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Abstract

Protein stability plays a crucial role in a variety of applications, such as food processing,

therapeutics, and the identification of pathogenic mutations. Engineering campaigns com-

monly seek to improve protein stability, and there is a strong interest in streamlining these

processes to enable rapid optimization of highly stabilized proteins with fewer iterations. In

this work, we explore utilizing a mega-scale dataset to develop a protein language model

optimized for stability prediction. ESMtherm is trained on the folding stability of 528k natural

and de novo sequences derived from 461 protein domains and can accommodate deletions,

insertions, and multiple-point mutations. We show that a protein language model can be

fine-tuned to predict folding stability. ESMtherm performs reasonably on small protein

domains and generalizes to sequences distal from the training set. Lastly, we discuss our

model’s limitations compared to other state-of-the-art methods in generalizing to larger pro-

tein scaffolds. Our results highlight the need for large-scale stability measurements on a

diverse dataset that mirrors the distribution of sequence lengths commonly observed in

nature.

Author summary

Research in Professor Justin Siegel’s lab focuses on discovering and engineering enzyme

catalysis. His work follows a design-build-test cycle, integrating computational protein

modeling with wet-lab experiments. Key areas of his research include de novo enzyme

design, enzyme therapeutics for celiac disease, and applications in food and renewable

energy. Additionally, his lab has developed the Design2Data program, a multi-year, multi-

campus effort to curate a high-quality dataset of enzymatic activity and stability for beta-

glucosidase.

Under the supervision of Professor Justin Siegel, I am engaged in molecular modeling

and machine learning in protein engineering. I have a background in molecular dynamics
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simulations for protein and cell membrane permeability estimation and in using the

Rosetta molecular modeling suite for protein structure modeling and enzyme-substrate

interaction. Current research topics include the prediction of mutational effects on pro-

tein functions and protein language models for functional prediction and protein design.

Introduction

Protein stability is one of the foundations of protein engineering to design resilient proteins

for industrial processes and therapeutic manufacturing [1–3]. Beyond protein engineering,

destabilizing mutations are associated with pathogenicity, and stability predictors can help

identify pathogenic mutations across human proteome [4–7]. Molecular modeling methods,

including Rosetta [8, 9], FoldX [10], and molecular dynamics simulations [11], have been

shown to predict the impact of mutation on protein stability. More recently, the use of

machine learning models grounded in biophysical features and evolutionary statistics [12–20]

has offered an alternative approach to stability and function prediction without the need for

computationally intensive molecular modeling simulations. Fueled by the latest advances in

deep learning, convolutional neural networks (CNNs) [21] and graph neural networks

(GNNs) [22] are now being adopted to predict mutational impacts on stability by operating

directly on the input protein structure [23, 24]. For example, RaSP is a CNN-based model

trained on top of Rosetta [25], while ELASPIC-2, another stability predictor, operates on both

sequence embedding from ESM and structural embedding from GNN [26–28].

Despite these advancements, the lack of a consistent and universal dataset remains an

obstacle. While merging smaller datasets into a more comprehensive collection, such as

ProTherm [29], ProtaBank [30] and ThermoMutDB [31], is a feasible approach, combined

datasets often consist of closely related but distinct quantities accompanied by additional dis-

crepancies in experimental conditions. While deep mutagenesis scanning (DMS) offers pro-

found insights, these studies typically focus on a single protein target, limiting the broader

applicability of the derived data and models subsequently trained on these datasets. In light of

these challenges, Tsuboyama et al. introduced a mega-scale thermostability dataset, encom-

passing 776k short protein sequences derived from 479 small protein domains, all consistently

evaluated using the same assay [32].

Utilizing this dataset, we fine-tuned a protein language model (pLM), named ESMtherm,

from ESM-2 [33] to act as an end-to-end stability predictor. We observe that ESMtherm per-

forms comparably with state-of-the-art models and generalizes to small protein sequences

distal to those of the training set. We also demonstrate that training on an ensemble of protein

domains, instead of mutagenesis studies of a single domain, improves the performance of the

fine-tuned protein language model for folding stability prediction. Lastly, we discuss the limi-

tations of ESMtherm and compare it to other state-of-the-art methods in the ability to generalize

to longer protein sequences.

Results

Evaluating model generalizability on test-set-only domains

Protein stability prediction can be assessed on different scales of generalizability. Although

machine learning algorithms are often trained and tested on different sets of non-overlapping

samples, the definition of overlap is ambiguous in protein sequences. For example, assigning

two point mutants from the same WW domain, one to the training set and another to the test
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set, can assess the generalizability of the model to sequences sharing the same protein domain.

