and simply rotates the frame {K, M}.

Lemma 3.15
In the local coordinates of Lemma 3.12, the Christoffel symbols depend only on s3, and

they have the form

T5i(s3) = 59" (s3)[0;391:(53) + Orsgl;(s3) — disgin(ss)], s3> 1,
where ¢'(s3) indicates the derivative in s3.

Proof. Since the metric is diagonal and depends only on s3, the result follows from the

general formula

[l (s3) = 3 Z 9" (53)[0;9re(53) + Orgej(s3) — Oogin(ss)]

1

= 59" (53)[0;398i(53) + Oragi;(s3) — dizgy(s3)]-

Lemma 3.16

The orthogonal projection of M? onto T4SL(2,R) is given by

P(A) = I — N(A) @ N(A).
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Definition 3.9. Given (A4, B) € D, we define the shape operator
S(A)B=—dN(A)B= - BabiN(A).
b 8fqab

Lemma 3.17

The shape operator may be expressed in the form

1
S(A)B = —WP(A)COfB.

Moreover, for each A € SL(2,R), the shape operator is symmetric on T4SL(2, R).

Proof. By direct computation and Lemma 3.3, we have

a

cofB  cofA
= - + <A> B>
Al AP

1 A >COfA)
—— (cotB— {2 B2
Al ( <|A| | Al

1

=T (cofB — (N(A), cofB) N(A))
1

= —WP(A)cofB.

From this formula, we see that S(A) maps into T4SL(2,R), and by Lemma 3.3 , the

verification of symmetry is immediate. m

Lemma 3.18
If A e SL(2,R)\SO(2,R), then the vectors {7;(A)} are principal directions in 74 SL(2, R)

with corresponding principal curvatures
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1 1 2

A7 AT AP

Proof. The principal curvatures and directions are the eigenvalues and eigenvectors of

the shape operator. So this is an immediate consequence of Lemmas 3.11 and 3.17. [

Definition 3.10. The second fundamental form

TI(A) : T4SL(2,R) x T4SL(2,R) — R

is defined by

II(A)[By, By] = (S(A)B1, By) -

Lemma 3.19

For vector fields V(A), W(A), the Riemannian connection V is given by

Lemma 3.20

For vector fields V(A), W(A), Y(A), the curvature tensor is the map given by

Y(A) = R[V(A), W(A)JY(A)
= [(A)[W(A), Y (A)]S(AV(A) = TI(A)[V(A), Y (A)]S (AW (A).

Corollary 3.21

Relative to the orthonormal basis {7;(A)}, the curvature tensor has the coordinates
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<R(7A'Z,7A'])7A'k,7ﬁg> = Rz‘jkg = /\z)\j<5jk(sz£ - 5ik5j€)a

where {\;} are the principal curvatures.

3.3 Material Coordinates

Though we could have translated our equations (2.10) into material coordinates immedi-
ately, the results of the previous section will allow us to write them in a more useful form.
The use of material coordinates for the free boundary problem of fluids is commonly used
in both the Euler and MHD context. To name just a few see [35, 14, 8, 7, 12] for the
Euler equation examples and [15, 16, 17] for MHD. However, it is noted in [32] that the
material description can make analyzing contact discontinuities, such as current vortex
sheets, difficult. Since we are not concerned with these the material coordinates will do
great.

In material coordinates the material time derivative D; is simply a time derivative.
The other differential operators will follow from the chain rule. Recall F'is our deforma-

tion gradient D,z (y,t). So

(B-V.)B=D,BB
=D,BF'B
=(F'B-V,)B

and similarly (B - V,)u = (F~'B-V,)u. The conservation of mass and transport of the

magnetic field in (2.10) become

D+ F~"V,p

(F'B-V,)B
D:B— (F'B-V,)u= 0.
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For the divergence conditions we have

V. u=trD,u
=tr Dyu Fh

The motion is incompressible so det(F) = 1. By Lemma 3.3 F'~ " = cof(F). By definition
3.1
V.- u=(Dyu,cofF).

Putting all this together gives us MHD in material coordinates

Dyu+ cof(F)Vyp = (F'B-V,)B
DB~ (F'B-Vu = 0 . (3.13)
(Dyu,cofF) = (D,B,cofF) = 0

The motion is continuous so x(9B,t) = 0€2(t). Therefore our total pressure condition is

q(y,t) =0

for y € OB. The condition on the pullback fo the magnetic field is already in material
coordinates.

The remaining boundary conditions require having the normal to the boundary of
Q(t). Recall the boundary is the unit circle so for any y € 9B the tangent vector v(y) to
0B at y is Zy. Thus

n(x(y, 1)) = ZDya(y, t)o(y)
— ZF Zy
= —cof(F)y.

The Rayleigh-Taylor sign condition then becomes
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Vap(z(y,t)) - n(z(y, 1)) = —cof(F)Vyq(y, t) - cof(F)y
= —V,q(y,t) - cof(FTF)y < 0,

and the zero magnetic flux condition becomes

B(y,t) - cof(F)y =0

All together the boundary conditions in material coordinates

B
—Vyp- cof(FTyl,W)y ; O0 y € 9B,
B(y,t) - cof(F)y = 0
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Chapter 4

Equations of Affine Motion

We now specify that our reference domain, B, from the previous section will be the unit

ball in R?.

Definition 4.1. An incompressible affine motion defined on the unit ball reference

domain, B, is a one-parameter family of volume preserving diffeomorphism of the form

x(t,y) = Alt)y yeBteR,

with

A€ C'(R,SL(2,R)) N C*(R, M?).

The use of affine deformations is well established in continuum mechanics, see for
instance [28]. They were first introduced in the context of the vacuum free boundary
incompressible Euler system by Sideris [37] and later expanded on in [35, 31]. In the case
of compressible Euler equations Hadzi¢ and Jang [14] were able to show that perturba-
tions, in an appropriate Sobolev space, of these affine solutions in fact remain global in
time large solutions to the equations. Moreover, the growth of the fluid domain is tied

to the growth of the domain given in [37]. This result was extended in [33].
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Under affine motions our fluid domain, €2(¢), is an ellipse centered at the origin with
principal axes determined by the eigenvectors and eigenvalues of the positive definite
symmetric (stretch) matrix (A(¢)A(t)T)Y/2. The velocity of the fluid is given in material

coordinates simply by

and in spatial coordinates

u(z,t) = A(t) A7 ().

We work in tangent bundle D since keeping track of not just the deformation gradient,

but also the velocity gradient will be useful.

Definition 4.2. Define the mapping L : D — sl(2,R) by

L(A,B) = BA™",

For our affine motion, the velocity gradient Dyu = L(A(t), A(t)).
Refocusing on our derivation we now substitute our affine versions of u into (3.13),

which gives us

A(t)y + cof(A)Vyq = D,BA™'B
DiB—AAT'B = 0
<Cof(A),A> = (cofA,D,B) = 0

4.1 Deriving Affine Versions of Physical Quantities

We will refer to the velocity, total pressure, and magnetic field as the physical triple of

equation (2.10), or more often (3.13) since we will work almost exclusively in material
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coordinates.

Lemma 4.1

The solution to the magnetic field equation in (3.13) for affine motions are of the form

B(t,y) = ko A(t)b(y),

where
Vy-b =0 yebB
b-y = 0 yeoB ,
b(y)] = 1 yedB
and kg € R.

Proof. Notice that

DB = roA(t)b(y) = kpAA™'Ab = AA™'B
and
(cof(A), D,B) = (cof(A), AD,b)
= tr(A"AD,b)
= tr(Dyb)
=V, b
The boundary condition
B - cof(A)y = A(t)b(y) - cof(A)y

=y ' cof(A) " Ab(y)
=y Ib(y).

The final boundary condition follows from the material boundary condition (2.8). [
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A special class of simple affine motions will be excluded temporarily from the deriva-
tion but we will later show that the dynamics described below can encompass certain

forms of these motions.

Definition 4.3. If z(t,y) = A(t)y is an affine motion where AT A is constant then we

say that the motion is rigid.

We recall that AT A encodes the principle axis of the fluid ellipse and so if this is
constant then the motion can consist only of isometries of R
Before completing our full derivation we need the following lemma that will allow us

to specify the material magnetic field required for (3.13) to admit affine solutions.

