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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 123, Number 1, January 1995 

ON COMPACTNESS OF COMPOSITION OPERATORS 
IN HARDY SPACES OF SEVERAL VARIABLES 

SONG-YING LI AND BERNARD RUSSO 

(Communicated by Palle E. T. Jorgensen) 

ABSTRACT. Characterizations of compactness are given for holomorphic com- 
position operators on Hardy spaces of a strongly pseudoconvex domain. 

1. INTRODUCTION 

Let Q be a bounded domain in Cn with Cl boundary. Let (o be a holomor- 
phic mapping from Q to Q. The composition operator C. is defined formally 
as follows: C,(u)(z) = u((#(z)) for all z E Q and any function u on Q. 
The study of such holomorphic composition operators has been active since the 
early 1 970s (see Cowen [5] for details in the case of one variable). In the case of 
several complex variables, counterexamples have been constructed by several au- 
thors showing that composition operators can be unbounded on X*2 (Bn) , where 
Bn is the unit ball in Cn (see, for example, Cima and Wogen [1], Wogen's sur- 
vey paper [24], and the references therein). In this paper, we are concerned with 
compactness of composition operators. It was proved by Shapiro and Taylor 
[22] that Co: TP(B1) -* A*P(B1) is compact for one p E (0, xc) if and only 
if it is compact on ATP (B1) for all p E (0, oc). There is a characterization of 
compactness for Coo: ATP(B1) -* P(BI) in terms of the Nevanlinna counting 
function, given by Shapiro [19]. Another characterization of compactness can 
be formulated in terms of a Carleson measure condition for the pullback mea- 
sure dvo, (see [16] for the case of the unit ball in Cn ). This theorem has also 
been proved for the unit polydisk in Cn in [10]. 

More recently, Sarason [20] proved that weak compactness and norm com- 
pactness for a composition operator on the Hardy space A" (BI) are equivalent. 
He found it more natural to consider real Hardy space on 0BI rather than holo- 
morphic Hardy space. Using the duality theorem of Fefferman on HI , Sarason 
proved that norm compactness on HI (0B1) is equivalent to C, (BMO(0 B1)) c 
VMO(0 B1) . Later, Shapiro and Sundberg [21] proved that compactness of Cf, 
on A*2(BI) is equivalent to compactness on LI (0 B1), where the composi- 
tion operator is now viewed as acting on the Poisson integral of functions in 
L1(0B1). 
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162 SONG-YING LI AND BERNARD RUSSO 

The main purpose of this paper is to generalize the above theorems of Sarason 
and Shapiro-Taylor from the unit disc to strongly pseudoconvex domains Q in 
Cn . Some of our results are known in the case of the unit ball Bn in Cn [26]. 
Our formulation differs slightly from that of Sarason [20]. This is explained in 
a remark following the statement of the main theorem in ?2. 

2. NOTATION AND STATEMENT OF THE MAIN THEOREM 

Let Q be a bounded strongly pseudoconvex domain with C2 boundary. We 
define a continuous function d on aQ as follows. For x E aQ, let 7rx denote 
the complex tangent plane at x . For t > 0, Ax, t denotes the set of points in 
Cn at distance < t from the ball in the plane 7rx with center at x and radius 
Vt. Let Bx,t=Ax,tn .Then set 

d(xy)=inf{t>0; YEBxt5 xeByt} 

It is known that d defined above is a quasimetric on aQ (see, for example, 
[23, 12]), i.e., d is a continuous function from aQ x aQ to R+ satisfying the 
usual requirements for a topological metric except that the triangle inequality 
is replaced by 

d(x, z) < C(d(x, y) + d(y, z)), x, yz E AQ. 

Let Q be a smoothly bounded domain in Cn (n > 2). We shall use r(z) to 
denote the distance function of z E Q to aQi. We define XP(Q) (0 < p < xc) 
to be the usual Hardy space of holomorphic function on Q (see [ 12, Chapter 8]). 
We may identify it with a closed subspace of LP (0 Q) by passing to the (almost 
everywhere) radial limit function f on AQ. Let d be a quasimetric on AQ. 
Then BMO(aQ) c LI (aQ) is defined in terms of the quasimetric d and the 
surface measure a on aQ as follows. The seminorm on BMO is defined for 
g E L1(aQ) by 

11 91BMO = supMO(g)(x, r), 
x,r 

where 

MO(g) (x , r) = - , ) IB Ir g(t) - gB(x, r) Idu(t). 
|B(x, r)l B(x ,r) 