However, it fails to evaluate the generalizability of the model to a domain different from those

in the training set, such as an SH2 domain. To benchmark our model on both scales, our test

set sequences consist of two parts. The first part is formed by protein domains also found in

training set, whereas the second part consists of protein domains exclusively found in test set

only, denoted as test-set-only domains. We assess the model performance by Spearman’s R,

and its capability to generalize to these test-set-only sequences by the highest sequence identity

to any domains in the training set. Given that domains are classified according to the wildtype

definitions by Tsuboyama et al. [32], it is possible for domains exclusive to the test set to still

share considerable sequence identity with those in the training set. This setup allows for an

assessment of generalizability across varying degrees of sequence identity. The dataset-splitting

scheme is illustrated in Fig 1 and further detailed in Methods and Materials.

ESMtherm generalizes reasonably well to 47 test-set-only protein domains, illustrated in

Fig 2. The Spearman’s R evaluated on individual domains ranges from 0.2 to 0.9, except for the

uncharacterized bacterial protein yahO (PDB code: 2MA4) [34]. Among all test-set-only

domains, SH3-subunit of chicken alpha spectrin (PDB code: 6SCW) [35] has the highest

sequence identity of 95.8% and scores a corresponding Spearman’s R of 0.88. Going down the

ladder to test-set-only domains in lower sequence identity, our model scores worse in Homo

sapein J-domain protein HSJ1a (PDB code: 2LGW) [36] at 59% identity but still retains a

Spearman’s R of 0.52.

In the 13 cases where no alignment with the training set sequences passes e-value< 10−3,

ESMtherm is capable of generalizing to both natural and de novo proteins. No training sequence

Fig 1. Dataset splitting scheme. Protein domains are first identified by their wildtype sequences and split into train-validation-test (green) and test-set-

only partitions (cyan). Mutants are then randomly assigned to either training, validation and test sets or test set only according to their respective

wildtype.

https://doi.org/10.1371/journal.pcbi.1012248.g001
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can be aligned to Escherichia coli DNA-binding arginine repressor (PDB code: 1AOY) [37],

and yet its Spearman’s R evaluated is 0.69. For de novo designs, we highlight two protein

domains from Baker Lab. αββα domain (HEEH_KT_rd6_0790) is a mini-protein from high-

throughput computational design with Rosetta [38], whereas the trRosetta-hallucinated struc-

ture (r11_233_TrROS_Hall) was sampled with iterative sequence refinement to improve the

confidence in the prediction of residue-residue distance map [39]. Spearman’s R on these

domains is 0.44 and 0.72, respectively.

Improving stability prediction by learning all domains collectively

Prior to the work by Tsuboyama et al. [32], DMS was often restricted to a single protein of

interest. In the case where the target of interest is not thoroughly mapped, site-saturated muta-

genesis studies from a homologous sequence(s) might provide insights into selecting the best

mutation for the specific function of interest. However, direct cross-comparison between pro-

teins is often complicated by the difference in measured quantities and experimental condi-

tions between functional assays. This inconsistency makes it difficult to highlight the benefits

of learning from multiple target proteins collectively in a systematic manner.

The mega-scale dataset addresses this difficulty by measuring folding stability across multi-

ple protein domains in a uniform experimental condition, and it helps us compare two

Fig 2. Spearman’s R on test-set-only protein domains. Natural protein domains are labeled in blue and de novo
domains are in orange. The x-axis is the highest sequence identity from the evaluated protein domain to those in the

training set. In the case where no sequence alignment was found, 0% is assigned. The y-axis is the Spearman’s R

evaluated on all sequences from the corresponding domain. We highlighted some of the test-set-only AlphaFold2

models in cyan, and when possible, overlay them with the training-set protein domains of the highest sequence

identity in green.

https://doi.org/10.1371/journal.pcbi.1012248.g002
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paradigms, i.e. transfer learning from homologous sequences and learning from all domains

collectively. To contrast these approaches, we assess the generalizability of the model fine-

tuned on these paradigms on test-set-only protein domains.

Extrapolating to test-set-only domains clearly benefits from learning all domains collec-

tively. Collective training improves Spearman’s R by 0.16 on average (p-value = 6x10-3), as

illustrated in Fig (3). CdnL protein (PDB code: 2LQK) [40] cannot be aligned with any training

sequence and instead was matched with its closest structural alignment (PDB code: 2BTT)

[41] with Foldseek [42]. Collective training increased CdnL’s Spearman R from -0.25 to 0.65.