Lemma 4.2

Let v be a vectorfield on B satisfy

o] =1
v-y=20

on 0B. Then if Dyvv = Myy for some y it must be the case that
Mo = C()]
for some ¢y € R.

Proof. By our boundary assumptions on v we see for all g € 9B

v(g) = 23,

and the boundary of the unit disk is a level set for %|v|2 SO

Dy, [Y0)?]" (9) = ¢(®)7
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for some scalar function ¢(+). Notice

Dy [31v]*] = Dyv'v

and so on the boundary

UTDyU =o' My
@)y -v=(£Z7) - Moy
0=y (MoZ7),

which implies My = ¢yl as required. O]

We are now ready to derive the form of physical triples that arise from affine motions.
We note that while the total pressure and spatial velocity are completely described there

remains some ambiguity in the exact form of the material magnetic field.

Lemma 4.3
Let z(y,t) = A(t)y be a non rigid affine motion. Then x(t, y)is a solution of (3.13) if and

only if its physical triple is

u(t,y) = A'(t)y, qlt,y) = M)A —y*), Blt,y) = reA(t)b(y),

where the material magnetic field satisfies

Vy-b=0
Dybb = R1Y
inside B,
b-y=
b =1
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on OB.
A(t) satisfies the ODE

A"(t) — A(t)cof(A)(t) = kikg A(t).
where x; € R.

Proof. For the forward direction we immediately have

ult, y) = A'(t)y,

and by Lemma 4.1

B(t,y) = ko A(t)b(y)

for a b which satisfies

Vy,-b=0 yebkB, b-g=0, |b(y)=1 gyeoIB.

Plugging these into (3.13) gives us

A" (t)y + cof(A)Vq(t,y) = “3A(t>Dybb(y)’

or

AT A" (t)y + cof (AT A)(H)Vq(t, y) = KaDybb(y). (4.1a)

Differentiating (4.1a) with respect to y gives us

ATTAY(t) 4 cof (AT A) (1) D2q(t,y) = K§Dy[Dybb(y)). (4.1b)
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Thus for any y;,y, € B

cof(A"A)(t)(Dya(t, y1) — Dyalt, y2)) = 0,

implying that qu(y,t) = My(t). Where My(t) is a path of symmetric 2 x 2 matrices.

This makes (4.1b)

ATEA"(t) + cof (AT A)(£) My(t) = k2D, [D,bb(y)]

which implies there is some M, € M? so that

ATTA" () + cof (AT A)(t) My(t) = My = k2D, [D,bb(y)] (4.2)

We now focus on the total pressure. Integrating qu with respect to y gives

Vy,q = Mo(t)y + colt).

Recall that the boundary conditions imply that the boundary is a level, null, set of

the total pressure and so for all y € 0B V¢ = S\(t)g) for some 5\(25) Thus on the boundary

where A(t) is a multiple of A(¢). Plugging this and integrating the material magnetic
field side of (4.2) gives us
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ATTA )y + Mt)cof(ATA)(H)y = Moy + ¢

for some ¢, € R%. Plugging in y = 0 shows us that ¢; = 0, then Lemma 4.2 implies that
My = k1 for some ¢ € R.

The reverse direction is a simple computation. O

Notice that the total pressure satisfies the Rayleigh Taylor like sign condition when
A(t) > 0. We will show that the sign of A(¢) is preserved by the and so this will reduce
to a condition on the initial data.

Though the above will be sufficient to analyze the affine motion we would like to have
a better idea of what the magnetic field is doing. Using the usual basis representation
and our knowledge about what the self directional derivative of our material magnetic

field must be we can arrive at a number of interesting relations for this field.

Lemma 4.4
The material magnetic field, b(y), satisfies the
det Db = —c (4.3)

and the orthogonality relations

(Zb,Ab) = (Zb,d1b) = (Zb,0b) = 0

where the differential operators

0? 0? 0? 0? 0?
=t O=—ap——s =
oyt Oy3 y:  dy3 7 Oyidys

are applied component wise.

Proof. This result follows from the divergence free condition on b and some index manip-
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ulation. We let b;'. be the derivative of the i"® component of the vectorfield b with respect
to the j* componety of y. Repeatetd indicies are summed over so our divergence free
condition reads

b =0

The equation defining M, in coordinates is thus
bEb), = mays,
differentiating the expression with respect to 3/ gives
bR}, + B b = my;
The first coordinate equation may be written

my = 0L+ bR,
—  BFOL + bR,
= bOL+0
= (b)* + b}, — bidg
= —2(bjb3 — bibs)
= —2det(D,b)

We tackle the mixed derivatives next as it follows most similarly to the first. For this

argument recall the divergence free condition b} = —b3.

my —mey =0 = bibt — b5b2 + bFbE, — bFb3,
= (b1)* — (B3)* + bFOR(by — b3)
= bF0,(b] — b3)
= bl(bh - bgl) + bQ(b%Q - b%?)
= —20'03, + 20%b},

—  2(Zb, D1sb) .
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For the next notice

mig +me =0 = b6 + 0502 + bFbL, + bFb2,
= (B)) (b + bF) + bFbL, + BB,
= bl(biy +b3)) + b? (b3, + 3))
= bl(bfl - b§2) - bQ(bh - b%z)
= (Zb,00b)

The final component will follow similarly.

—mig +mg =0 = —bfb2 + b5b2 — bFbl, + bFb,
= (B)(B — ) + DrDyy — DD,
= bl(b%z - b%l) + bZ(b%Q - b%l)
= —b(b3, +b3,) + b7 (b}, + byy)

= —(Zb, AD)

as required.

]

Using Lemma 4.4 we can pin down the sign of ;. The divergence free condition
implies that D,b is trace free and so is in span{Z, K, M}. If x; > 0 then by (4.3)
det D,b < 0 which by the usual basis expression for the determinant in Lemma 3.1

implies that if

Dyb = (IlZ —|— agK —|— CL3M

then

det D,b = ai — (a3 + a3)

and so Dyb must be anti-symmetric. However, this would contradict the magnetic field

conditions of Lemma 4.3 and so x; must be strictly negative. Putting all of this together
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we get the following corollary.

Corollary 4.5
Let z(y,t) = A(t)y be a non rigid affine motion. Then z(t, y)is a solution of (3.13) if and

only if the physical triple is set as in Lemma 4.3 and A(t) satisfies the ODE

A"(t) — Mt)cof(A)(t) = —rA(L). (4.4)
where k > 0, and k = 0 corresponds to the Affine Euler Equations.

Remark 4.1. The equations of motion (4.4) are the Euler-Lagrange equations associated

to the Lagrangian £ : M2 x M? x R — R given by

S(A A N) = LA — LA + A(det A — 1).

2

The scalar function A(¢) in (4.4) is a Lagrange multiplier which will now be identified.

Definition 4.4. Given a parameter value x > 0, define the Lagrange multiplier map

A, :D—Rby

tr[L(A, B)?] + 2k tr[(BA™)?] + 2k
trA-TA-L  trA-TA!

As(A,B) =

Using the inner product introduced in 3.1 and results from Lemma 3.3 we can rewrite

the Lagrange Multiplier as

tr[L(A, B)?] + 2k
Asld, B) = =2 7 A

(LML) 4k
a %|c:0f(A)|2
: <LT, L> + K

S Sl e A (4.5)
3l AP
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Lemma 4.6
Fix k > 0. If A € C°(R,SL(2,R)) N C*(R,M?) satisfies
A"(t) + KAL) = At) A(t)™T, teR,

for some function A € C°(R, R), then

Proof. Since

we have

It follows that

L(A(t), A'(t)) = A"()A(t) ™" — L(A(t), A'(t)) A'()A(t)~"
— (—RA() + A1) A(E)T) A(t) ™ — L(A(L), A'(1))?
= —kl + \(t) A()TA®) N — L(A(t), A'(1))2

Taking the trace, we obtain

tr L(A(t), A'(t)) = tr A(t)"TA®) ™" [A(#) — Ao(A®R), A'(1))] .
Since (A(t), A'(t)) € D, we have tr L(A(t), A’(t)) = 0, which implies the result. O

Definition 4.5. Given a parameter value k > 0, define the energy map E, : D — [k, o0)
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E(A, B) = 3|BI* + 5| A]%.

