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Multi-level analysis of the gut–brain axis 
shows autism spectrum disorder-associated 
molecular and microbial profiles

Autism spectrum disorder (ASD) is a neurodevelopmental disorder 
characterized by heterogeneous cognitive, behavioral and communication 
impairments. Disruption of the gut–brain axis (GBA) has been implicated 
in ASD although with limited reproducibility across studies. In this 
study, we developed a Bayesian differential ranking algorithm to identify 
ASD-associated molecular and taxa profiles across 10 cross-sectional 
microbiome datasets and 15 other datasets, including dietary patterns, 
metabolomics, cytokine profiles and human brain gene expression profiles. 
We found a functional architecture along the GBA that correlates with 
heterogeneity of ASD phenotypes, and it is characterized by ASD-associated 
amino acid, carbohydrate and lipid profiles predominantly encoded by 
microbial species in the genera Prevotella, Bifidobacterium, Desulfovibrio and 
Bacteroides and correlates with brain gene expression changes, restrictive 
dietary patterns and pro-inflammatory cytokine profiles. The functional 
architecture revealed in age-matched and sex-matched cohorts is not present 
in sibling-matched cohorts. We also show a strong association between 
temporal changes in microbiome composition and ASD phenotypes. In 
summary, we propose a framework to leverage multi-omic datasets from 
well-defined cohorts and investigate how the GBA influences ASD.

Autism spectrum disorder (ASD) encompasses a broad range of neurode-
velopmental conditions defined by heterogeneous cognitive, behavioral 
and communication impairments that manifest early in childhood1. To 
date, over 100 genes have been identified as putatively associated with 
ASD, with some genotypes now having a standardized clinical diagnosis2. 
However, most of the genetic variants are still associated with heteroge-
neous phenotypes, making it difficult to identify molecular mechanisms 
that might be responsible for particular impairments3. Some studies have 
also looked at the presence of abnormalities in different brain regions in 
children with ASD4. However, whether such neuroanatomical features 
could mechanistically determine autism, and whether environmental 
factors could induce analogous ASD-like symptoms, remain unresolved1.

In addition to risk factors, one comorbidity that has been linked 
to ASD with high confidence is the occurrence of gastrointestinal (GI) 

symptoms, such as constipation, diarrhea or abdominal bloating, but 
causal insights remain elusive5. Mechanistically, much research has 
been focused on the interplay between the GI system and processes 
controlled by the neuroendocrine, neuroimmune and autonomous 
nervous systems, all of which converge around the GI tract and together 
modulate the gut–brain axis (GBA)6.

The GBA facilitates bidirectional communication between the 
gut and the brain, contributing to brain homeostasis and helping 
regulate cognitive and emotional functions7,8. Over the past decade, 
research on the factors modulating the GBA has revealed the central 
role played by the gut microbiome—the trillions of microbes that 
colonize the gut—in regulating neuroimmune networks, modifying 
neural networks and directly communicating with the brain9. Dys-
regulation of the gut microbiome and the ensuing disruption of the 
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Results
The structure of our analysis consisted of a multi-cohort and multi-omic 
meta-analysis framework that allowed us to combine independent 
and dependent omic datasets in one integrated analysis19. To mini-
mize issues of compositionality and sequencing depth20, we mod-
eled sequencing count data using a negative binomial distribution21 
(Extended Data Fig. 1, ‘Study approach’). Our differential ranking 
approach incorporated a case–control matching component that indi-
vidually paired children with ASD with age-matched and sex-matched 
neurotypical control children within each study cohort to adjust for 
confounding variation and batch effects (Supplementary Informa-
tion). Finally, we cross-referenced the microbial differential rankings 
estimated from 16S rRNA gene (16S) amplicon data obtained from seven 
age-matched and sex-matched cohorts against 15 other omic datasets 
to contextualize the potential functional roles that these microbes 
could play in autism (Fig. 1).

Age matching and sex matching enhance ASD data analysis
To establish the validity and robustness of our age-matched and 
sex-matched Bayesian differential ranking approach, we performed 
a series of benchmarking exercises and sensitivity tests.

We started by investigating the means and the standard deviations 
for the 16S and shotgun metagenomics sequencing (SMS) differentials 
from the age-matched and sex-matched cohorts compared to the 
total sequencing depth for each microbe (Extended Data Fig. 2a–d). 
In both analyses, we observed that the models could use sequencing 
depth to calibrate the uncertainty estimates, giving larger standard 
deviations for rare taxa with fewer observed reads (Extended Data 
Fig. 2b,d). Furthermore, rare taxa (with fewer than 100 reads total) 
were not among the most differentially abundant ASD-associated taxa 
(Extended Data Fig. 2a,c).

Next, we performed a rarefaction benchmark to test whether 
the high frequency of rare taxa would influence the results of our log 
fold change calculations. A comparison of differential abundance 
estimates between rarefied (9,000 threshold) and non-rarefied 
data from our 16S cross-sectional datasets showed that rarefaction 
did not substantially affect our results (Extended Data Fig. 2e). We 
also conducted a data-driven simulation with varying differential 
sequencing depths between cases and controls and showed that, 
despite the sequencing depth confounder, our differential abun-
dance method could accurately recover the ground truth log fold 
changes (Extended Data Fig. 2f). We then compared performance of 
our age-matched and sex-matched differential ranking analysis to the 
standard group-averaged differential ranking analysis across seven 
out of the 11 16S studies22–29 (Extended Data Fig. 2g). A side-by-side 
comparison with a commonly used differential abundance approach, 
ANCOM-BC (ref. 30), was then conducted to highlight the differences 
between our methodology and one of the state-of-the-art differential 
abundance methods (Extended Data Fig. 2i–k).

We benchmarked the overall batch-effect-reducing power of per-
forming within-study differential analyses with our sex-matched and 
age-matched Bayesian differential ranking approach. We used the 
MicroBiome Quality Control (MBQC) study (Sinha et al. 2017 (ref. 31))  
to evaluate the extent to which within-study differential analysis 
removed experimental and other study-related confounders, allow-
ing for meaningful comparisons across independent studies. Focusing 
on the microbial abundance datasets (16S microbial counts) gener-
ated by four independent laboratories (Lab A, Lab B, Lab C and Lab D)  
processing two identical MBQC microbiome samples (samples ‘4’ 
and ‘6’), we calculated the differentials between microbial counts for 
these samples for each laboratory. An initial assessment of overall 
variability between the two samples (principal coordinate analysis 
(PCoA) plot with Bray–Curtis dissimilarity) (Extended Data Fig. 2l) 
showed a reasonable separation between both samples just based on 
microbial counts, but a visualization of study membership revealed 

GBA are thought to contribute to the pathogenesis of neurodevelop-
mental disorders, including autism, but the underlying mechanisms 
and the extent to which the microbiome explains these dynamics are 
still unclear10.

Several dozen autism gut metagenomics studies have revealed 
many, albeit inconsistent, variations in microbial diversity in indi-
viduals with ASD compared to neurotypical individuals10. Similarly, 
metagenome-based functional reconstructions and metabolic analyses 
have also shown strong, albeit inconclusive, differences between indi-
viduals with ASD and neurotypical individuals11. Comparative analyses 
at other omic levels have further shown little agreement across stud-
ies12, raising the question of whether the results obtained so far reflect 
intrinsic biological differences among cohorts, insufficient statistical 
power or experimental biases that preclude meaningful comparisons13.

A wide range of factors could explain the disagreement across 
studies, including confounding variation due to batch effects, the 
application of inappropriate statistical methodologies and the vast 
phenotypic and genotypic heterogeneity of ASD. Batch effects can be 
caused by many factors, including mis-specified experimental designs, 
technical variability, geographical location and demographic composi-
tion, and several algorithms have been proposed to correct for them, 
but a lack of standardized statistical methods further complicates 
interpretation14. Microbiome datasets, like other omic datasets, are 
compositional, and failure to account for the compositional nature of 
sequencing counts can lead to high false-positive and false-negative 
rates when identifying differentially abundant microbes15. Microbiome 
analysis in ASD is further confounded by the phenotypic and genotypic 
heterogeneity of the disorder, which is known to be critical for stratify-
ing ASD subtypes and constructing reliable diagnostics, but is typically 
not measured or controlled for1.

Understanding the functional architecture—the network of 
interactions among different omic levels that determines individual 
phenotypes—of complex neurodevelopmental disorders, such as 
autism, requires an accurate and comprehensive characterization of 
the different omic levels contributing to it16. Traditionally focused on 
the human genomic, metabolic and cellular components, mounting 
evidence of the role the GBA plays in phenotype determination raises 
the need for considering the metagenomic and metabolic contribu-
tions of the microbiome as potential key components of the functional 
architecture of autism17.