Similarly, amino-terminal domain of phase 434 repressor (PDB code: 1R69) [43] was matched

by structural alignment to a redesigned protein G (PDB code: 1EM7) [44] with a TM-score of

0.23, and gained 0.74 in Spearman’s R from -0.22 to 0.52. Looking into the domains with

sequence alignment to the training set, WW domain from APBB3 (PDB code: 2YSC) shares

47% identity with its training-set partner (PDB code: 1WR7) and yet still benefits from multi-

domain training with an improvement of 0.32. In contrast, uncharacterized yahO protein

remains a difficult target. Compared to training on its closest training-set domain (PDB code:

1IGV), learning on multiple domains only improves the correlation from -0.35 to -0.14. Over-

all, these results highlight the benefits of a protein stability dataset on a diverse collection of

protein domains for generalization to previously understudied targets.

Although the improvement brought by collective training highlights the benefits of a consis-

tent large-scale dataset on folding stability, it is still unclear whether the improvement originates

from the shared knowledge on folding stability across multiple domains or the sheer number of

samples. The discrepancy in dataset size is significant as an individual domain only constitutes

up to 7k sequences, less than 2% of the training set on the collection of protein domains.

In addition to extrapolating to test-set-only protein domains, we conducted a similar com-

parison on the impact of training on a collection of protein domains on interpolation on previ-

ously observed protein domains. Overall, performance on sequences from training-set

domains is marginally uplifted by learning from a multi-domain dataset. Illustrated in S2 Fig,

learning from an ensemble of protein domains weakly outperforms models trained on the

same domain by an average of 0.03 (p-value = 2x10-2). However, the margin is slim. 72% of the

domains have Spearman’s R only change by 0.1.

Fig 3. Comparison between transfer learning from the closest protein domain in training set and training on all domains collectively. (A)

Schematic of the comparison. In the case of transfer learning, we match the test-set-only protein domain in cyan with the closest domain found in the

training set in green. (B) Spearman’s R in the test set-only protein domains (x-axis) by learning from all domains collectively and (y-axis) by learning

from the closest training-set domain alone. Samples(s) located under the diagonal line indicate better performance by learning collectively. The closest

training-set domains were identified primarily by sequence alignment using MMseqs2, then by structure alignment using Foldseek, or discarded when

no match was found in either case. The color bar indicates the highest sequence identity to any training-set domains and 0% was assigned when no

sequence alignment was found. Statistical significance is performed with Wilcoxon’s rank sum test (p-value = 6 x 10-3).

https://doi.org/10.1371/journal.pcbi.1012248.g003
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Comparison with existing models on larger proteins

Although natural proteins often span between 200 and 400 residues [45], ESMtherm is fine-

tuned on sequences no longer than 72 residues in length. To explore its performance under

this limitation, we benchmarked our model on seven stability-related datasets on larger pro-

teins and compared our results with state-of-the-art covering different methodologies in

Tables 1 and 2. These include Rosetta Cartesian ΔΔG for molecular modeling, MUPro for sup-

port vector machine (SVM) on traditional sequence features, RaSP for structure-based CNN,

ELASPIC-2 which employs a machine-learning model based on both structure and sequence

embedding, and unsupervised prediction from ESM-2 [46].

We observe comparable performance in predicting the thermostability of test-set-only pro-

tein domains across all models except MUPro. Our pLM achieves a Spearman’s R of 0.65,

compared to 0.64 from RaSP and ELASPIC-2, and 0.61 from Rosetta molecular modeling.

MUPro finishes last by scoring 0.31. Drawing an interesting parallel between datasets, Huang

et al. reported direct melting temperature measurements of beta-glucosidase active-site

mutants (PDB code: 2JIE) manually selected based on biophysical knowledge [47, 48], while

Romero et al. leveraged a log-enrichment value to gauge the stability for a similar beta-glucosi-

dase (PDB code: 1GNX) in a site-saturated fashion [49]. The former closely resembles a

smaller-scale study guided by domain knowledge in contrast to the latter dataset that leverages

a parallelized assay. Despite an identical alpha-beta barrel scaffold and catalytic mechanism,

and a shared sequence identity 48%, most models achieve Spearman’s R above 0.4 on the Bgl3

dataset, and no method correlates with BglB dataset. This highlights the potential impact of

sampling and assay through a comparative setting.

Trained specifically on small protein domains, ESMtherm does not generalize to other data-

sets on larger protein sequences. In a collection of direct [50] and indirect [51–53] stability

Table 1. Comparison of Spearman’s R across methods on individual DMS datasets. All evaluation is restricted to point mutations, except our pLM on the mega-scale

dataset. We also report unsupervised prediction from pretrained ESM-2 to contrast with supervised approaches. While the mega-scale dataset from Tsuboyama et al. covers

multiple protein domains [32], all other datasets studied only one target protein.