We refer to 1| B|? as the kinetic energy and %|A|? as the potential energy.

By Lemma 3.7 the potential energy is minimized on SO(2,R), and so

E.(A, B) > §]AP > &,
for all (A, B) € D.

Theorem 4.7

Given a parameter value k > 0 and initial data

(A07 BO) € D7 (46)
the initial value problem

A"(H) + KA() = Mo(A(), A'(1)) cof(A),
(A(0), A'(0)) = (Ao, Bo)

has a unique global solution A € C°(R, SL(2,R)) N C*(R,M?). Additionally, D is invari-
ant:

(A(t),A'(t)) e D, forall teR,
and the energy is conserved:

B (A(t), A'(t)) = E.(Ao, By), forall teR.

Proof. First we show that the system has local in time solutions. For this we write it in

system form as
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(é) B (An(Aag)Cof(A)) = G(4,B)

To see that G is locally Lipschitz on a compact subset of D let (A4;, B;) € D and

notice

|G(Ay, By) — G(Ag, Bs)| < |By — Ba| + k|A; — Ay
+ [Ax(Ay, By)cof(Ay) — Ax(Asg, By)cof(As)|
< ¢|[(Ar, Br) — (A2, By))
+ [Ax(Aq, By)cof(A;) — Ax(Asg, By)cof(Ay)|.

For the remaining term notice by linearity of cof we have

An(Ay, By)cof(Ay) — A (As, Ba)eof(As)| < [An(Ay, By)||cof(Ar — Ay)|
+ [Ax(Ar, Br) — Ax(Agz, By)|[cof(Ay)|
< [Ax(Ar, B1)|[(A1, Br) — (A2, Bo))
+ [Ax(A1, Br) — Ax(Ag, Bo)|| Azl

Using the representation of (4.5), the product bound (3.2), and the minimality condition

of Lemma 3.7 we have for any (A, B) € D

(LT, L) + & L+ &
2 2
_BRAT 4k
T slAP

Since A € SL(2,R) A™' = cof(A)T and by Lemma 3.3 the cofactor operator is an

isometry so we have
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‘E ’2“”2 K
AH A,B <
( ) B %|‘1|2

2K
A2
< 2|B* + k.

< 2|B]* +

Thus the Lagrange Multiplier is bounded. A similar argument shows it is locally
Lipschitz. Therefore if our path preserves D then we have local in time solutions to

(4.4). Notice by Lemma 4.6 we see that with A, as defined that our flow must remain in

D.
Energy conservation is a quick computation.
E = (A A" + k(A A
= A, (A" cof(A)) — k(A A") + Kk (A, A)
=0.
It is then quick to see that conservation of the energy implies that G(A, B) is uniformly
Lipschitz and so we have global solutions. O]

We conclude this section with a result that echos Arnold’s Theorem [4] that solutions
to the Incompressible Euler Equations form geodesics in the space of volume preserving
diffeomorphisms. Our situation is slightly different in that our free boundary technically
prevents this space from being an honest Lie Group, or group for that matter, but it is

an interesting connection none the less.

Corollary 4.8
A curve A € C°(R,SL(2,R)) N C*(R,M?) is a geodesic in SL(2,R) with the (induced)
Euclidean metric if and only if it satisfies (4.7) with x = 0. ( We include constant

solutions as geodesics.)

Proof. A geodesic curve is one for which A’(t) is parallel along A(t). That is
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Dy

LA () =0,

in which the covariant derivative along A(t) is

D d

Thus, A(t) is a geodesic if and only if

A"(t) = Mt)N(A(1)),

for some scalar \(¢). The result follows from Lemma 4.6.
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Chapter 5

Invariant Quantities and Sets

5.1 Conserved Quantities

Aside from the energy of the system we have other conserved quantities. The collection
of our three conserved quantities will give us foliations of our phase space that allows us

to determine the dynamics from these invariants alone.

Definition 5.1. Define the maps X; : D — R, i = 1,2, by

X.1(A,B) = (ZA,B) and Xu(A,B) = (AZ,B).
We shall frequently write X (A, B) for (X;(A, B), X2(A, B)).

These quantities, aside from being conserved, give us a nice characterization of

SO(2,R). Let

S={A€SL2R): X|(A,B) = Xo(A,B), for all B € TySL(2,R)},  (5.1)

and notice
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S ={AeSL(2,R): ([A, Z],B) =0, for all B € TASL(2,R)}
={AeSL(2,R): [A, Z] =0}.

Which by the characterization (3.9) implies that S is SO(2, R).

Theorem 5.1
If Ae C%R,SL(2,R)) N C?*(R,M?) is a solution of the IVP (4.6), (4.7), (4.8), then the

quantities

EN(A(t),A’(t)) and Xi(A(t),A’(t)), 1=1,2,
are invariant.

Proof. The first statement is just conservation of energy which was already noted in
Theorem 4.7.

We can easily compute the derivatives:

%X (A(t), A1) =

” (A1), ZA(1)

d

P

— (A1), ZAW) + (A (1), ZA(1))

— —k (A, ZA(D) + AL(A(D), A'(1)) (coA(t), ZA(D))

=0,
and

dXA At —dA’tAtZ

CX(A(), <>>—@< (1), A1) 2)
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Observe that by Lemma 3.6, the Lagrangian defined in Remark 4.1 is invariant under

the left and right action of SO(2,R):

£(A, B,\) = &({UA,UB, \) = £(AU, BU, \),

for all (4,B,\) € M? x M? x R and U € SO(2,R). Therefore, we can deduce the

invariants X;(A, B) from Noether’s theorem. For example, we have

X1(A,B) = g <%,U(O‘)A>

- Jo
For 2d incompressible perfect fluids (x = 0) taking the curl of (2.4) in material

o=0

coordinates shwo that the material vorticity, i.e. curl u(t, z(¢,y)), is independent of time
in general. However, this does not hold in general for MHD (x > 0). The following
corollary shows that the material vorticity is conserved even for non zero k in the affine

case.
Corollary 5.2

If Ae C'%R,SL(2,R)) N C?*(R,M?), then its vorticity W (¢) satisfies

W(t) = 5[LIA®), A'(1)) — LIA(1), A'(1) '] = 3 X(A(1), (1)) Z.

N[ —=

If A(t) is also solution of the system (4.7), then its vorticity is invariant and the corre-

sponding affine motion is invariant if and only if Xy = 0.

Proof. Since W (t) is anti-symmetric, we can write W (t) = w(t)Z, for some scalar function

w(t). Then by Lemma 3.3 and the orthogonality relations 3.1 we have
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This is invariant by Theorem 5.1, if A(t) solves (4.7). O

5.2 Invariant Sets

Definition 5.2. Given parameter values x > 0 and

(E7X) = (EaX17X2> < [KJ,OO) X RQa

define

D(X)={(A4,B) €D : X;(A,B) = X;, i =1,2}.

and

D.(E,X)={(A,B)€D: E.(A,B)=E, Xi(A,B)=X,, i=1,2}.

Lemma 3.9 allows us to express any tangent vector B € T4SL(2,R) in terms of the

basis {7;} as

o8



Xi+X Xi—X

—,C——;C GR 52
911(A) ? 922(A) ’ ( )

3
B = Z CiTZ‘<A), with C1 =
i=1

In this case, ¢ = (A, B). Moreover, at a fixed A € SL(2,R) \ SO(2,R), if we have
(A, B) € D(X) then (A, B) € D,(F, X) if and only if

3
E=5AP+1)  gulA). (5.3)
=1

Therefore fixing an X € R? and an energy F gives us a unique, up to sign, tangent
vector B. In the case where x = 0 this implies that each invariant triple defines a vector
field on SL(2,R), whose trajectories foiliate SL(2,R). Further the left and right action
of SO(2,R) on D moves one between disjoint trajectories.