To identify autism-specific omic profiles while reducing 
cohort-specific confounding factors, we devised a Bayesian differ-
ential ranking algorithm to estimate a distribution of microbial dif-
ferentials, or relative log fold changes15, across multiple potential ASD 
subtypes implicit in 25 omic datasets (Table 1). Ranking microbes by 
their log fold changes allows us to simultaneously (1) cancel out the 
compositional bias inherent in microbiome datasets and (2) minimize 
inflated false positives due to microbe-specific false discovery rate 
(FDR)-corrected statistical tests15. A key feature of our approach was to 
match individual study participants by sex and age within each study 
to adjust for confounders in childhood development. This setup also 
reduced confounding variation due to cohort-specific processing 
protocols, because within-study fold change calculations are insen-
sitive to batch effects18 (Extended Data Fig. 2). The preponderance 
of autism among males is well documented, and several potentially 
sex-dependent mechanisms to explain this phenomenon have been 
proposed. Furthermore, the development of the microbiome during 
childhood is a hallmark of microbiome dynamics in the human gut. Our 
analysis reveals strong associations among omic levels along the GBA 
and in particular of the microbiome in the context of ASD. Ultimately, 
our analysis highlights the inherent limitations of cross-sectional stud-
ies for understanding the dynamics of the functional architecture of 
autism and provides a framework for future studies aimed at better 
defining the causal relationship between the microbiome and other 
omic levels and ASD.
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that a significant degree of variability was associated with the labora-
tory that generated the dataset (Extended Data Fig. 2n). Given that 
the metagenomic samples by each laboratory were identical, the high 
level of variability observed among datasets could be ascribed only to 
experimental and laboratory-specific batch effects. Consistent with the 
theoretical findings of McLaren et al.18, our differential analysis showed 
a high degree of correlation among within-study differentials, clearly 
supporting the use of scale-equivariant log fold change calculations 
within studies as a way to provide a high-confidence readout of ground 
truth differentials and to enable cross-comparisons of independent 
cohort studies (Extended Data Fig. 2m).

To determine if our analyses can generalize between 16S and 
SMS datasets, we focused on the Dan et al.28 cohort that paired 16S 
and SMS samples. Abundances obtained after mapping reads to the 
Greengenes2 database32 highlight strong agreement between 16S 
and SMS datasets on the genus level (r = 0.63, P < 1 × 10−100). Further-
more, the log fold changes between 16S and SMS obtained from our 
age-matching and sex-matching approach also show strong agreement 
on the genus level (r = 0.47, P = 1 × 10−7).

Differential ranking analysis reveals strong ASD–microbiome 
links
A global age-matched and sex-matched differential ranking analysis of 
the seven 16S datasets selected for this study revealed a clear partitioning 
of microbial differences with respect to ASD and cohort membership  
(Fig. 2a). The distribution of the overall case–control differences showed 
a strong ASD-specific signal driven by 591 microbes more commonly 
found in children with ASD and 169 microbes more commonly found 
in their control counterparts (Supplementary Table 4). The variability 
observed is most likely due to confounding factors such as cohort demo-
graphics and geographic location, with the seven cohorts originating 
from Asia, Europe, South America and North America. Analogous dif-
ferential ranking trends could be observed for the virome, SMS and RNA 
sequencing (RNA-seq) datasets (Extended Data Fig. 3). To determine 
whether these highly significant microbiome signals (P < 0.0025) could 
be used to distinguish children with ASD from their age-matched and 
sex-matched control counterparts, we trained random forest classifiers 
on train/validation/test splits of data derived from 16S-targeted sequenc-
ing and SMS–whole-genome sequencing of microbial communities. We 
fitted gradient boosting classifiers on combined microbiome datasets 
as well as on individual datasets and measured their performance with 
area under the receiver operating characteristic (AUROC) curve. Of the 

nine age-matched and sex-matched cohorts22–25,27–29,33,34, six of the studies 
had an AUC > 0.87, highlighting the strong microbial differences between 
children with ASD and neurotypical children within age-matched and 
sex-matched cohorts (Fig. 2b). The classification performance decreased 
when we trained one classifier across all 1,193 samples across all of the 
cohorts but is still predictive of ASD (AUC = 0.78). This is consistent 
with previous observations in other disease meta-analyses35, where 
within-study classification performance is greater than across-study 
classification performance. We suspect that widespread microbial 
heterogeneity across diverse human populations could play a role in 
impeding classification performance.

In contrast to the age-matched and sex-matched cohorts, the 
AUC dropped substantially in the sibling-matched cohorts (Son et al.36 
AUC = 0.69; David et al.37 AUC = 0.46; Elliot et al.38 AUC = 0.38). Similarly 
PERMANOVA detected ASD-specific microbiome differences only in 
the age-matched and sex-matched cohort (P = 0.002), whereas no 
such signal was found in the sibling-matched cohort (P = 0.535). In 
both cohorts, age and sex were significant confounders (P < 0.002), 
but only in the age-matched and sex-matched cohort could the age and 
sex differences between case–control pairs be minimized (Extended 
Data Fig. 6a–d), where more than two times more case–control pairs 
are the within 1-year age difference and the same gender compared to 
the sibling-matched cohort (Extended Data Fig. 6e,f). Although house-
hold has been observed to be a confounder in the sibling-matched 
cohort (P < 0.001), we did see strong classifier generalization in the 
age-matched and sex-matched cohorts, where none of the children live 
in the same home. However, it is possible that unmeasured confound-
ers, such as household diet or socioeconomic status, could artificially 
boost classification performance. To investigate the potential age and 
sex confounders in the sibling studies, we performed a data-driven 
simulation with a known ground truth to determine how large age 
differences (± >2 years) would bias modeling outcomes compared to 
optimized age matchings (± ≤0.5 years) using a sibling-like age distri-
bution (obtained from David et al.37) and our overall sex-matched and 
age-matched distribution, respectively (Extended Data Fig. 6c). The 
analysis showed that, in case–controls with a sufficiently large age 
confounder, methods using age and sex matching or sibling matching 
cannot exactly recover the ground truth log fold changes. However, for 
sibling-like age distribution, the estimated log fold changes exhibited a 
large bias (mean squared error = 589.3) that was reduced by an order of 
magnitude in the sex-matched and age-matched group (mean squared 
error = 57.8) (Extended Data Fig. 6g,h).

Table 1 | ASD omic datasets included in this study. All sequencing datasets were retrieved from the SRA

Organism Body type Data type Number of 
studies

Number 
of subject 
pairs

References

Human Postmortem 
brain tissue

RNAseq 4 49 Velmeshev et al. 2019 (ref. 59); Wright et al. 2017 (ref. 60); Herrero 
et al. 2020 (ref. 61); SRP072713 (ref. 62)

Human Serum Immune markers 1 22 Zurita et al. 2020 (ref. 24)

Human Serum Metabolome 2 50 Needham et al. 2021 (ref. 49); Kuwabara et al. 2013 (ref. 48)

Human Urine Metabolome 1 26 Noto et al. 2014 (ref. 50)

Human NA Dietary survey 1 26 Berding & Donovan 2019 (ref. 25)

Human NA Behavioral survey 1 28 Kang et al. 2019 (ref. 52)

Microbial Fecal Metabolome 2 43 Needham et al. 2021 (ref. 49); Kang et al. 2018 (ref. 63)

Microbial Fecal 16S amplicon 10 346 Berding & Donovan 2019 (ref. 25); Zurita et al. 2020 (ref. 24); Dan 
et al. 2020 (ref. 28); Chen et al. 2020 (ref. 22); Fouquier et al. 2021 
(ref. 23); Zou et al. 2020 (ref. 27); Kang et al. 2019 (ref. 52) and 
2017 (ref. 26); Son et al. 2015 (ref. 36); David et al. 2021 (ref. 37); 
SRP299486 (ref. 29); Martin-Brevet et al.38

Microbial Fecal Shotgun metagenomics 3 83 Averina et al. 2020 (ref. 34); Wang et al. 2019 (ref. 33); Dan et al. 
2020 (ref. 28)

http://www.nature.com/natureneuroscience
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Age-matched and sex-matched differential analysis outperformed 
standard group averaging with respect to R2, and its overall perfor-
mance strictly improved as more studies were added (Extended Data 
Fig. 2g,h). This performance boost reflected a reduction in model 
uncertainty with larger cohorts that was indicative of overlapping 
differentially abundant taxa across studies and of reduced confound-
ing variation. To aid in the interpretation of the classification results, 
we constructed log ratios of taxa derived from the age-matched and 
sex-matched differential abundance analysis that strongly separated 
children with ASD from the neurotypical controls within each study. 
From these individual analyses, we assembled a single microbial log 
ratio that highlighted a strong consistent enrichment of taxa in children 
with ASD relative to their control counterparts with log ratios greater 
0 across 88% of pairs (Fig. 2c). This pattern was consistent across all 
age-matched and sex-matched cohorts, including two held-out shot-
gun metagenomics datasets: Wang et al.33 (log ratios > 0 in 70% of pairs) 
and Dan et al.28 (log-ratios > 0 in 73% of pairs).