Dataset Length Supervised Prediction Unsupervised Prediction

Rosetta MUPro RaSP ELASPIC-2 ESMtherm ESM-2 (35M) ESM-2 (3B)

Mega-scale dataset 40–72 0.61 0.31 0.64 0.64 0.65 0.36 0.43

BglB dataset 445 -0.01 -0.02 0.02 -0.11 -0.11 -0.12 -0.12

Bgl3 dataset 510 0.49 0.10 0.44 0.56 0.06 0.43 0.53

Acetyltransferase dataset 177 0.33 0.16 0.30 0.49 0.03 0.25 0.50

Lipase EstA dataset 212 0.48 0.06 0.41 0.47 0.04 0.26 0.28

PTEN dataset 403 0.44 0.17 0.41 0.47 0.04 0.26 0.25

Methyltransferase dataset 245 0.48 0.21 0.40 0.58 0.03 0.42 0.46

https://doi.org/10.1371/journal.pcbi.1012248.t001

Table 2. Overview of benchmarked DMS datasets on protein stability.

Dataset name Protein name Protein length Measured quantity No. of sequences

Mega-scale dataset [32] multiple 40–72 cDNA display proteolysis 100,794 (test set)

BglB dataset [47] Beta-glucosidase (BglB) 445 melting temperature (Tm) 157

Bgl3 dataset [49] Beta-glucosidase (Bgl3) 501 catalytic susceptibility to heat shock 2,999

Acetyltransferase dataset [51] Gentamicin 3-N-acetyltransferase 177 chemical stability 1,801

Lipase EstA dataset [50] Lipase EstA 212 melting temperature (T50) 2,172

PTEN dataset [52] PTEN 403 protein abundance 5,083

Methyltransferase dataset [53] Thiopurine S-methyltransferase 245 protein abundance 3,648

https://doi.org/10.1371/journal.pcbi.1012248.t002
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measurements, state-of-the-art methods outperform our pLM convincingly. Cartesian ddG in

Rosetta achieves generalizability through molecular modeling with a correlation between 0.33

and 0.48. Simultaneously, RaSP is built on top of Cartessian ddG and dramatically speeds up

the protocol with marginal correlation setbacks. Overall, ELASPIC-2 ranks highest with a

Spearman’s R of 0.42–0.58 while our pLM correlates to none of these datasets.

Another intriguing observation is the performance of unsupervised predictions from pLM.

While ESM-2 is less capable of predicting stability changes within the mega-scale dataset, it

excels in datasets where indirect stability measurements correlate with function. These include

log2-enrichment value which characterizes how catalytic activity reacts to heat shock in Bgl3

dataset and the intracellular abundance of the protein in the acetyltransferase dataset. Con-

versely, ESM-2 has a comparably weaker performance for proteolysis folding stability in the

mega-scale dataset and chemical stability in the Lipase EstA dataset, where the assays measure

stability directly. We also highlight the impact of fine-tuning by benchmarking the unsuper-

vised prediction from 35M-parameter ESM-2 against our fine-tuned ESMtherm of the same

model size. Supervised prediction improves the correlation from 0.36 to 0.65.

Discussion

Although our model generalizes reasonably well to new small protein domains in the mega-

scale thermostability dataset, it is substantially weaker on larger proteins. Studies have estab-

lished a strong correlation between the parallelized assay and direct measurement of thermo-

stability [54]. However, we cannot rule out that our language model is biased towards dataset-

specific details, including experiment conditions and sampling distribution of protein

sequences. One hypothesis is that our pLM is biased toward shorter sequences, while geomet-

ric learning do not suffer from the same pitfall and already performs better in unsupervised

prediction [55]. The protein domains on which we trained are limited to 40 to 72 amino acids

in length, a stark contrast to the 177- to 501-residue-long sequences in our additional DMS

benchmark. This might suggest that fine-tuned pLM stability predictors would benefit from a

large-scale folding stability dataset on longer sequences.

While most methods can rank ΔΔG between mutants successfully, predicting ΔG is still

challenging. Our predictions often suffer from an offset and/or scale differently when com-

pared to the experimental ΔG of the test-set-only domains (S3 Fig) and other methods might

share the same problem. For example, Rosetta Cartesian ΔΔG follows a different energy unit

(Rosetta Energy Unit), and it might not be suitable to be compared directly to kcal mol-1. How-

ever, the misalignment can be easily resolved by a simple linear regression between model pre-

diction and experiment. Upon recalibration per protein domain, the root mean square error

from our model improved from 1.34 to 0.83 and R2 from -0.85 to 0.45, averaged across all test-

set-only domains. For instance, our model scores a negative R2 on DNA-binding arginine

repressor before recalibration and improves to 0.47 after rescaling, while Spearman’s R

remains the same at 0.69 regardless of any monotonic transformation (Fig 4).