In the case where £ > 0 the situation is more complicated since when 3|A[* = L1E
then D, (E, X) = {(A4,0)} and so necessarily X = 0, and if |A|*> = LE then D,(E, X)

is empty. Thus we can only hope to foiliate an open subset of SL(2,R) on which

1
AP < ~E.

We now describe the invariant sets for SO(2, R).

Lemma 5.3
Fix k > 0. Let (E, X) € [r,00) x R%. Suppose that (4, B) € D and A € SO(2,R).
Then (A, B) € D(X) if and only if X; = X, and
A=U(2s1), B= (%Xl) U(2s1) Z + B U(2s9) M, (5.4)
with 5 > 0, S1,89 € R.
Moreover, (A, B) € D,(E, X), if and only if (A, B) € D(X) and
E=r+1iX7+ 5%
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Proof. Using Lemma 3.12, write A = A(s1,0,1) = U(2s1). By Lemma 3.14, for B €
T4SL(2,R), we have
B = ClU<281)Z — CQK + CgM.

Note that —K = ZM and take (c3, o) = B(cos 2sy,sin 2s3). Then

—Cco K + c3M = [(sin 2597 + cos 2sol ) M = SU(2s9) M,

so that

B = U(2s1)Z 4 BU(2s9) M.

Now since A € SO(2,R) and (A4, B) € D(X), we have

Xl = X2 = XQ(A, B) = <AZ, B> = 201,

which yields the formula (5.4).
By (5.4), we have

|BI* = 1X71Z2U (o) + B |MU (02)|* = 2(3 X7 + 5%),

and so if (A, B) € D,(E, X), then

E = Ey(A, B) = 5|BI" + 5|A]" = &+ 1X7 + 8%
The converse statements are easily verified. O

Corollary 5.4
For every X € R?, there exists (A4, B) € D(X) such that B # 0.

60



Proof. This follows from Lemmas 3.9 and 5.3. [

5.3 The Nonlinearity, Revisited

The dynamics of (4.7) are linear except for the Lagrange Multiplier term. A priori this
term depends on both the the position and velocity of the trajectory; however, after
fixing initial invariant triples the nonlinearity only depends on the position and moreover

only the magnitude of the position.

Lemma 5.5

Fix kK > 0. If (A, B) € D,(E, X), then

Kk — det B) - 4F — 2X1X2
AR AR

(A B) = X

Proof. Let (A, B) € D.(E,X) C D, and put L = L(A, B) = BA™!. Then since (4, B) €

D, tr L = (B, cof(A)) = 0, and so the Cayley-Hamilton Theorem implies that

L? + (det L)I = 0.

Taking the trace yields

tr.? = —2det L = —2det Bdet A™' = —2det B.

Also note that by Lemma 3.3, we have

trA7TA™ = |A7T12 = |cof A? = |A]%

According to Definition 4.4, this shows that
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2(k — det B)

AH(A7 B) = Ta

which is the first statement.
Therefore, the result will follow if we can verify that

2F — X1 X,

k—det B = AP ,

for (A, B) € Du(E,X). (5.5)

To proceed, we temporarily assume that A € SL(2,R)\ SO(2,R). Using Lemmas 3.9

and 3.11, we have

2 1

cofB = ClTl(A) — CQTQ(A) — WOSTB(A) + WN(A)

Therefore, by Lemmas 3.3 and 3.9, we find that

2
2det B = <COfB7 B> = 911(14)0% — ggg(A)Cg — ngg(A>C§

Combining this with (5.3) to eliminate the term with c3, we obtain

1
kK —det B = W (2E — igll(A)zc% + %922(14)203)

B 2F — X1 X,
VR
as desired.

We now establish the identity (5.5) for A € SO(2,R). In this case, we have that

|A|?> = 2, by Lemma 3.7, and X; = X, by Lemma 3.9, so we aim to show that

k—detB=F — 1X}.

This now follows from Lemma 5.3 since
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2det B = (B, cofB)
= (1X,U(281)Z + BU(252) M, 1 X,U(25,)Z — BU(252) M)
= 1X7|U2s1) 2] = 2|U(252) M
= 3 X7 — 28
= —2F + 2k + X7.

Corollary 5.6

For each k > 0, the set

{(A,B) € D A(4,B) = 0}
is invariant under the flow of (4.7).

Our invariant sets can be further described by the possible energy values obtained on

them. By Corollary 5.4, D(X) # 0, so for X € R? and x > 0, we may define

en(X) = inf{E.(A, B) : (4, B) € D(X)}.

Lemma 5.7
If kK > 0, then for any X € R?, e.(X) > k with equality if and only if X = 0. Moreover,
E.(D(X)) = [ex(X), 00).

Proof. We begin with the x = 0 case. Fix X € R?. Let A; be a sequence in SL(2,R) \
SO(2,R), with |A;| — oco. Fix ¢, ¢y and take ¢3 = 0 in (5.3). We obtain a sequence
(A;, B;) € D(X) such that Ey(A;, Bj) — 0. Thus, we see that ey(X) = 0.

Now, letting c3 range over all values in R, we observe that
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(Eo(Aj, Bj), 00) C Eo(D(X)),

for each j. This shows that (0,00) C Eo(D(X)).

If X # 0, then for all (A, B) € D(X), B # 0 and thus Ey(A, B) # 0. This means
that Ey(D(X)) = (0, 00).

Finally, take X = 0. Since (1,0) € D(0), we see that 0 = Ey(I,0) € Eo(D(0)), and
we conclude Ey(D(X)) = [0, 00).

For the k > 0 case. Since E.(A, B) > &, for all (A, B) € D, we have that e, (X) > k.

If e,(X) = k, then for any € > 0, there exists (A4, B) € D(X) such that 0 < E.(A, B)—

k < . It follows that

|B|* <2 and |A]? <2+ 2¢/k.

Therefore, we see that for i = 1, 2,

|Xi| = |Xi(A, B)| < |AllB| < £'2(2 + 2¢/5)'2.

Since € > 0 is arbitrary, we get that X = 0.
On the other hand, if X = 0, then for any A € SO(2,R), we have (A,0) € D(X).

Thus, we see that

Kk <eq0) <E(AD0) = k.

We have shown that e, (X) = & if and only if X = 0.
Take a sequence (A;, Bj) € D(X) with E.(A;, Bj) \, ex(X). By Lemmas 3.9and 5.3,
we may assume without loss of generality that for each j, B; lies in the span of 7;(4;),
i = 1,2. Since k > 0, this sequence is bounded in D(X). By compactness we obtain
an energy minimizer (A, B) € D(X) where B lies in the span of 7;(A), i = 1,2. By
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considering the family (A, B + B;) € D(X), where (7;(A4), By) =0, i = 1,2, we see that
that E,(D(X)) = [ex(X), ). O

Lemma 5.8

If Kk >0 and X; = X5, then

ex(X) = 5+%X12’ s X
" (26)121%,| = 5, 17

Proof. It A € SO(2,R), then by Lemma 5.3, we see that

min{E,(A, B) : B € T4SL(2,R)} = k + 1 X7.

If Ae SL(2,R)\ SO(2,R), then by Lemma 3.12

. i} X2
min{E, (A, B) : B € T4SL(2,R)} = £|A]* + Ve 1+ 5 = F(APP).
Taking the infimum over ¢ = |A|? > 2, we obtain
inf{E, (A, B) : A € SL(2,R) \ SO(2,R), B € T4SL(2,R)}
K+ 1 X%, X<k
p— 1 f p—
inf £(6)

V26X -k, X7 >k
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Chapter 6

Reduced Hamiltonian

In this section we will derive the principle dynamics behind the affine motions in SL(2, R).
The local coordinates given in Lemma 3.12 allow us to decompose any path into two
rotational pieces and a stretch portion which is described by the magnitude of the path.
Further, once we fix this invariant triple Lemma 5.5 determines the Lagrange Multiplier
A, up to this magnitude. Finally, the representation of tangent vectors given by (5.2)
shows their coefficients in the 7;(A) frame depend only on the magnitude as well. The
strategy is to use the representation of tangent vectors given by (5.2) to get a geometric

relationship between the magnitude and its velocity in terms of an invariant triple.

6.1 The Reduced Hamiltonian

In this preparatory section we introduce the reduced Hamiltonian and investigate its
level curves in the phase plane. The connection with the dynamics will be made in

future sections.