ASD-specific patterns are present at several omic levels
Differential ranking analysis of three omic levels—microbiome (16S 
and SMS) and human transcriptome (RNA-seq)—revealed strong and 
highly significant differences between children with ASD and their 

age-matched and sex-matched neurotypical counterparts (P < 0.0025) 
(Fig. 2d and Supplementary Tables 5 and 6). Two additional omic lev-
els—the metabolome and the virome—did not show significant signals 
(Extended Data Fig. 4 and Supplementary Table 7).

Host cytokines correlate with microbial abundances
Immune dysregulation, ranging from circulating ‘anti-brain’ antibodies 
and perturbed cytokine profiles to simply having a family history of 
immune disorders, has been repeatedly associated with ASD39. Recently, 
for example, Zurita et al.24 showed that concentrations of the inflamma-
tory cytokine transforming growth factor beta (TGF-β) are significantly 
elevated in children with ASD. We re-analyzed this dataset, after age 
matching and sex matching, and observed that 16S microbial differ-
entials estimated from Zurita et al.24 were associated with TGF-β and 
were positively correlated with the global microbial log fold changes 
between ASD and control pairs (TGF-β: r = 0.237, P = 2.84 × 10−5) (Sup-
plementary Tables 1 and 9). In contrast, the global microbial log fold 
changes had little correlation with interleukin (IL)-6 concentrations 
(r = 0.07, P = 0.17). However, when we calculated the log ratios of the 
most differentiating microbial taxa, they were highly correlated with 
both TGF-β and IL-6 concentrations (TGF-β: r = 0.61, P = 1.84 × 10−5; IL-6: 
r = 0.73, P = 5.74 × 10−8) (Fig. 3a–d). This highlights how IL-6 changes 
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Fig. 1 | Diagram delineating the concept of age matching and sex matching. 
a, Children with ASD and neurotypical children of the same gender and similar 
age (±6 months) were matched within studies to reduce batch effects due 
to experimental and other cohort-specific differences. Matched pairs were 
then used to compute differentials (log fold ratios) of different omic features 
(microbes, metabolites, etc.). Downstream analyses across studies compared 
the within-study differentials determined for the different pairs of matched 
individuals (numbers inside circles denote age in years). b, The structure of 
our meta-analysis across multiple omic levels. For Fig. 2, 16S differentials 

computed from age-matched and sex-matched cohorts were cross-referenced 
against 16S differentials from sibling-matched cohorts as well as against SMS 
differentials from other age-matched and sex-matched cohorts. For Fig. 3, the 
16S differentials from the age-matched and sex-matched cohorts were cross-
referenced against cytokine differentials and RNA-seq differentials using KEGG 
pathways as a reference. Figure 3 also includes a microbe–diet co-occurrence 
analysis. For Fig. 4, the 16S differentials from the age-matched and sex-matched 
cohorts were cross-referenced against 16S differentials computed from the 
Kang et al. FMT trial52.
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are linked to only a handful of taxa, whereas TGF-β is linked to a much 
larger number of taxa.

Prevotella, Bacteroides and Bifidobacterium were predominantly 
associated with the cytokine differentials. Partial mechanistic insights 
on some of these cytokine–microbe associations were previously 
published. Bacteroides thetaiotaomicron was the second most highly 
elevated microbe when TGF-β was depleted and has been suggested 
to play a role modulating maternal immune activation-dependent 
metabolites that are linked to behavorial symptoms40. Bifidobacterium 
callitrichidarum was the sixth most enriched taxon when IL-6 was in 
lower concentration. Other Bifidobacteria species, such as Bifidobacte-
rium longum, have been observed to downregulate IL-6 in fetal human 
enterocytes in vitro41. Prevotella copri was the second most enriched 
taxon when IL-6 was in lower concentration and the sixth most enriched 

taxon when TGF-β was in lower concentration. This was consistent 
with Tett et al.42, where P. copri associations with different cytokines 
were observed in multiple disease contexts. Similarly, P. copri and 
Bacteroides fragilis both co-occurred with phages enriched in children 
with ASD or in neurotypical children (Extended Data Fig. 7 and Sup-
plementary Table 10), but, whereas microbes were previously reported 
to mediate viral infections43, the mechanistic underpinnings of these 
interactions with the host’s immunity remain poorly understood44.

Microbiome metabolism mirrors human brain metabolism  
in ASD
To determine potential crosstalk between microbiome physiology and 
the human brain, we compared the metabolic capacities encoded by the 
microbial metagenome—combining the individual metabolic capacities 
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Fig. 2 | Differential ranking analysis across omics levels. a, Global microbial 
16S log fold changes between age-matched and sex-matched ASD and control 
individuals. Error bars represent the 95% credible intervals. Heat map showing all 
center log ratio (CLR) transformed microbial differentials for each age-matched 
and sex-matched ASD–control pair across all cohorts. Microbes are binned into 
ASD-associated, Neutral and Control-associated groups using an age-matched 
and sex-matched classifier (Methods). K is an unknown bias due to the shift in  
the microbial load between the ASD and neurotypical control population.  
b, Sample size, male:female (M:F) ratio and average ages across all 16S and 

shotgun metagenomics datasets analyzed in this study and held-out gradient 
boosting ASD prediction performance measured by AUROC. V3–V4, V4 and 
V4–V5 refer to the variable region of the bacterial ribosomal RNA analyzed. c, Log 
ratios of microbes that are classified to be ASD associated and control associated 
were computed for each sample. The x axis represents the case–control 
differences of these log ratios, where values greater than 0 indicate that there is a 
separation between children with ASD and neurotypical children. The box plots 
show the median (line), 25–75% range (box) and 5–95% range (whiskers). d, Effect 
sizes of different omics levels: viral, 16S, SMS and RNA-seq.
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of thousands of different microbes—and the differentially expressed 
human genome in the brain, two omic levels representing entirely dif-
ferent biological contexts. We identified 138 microbial and 1,772 human 
metabolic encoding genes, inferred from SMS and RNA-seq, respec-
tively, that were linked to ASD phenotype. Ninety-five human metabolic 
pathways differentially expressed in the brain tissues of individuals with 
ASD had analogous microbial pathways differentially abundant in the 
microbiome of children with ASD, suggesting a potential coordination 
of metabolic pathways across omic levels in ASD (Fig. 3e). Pathways 
related to amino acid metabolism, carbohydrate metabolism and lipid 
metabolism were disproportionately represented among the overlap-
ping pathways (Extended Data Fig. 9 and Supplementary Table 14). 
Cross-comparison of the ASD-associated microbial enzyme-encoding 
genes with the gut–brain modules (GBMs), previously defined as part 
of the GBM framework, also revealed an approximately 48.5% overlap 
(101/208), further supporting the notion of potential metabolic cross-
talk across omic levels45 (Supplementary Table 13).

Microbiome metabolic capacity mirrors diet patterns in ASD
Autistic traits in early childhood have been shown to correlate with 
poor diet quality later in life; however, little is known about how diet 
quality is directly linked to autistic traits46. Here, we re-analyzed the 
paired microbiome and dietary survey data from Berding et al.25.  
A microbiome–diet co-occurrence analysis revealed startlingly similar 
amino acid, carbohydrate and lipid metabolism association patterns 
to those observed in the microbiome–brain metabolic capacity analy-
sis (Supplementary Tables 2 and 15) (Q2 = 0.43). From the microbe–
diet co-occurrence analysis, only principal component (PC) 3, which 
explains 3% of the microbe–diet variance, could differentiate between 
ASD and neurotypical diets (r = 0.26, P = 0.004) and was strongly corre-
lated with the microbial log fold changes between ASD and age-matched 
and sex-matched controls (r = 0.22, P = 4.3 × 10−9). Autistic children 

were less likely to consume foods high in glutamic acid, serine, choline, 
phenylalanine, leucine, tyrosine, valine and histidine, all compounds 
involved in neurotransmitter biosynthesis47. Interestingly, multiple  
Bacteroides taxa and P. copri taxa were among the top 20 taxa along 
MMvec PC3, highlighting how these taxa could be involved in metabo-
lizing amino acid dietary compounds (Fig. 3f and Extended Data Fig. 8).  
Even though the metabolomic analysis did not yield statistically sig-
nificant signals after FDR correction, the metabolites that showed the 
strongest signal included glutamate and phenylalanine, consistent 
with the microbiome–diet analysis48–50. Disruptions in the biosynthesis 
of these neurotransmitter molecules have been implicated in a wide 
variety of psychiatric disorders, and a recent blood metabolomics study 
showed the potential of using branched-chain amino acids to define 
autism subtypes51. Due to the incompatibility among the molecular 
features across datasets, it was not possible to combine any of the 
metabolomics datasets to boost the statistical power, which remains 
a major limitation of metabolomics technologies at present (Methods).