Conclusion

In this work, we demonstrate that folding stability prediction is possible using a protein lan-

guage model. Enabled by large-scale protein stability measurements, we fine-tuned ESM-2 on

the absolute folding energy of small protein domains. This approach generalizes successfully to

protein domains distal from the training set, showing the potential of transfer learning to

reduce experimental burden. Furthermore, our result highlights the benefits of training collec-

tively on all protein sequences instead of mutagenesis study on a single wildtype. Although its

PLOS COMPUTATIONAL BIOLOGY Fine-tuning Protein Language Model for Stability Prediction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012248 July 22, 2024 7 / 13

https://doi.org/10.1371/journal.pcbi.1012248


performance on larger protein scaffolds is lagging behind state-of-the-art, a folding stability

dataset of larger proteins might be vital to improving the generalizability of ESMtherm.

Methods and materials

Protein language model and fine-tuning protocol

ESM-2 is a transformer pLM pre-trained on masked-language-model (MLM) objective on

UniRef50. We fine-tuned the model on whole-sequence regression task with a classification

head on the starting token. All parameters were trainable in fine-tuning, and used a local batch

size of 128 and a global batch size of 2048. We trained the model on A100 GPU at half preci-

sion with a patience of 500 steps. We report all test-set-only evaluations on the checkpoint

with the best performance on the validation set.

We performed hyperparameter selection on model size (8, 35, 150, and 650 million parame-

ters) (S1 Table), and selected the 35-million-parameter model to balance prediction perfor-

mance and compute speed. In addition, we performed an ablation study on pretraining.

Model with pretraining has a superior advantage over that with random initialization (S1 Fig).

Dataset construction

Tsuboyama et al. measured the folding stability of 1.8M measurements derived from 542 pro-

tein domains by cDNA display proteolysis [32]. We aggregated measurement(s) with the iden-

tical protein sequence, regardless of their DNA sequence(s), into a single entry. In cases where

the DNA sequence was unique while sharing the same protein sequence, we evaluated the stan-

dard deviation of ΔG and log K50. We removed measurements when the standard deviation of

ΔG was greater than 2 kcal mol-1 or that of log K50 was greater than 0.5 and we kept only

domains with at least 100 measurements by protein sequence. This reduced the number of

Fig 4. Impact of recalibration. (Left) Miscalibration between prediction and true value on the stability of DNA-binding arginine repressor. (Right)

Recovered agreement between prediction and stability measurement through linear rescaling on the same set of data.

https://doi.org/10.1371/journal.pcbi.1012248.g004
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entries from 851,552 protein sequences from their original criteria (K50_dG_Dataset1_Data-

set2.csv) to 527,785 protein sequences and 258 natural and 203 de novo protein domains.

Under the hierarchical nature of this dataset, by which multiple domains are constituted

and each domain holds a collection of multiple mutants, the definition of model generalizabil-

ity has two layers. The first is the ability of the model to generalize to mutants on training pro-

tein domains, and the second is that on test-set-only domains. To evaluate the model on both

training and test-set-only domains, we split our dataset into train, validation, and test sets by

domains as illustrated in Fig 1. 10% of all domains, defined by wildtype by the authors, are ran-

domly drawn and all of their mutants are assigned to the test set. Mutants are randomly

assigned to train-validation-test sets in an 80–10-10 ratio for the remaining domains.

Sequence and structural alignment

We implemented sequence clustering and alignment through MMseqs2 [56]. For clustering,

we clustered the domain wild-type sequences using a similar strategy in constructing the Uni-

clust database. We dropped prefiltering for all-to-all pairwise alignment. For Foldseek, we

searched for the structural identity based on AlphaFold structures from Tsuboyama et al [32].

Unless otherwise specified, we used the default parameters in both MMseqs and Foldseek. The

implementation details of alignment can be found src/esmtherm/alignment in the GitHub

repository.

Matching test-set-only domains

We fine-tuned ESM-2 (esm2_t12_35M_UR50D) on each of the 416 protein domains in the

training set as our independently learned models. We first matched each test-set-only domain

to its closest partner in the training set by the highest sequence identity using MMseqs2. In the

case where no sequence alignment is identified, we matched test-set-only domain by the high-

est structural identity by Foldseek. In the case that neither is identified, the test-set-only

domain was not compared. Pairwise comparisons of interpolation and extrapolation are per-

formed in Wilcoxon’s rank sum test.