Definition 6.1. Given values k > 0 and (F, X) € [0,00) x R?, define the polynomials
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P.(z;E,X) = — 4kx(2* — 1) + 4B (2* — 1)
—%<X1—X2)2<x+1)—%(X1+X2)2($—1>, SL’GR,

and

¢, (z,y; £, X) =

2 PJrE, X
%——(m’ . X) (z,y) € R%.

2 ’
The reader is cautioned that from now on z and y shall represent real numbers, and

not spatial and material points, as in previous sections. We will see momentarily that if

(A, B) € D(E, X), then the point (z,y) = (3|A]%, (4, B)) satsifies ®,(z,y; E, X) = 0.
With the phase plane of the magnitude in mind we define the phase plane projection

to be the mapping P : D — R? by

P(A, B) = (3141°, (A, B)) .

By Lemma 3.7 the range of P is

P(D) = {(z,y) € R*: 2 > 1} U {(1,0)}, (6.1)
A, B) = (1,0)

P(A,B) = (1,0) < AeSO(2,R).

For a fixed invariant triple P restricts to the vectorfield on SL(2,R) defined by these
invatiants. The image of these vectorfields under P is our main concern. For fixed

parameter values x > 0 and (E, X) € [ex(X),00) x R?, define

Ci(E,X) =P(Dy(E, X))
= {(z,y) =P(A,B) € R*: (A, B) € D.(E, X)}.

Lemma 6.1

Fix values k > 0 and (E, X) € [e.(X),00) x R?. There holds
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Cy(E,X)C P(D).

A point (z,y) with > 1 belongs to C,(E, X) if and only if

O (z,y; E,X)=0.
The point (1,0) belongs to C(E, X) if and only if
0,.(1,0,E,X)=0 and 9,0.(1,0;E,X) <0 (6.2)

if and only if

Xi=X,, and E>rk+1X]. (6.3)

Proof. The first statement is a consequence of Definition 5.2.
Select any point (z,y) = P(A,B) € P(D), with x > 1. By definition, (x,y) €
C.(F, X) if and only if (A, B) € D,(E, X). By Lemma 3.9, we find that

g(A) = diag |4(z + 1), 4(z —1), 22— 1)

The third coordinate c3 defined in Lemma 3.9 satisfies

C3 = <A7B> =Y.

Therefore, Lemma 3.9 implies that (A, B) € Dy (E, X) if and only if

(Xl + X2)2 (Xl — X2)2 ny
E pr—
T Rer) | 8@—1) 4@ —1)

which is in turn equivalent to the desired result ®,(x,y; £, X) = 0.
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Now suppose that (1,0) = P(A, B) € Cx(EF,X). Then A € SO(2,R) and X; = X,
by 5.1 and 6.1. By the Cauchy-Schwarz inequality and Lemmas 3.6, 3.7, we have
X} =(ZA, B)* < |ZAP|B|* = |AP|B|> = 2|B’ = 4(E.(A, B) — 5|A]) = 4(E — &).

Thus, (6.3) is true.

Next, suppose that (6.3) holds. Choose A € SO(2,R) and using Lemma 5.3 set

B=(iX,) ZA+ B,

with

(A,B)) =(ZA,B;) =0 and i|Bi|>=F—«x—1X].

By Lemma 5.3, (A, B) € D.(E, X), and so (1,0) = P(A, B) € C,(F, X).

It is immediate to verify the equivalence of (6.2) and (6.3). O

Lemma 6.2
A point (zg,yo) € Cx(E, X) is a critical point of the Hamiltonian ®,(z,y; F, X) if and

only if

r9>1, yo=0, and Pa(zg;E,X)= P.(xo; E,X)=0. (6.4)

Proof. Suppose that (zo,y0) € Ci(E,X) is a critical point of ®,(x,y; F, X). Then

(x0,y0) € P(D), so xg > 1. By Lemma 6.1,

(I)H(xmy();EaX) = yg/z - PH<I'0,E,X)/2{BO = 0.

Critical points are characterized by the equations
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631:‘1);@(%;%; E,X) = (Pn(x07 EvX) - 'Z‘OPI:Z(':EO;E7 X))/ng =0

and

Oy, (w0,yo; E, X) = yo = 0.

Thus, we see that (6.4) holds.
If (6.4) holds, then

D, (20, y0; £, X) =0 and V,,P.(z0,y0; E,X)=0.

So (zo,yo) is a critical point of ®,, and by Lemma 6.1, (xq,yo) € C.(F, X). O

Notice by Lemma 6.2, critical points in C,(F,X) correspond to double roots of
P.(z; E, X), a nonzero polynomial of degree at most 3, so there can be at most one

critical point of P,(z; F, X) for (k, E, X) # 0.

Lemma 6.3
Fix £ > 0, X € R% The set C,(F, X) is a singleton if and only if F = e,(X). In this
case, Cy(ex(X), X) = {(x0,0)}, where (z0,0) is a critical point of ®,(x,y;e.(X), X) and

a minimum in P (D).

Proof. Suppose that E < e.(X). Then C,(F,X) =0, and so by Lemma 6.1

O, (r,y; E,X)#0, forall z>1, yeR.

Since k > 0, we have ®(z,0; F, X) — 400, as © — +00, and as a consequence

O, (r,y; F,X) >0 forall x>1,yeR
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By continuity, we obtain

Ou(,y;e0(X), X) >0, forall (z,y) € P(D).

Since

D (z,y; e0(X), X) = 34° + o, 0; e4(X), X),

we see that

Q. (x,y;e.(X),X) >0, foral (z,y)€ P(D), y#0.

Thus, by Lemma 6.1 we have that

Culen(X), X) C {(x,0): x> 1}.

Additionally, Lemma 5.7 assures us that Cy(e.(X), X) = P(Dr(e.(X), X)) # 0.
If (20,0) € Cyles(X), X) for some xy > 1, then

0=>,(20,0;e.(X), X) <P (x,y;e.(X), X), (z,y) € P(D).

This says that (xg,0) is a minimum value for @, (z,y; e.(X), X). It follows that

0, P (20,0;e,(X), X) =0, if z9>1

and

0, P (70,05 e,(X), X) >0, if zy=1.

On the other hand, if xg = 1, then by Lemma 6.1,
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0, D (0, 0; e, (X), X) <0.

We conclude that

0, P (0,0;6,(X),X) =0, forall zy>1.

This shows that (x,0) must be a critical point of ®,(z,y;e.(X), X). Since k > 0, there
can be only one critical point in Cy(e,(X), X) and so this set is a singleton.

Now suppose that C,(E, X) is a singleton. By Lemma 6.1 and definition of &, (z,y; E, X),
if (z,y) € Cu(E,X), then (z,—y) € Cy(E, X). So it must be that

Cu(E, X) ={(x,0)}, for some xz¢> 1.

By Lemma 6.1, we have that

{z>1:0.(z,y; E,X) =0} C Cu(E, X) = {(20,0)}.

This implies that ®,(z,y; E, X) does not vanish on the connected open set

{(z,y):x>1, x # x}.

Using the fact that lim, . ®.(x,0; E, X) = 0o, we conclude that

O (r,y; E,X) >0 forall x>1, z#xy, yeR. (6.5)

Since C(E, X) # 0, we have that E > e, (X). We claim that

E < E implies C.(E,X)=0. (6.6)

Given this claim, we would have £ < e.(X) so that
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E=sup{E: E < E} <e.(X),

thereby showing that E = e, (X), as desired.

Assume E < E, and let us now proceed to verify (6.6). Write

Oo(x,y; B, X) =4(E — E)(2* - 1)/20 + O (2,y; E, X). (6.7)

By (6.5), the equation (6.7) implies that

. (z,y; £,X) >0, forall z>1, yecR.

Thus, by Lemma 6.1, we discover that

C.(E, X) C{(1,0)}.

If X; # X5, then (IDH(l,O;E,X) = (X —X2)2 > 0 so that (1,0) ¢ CK(E,X) and (6.6)
holds in this case.

Next, suppose that X; = X5. Then

(1,0, B, X) = (1,0, E,X) =0,

and by (6.5), we see that

8, ®.(1,0; E, X) > 0.