ASD microbiomes mirror behavior improvement after fecal 
matter transplant
Although the preceding cross-sectional analyses showed significant 
associations among several omic levels (virome, microbiome and 
immunome) or diet and ASD, insights into causality are still limited. 
By contrast, longitudinal intervention studies provide an opportunity 
to obtain stronger insights into causality. To test this, we re-analyzed 
data from a 2-year, open-label fecal matter transplant (FMT) study 
with 18 children with ASD52. In this study, the children were subjected 
to a 2-week antibiotic treatment and a bowel cleanse, followed by 2 d 
of high-dose FMT treatment and 8 weeks of daily maintenance FMT 
doses. Based on one of the most common evaluation scales for ASD, 
the Childhood Autism Rating Scale (CARS), significant improvements 
were achieved after the 10-week course of treatment. Two months later, 
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the initial gains were largely maintained, and a 2-year follow-up showed 
signs of further improvement in most of the patients. The results are 
consistent with a potential role of the microbiome in improving autism 
symptoms, but how the underlying changes in microbiome composi-
tion related to those seen in other studies remains unknown.

In the present study, we re-analyzed the original raw data in the 
context of the ASD profiles revealed by our cross-sectional differen-
tial ranking analysis (Supplementary Tables 3 and 16). All microbes 
associated with ASD in the 18 children before the FMT treatment 
had been identified as ASD-associated microbes in our age-matched 
and sex-matched cross-sectional analysis. After 2 years, 91% of these 
microbes that had low uncertainty (posterior standard deviation < 3) 
exhibited a mean decrease in abundance, and this decrease was signifi-
cant (95% log fold change quantile < 0) in 57% of the microbes (Fig. 4).  
Consistent with the original analysis by Kang et al., we detected an 
increase in Prevotella sp. over the 2-year span of the study. In addition, 
we also determined an increase in Desulfovibrio piger and no significant 
changes in Bifidobacteria, counter to the original analysis by Kang 
et al.52 Interestingly, 305 taxa remained stable throughout the duration 
of the study. Of these, 13 taxa belonged to the Prevotella, Bifidobacte-
rium, Bacteroides and Desulfovibrio lineages, pointing to a potentially 
wide functional diversity within these genera not noted in the original 
study. Some of these taxa, including B. fragilis, B. thetaiotaomicron, 
B. longum and P. copri42, were previously associated with beneficial 
immunomodulatory properties. Also worth pointing out are multiple 
butyrate producers in the Butyricimonas and Anaerobutyricum genera 
that we detected as being stable throughout the 2 years of the study, 
indicating a potential role in contributing to GBA homeostasis53.

Discussion
The functional architecture of ASD, and in particular the potential 
role that the microbiome plays in modulating the GBA in the context 
of autism, remain poorly understood due to disagreements among 
existing microbiome and other omic studies. However, in contrast to 
recently reported findings54, we observed a clear separation between 
children with ASD and unrelated age-matched and sex-matched neu-
rotypical controls, and this signal was validated using three distinct 
methodologies—namely PERMANOVA, classification and differential 
abundance—across multiple cohorts. Unlike the age-matched and 
sex-matched analysis, no ASD–microbiome signal was detected in the 
sibling-matched cohorts, including in the Elliott et al.38 dataset that 
consists of individuals with chromosome 16p11.2 deletion, a known 
risk factor for ASD. One possibility is due to age and sex confound-
ing in the sibling cohorts, because age remains a major confounding 
factor in early childhood microbiome development55. However, we 
cannot rule out the possibility that our classifiers are identifying dif-
ferences between households rather than individuals with ASD in the 
age-matched and sex-matched cohorts. Previous efforts identified 
household-specific effects on the human microbiome56, and other stud-
ies raised issues with sibling controls in these studies because siblings 
often exhibit a higher risk of developing ASD compared to the general 
population57. However, the fact that we see a clear ASD–microbiome 
signal that generalizes across households within cohorts highlights the 
need to control these confounding factors to understand the functional 
role that these gut microbiota could play. Thus, a follow-up study inves-
tigating gut microbiome and genetic variation between households 
with and without children with ASD is needed.

Parallel analyses at the immunome, human transcriptome and 
dietome levels revealed strong associations among omic levels. The 
virome and the direct metabolome signals, although present, were 
markedly weaker than the other omic signals. The inferred ASD-specific 
metabolic profiles from the microbiome and the human transcrip-
tome, on the other hand, showed a high and significant degree of over-
lap in microbial and human pathways expressed in the gut and in the 
brain, respectively. The metabolic connection implied by this overlap, 
which included differentially enriched carbohydrate and amino acid 
metabolic pathways in ASD, is a remarkable observation given the 
fundamental difference between the gut and brain physiologies, which 
would a priori suggest a reduced overlap in metabolic capacities. The 
microbiome–diet co-occurrence analysis also highlighted a reduced 
intake of amino acids and carbohydrates linked to specific microbiome 
profiles in children with ASD. These metabolic and dietary imbalances, 
particularly regarding glutamate levels, were further apparent, albeit 
weakly, in the serum, fecal and urine metabolomes that we analyzed. 
This multi-scale overlap that we observed along the GBA points to the 
existence of a functional architecture of ASD driven by the metabolic 
potential at the genomic and metagenomic levels.

In light of the heterogeneity across studies, our analysis identi-
fied several microorganisms consistently detected across omic levels 
that point to potentially interesting functional connections. The diet 
co-occurrence analysis also showed a strong association between  
P. copri and carbohydrate depletion in ASD, in addition to upregulation 
of IL-6. Bacteroides genera are observed to play a key role in ASD diet 
differentiation, with B. thetaiotaomicron associated with the deple-
tion of TGF-β. Multiple other microbes, including P. copri and several 
Bacteroides, stood out in the immune and viral analyses. In the FMT 
study, we observed a stable core microbiome made up of Bacteroides, 
Prevotella, Bifidobacteria and Desulfovibrio in addition to multiple 
butyrate producers. The presence of this core microbiome in combina-
tion with the depletion of most ASD-associated taxa further suggests 
a causal role for these microorganisms in shaping autism symptoms.

Despite our inability to determine actual metabolomic pro-
files at this point (Methods), our metabolite analysis based on 
microbiome-derived and brain-derived metabolite inferences as well 
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as the diet-derived metabolite data reveals a picture of a unifying and 
distinct ASD functional architecture. With the brain, the immunome 
and diet as major effectors, the multi-factorial complexity of ASD is 
reduced to a multi-scale set of interactions centered around human and 
bacterial metabolism that, in turn, determines phenotypic, genomic 
and metagenomic attributes via multiple feedback loops. Although 
we did not observe an effect on genotype to the microbiome, previ-
ous studies identified genes that are high risk for ASD2. The pivotal 
role of the immune system in mediating the communication between 
the gut microbiome and the human brain as well as other peripheral 
systems is also firmly established. Furthermore, the central role of 
the microbiome in mediating diet-derived nutrient mobilization has 
been extensively documented, and several hardwired feedback loops 
among these effectors, such as the hypothalamus-mediated regulation 
of appetite and diet, have also been described6.

Our understanding of how the gut microbiome is connected 
to dietary preferences, host immunity and GI and ASD behavioral 
symptoms is limited in cross-sectional studies and, thus, restricts 
our ability to perform causal inference. We envision that obtaining 
causal insights into the functional architecture of autism will require 
a multi-arm approach, from culturing key microbes and probing their 
metabolic capacity, to performing experimental interventions with 
model organisms and conducting longitudinal observational studies, 
with multi-omics data collection and extensive phenotypic profil-
ing to observe the effects of natural interventions. Building realistic 
causal models of autism needs to take into account the multi-factorial 
complexity underlying different ASD subtypes, which will require a 
concerted effort to simultaneously analyze several omic levels and at 
clinically relevant timescales. For instance, understanding the engraft-
ment dynamics of FMT and its functional implications on the recipients’ 
gut microbiomes requires frequent initial sampling of the microbiome, 
immunome and metabolome, but tracing any behavioral changes over 
time requires less frequent sampling over periods of up to several years, 
in combination with reliable behavioral, medical and dietary surveys58. 
Collecting and integrating such multi-scale omic datasets presents 
unique logistical and analytical challenges.

Managing data acquisition and access will require coordinating 
multiple sites and potentially centralizing some aspects of sample pro-
cessing. Recent initiatives, such as The Environmental Determinants 
of Diabetes in the Young (TEDDY) study, an international long-term, 
multi-center initiative to link specific environmental triggers to par-
ticular type 1 diabetes-associated genotypes, provide a blueprint for 
similar approaches in ASD. A key component of such an initiative would 
be the establishment of standardized sampling and processing pro-
tocols that would minimize technical confounders, one of the top 
confounders at most omic levels. Moreover, although extensive efforts 
are underway to calibrate microbiome datasets, other omic levels, such 
as the metabolome, present even more fundamental technical issues 
that make it imperative to develop concerted strategies to be able to 
include them in an integrated analysis.

In addition to the considerable variations in statistical properties 
across datasets, interactions among omic levels are mostly underde-
termined, making the construction of informative models a major 
challenge. Determining the necessary biologically relevant assump-
tions is a non-trivial process and can inadvertently lead to model 
mis-specifications, resulting in misleading conclusions. This was the 
likely consequence from Yap et al.54, where the proposed model that 
tested for a causal relationship among diet, microbes and the ASD 
phenotype implicitly assumed that there was no relationship between 
diet and gut microbiome, prematurely rejecting the potential role 
between gut microbiota and ASD. Addressing these types of model 
mis-specication issues will be critical to inferring causal mechanisms 
from population-scale studies. In addition, and given the vast hetero-
geneity of ASD, designing cohort studies that minimize confounding 
factor effects will be key to furthering understanding of autism. For 

example, although our analysis could not identify ASD subtypes, we 
determined stronger associations among gut microbes, host immunity, 
brain expression and dietary patterns than previously reported, high-
lighting the potential for boosting the statistical power and biological 
insight with comprehensive omic analyses.