Benchmark protein dataset selection

Given the intensive computing resource required to benchmark Rosetta, we limited ourselves

to six DMS datasets on direct and indirect stability measurements from ProteinGym [57, 58],

and another independent mutational dataset (BglB) from Huang et al. [47] to cover a range of

assays. Nutschel et al. reported the thermostability (ΔT50) of Bacillus subtilis Lipase A [50],

whereas Dandage et al. reports chemical stability on Gentamicin 3-N-acetyltransferase [51].

Contrary to direct stability measurements, PTEN and Methyltransferase datasets correlate

with stability through enhancement or depreciation of intracellular abundance as an indirect

indicator [52, 53]. The pair of Bglb and Bgl3 datasets was chosen for a comparative study on

the impact of sampling and measurement assays. Bgl3 from Romero et al. and BglB datasets

[47, 49] share homologous beta-glucosidase sequences but differ in log enrichment value and

melting temperature (Tm) as indirect and direct thermostability measurements.

Supporting information

S1 Fig. Ablation of pretraining measured in Spearman’s R. Each sample is a collection of

mutants from a test-set-only domain. The x-axis is Spearman’s R of a test-set-only domain

with pretraining. The y-axis is that from randomly initialized model. The color bar on the

right represents the closest sequence identity in the train and validation set domains. The
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statistical assessment was performed using Wilcoxon’s rank sum test.

(TIF)

S2 Fig. Comparison between learning from the same protein domain only and training on

all domains collectively. (A) Schematic of the comparison. (B) Spearman’s R on test mutants

whose protein domains are also present in the training set. The x-axis represents learning from

all domains collectively and the y-axis is learning from the same protein domain alone.

Domain(s) located under the diagonal line indicate better performance when learning collec-

tively. Statistical significance is performed with Wilcoxon’s rank sum test.

(TIF)

S3 Fig. Offset in ΔG prediction on wildtype sequences. The x-axis is the ΔG prediction from

ESMtherm and the y-axis is the experimental ΔG label. The Spearman’s R across all wildtypes in

test-set-only protein domains is 0.39.

(TIF)

S1 Table. Performance evaluation on different model sizes on test set. Metrics are evaluated

on each individual domain, and then aggregated into mean and standard deviation over all

domains. All models have similar performance metrics with esm2_t12_35M_UR50D except

esm2_t6_8M_UR50D on Spearman’s R (p-value < 5x10-2).

(PDF)

S1 Spreadsheet. Performance evaluation per protein domain.

(CSV)

S2 Spreadsheet. Model prediction per protein sequence.

(CSV)
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5. Cheng J., Novati G., Pan J., Bycroft C., Žemgulytė A., Applebaum T., et al. Accurate proteome-wide

missense variant effect prediction with AlphaMissense. Science. 2023; 381. https://doi.org/10.1126/

science.adg7492 PMID: 37733863

6. Stein A., Fowler D.M., Hartmann-Petersen R., Lindorff-Larsen K. Biophysical and Mechanistic Models

for Disease-Causing Protein Variants. Trends in biochemical sciences, 2019; 44 7, 575–588. https://

doi.org/10.1016/j.tibs.2019.01.003 PMID: 30712981

7. Yue P., Li Z., Moult J. Loss of protein structure stability as a major causative factor in monogenic dis-

ease. Journal of molecular biology, 2005; 353 2, 459–73. https://doi.org/10.1016/j.jmb.2005.08.020

PMID: 16169011

8. Kellogg EH, Leaver-Fay A, Baker D. Role of conformational sampling in computing mutation-induced

changes in protein structure and stability. Proteins: Structure, Function and Bioinformatics. 2011; 79

(3):830–838. https://doi.org/10.1002/prot.22921 PMID: 21287615

9. Park H, Bradley P, Greisen P, Liu Y, Mulligan VK, Kim DE, et al. Simultaneous Optimization of Biomo-

lecular Energy Functions on Features from Small Molecules and Macromolecules. Journal of Chemical

Theory and Computation. 2016; 12(12):6201–6212. https://doi.org/10.1021/acs.jctc.6b00819 PMID:

27766851

10. Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L. The FoldX web server: An online

force field. Nucleic Acids Research. 2005; 33(SUPPL. 2):382–388. https://doi.org/10.1093/nar/gki387

PMID: 15980494

11. Wilson CJ, Chang M, Karttunen M, Choy WY. Keap1 cancer mutants: A large-scale molecular dynam-

ics study of protein stability. International Journal of Molecular Sciences. 2021; 22(10). https://doi.org/