Thus, by (6.7), we find that

0,®.(1,0; B, X) = 4(E — E) + 0,9,(1,0; E, X) > 0.

By Lemma 6.1, we conclude that (1,0) ¢ C.(E, X), and again (6.6) holds.
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]

For convenience we summarize the relationship between the exceptional point (1,0)

and the sets Cy(E, X).

Corollary 6.4
Fix X € R2.

1. (1,0) € Cu(E, X) if and only if X; = X, and E > k + 1 X{.

2. (1,0) € C,(E, X) is a critical point of ®,(z,y; F, X) if and only if X; = X, and

E=r+ X7
3. {(1,0)} = C(E, X) if and only if k > 0, X; = X, and E = k + 1 X7 = e, (X).

Proof. The statement (i) was shown in Lemma 6.1, and (ii) follows from Lemma 6.2. In
the next result we shall see that Cy(F, X) is either empty or unbounded. Thus, (iii) is

just Lemma 6.3. O

Lemma 6.5
At each point (z,y) € Ci(E, X) such that V&, (x,y; £, X) # 0, the set Ci(F, X) is a
locally smooth curve.

The sets C(E, X) are closed and connected subsets of P (D).

If Co(F, X) # 0, then it is unbounded.

If kK > 0, then Cx(e.(X), X) is a singleton, and for E > E > e.(X), Cu(E,X) is a
closed curve enclosing C,(E, X) \ {(1,0)}.

Proof. By Lemma 6.1,

Co(E, X)NA{(1,0)} c{(2,y) - ulz,y; B, X) =0, x> 1},

so the smoothness of Cy(F, X) away from critical points of ®,(x,y; E, X) in the region
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{z > 1} follows by the implicit function theorem. If (1,0) € C,(E, X) is not a critical
point of @, (z,y; F, X), then by Lemma 6.1, 9,9,(1,0; F, X) < 0, and the implicit func-
tion theorem provides a smooth local parameterization of C\(FE, X) of the form (z(y),y),

ly| < 1, with

2(0) =1, 2/(0)=0, 2(0)=—1/0,8.(1,0;F,X) >0,

describing a curve contained in P (D).
To prove the other statements, we consider the cases k = 0 and xk > 0 separately.
Suppose that £ = 0. If £ =0 and Cy(0, X) # (), then we have X = 0. By definition,
®o(z,y;0,0) = 332, and so by Lemma 6.1,

Co(0,0) = {(x,0) : x > 1},

which is a closed, connected, and unbounded set. If E > 0, then Py(z; E, X) — oo, as

|z| — oo. By Lemma 6.1,

Co(E,X) C{(z,y): Po(z,y; E,X) =0, z > 1},

so Py(z; E, X)) must have real roots z1(E, X) < z5(F, X). Since

PO(]-’E7X) = _<X1 - X2)2 < 07
it follows that z1(E, X) <1 < x9(E, X). lf 21(E, X) = 1 < 29(E, X), then 0,Po(1,y; £, X) <
0, and by Lemma 6.1, (1,0) ¢ Co(E, X) and so
Co(E, X) ={(z,y) 14" = Po(w; B, X) [, & > 22(E, X)}.

This also holds when z;(E, X) < 1 < x9(FE, X ) or when 1 (E, X) = 25(F, X) = 1. Thus,
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Co(F, X) again is a closed, connected, and unbounded set.
Now suppose that £ > 0. Note that P, (z; E, X) — Foo, asz — oo and P, (1; E, X) =
—(X; — X5)? < 0. Soif Cu(E,X) # 0, then P,(z; E, X) must have three real roots

(counting multiplicity) with

.fL'l(E,X) S 1 S $2<E,X) S .Tg(E,X)

By Lemma 6.1, (1,y) € C,(E, X) if and only if

y=0 and 0,9.(1,0;E,X)=—1P.(1;E,X) <0.
It follows that

CE,X)={(z,y):9y* = Pu(x; E,X)/z, 25(E, X) < 2 < 23(E, X)}. (6.8)

Thus, C.(F,X), k > 0, is a simple closed closed curve and a closed, bounded, and
connected set.

We note that for E > E > e.(X), we have

Po(;E,X) = Po(v; E,X) =4(E — E)(2* = 1) >0, z>1.

Thus, the enclosure claim is a consequence of (6.8).
The fact that Cy(e(X), X) is a singleton was shown in Lemma 6.3.

]

Observe that (with the exception of Corollary 5.6) the results from Section 5.2 until
here are purely algebraic. They have nothing to do with the dynamics of the system
(4.7). The next section will make the connection with this reduced Hamiltonian and the

actual dynaimcs.
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6.2 Reduction to the Phase Plane

If A e C°%R;SL(2,R)) N C*(R;M?), then (z(t),y(t)) = P(A(t), A'(t)) is a C* planar
curve. We now show that given a solution A(t) of the system (4.7), its phase plane curve

P(A(t), A'(t)) satisfies a Hamiltonian system.

Theorem 6.6
Fix k > 0 and (F, X) € [e.(X), 00) X R?. Suppose that A € C°(R, SL(2,R)) N C?*(R, M?)
is a solution of (4.6), (4.7), (4.8) with initial data in D.(E, X). Put

Then

(6.9)

(2(t),y(t)) € Cu(E, X), (6.10)

for all t € R.

Proof. By Theorem 5.1, we have
(A(t), A'(t)) € Du(E,X), for all t € R, and thus, (6.10) follows by definition of
C.(E, X).

The first equation of (6.9) holds because

/(1) = (lAMF) = (A@®), A'(1)) = y(t)

and 0,9, (z,y; E, X) = y.

To verify the second, we compute using (4.7), Lemma 5.5, and the definition of the

7



enery

y'(t) = 2" (t)
= (A"(1), A(t)) + |A'(t)[?
= (—rA(t) + Ac(AQ), A'(£)A®) T, A(t)) + A" (1))
= —k|A(t)]? + 20 (A1), A'(1)) + |A'(t)]? (6.11)
= —2k|A)|* + 2B, (A(t), A'(t)) + 2A.(A(t), A'(1))
2F — X, X,

= —dra(t) + 28 + —— ok

A short algebraic manipulation using Defnition 6.1 confirms that

2F — X1 X,  aP.(x;E,X)— Pu(2; E, X)

—4 2F =
KX + 205 + 2 9,2
= _8xq)n(xay7EaX)a
for all (z,y) with > 1, which completes the verification of (6.9). O

Observe that (6.9) has a Hamiltonian structure. The key result (6.10) will allow us
understand the behavior of the orbits (z(t),y(t)) of (6.9) corresponding to solutions of
(4.7) by studying the sets Cy(E, X).

Further, when x = 0,

:L‘” _ 2E<£IZ’ - 1)2 + (4EZC - XlXQ)
x? '

For the existence and uniqueness of (6.9) we start with some (z(0),y(0)) € Cy(E, X).
By Lemma 6.1 there is some data (Ag, By) € D.(E, X) such that

P (Ao, By) = (2(0),y(0)).

This data has a corresponding A € C°(R,SL(2,R)) N C*(R,M?) which is a solution of
(4.6), (4.7), (4.8). By Theorem 6.6, (z(t),y(t)) = P(A(t), A'(t)) is the desired solution.
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Corollary 6.7
Fix k > 0and (E, X) € [e.(X),00)xR2. For any initial data (z(0),y(0)) € C.(E, X), the
IVP for (6.9) has a unique global solution (z,y) € C*(R, R?) with (z(t),y(t)) € Cx(E, X),

for all t € R.

Proof. Given (z(0),y(0)) € Cy(F, X), use Lemma 6.1 to find data (Ag, By) € Dx(E, X)

such that

P (Ao, Bo) = (2(0),y(0)).

Let A € C°(R,SL(2,R)) N C?*(R,M?) be the solution of (4.6), (4.7), (4.8) with this data.
By Theorem 6.6, (z(t),y(t)) = P(A(t), A'(t)) is the desired solution. O

While the quantity ®,(x(t),2'(t); E, X) is conserved along all solutions of the re-
duced system (6.9), we emphasize that only the portion of the zero level set in C,(E, X)
corresponds to solutions of the full system (4.7) .