We conclude that multi-omic longitudinal intervention studies 
on appropriately stratified cohorts, combined with comprehensive 
patient metadata, would provide the necessary entry points for 
advancing mechanistic studies along the GBA in ASD. The exper-
imental framework that we propose for inferring causal mecha-
nisms from population-scale studies will require the development 
of consensuated multi-disciplinary strategies. For instance, given 
the central role played by the metabolome in relaying information 
across omic levels, a unified approach to metabolomics studies will 
be needed to overcome current differences in data types (targeted 
versus untargeted and liquid chromatography–mass spectrometry 
(LC–MS) versus gas chromatography–mass spectrometry (GC–MS)) 
or origin of the specimens (blood/serum, urine or feces). Phenotyp-
ing behavorial and GI symptoms in children with ASD is another issue 
that is still far from being resolved, making it further challenging to 
stratify patient cohorts. Issues of timescales—from the molecular 
to the behavioral—need to be harmonized in statistically relevant 
ways to allow for proper causality inference. Finally, using appro-
priate statistical methodologies for identifying potential causal 
relationships will be critical to ensure the success of the proposed 
mechanistic studies and of efforts to advance understanding of the 
role that the microbiome plays in the context of the overall functional 
architecture of ASD.
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Methods
Search strategy and inclusion criteria
We performed a systematic search for published and/or publicly depos-
ited or not yet published and/or publicly available human microbiome, 
metabolome, immunome, transcriptome and autism/ASD datasets in 
several National Center for Biotechnology Information (NCBI) data-
bases (PubMed, Sequence Read Archive (SRA) and BioProject), UCSD’s 
MassIVE resource, the PsychENCODE consortium and the American 
Gut Project and from individual research groups worldwide. About 
half of the 70+ studies that we identified were already deposited on 
public data repositories or were made directly available to us by the 
research groups.

Most studies consisted of heterogenous—no genotype or phe-
notype stratification—ASD and neurotypical age-matched and 
sex-matched cohorts and had one or two datasets (microbiome (16S, 
SMS), metabolome (urine/serum/fecal), immunome (cytokines), tran-
scriptome (RNA-seq), dietary survey and behavioral survey) associ-
ated with them, with only a few studies having three or more omic 
datasets associated with them (Table 1). We adopted a multi-cohort 
and multi-omics meta-analysis framework that allowed us to combine 
independent and dependent omic datasets in one overall analysis19. In 
total, we analyzed 528 ASD–control pairs that had either age and sex 
information or sibling-matching information. To reduce the batch 
effects and noise associated with primer choice in the 16S datasets, 
a major confounder in microbiome analyses, we restricted the 16S 
datasets to include only those targeting the variable region V4 of the 
bacterial ribosomal RNA, a region exhibiting higher heterogeneity and 
lower evolution rates than other variable regions64. Previous studies 
showed how primers targeting adjacent regions in the 16S can yield 
similar composition estimates up to the genus level65. Our analysis 
included 16S datasets obtained targeting the V4 region exclusively, 
the V3–V4 region or the V4–V5 region.

The final metabolomic meta-analysis that we present here consists 
of the combined analysis of only four independently pre-processed, 
normalized and analyzed metabolomic datasets. Despite several more 
ASD-related datasets being available, the disparity in mass spectromet-
ric technologies used to generate them, which results in the detection 
of different subsets of metabolites, precluded their side-by-side com-
parison (Table 1). For example, targeted mass spectrometry enables 
the precise determination of concentrations for a finite number of 
metabolites, whereas untargeted mass spectrometry detects up to two 
or three orders of magnitude more metabolites but is compositional 
in nature and, thus, does not yield absolute abundances. Furthermore, 
batch effects due to sample processing, such as differences in reagents, 
sample storage and mass spectrometry instruments, can introduce 
unwanted variation in both the abundances and the detected molecu-
lar features66. One additional obstacle that we encountered was the 
proprietary nature of many of the metabolomic datasets that made 
it impossible to access the raw data and run standardized workflows.

Of the 40 transcriptomic datasets that were available in recount3 
(ref. 67), the vast majority were obtained from studies with model 
animals, and only four of them had been obtained from postmortem 
processing of brain samples from autistic and neurotypical individuals. 
These four datasets collected different brain tissue types, including 
from the amygdala, the prefrontal cortex, the anterior cingulate and 
the dorsolateral prefrontal cortex.

Martin-Brevet et al. cohort. Data from Martin-Brevet et al.38 were 
acquired from two different cohorts: one from the Simons Variation 
in Individuals Project, consisting mostly of families from the United 
States. From this cohort, there are 24 individuals with the 16p11.2 dele-
tion and 24 corresponding siblings from the same family who do not 
carry the deletion; and a second cohort consisting of individuals from 
the European 16p11.2 consortium (24 deletion carriers and 24 familial 
controls). More exact information about this cohort was previously 

published38. Deletion carriers were ascertained regardless of age or 
clinical diagnosis. DNA was extracted from stool samples, and 16S 
sequencing was performed using primers to the V4 region.

Data processing
We constructed matched reference databases for 16S and SMS data 
analyses. The Web of Life 2 (WoL2) reference genome database con-
tains 15,953 bacterial and archaeal genomes sampled from the NCBI 
to maximize representation of biodiversity. It is a major upgrade from 
WoL (10,575 genomes). A reference phylogeny was reconstructed 
based on 387 universal marker genes using uDance, a novel phylog-
enomic inference workflow employing a divide-and-conquer method. 
Taxonomic assignments of the genomes were based on Genome Tax-
onomy Database (GTDB) r207 and curated according to the phylog-
eny using tax2tree. The Greengenes2 reference 16S rRNA database 
was constructed based on the WoL2 whole-genome phylogeny and 
updated with full-length 16S rRNA sequences from the Living Tree 
Project and 16S from high-quality bacterial operons, using uDance to 
revise the topology. Into this backbone, we inserted all 16S V4 ampli-
con sequencing variants from public and private samples Qiita using 
DEPP. A taxonomy based on GTDB r207, expanded with lineages from 
the Living Tree Project not present in GTDB, was decorated onto the 
phylogeny using tax2tree. Full details behind the construction of WoL 
and Greengenes2 can be found in Usyk et al.32.

The 16S amplicon and shotgun metagenomics samples were down-
loaded from the SRA. The 16S amplicon samples were processed using 
Deblur and subsequently mapped to Greenegenes2 using Vsearch with 
qiime2 (ref. 68). Shotgun metagenomics samples were mapped to bac-
terial whole genomes captured in the WoL2 using Bowtie2 followed by 
Woltka69. Viral abundances were extracted from shotgun metagenom-
ics samples using GPD and BWA. RNA expression data were obtained 
directly from recount3 (ref. 67); the four metabolomics datasets were 
provided by the authors.

To enable age and sex matching, a bipartite matching between 
individuals with ASD and neurotypical individuals was performed using 
age and sex covariates. This approach has been shown to be optimal for 
case–control matching70. Individuals who could not be matched were 
excluded from the meta-analysis. Among the 16S and SMS datasets, 
there were multiple longitudinal datasets. To integrate these datasets 
into the cross-sectional analysis, we picked only the first timepoint for 
each individual.

Differential ranking analysis
One of the most common approaches to evaluating microbiome and 
other omic studies consists of determining differences in the abun-
dances of microbial taxa, human metabolites or other omic features 
between cases and controls. Such differential abundance analysis is 
typically performed by computing the log fold changes between the 
case and control groups21. However, confounders, such as sex-related, 
age-related and geography-related batch effects, compositionality, 
high dimensionality, overdispersion and sparsity, prevented a reli-
able estimation of differential abundances and, thus, compromised 
the side-by-side comparison of these differential abundances across 
studies in the manner of a traditional meta-analysis. Here, we set out 
to overcome these inherent limitations of traditional meta-analyses 
by developing a generalizable approach for controlling for select 
confounders that would help reveal a comprehensive picture of 
ASD-specific omic signals.