10.3390/ijms22105408 PMID: 34065616

12. Dehouck Y, Kwasigroch JM, Gilis D, Rooman M. PoPMuSiC 2.1: A web server for the estimation of pro-

tein stability changes upon mutation and sequence optimality. BMC Bioinformatics. 2011; 12. https://

doi.org/10.1186/1471-2105-12-151 PMID: 21569468

13. Cao H, Wang J, He L, Qi Y, Zhang JZ. DeepDDG: Predicting the Stability Change of Protein Point Muta-

tions Using Neural Networks. Journal of Chemical Information and Modeling. 2019; 59(4):1508–1514.

https://doi.org/10.1021/acs.jcim.8b00697 PMID: 30759982

14. Witvliet DK, Strokach A, Giraldo-Forero AF, Teyra J, Colak R, Kim PM. ELASPIC web-server:

Proteome-wide structure-based prediction of mutation effects on protein stability and binding affinity.

Bioinformatics. 2016; 32(10):1589–1591. https://doi.org/10.1093/bioinformatics/btw031 PMID:

26801957

15. Worth CL, Preissner R, Blundell TL. SDM—A server for predicting effects of mutations on protein stabil-

ity and malfunction. Nucleic Acids Research. 2011; 39(SUPPL. 2). https://doi.org/10.1093/nar/gkr363

PMID: 21593128

16. Masso M, Vaisman II. AUTO-MUTE 2.0: A portable framework with enhanced capabilities for predicting

protein functional consequences upon mutation. Advances in Bioinformatics. 2014; 2014. https://doi.

org/10.1155/2014/278385 PMID: 25197272

17. Strokach A., Corbi-Verge C., Teyra J., Kim P.M. Predicting the Effect of Mutations on Protein Folding

and Protein-Protein Interactions. Methods in molecular biology, 2018; 1851, 1–17. https://doi.org/10.

1007/978-1-4939-8736-8_1

18. Strokach A., Corbi-Verge C., Kim P.M. Predicting changes in protein stability caused by mutation using

sequence-and structure-based methods in a CAGI5 blind challenge. Human Mutation, 40, 1414–1423.

https://doi.org/10.1002/humu.23852 PMID: 31243847

19. Cheng J., Randall A., Baldi P. Prediction of protein stability changes for single-site mutations using sup-

port vector machines. Proteins: Structure, Function, and Bioinformatics, 2006; 62(4), 1125–1132.

https://doi.org/10.1002/prot.20810 PMID: 16372356

PLOS COMPUTATIONAL BIOLOGY Fine-tuning Protein Language Model for Stability Prediction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012248 July 22, 2024 11 / 13

https://doi.org/10.3390/polym13223884
http://www.ncbi.nlm.nih.gov/pubmed/34833182
https://doi.org/10.1038/s41598-020-72404-w
http://www.ncbi.nlm.nih.gov/pubmed/32958805
https://doi.org/10.1126/science.adg7492
https://doi.org/10.1126/science.adg7492
http://www.ncbi.nlm.nih.gov/pubmed/37733863
https://doi.org/10.1016/j.tibs.2019.01.003
https://doi.org/10.1016/j.tibs.2019.01.003
http://www.ncbi.nlm.nih.gov/pubmed/30712981
https://doi.org/10.1016/j.jmb.2005.08.020
http://www.ncbi.nlm.nih.gov/pubmed/16169011
https://doi.org/10.1002/prot.22921
http://www.ncbi.nlm.nih.gov/pubmed/21287615
https://doi.org/10.1021/acs.jctc.6b00819
http://www.ncbi.nlm.nih.gov/pubmed/27766851
https://doi.org/10.1093/nar/gki387
http://www.ncbi.nlm.nih.gov/pubmed/15980494
https://doi.org/10.3390/ijms22105408
https://doi.org/10.3390/ijms22105408
http://www.ncbi.nlm.nih.gov/pubmed/34065616
https://doi.org/10.1186/1471-2105-12-151
https://doi.org/10.1186/1471-2105-12-151
http://www.ncbi.nlm.nih.gov/pubmed/21569468
https://doi.org/10.1021/acs.jcim.8b00697
http://www.ncbi.nlm.nih.gov/pubmed/30759982
https://doi.org/10.1093/bioinformatics/btw031
http://www.ncbi.nlm.nih.gov/pubmed/26801957
https://doi.org/10.1093/nar/gkr363
http://www.ncbi.nlm.nih.gov/pubmed/21593128
https://doi.org/10.1155/2014/278385
https://doi.org/10.1155/2014/278385
http://www.ncbi.nlm.nih.gov/pubmed/25197272
https://doi.org/10.1007/978-1-4939-8736-8_1
https://doi.org/10.1007/978-1-4939-8736-8_1
https://doi.org/10.1002/humu.23852
http://www.ncbi.nlm.nih.gov/pubmed/31243847
https://doi.org/10.1002/prot.20810
http://www.ncbi.nlm.nih.gov/pubmed/16372356
https://doi.org/10.1371/journal.pcbi.1012248