We are now ready to describe the level sets of ®,, which correspond to trajectories of
(4.7). This characterization will be essentially establish, for the x > 0 case, periodicity

of the magnitude of our solutions.

Lemma 6.8
Fix k >0, (E,X) € [e.(X),0) x R? with (k, E, X) # 0.

If C.(E, X) does not contain a critical point of ®,(x,y; F, X), then it is a smooth
curve in R? consisting of a single orbit of (6.9).

If C,.(F, X) contains a single critical point p of ®,(z,y; E, X), then each component
of C.(E, X)\ {p} is a smooth curve in R? consisting of a single orbit of (6.9).

If v is a nontrivial orbit of (6.9) in C,(E, X), then either 7 is a closed orbit or its

alpha- and omega-limit sets are subsets of a critical point {p}.

Proof. Since (k, E, X) # 0, C,,(E, X) can contain at most one critical point of &, (z,y; E, X),
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Suppose that Cy(E, X) contains no critical points of ®,(x,y; £, X). Then the orbit
through each point of Cy(E, X) is open in Cy(F, X). Since C,(FE, X) is connected, it can
contain only one orbit. If C,(E, X) contains a critical point p of ®,(z,y; £, X), then the
same argument is valid on each component of C(E, X) \ {p}. These nontrivial orbits
are C! curves, by (6.9).

Let v be a nontrivial orbit in C(F, X). Since C(F, X) is a closed set, it contains
w(7), the omega-limit set of . If w(y) # 0, then it is an invariant set for (6.9). If
vy Nw(y) # 0, then v C w(y). In this case, v must be a closed orbit. Here’s the proof:

We can write

7= {p(t) = (z(t),y(t)) : t € R},

for some solution (z(t),y(t)) of (6.9). ¢(0) is not a critical point, so by the implicit

function theorem, there exists an € > 0 and a neighborhood N of ¢(0) such that

{p(t):t € (—¢,e)} = {(z,y) e R*: ®y(z,y; B, X) =0} N N.

Since p(0) € w(y), there exists a sequence t; — oo such that ¢(t;) — ¢(0). Thus, since

o(t) € Cu(E,X) for all t € R, there exists a t; > ¢ such that

p(t;) € {(z,y) e R*: Dy (z,5; B, X) = 0} N N.

It follows that there exists 7 € (—¢,¢) such that v(¢;) = v(7). This proves that v is a
closed orbit.

If g € Co(E,X)\ v is not a critical point, then its orbit, call it 7, is an open subset
of C,(E,X). This implies that n N w(y) = 0, and so ¢ ¢ w(vy). Therefore, we have
either v Nw(7y) # 0, in which case ~ is closed, or w(y) N~y = @, in which case w(y) can

only contain critical points of ®,(x,y; £, X) in C,(E, X). The same argument applies
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for a(v). O

6.3 Special Solutions

With the knowledge of our magnitude’s dynamics in hand we describe the behavoir of
some simple solutions to (4.7). These act as a sort of boundary on our set of more generic
soltuions.

Equilibria

Lemma 6.9
Fix k > 0. A solution of (4.6), (4.7), (4.8) is an equilibrium if and only the initial data

satisfies (Ag, By) € Dx(k,0).

Proof. First, we note that

Do(0,0) = {(A, B) € D: A € SL(2,R), B =0},

and for Kk > 0,

D,.(r,0) = {(A,B) € D: A€ SO(2,R), B = 0}.

Moreover, if A(t) = A is an equilibrium solution, then A’(t) = 0 = By.

Suppose first that x = 0. If A(¢) is an equilibrium solution, then (Ag, By) = (Ao, 0) €
Do(0,0). Conversely, if (Ao, By) € Dy(0,0), then By = 0 implies that Ay(Ag, By) = 0,
and so A(t) = Ay is an equilibrium solution of (4.7).

Now suppose that £ > 0. Then A(t) = A is an equilibrium solution of (4.7) if and

only if

KJAQ = AH(A(), O)COfA().
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By Lemma 5.5, this is equivalent to

4EH(A0, 0) 2K
/iAO = WCOfAQ = WCOon.

Taking the norm of both sides gives |Ap|*> = 2, so that Ay € SO(2,R). Conversely, by
Lemma 3.3 , we see that Aj is an equilibrium solution

if Ag € SO(2,R). Thus, when x > 0, all equilibrium solutions correspond to initial

data (A(), O) with A() S SO(2,R), ie. (AQ, Bo) S DH(I{7 0) O

By Lemma 5.7, equilibrium solutions of (4.7) are those which minimize the energy
over D. It is interesting to note that the set of equilibrium for Perfect Fluids is identifiable
with the entirety of SL(2,R) wheras any devation from SO(2,R) will results in non trival
dynaicms of the MHD equations.

Rigid motion
Recall the definition of rigid motion given in Definition 4.3. We rephrasae it equivi-

lently here in a way which is more illustrative of its connection with the previous sections.

Definition 6.2. A solution A(t) of the system (4.7) shall be called rigid if (z(t),y(t)) =
P(A(t), A'(t)) is an equilibrium solution of (6.9), or equivalently, if P(A(t), A'(t)) = (z,0)

for some constant z > 1.

Equilibrium solutions of (4.7) are also rigid solutions.
If A(t) is rigid with $|A(t)|*> = x, for some constant 2 > 1, then the fluid domains are

ellipses with principal axes of fixed lengths, i.e. z — A(t)z is a rigid motion.

Lemma 6.10
A solution of the IVP (4.6), (4.7), (4.8)

A e C°(R,SL(2,R)) N C*(R, M?)
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with initial data (Ao, By) € D, (E, X) is rigid if and only if P(Ay, By) is a critical point
of .(z,y; E, X) in Cr(E, X).

In particular, initial data (Ag, By) € Dx(ex(X), X), k > 0, yields a rigid solution.

Proof. 1t A(t) is rigid, then

P(A(t), A'(t)) = (x0,0) = P(Ao, Bo) € C(E, X)

is an equilibrium solution of (6.9).Thus, (x¢,0) is a critical point of ®,.

Next suppose that (zg,0) = P(Ag, By) is a critical point of ®, in C,,(F, X). Since @,
can only have one critical point on C,(E, X), (x(t),y(t)) = (x¢,0) is the unique solution
of (6.9) with data (x,0). Let A(¢) be the solution of the IVP (4.6), (4.7), (4.8) with
initial data (Ao, By). By Theorem 6.6, (x(t),y(t)) = P(A(t), A'(t)) solves (6.9) with data
(20,0). Thus, P(A(t), A'(t)) = (x0,0), and so A(t) is rigid.

The final statement is a consequence of Lemma 6.3. O

Next, we consider the special case of rigid motion in SO(2, R) which will play a special

role in what follows.

Lemma 6.11

Fix k > 0. The following statements are equivalent:

1. The function A(t) is a solution of (4.7) in

C°(R,SL(2,R)) N C*(R, M?)

whose initial data satisfies

(Ao, By) € Du(E,X), with X;=X,, E=x+1X7,
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and A(tg) € SO(2,R), for some ty € R.

2. The function A(t) is a rigid solution of (4.7) in

C°(R,SL(2,R)) N C*(R,M?)

with A(tg) € SO(2,R) for some ¢, € R.

3. The function A(t) is a solution of (4.7) in

C°(R,SO(2,R)) N C*(R, M?).

4. The function A(t) is given by

Aty =U (3X1t +6) = exp [(3X1t +0) Z] ,

for some 6, X; € R.

Proof. We shall prove the implications cyclically.

Suppose that (1) holds. The conditions on the invariants (E, X) imply that P,(1; E, X) =
P/(1; E,X) = 0. By Lemma 6.2, (1,0) is a critical point of ®,(x,y; £, X) in C,(E, X),
and so it is an equilibrium solution of (6.9). Since A(ty) € SO(2,R), Lemma 6.1says that
P(A(ty), A'(to)) = (1,0). By Theorem 6.6, P(A(t), A’(t)) is a solution of (6.9), and by
uniqueness, it must be equal to the equilibrium solution (1,0). Thus, A(t) is rigid.