To minimize confounder effects, we developed a Bayesian differ-
ential ranking algorithm that uses bipartite matching to optimize the 
age-based and sex-based pairing of ASD and control individuals within 
each dataset. This approach helped control for potential age and sex 
confounders while also minimizing batch effects, such as sample col-
lection method, sample processing protocol, different primers and 
geographical provenance71. Our approach could do this by leveraging 

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01361-0

recent insights into the multiplicative nature of protocol biases18. Fold 
change calculations can be designed to be robust to bias induced by 
protocols, provided that the fold changes are being computed only 
on samples processed under the same protocol. Similar observations 
have been made about biases induced by differences in polymerase 
chain reaction (PCR) primers, with abundance-based beta diversity 
metrics being robust to primer biases, as long as comparisons are con-
fined to datasets generated with the same protocol71. We extended this 
strategy to handle age and sex matching, taking advantage of the fact 
that most of the cohorts that we analyzed selected their participants to 
be age and sex matched. Most of the case–control pairings in the 16S 
and SMS datasets were within 1 year apart, providing an opportunity 
to remove age-related confounders in downstream analyses. Our 
Bayesian models were fitted via Markov chain Monte Carlo (MCMC) 
using Stan72. Conceptually, this allowed us to compute log fold change 
differences of microbes between age-matched and sex-matched indi-
viduals, but, because we did not have absolute abundance informa-
tion, we could estimate this log fold change only up to a constant73 
(Supplementary Information).

To determine how sensitive our proposed differential abundance 
strategy was to sequencing depth, we conducted a rarefaction bench-
mark in addition to a simulation benchmark. When comparing unrar-
efied data (with mean sequencing depth greater than 200,000 reads 
per sample) and sequencing count data rarefied down to 9,000 reads 
per sample from the 16S cross-sectional cohort data, we still see strong 
agreement between the unrarefied log fold changes and the rarefied log 
fold changes (Extended Data Fig. 2e). This supported the theoretical 
evidence that our differential abundance method was scale equivariant 
and that changes in sequencing depth would not markedly affect the 
mean log fold change estimates.

This was further validated in our simulation benchmarks, 
where we showed that our model could capture the ground truth log 
fold changes based on 16S differentials from the age-matched and 
sex-matched cohort (Extended Data Fig. 2f). We compared our pro-
posed age-matched and sex-matched differential ranking method to 
ANCOM-BC and our differential abundance method without age and 
sex matching (which we will refer to as group-averaged differential 
ranking) (Extended Data Fig. 2i–k) to showcase the differences between 
these methods. This benchmark was performed using data-driven 
simulations derived from the 16S cohort analysis. For the side-by-side 
comparison, we ran three different configurations of ANCOM-BC: (1) 
case–control differences only [‘formula=disease status’]; (2) case–con-
trol differences adjusted by age and sex confounders [‘formula=disease 
status + age + sex’]; and (3) case–control differences by age and sex 
matching [‘formula=disease status + (disease status–age sex match-
ing IDs)’]. The first configuration provided a direct comparator to 
our ‘standard group-averaged differential ranking’, and the third 
configuration provided the most direct comparator to our ‘sex- and 
age-matched differential ranking’. None of the three ANCOM-BC mod-
els could recover the ground truth log fold changes in our simulations 
(r = 0.38, 0.37 and 0.39 for implementations 1, 2 and 3, respectively), 
whereas both the ‘standard group-averaged differential ranking’ and 
the ‘sex- and age-matched differential ranking’ models were able to 
recover the ground truth (r = 0.64 and 0.79, respectively). Ultimately, 
this illustrates how our method could account for age and sex matching 
and perform as expected if the assumptions were satisfied.

Similar to other simulation-based benchmarks, this is not a rigor-
ous benchmark showcasing the improved performance of our method; 
rather, it is showcasing how all three methods have different assump-
tions. To determine in which biological scenarios age and sex matching 
could be more informative than household matching, we generated 
another simulation incorporating both a household confounder and 
an age confounder. The subject ages and age differences were sampled 
from the age distribution observed in David et al.37. Similarly to our 
previous simulations, we simulated the ground truth log fold changes 

using the model from the 16S cohort analysis. Here, we observed that, 
with a sufficiently large age confounder, the household matching 
estimated log fold changes with a noticeably large bias (mean squared 
error = 589.3) (Extended Data Fig. 6e). In contrast, although age and sex 
matching did not precisely estimate the ground truth log fold changes, 
we observed a 10×-fold reduction in bias (mean squared error = 57.8) 
(Extended Data Fig. 6f). This simulation also showcased how cohort 
randomization may play a role in mitigating the bias introduced by age 
confounding, at the expense of increased variance of the estimator.

To determine how sensitive our proposed differential abundance 
strategy is to batch effects, we computed the log fold changes between 
two samples, ‘sample4’ and ‘sample6’, from the MBQC study31 for each 
processing laboratory. These samples were replicated and processed by 
multiple laboratories, providing an experimental setup for validating 
batch removal methods. Bray–Curtis PCoA shows a weak separation in 
sample name but a strong separation due to batch effects induced by 
differences in processing protocols. However, when we compare the 
log fold changes for each processing laboratory, we see strong agree-
ment (r > 0.5, P < < 0.05) (Extended Data Fig. 6m), which supports the 
claim of McLaren et al.18 that within-study fold change calculations 
are insensitive to batch effect, as long as the processing protocol is 
consistent within the study.

To determine if there was a significant difference between the 
age-matched and sex-matched pairs, we constructed an effect size 
metric using our model’s uncertainty estimation (see Supplementary 
Methods for more details). A global model for each data type—16S, 
SMS and RNA-seq—was used to determine if there was a significant 
difference between age-matched and sex-matched case–control pairs 
across each datatype. When we evaluated our Bayesian model fit on the 
16S, SMS and RNA-seq datasets, our model fits achieved Rhat values 
below 1.1 and ESS values above 300, indicating that the draws from the 
posterior distribution are reliable.

The age-matched and sex-matched classifiers were constructed to 
build a classifier that generalizes across cohorts, identifying microbes 
that consistently differentiate between age-matched and sex-matched 
case–control pairs. To build age-matched and sex-matched classi-
fiers, within each age-matched and sex-matched 16S cohort, we 
fitted our Bayesian model and assigned taxa into three groups: 
ASD-associated, Control-associated and Neutral. A taxon is assigned to 
the ASD-associated group if 70% of their posterior samples are greater 
than 0; a taxon is assigned to the Control-associated group if 70% of 
their posterior samples is less than 0. The remaining taxa are assigned 
to the Neutral group. After assigning taxa to each group, for each sam-
ple, a single log ratio, or balance15, is computed by taking the geometric 
mean of all of the taxon abundances within each group. To create a 
single log ratio that generalizes across cohorts, we assigned taxa to 
the ASD-associated group if it appears to be ASD associated in at least 
two studies. The same procedure is applied to the Control-associated 
group. The differences of these log ratios across the case–control pairs 
are shown for the age-matched and sex-matched cohorts in Fig. 2c. 
Although we did not apply this approach to the shotgun metagenom-
ics datasets, we showed that the log ratios constructed from the 16S 
datasets also separated more than 70% of the ASD–control samples, 
serving as an additional cross-validation.

To determine if a microbe in increased or decreased between two 
groups of samples, a reference frame that identifies which group of 
microbes is stable is required. To do this using our Bayesian models, 
the quantiles estimated from the posterior distribution of the log 
fold change is used. A microbe is said to be significantly increased if 
the log fold change is greater than 0 in 95% of the posterior samples 
(5% log fold change quantile > 0). Finally, a microbe is said to be stable 
if the 90% quantile of the posterior distribution overlaps with 0 and 
the standard deviation of the posterior distribution is less than 3.  
Similarly, a microbe is said to be significantly decreased if the log fold 
change is less than 0 in 95% of the posterior samples (95% log fold 
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change quantile < 0). The reference frame in the FMT analysis used 
microbes that were identified to be neutral or control associated by the 
age-matched and sex-matched classifier, with the assumption that the 
average abundance of these taxa is stable throughout the entire 2-year 
follow-up study. The FMT analysis used the same matching strategy, 
but, instead of matching on age and sex, the matchings were performed 
on the subjects to compare different timepoints. When identifying 
microbes that are the core microbiome, we focused on taxa that over-
lapped with 0 and had a posterior standard deviation of less than 3. 
Similarly, when computing the overlap between the cross-sectional 
cohort and the microbes depleted after the FMT, we focused on taxa 
with low uncertainty with a posterior standard deviation of less than 3.

The heat map shown in Fig. 2b displays the log fold changes for 
each case–control pair. To do this, a robust center log ratio (CLR) trans-
form was performed, and all zeros were imputed to the mean abun-
dance for visualization purposes. The case–control log fold changes 
were then computed for each case–control pair.