20. Huang L., Gromiha M.M., Ho S. iPTREE-STAB: interpretable decision tree based method for predicting

protein stability changes upon mutations. Bioinformatics, 23 10, 1292–3. https://doi.org/10.1093/

bioinformatics/btm100 PMID: 17379687

21. Lecun Y, Bottou E, Bengio Y, Haffner P. Gradient-Based Learning Applied to Document Recognition;

1998.

22. Kipf TN, Welling M. Semi-Supervised Classification with Graph Convolutional Networks. arxiv. 2016;.

23. Wang S, Tang H, Shan P, Wu Z, Zuo L. ProS-GNN: Predicting effects of mutations on protein stability

using graph neural networks. Computational Biology and Chemistry. 2023; 107. https://doi.org/10.1016/

j.compbiolchem.2023.107952 PMID: 37643501

24. Chu SKS, Siegel J. Predicting single-point mutational effect on protein stability; 2021.

25. Blaabjerg LM, Kassem MM, Good LL, Jonsson N, Cagiada M, Johansson KE, et al. Rapid protein stabil-

ity prediction using deep learning representations. eLife. 2023; 12. https://doi.org/10.7554/eLife.82593

PMID: 37184062

26. Strokach A, Lu TY, Kim PM. ELASPIC2 (EL2): Combining Contextualized Language Models and Graph

Neural Networks to Predict Effects of Mutations. Journal of Molecular Biology. 2021; 433(11). https://

doi.org/10.1016/j.jmb.2021.166810 PMID: 33450251

27. Rives A, Meier J, Sercu T, Goyal S, Lin Z, Liu J, et al. Biological structure and function emerge from

scaling unsupervised learning to 250 million protein sequences. bioRxiv. 2019; 118(15):e2016239118.

28. Strokach A, Becerra D, Corbi-Verge C, Perez-Riba A, Kim PM. Fast and Flexible Protein Design Using

Deep Graph Neural Networks. Cell Systems. 2020; 11(4):402–411. https://doi.org/10.1016/j.cels.2020.

08.016 PMID: 32971019

29. Gromiha MM, An J, Kono H, Oobatake M, Uedaira H, Prabakaran P, et al. ProTherm, version 2.0: ther-

modynamic database for proteins and mutants; 2000. 1. Available from: http://www.rtc.riken.go.jp/

protherm.html.

30. Wang CY, Chang PM, Ary ML, Allen BD, Chica RA, Mayo SL, et al. ProtaBank: A repository for protein

design and engineering data. Protein Science. 2018; 27(6):1113–1124. https://doi.org/10.1002/pro.

3406 PMID: 29575358

31. Xavier J.S., Nguyen T., Karmarkar M., Portelli S., Rezende P.M., Velloso J.P., et al. ThermoMutDB: a

thermodynamic database for missense mutations. Nucleic Acids Research. 2020; 49, D475–D479.

https://doi.org/10.1093/nar/gkaa925

32. Tsuboyama K, Dauparas J, Chen J, Laine E, Mohseni Behbahani Y, Weinstein JJ, et al. Mega-scale

experimental analysis of protein folding stability in biology and design. Nature. 2023; 620(7973):434–

444. https://doi.org/10.1038/s41586-023-06328-6 PMID: 37468638

33. Lin Z, Akin H, Rao R, Hie B, Zhu Z, Lu W, et al Evolutionary-scale prediction of atomic-level protein

structure with a language model. Science. 2023; 379:1123–1130. https://doi.org/10.1126/science.

ade2574 PMID: 36927031

34. Eletsky A, Michalska K, Houliston S, Zhang Q, Daily MD, Xu X, et al. Structural and Functional Charac-

terization of DUF1471 Domains of Salmonella Proteins SrfN, YdgH/SssB, and YahO. PLoS ONE.

2014; 9:e101787. https://doi.org/10.1371/journal.pone.0101787 PMID: 25010333

35. Grohe K, Patel S, Hebrank C, Medina S, Klein A, Rovó P, et al. Protein Motional Details Revealed by
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