Suppose next that (2) holds. Since A(ty) € SO(2,R), P(A(ty), A'(to)) = (1,0). Since

A(t) is rigid, we have

P(A(L), A'(t)) = P(A(to), A'(to)) = (1,0),
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for all t € R. Thus, A(t) € SO(2,R) for all t € R.

Suppose next that (3) holds. Differentiating the identity

ANAM)T =1,

we find that A’(t)A(t)" is anti-symmetric. Note that since A(t) € SO(2,R), we have

L(A(t), A'(1)) = A (A~ = A1) A1)

is anti-symmetric. Thus, using Corollary 5.2 and Lemma 5.1 | we obtain

L(A(t), A'(t) = 3X2Z = 5% 2,

— 2

and so, we see that

A(t) = IX,ZA(®).

— 2

The explicit solution is

A(t) = exp [ X1(t — to) Z] A(to) = U (5X1t) U (—3X1to) Alto).

Since A(ty) € SO(2,R), we may use Lemma 3.8to write

U (—3Xuto) A(to) = U(6),

for some 6 € R. This leads to the desired formula.

If (4) statement holds, then (1) follows by direct calculation using the explicit formula
for A(t). O

Observe that solutions in SO(2,R) are periodic.
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Here we again see a fundamental difference between even and odd dimensions. There
are no nontrivial solutions of the equation (4.4) in the form A(t) = exp(Wt) with W
anti-symmetric in odd dimensions.

The particular solutions in two dimensions which give rise to these rigid solutions will

form an important submanifold of D.

Definition 6.3. For each X; € R, define

R(X,) = {(U,1X,2U) : U € SO(2,R)}.

Lemma 6.12
For each k > 0 and X; € R, R(X}) coincides with the orbit of a rigid rotational solution
of (4.7).

If X = (X1,X1) and E =k + 1 X7, then R(X1) C Du(E, X).

Additionally, R(X;) = D.(E, X) if and only if E = e, (X).

Proof. Let k> 0 and X; € R. Set A(t) = U (3Xit), t € R. By Lemma 6.11 (4), A(¢) is

a rigid rotational solution of (4.7). Its orbit

(A1), A'(1)) = (A(t), 351 A(1))

is equal to R(X7), since, by (3.8), A(t) parameterizes SO(2, R).
The second statement follows from Lemma 6.11 (1).
Finally, we show that the inclusion is an equality if and only if £ = e, (X).
Note that P(R(X1)) = {(1,0)}. Thus, we have

{(1,0)} = P(R(X1)) € P(Dx(E, X)) = Cu(E, X). (6.12)

If £ > e.(X), then C,(F, X) is not a singleton, by Lemma 6.3, and we see that D, (£, X)\

R(X1) # 0.
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If, on the other hand, £ = e,(X), then C,(F, X) is a singleton, and (6.12) implies
that Co(E,X) = {(1,0)}. If (A, B) € D.(E,X), then P(A,B) = (1,0). By (6.1),
A € SO(2,R), and by Lemma 5.3, B = $X,ZA, since E = e,(X). This shows that
(A, B) € R(X1), and so D, (E, X) C R(Xy). O

Later, we shall see that the invariant manifolds R(X7) are hyperbolic,
Solutions with vanishing pressure

The Lagrangian, £, defined in Remark 4.1 represents a constrained harmonic oscilla-
tor, k > 0, or geodesics in SL(2,R), k = 0. For solutuions When the Lagrange multiplier
vanishes the constraining term in the Lagrangian, and so the pressure, vanishes giving

rise to ODEs which can be solved by hand.

Lemma 6.13
Let (Ao, By) € D..(E, X) with 2E — X; X, = 0.
If Kk =0, then
A(t) = Bot + Ao

is the solution of (4.6), (4.7), (4.8) in C°(R,SL(2,R)) N C*(R, M?).

If kK > 0, then

A(t) = (cos Vi) Ag + J=(sin vk 't) By
is the solution of (4.6), (4.7), (4.8) in C°(R,SL(2,R)) N C*(R, M?).
Proof. Let A € C°(R, SL(2, R))NC?*(R, M?) be the solution of (4.7) with data in D, (E, X).
If 2FE — X1 X5 = 0, then by Theorem 5.1and Lemma 5.5, we have that

AL(A(t),A'(t)) =0, forall teR.
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The formulas follow directly by solving the IVP for the linear equation resulting from

(4.7)

A"+ kA =0.

]

If we recall the alternative definition of A, givin in Lemma 5.5 we see the condition
the condition 2F — X; X5 = 0 is equivalent to assuming det By = k.
It is clear that when x > 0, the solution A(t) is (27/y/k)-periodic. A quick compu-

tation can give us the norm of our path

JA()]? = 3(1 4 cos2v/kt)|Ag|* + \/%? sin 2v/k 't (Ao, Bo) + 5= (1 — cos 2v/k 1) | B|?
which is (7 /y/k’)-periodic.
The levelset of @, that gives rise to these motions, Cy(E, X), is an ellipse:
y2 +4k(z — B/2k)? = 4k + E?/k — X? — X3

By the Cauchy-Schwarz inequality and the condition 2F — X; X5 = 0, we have |X;| <

E/E = X1X3/(2/K), so we see that |X;| > 2v/k, and therefore the right-hand side is

nonnegative:

1
4—(X12 —4r)(X3 — 4K) > 0.
K

Remark 6.1. When £ =0, A(t) is a line in SL(2,R). Cy(F, X) is a parabola:
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Chapter 7

The Motions

Here we describe the motions for MHD and perfect fluids. We begin by reconstructing

the paths in SL(2,R) from out local coodinate representations.

7.1 Reconstruction

We now show that solutions A(t) of the system (4.7) can be recovered from knowledge
of its phase plane curve P(A(t), A'(t)) and its initial data (4.6), using local coordinates.
The proof is complicated by the coordinate singularity on SO(2,R).

In order to avoid repetition, we enforce the following standing assumption throughout

this section:

(A) The parameter £ > 0 and the invariants (F, X) € [e,(X),00) x R? are fixed, and

the initial data satisfies (Ag, By) € Dy(E, X).

We summarize some previous results here for convenience.

Lemma 7.1

Suppose that (A) holds. If Ag € SL(2,R) \ SO(2,R), then there exists

5(0) = (51(0), 52(0), 55(0)) € R? x [1, 00)
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such that

Ag = A(s(0)) and 1|Ao|* = s5(0),

where A(s) was defined in Lemma 3.12Moreover, there holds

X1 + Xg Xl _ X2
By = —— T A + — 7 A + A 7B T A '
0 gH(AO) 1( O) 922(A0) 2( 0) < 0 0> 3( 0)

It Ay € SO(2,R), then

X=Xy, E>r+1X7,

and there exists

5(0) = (51(0), s2(0), s3(0)) € R* x [1, 00)

such that
Ao =U(251(0)), 3]Aof> =1 =s5(0),
and
By = %Xl U(2s1(0)) Z + B U(2s2(0)) M,
with

B=(E-r—1x3)"

Lemma 7.2
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Suppose that (A) holds. There exists a unique curve s = (si,S9,53) € C*(R,R? x
[1,00)) such that (s3(t),s5(t)) solves (6.9) with initial data (s3(0),s5(0)) = P(Ap, Bo)

and (s1(t), s2(t)) solves

, B X1+ X
() = 4(s3(t) + 1)

X1 —Xo

sh(t) = { 4(s3(t) = 1)’
0, lf X1 :XQ,

with initial data (s1(0), s2(0)) defined by Lemma 7.1.

if X, £ X,

If Ae C°'(R,SL(2,R)) N C*(R, M?) solves the IVP (4.6), (4.7), (4.8) with initial data
(Ao, Bo), then P(A(t), A'(t)) = (s3(t), s5(1)).

Proof. The existence and uniqueness of a solution (z,y) € C°(R,R?) to (6.9) with initial
data P (Ao, By) is given Corollary 6.7. Since the first equation of (6.9) says that z'(t) =
y(t), we can label the solution as (s3,s4). The proof of the corollary also shows that
PA(#), A'(1)) = (s5(1), 53(1))-

We know that (s3(t),s5(t)) € Cu(E,X), for all t € R. If X; # Xo