Bayesian differential ranking. Conceptually, the goal of a differential 
analysis is to make a statement about change in abundance for a given 
feature i between conditions A and B by evaluating the following null 
hypothesis:

Ai
Bi

= 1

However, most omic datasets do not provide a direct observation of 
the absolute quantities of Ai and Bi, or the total microbial loads NAi and 
NBi  but, rather, only an observation of their proportions pAi  and pBi, 
respectively, within each dataset, which are determined by a bias term, 
NA
NB

. This bias term, given by

Ai
Bi

=
pAiNA
pBiNB

=
pAi
pBi

NA
NB

results in high FDRs that cannot be adjusted for in models analyzing 
compositional omics datasets because the overall contribution of NA 
and NB to change cannot be unequivocally quantified74. To avoid the 
total biomass bias without having to resort to performing traditional 
FDR corrections, we adopted a ranking approach that allowed us to sort 
omic features by their log fold change values independently of how 
large their change was in absolute terms73. Because the biomass bias 
impacts every species within a dataset equally, the ranking approach 
ignores this bias, making the approach scale invariant (Equation 1).

rank (AB ) = rank (pANApBNB
) = rank (pApB

)

The overall model that we designed consisted of a customized dif-
ferential abundance tool that leveraged the experimental design of 
each study included in the analysis to determine study-specific feature 
perturbation profiles that could then be combined with the normalized 
perturbation profiles of other studies to perform a global differential 
perturbation analysis. The overall model had the following structure:

yi, j ∼ NegativeBinomial(λi, j,αij)

log λi, j = logNi + Ck(i), j + DjI[i = ASD]

where yi, j denotes the microbial counts in sample i of species j across 
d species; λi, j,αij represents the expected counts for species j; sample 
i, j represents a microbe-specific overdispersion term; Ni represents 
sequencing depth (self-normalization and preemptive of rarefac-
tion); Ck(i),j represents the log proportion of species j in the k(i) control 
subject (age matched and sex matched); and DjI[i = ASD] represents 
the log fold change difference between control and ASD subjects with 

a corrective function that equals 1 when i corresponds to the paired 
ASD subject and 0 when i corresponds to the control subject. Incorpo-
rating Ni into the model renders the model self-normalizing and not 
dependent on rarefaction, and Ck(i),j incorporates the age-matching 
and sex-matching component for a given pair k. The priors for these 
variables are given below.

αij =
a0,k(i), j
λij

+ a1,k(i), j + βp a0 ∼ LogNormal(0, 1)

a1 ∼ LogNormal(log(10),0.1)

βp ∼ Normal(βμ,βσ) βμ ∼ Normal(0, 3)

βσ ∼ LogNormal(log(0.1),0.1)

Ck(i), j ∼ Normal(Cμj ,Cσj ) Cμj ∼ Normal ( 1
d
, 3)

Cσj ∼ Normal ( 1
d
, 1)

Dj ∼ Normal(0, 3)

Here, the overdispersion parameters are estimated for each microbe, 
for each batch and for the ASD and control groups. This approach is 
adapted from DESeq2, allowing for the overdispersion to be modeled 
by both linear and quadratic terms with respect to the abundance. Fur-
thermore, this parameterization does allow for a compositional inter-
pretation owing to the following rationale. The Poisson distribution 
with an offset term is known to approximate the multi-nomial distribu-
tion. Furthermore, the negative binomial can be re-parameterized as a 
gamma–Poisson distribution, allowing for overdispersion modeling 
by breaking the mean–variance relationship inherent in the Poisson 
distribution.

The age-matched and sex-matched differential abundance has a 
similar methodology to paired tests, such as the paired t-test and the 
Wilcoxon test. To this end, we also used this differential abundance 
methodology to analyze the FMT dataset. Here, instead of matching 
pairs of subjects, we matched pairs of timepoints and computed the 
differential abundance across each pair of timepoints. To make these 
differentials comparable, a common set of taxa that was detected to 
be associated with controls was selected. Specifically, taxa that had a 
log fold change less than 0 in the cross-sectional cohort were assigned 
to this reference set. The estimated log fold changes were adjusted by 
centering around the mean log fold in the reference dataset as follows:

DDD∗ = DDD − D̄DDR

where D̄DDR denotes the mean of the log fold changes of the reference 
taxa, and D* represents the recentered log fold changes. By doing this, 
all timepoints will have the same reference and will be more directly 
comparable.

One of the advantages of the above model is that it will cancel out 
any multiplicative batch effect, such as PCR amplification bias, with 
no impact on j. This is because D is computed only within cohorts, 
and, as a result, cohort-specific batch effects are mitigated. Another 
advantage of the proposed model is that negative binomial models 
can be fitted independently for each microbe; as a result, the log fold 
change estimates for one microbe will not affect the estimates of other 
microbes. This can be a benefit, because these models will be agnostic 
to the choice of filtering criteria—filtering certain microbes will not 
affect the log fold change estimates of the remaining microbes. Fur-
thermore, this differential abundance model can be applied to different 
types of omics data. Moreover, because we built the differential ranking 
model in a Bayesian environment, we were able to fit the model using 
an MCMC approach to estimate uncertainty by sampling the resulting 
posterior distributions.

For example, to make a statement about the value of an estimated 
posterior probability distribution p(D∣ y), we could compute an average 
value using the following approximation:
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𝔼𝔼[D] ≈ 1
m

m
∑
i=0

̂Di ̂Di ∼ p(D| y)

Using this classic application of MCMC sampling in which N samples 
of i are drawn from the posterior distribution p(D∣y), we were able to 
approximate the true mean of the posterior differential abundance 
distributions and the corresponding effect sizes. With this, we can 
compute an effect size metric that determines if there is any global 
difference detected. This metric is analogous to PERMANOVA but one 
that computes this from log fold changes using the age-matched and 
sex-matched design. The effect size E is measured as follows:

E = ||μD||2
rD

, μD =
1
m

m
∑
i=0

̂Di rD = max
̂Di∼p(D|y)

∥ | ̂Di − μD ∥ |2

where μD is the mean of the posterior distribution, and rD represents 
the radius of a sphere that contains all of the samples from the posterior 
distribution. If the effect size is greater than 1, that means that 0 is not 
included in the posterior distribution, and the difference is significant. 
Bayesian P values are computed from the number of draws of ̂Di that 
were simulated from the posterior distribution p(D∣y). For instance,  
if 100 draws are sampled from the posterior distribution, and 0 is not 
within the sphere estimated from those 100 draws, then we say that 
the posterior distribution is significantly not overlapping with 0 with 
P < 0.01.

Other methods
We fitted gradient boosting classifiers on 10 16S datasets and on 
three SMS datasets using q2-sample-classifier68. We randomly split 
the samples into 80/20 training and test splits, performed a fivefold 
cross-validation on the training datasets to obtain optimal model 
parameters and computed predictions on the held-out test dataset. 
PERMANOVA with Bray–Curtis distances was used to determine if 
confounding variation due to household, age and sex was statistically 
significant in the sibling cohorts.

We used MMvec73 to perform the diet–microbe co-occurrence 
analysis. Here, microbes were used to predict dietary intake. This 
analysis enabled the estimation of conditional probabilities, namely 
the probability of observing a dietary compound given that the microbe 
was already observed. To estimate these conditional probabilities, 
MMvec performs a matrix factorization, identifying the factors that 
explain the most information in these interactions. We compared the 
MMvec microbial factors against the cross-sectional log fold changes. 
We then compared the MMvec dietary factors against t-statistics that 
measure the differences in dietary compounds between children with 
ASD and neurotypical children.

To identify candidate viral–microbe interactions, we ran MMvec 
on each of the SMS datasets. We then pulled out the top co-occurring 
viral taxa for each microbe that had a conditional log probability 
greater than 1, amounting to 78,580 microbe–viral interactions. 
Then, we filtered out the microbe–viral interactions that were not 
present in the Gut Phage Database (GPD)44, leaving 31,276 microbial–
viral interactions. The microbe–viral interactions estimated by Dan 
et al.28 and Wang et al.33 were weakly generalizable (Q2 =0.0036 > 0 and 
Q2 =0.0114 > 0). However, the microbe–viral interactions estimated 
from Averina et al.34 were similar to random chance (Q2 = −0.005).

We used Songbird15 to perform the cytokine−microbe analysis 
via a multinomial regression that used the cytokines to predict micro-
bial abundances. We reported biased microbial log fold changes with 
respect to cytokine concentration differences. Pearson correlation 
was used to determine the agreement between the 16S cross-sectional 
microbial differentials and the microbe−cytokine differentials. To 
directly link these microbial abundances to the cytokine concen-
trations, we computed log ratios, or balances, of microbes for each 
sample. For example, for IL-6, the numerator consisted of the top 50 

microbes that are estimated to increase the most in abundance when 
IL-6 concentration increased, and the denominator consisted of the 
bottom 50 microbes that are estimated to be the most decreased when 
IL-6 concentration increases. Once these partitions are defined, the 
balances for each sample are computed by taking the log ratio of the 
average abundance of the numerator group and the denominator 
group15. Pearson correlation between these balances and the cytokine 
concentrations is then computed to measure the agreement between 
the microbial abundances and the cytokine concentrations.

To identify key microbial genes, we performed a comparative 
genomic analysis in which we binned the microbial genomes into 
those associated with ASD subjects and those associated with control 
subjects in the shotgun metagenomics data. We focused on microbes 
that are strongly associated with ASD, specifically those that are sig-
nificantly greater than 10% of taxa that are estimated to be enriched 
in ASD. Using a binomial test, we were able to determine if a particular 
gene was more commonly observed in ASD-associated microbes than 
by random chance. Altogether, we identified 2,176 statistically sig-
nificant microbial genes that differentiated ASD-associated microbial 
genomes from neurotypical-associated microbial genomes. Simi-
larly, we identified 1,570 human transcripts that were differentially 
expressed between ASD and neurotypical subjects. Significant micro-
bial genes and RNA transcripts were subsequently mapped to KEGG 
pathways. To directly compare the two contrasting omics levels and 
gauge metabolic similarity, we retrieved all the molecules involved in 
both the microbial and human pathways and calculated their intersec-
tion. Because the metabolomics datasets are not discrete values like 
sequencing count data, we additive log ratio (ALR) transformed the 
metabolomics datasets using the reference frames highlighted in the 
original papers. We then performed Wilcoxon tests on age-matched 
and sex-matched metabolomics samples within each cohort sepa-
rately. Although our analysis revealed multiple metabolites that were 
below the 0.05 P value threshold, none of these metabolites passed 
the FDR-corrected threshold.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
This study is based on previously published 16S22–25,27–29,37,38,52,36, 
metagenomics28,33,34, RNA-seq59–62 and metabolomics48–50 data. (The 16S 
sequencing data in Martin-Brevet et al.38 is available under accession 
number ERP147524. All processed datasets and harmonized metadata 
are available on Zenodo at 10.5281/zenodo.7877350 as well as on Github 
at https://github.com/mortonjt/asd_multiomics_analyses.

Code availability
Software implementation of our Bayesian age-matched and sex-matched 
differential ranking algorithm can be found at https://github. 
com/flatironinstitute/q2-matchmaker. Our group-averaged differential  
ranking algorithm can be found at https://github.com/mortonjt/q2-dif 
ferential. Finally, our analysis scripts can be found at https://github. 
com/mortonjt/asd_multiomics_analyses. We would like to acknowledge  
Matplotlib, Seaborn, Scipy, Numpy, Xarray, Arviz Scikit-learn, 
biom-format and Scikit-bio for providing the software foundation 
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Extended Data Fig. 1 | Study approach. Metagenomic sequence data present 
unique quantification challenges due to a lack of total microbial load 
measurements, which precludes the determination of absolute microbe 
abundances, and to limitations brought about by sampling and sequencing 
depth limitations, which result in an incomplete representation of the 
metagenome. We devised a Bayesian differential ranking algorithm to address 
both these challenges, the compositional challenge and the zero-inflation 
challenge. The compositional challenge: Most sequencing count datasets lack 
absolute abundance information in the form of cells, colony forming units, or 
transcripts per volume. This limitation preempts the reliable estimation of log 
fold changes (LFCs) and is a defining characteristic of compositional data that 
can lead to excessive false positives or false negatives depending on the 
magnitude of the change in absolute abundances15. As illustrated in panels a) 
through c), microbial counts (a) are typically converted into proportional 
abundances (b) that are then used to compute log-fold ratios. Fold change 
calculations adopt the general formula 

B
A
= NBpB

NApA
= pB

pA
× NB

NA
, where A and B 

represent the two samples being compared, pA and pB represent the microbial 
proportions in A and B, and NA and NB represent the total number of microbes in A 
and B, also known as the ground truth. A key limitation of sequencing count data 

is their lack of proportionality to the corresponding absolute abundances in the 
original samples due to sequencing depth constraints. Our inability to observe NA 
and NB introduces a bias that ultimately prevents us from performing false 
discovery rate (FDR) correction to identify differentially abundant microbes. 
This bias depends on the change in microbial population size, with large 
population shifts leading to increased false positive and false negative rates, and 
an overall skewed representation of the ground truth (c). The zero-inflation 
challenge: Sampling errors and shallow sequencing lead to disproportionately 
high numbers of zero counts, especially for microbes present in low abundances 
(d). Multinomial, Poisson and Negative Binomial distributions have been used to 
explicitly handle zero counts21. However, estimating log-fold differentials 
remains problematic when microbes are not observed in any of the samples in 
one group since log 0 is − ∞ and thus the true log-fold change of a zero-count 
microbe can not be determined (e). Bayesian inference avoids this problem by 
introducing a prior that prevents nonsensical log-fold change estimates (f). 
Specifically, this introduces a rounded-zero assumption whereby all microbes 
have a non-zero chance of being observed. Panel h highlights what these log-fold 
changes would look like using a Dirichlet prior, where every microbe has the same 
probability of being observed before collecting data.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01361-0

Extended Data Fig. 2 | Benchmarks. (a-d) Mean and standard deviations of the 
per-microbe log-fold changes compared to the total sequencing depth (log10 
scale) for each microbe. e) Rarefaction benchmark, showcasing how differential 
abundance analysis is insensitive to rarefaction. (f) Differential abundance 
estimation derived from a data-driven simulated 16S dataset. (g) Comparison of 
age- and sex-matching approach compared to standard group averaging with 
respect to dataset size across 7 of the 11 16S studies (excluding Kang et al52, David 
et al37 and Son et al36 The x-axis represents the number of aggregated datasets, 
the y-axis on the left panel is the average R2 metric to measure the model error. (h) 
Number of samples analyzed on the y-axis, and the x-axis on the right panel is the 
number of aggregated dataset. (i-k) Simulated datasets with a sequencing depth 

differential between matched cases and controls, where matched controls always 
have a larger sequencing depth than their case counterparts. This benchmark 
investigates how well ANCOM-BC, group averaged differential ranking and 
age-sex matched differential ranking can recover the ground truth log-fold 
changes. The group averaged and age-sex matched differential ranking both use 
the Negative Binomial (NB) distribution to model sequencing count data.(l-m) 
Simulated datasets comparing household matching to age-sex matching. (l-n) 
Bray-Curtis PCoA of 2 samples replicated across 4 processing labs in the MBQC31. 
(m) Pairwise comparsions of log-fold change between 2 samples across all 4 labs 
using group-averaged differential abundance analysis.
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Extended Data Fig. 3 | Differential ranking trends observed for the virome, 
16S, SMS, and RNAseq datasets analyzed in this study. The top 10% most 
differentially abundant features are highlighted in red. The x axis for the virome, 

16S and SMS datasets is equivalent to showcase the differences in feature counts; 
the x axes for the RNAseq dataset is larger by a factor of 10, illustrating the stark 
difference in number of features of this dataset compared to the other three.
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Extended Data Fig. 4 | Metabolomics differential ranking analysis across four studies. Paired t-tests were performed to identify differentially abundant 
metabolites. The metabolites shown in Needham et al consist of both fecal and serum metabolites. None of the metabolites had significant log-fold changes  
after applying FDR correction.
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Extended Data Fig. 5 | Comparison of log-fold changes computed from 16S 
and SMS. (a) Comparison of taxa proportions across all 16S and SMS samples 
from Dan et al28 the cross-sectional datasets after mapping to Greengenes2.  

(b) Comparison of differentials obtained from 16S and SMS on the same samples 
from Dan et al across taxa observed in both datasets. Only log-fold changes with 
high confidence (std < 0.5) are shown here.
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Extended Data Fig. 6 | Age differences between case-control matchings. 
(a) 16S age-sex matched dataset, (b) the SMS age-sex matched dataset, (c) 
the David et al household matched dataset (16S)37 (d) the Son et al household 
matched dataset (16S)36 all datasets, the age of the control subject is subtracted 
from the age of the corresponding matched ASD subject. Neither David et al37 
or Son et al36 showed a statistical difference between ages across households. 
(e) Estimated microbial log-fold changes compared to ground truth microbial 

log-fold changes in household matched simulation. (f) Estimated microbial 
log-fold changes compared to ground truth microbial log-fold changes in age-sex 
matched simulation. (g) Percentage of case-control pairs that are within 1 year in 
the age-sex matched dataset and the sibling matched dataset. (h) Percentage of 
case-control pairs that are have the same gender in the age-sex matched dataset 
and the sibling matched dataset.
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Extended Data Fig. 7 | Microbe-viral co-occurrence network estimated using MMvec. Microbes are colored red and viruses are colored blue. Edges are drawn 
between microbes and viruses if they are highly co-occurring and the interaction was annotated in GPD.
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Extended Data Fig. 8 | Microbe-diet co-occurrences. Microbe-diet co-occurrence heatmaps sorted by the (a) first and (b) third principal components estimated 
from MMvec.
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Extended Data Fig. 9 | Distribution of pathways in ASD and control-
associated genes detected in SMS and RNAseq data. (a-b) Breakdown of 
pathways in SMS data that are associated with ASD and neurotypical controls. 
(c-d) Breakdown of pathways in RNAseq data that are associated with ASD and 
neurotypical controls. e) Overlap of ASD associated KEGG enzymes derived from 

the multi-cohort cross-sectional analysis and KEGG enzymes that are found to 
be present in the microbes that decreased in the Kang et al FMT study. f) Pathway 
break down of KEGG enyzmes found in both the Kang et al FMT study and ASD 
children in the multi-cohort cross-sectional analysis. Only microbes that were 
also found in the SMS data were considered in the Kang et al study.
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Blinding We randomly split participants into train/test/validation splits to evaluate cross-validation classification accuracy.  The test dataset was 

blinded from us during model training. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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