Here the balls B(x, r) (called nonisotropic) are defined using the quasimet- 
ric, gB(x r) is the average of g over the ball, da is (2n - 1)-dimensional 
surface measure on the boundary of Q, and IB(x, r)I = a(B(x, r)). We 
say a function f E Ll(aQ) belongs to VMO(aQ) if f E BMO(aQ) and 

supXEan MO(f)(x, r) -* 0 as r -* 0. Now BMOA(Q) denotes the space of 

functions in XI (Q) whose boundary values f are in BMO(a Q), with norm 

HIf II* = IIf IBMO; and VMOA(Q) = BMOA(Q)n VMO(a Q) . It is easy to prove 
that BMOA(Q) is a closed subspace of BMO(aQ), and that VMOA(Q) is a 
closed subspace of VMO(aQ). 

A measurable function a on a Q is said to be an atom if either a is bounded 
on a Q and la I does not exceed 1/ a Q0 or there is a point z0 E a Q and r > 0 
such that a is supported on B(zo, r) and satisfies the following conditions: 

ja(z)l < IB{zo r)l' j a(z)da(z) = 0. 
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We say a function u belongs to H1 (aQ) (real H1 ) if there is a sequence of 
atoms {ak} and a sequence of numbers {1k} E 11 such that u = Zk' I Akak in 
the sense of distributions. The norm of u E H1 (aQ) is defined as follows: 

00' 00 

||U11H1 = inf{ Z41i: U = Z, kak} 
k=I k=I 

The duality theorem of BMO and H1 has been shown by Coifman and 
Weiss in [2] for a general space of homogeneous type. As a special case of their 
theory, we state: 

Theorem A. (i) H1 (OQ)* = BMO(O Q), and 

(ii) VMO(OLQ)* = H1(dQ). 
Let P: L2(OQ) __ p2(Q) be the orthogonal projection, that is, the Szego 

projection with Szego kernel S(z, w). The relations between real H1 and 
holomorphic A"1Q) are given in [13] and [14] as follows: 

Theorem B. Let Q be a bounded strongly pseudoconvex domain in Cn or a 
pseudoconvex domain offinite type in C2 with smooth boundary. Then: 

(i) P(H1 (Q)) =- I (a); 
(ii) xTl(Q)* = BMOA(Q), P(BMO(OQ)) = BMOA(Q) = P(L??(OQ)); 

(iii) VMOA(OKQ)* -=1 (Q), P(VMO(OKQ)) = VMOA(Q) = P(C(OQ)). 

Let 
Po(z, w) = S(z, Z)-IS(z, W)12 

be the Poisson-Szego kernel on Q x aQi. The composition operator C. extends 
to functions in L1 (aQ) as follows: for u E L1 (aQ), 

Cp (u) := C(Po(u)) = Po(u) a At 
where for z E Q 

Po(u)(z) = j u(w)Po(z, w) da(w). 

Let z E OQ and r > 0. We shall use C(z, r) to denote the Carleson region: 

C(z, r) = {w E Q: r(w) E B(z, r), r(w) < r}, 
where 7r(w) is the normal projection of w to aQ. Let X#(Q) denote the 
space of all complex Borel measures over Q. Corresponding to ,U E X(Q), we 
define the following function on (0, 1): 

g. (r) = sup { Jtl((z, r)) 

Let BCM(Q) denote the space of all Carleson measures over Q, i.e., dj E 
BCM(Q) if dj E XY((Q) and g9 E L??(O, 1). By definition, the measure 
dji E X#(Q) belongs to VCM(Q) if dji E BCM(Q) and limr o+ gpj(r) = 0. 

The pullback measure dvl, will play an important technical role in our proofs. 
Recall that to define it, one first extends q' to Q by passing to the radial limits 
almost everywhere on aQ (see [12]). Denoting this extension by q' too, dv, 
is the measure defined on Q by 

v9(E) = a(q-1 (E) n aQ). 
Now we are ready to state our main theorem. 
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Theorem 1. Let Q be a bounded strongly pseudoconvex domain in Cn with 
smooth boundary. Let p: Q -* Q be a holomorphic mapping. Then the following 
statements are equivalent: 

(i) Cvp: L (a Q) -*VMO(O Q) is bounded; that is, C.,: H1 (a Q) -*L1 ( ) 
and the range of C,* is contained in VMO(O Q). 

(ii) C9: H1 (a Q) -*L1 ( Q) is compact. 
(iii) C9: X1(Q)I X 1(Q) is compact. 
(iv) C9,: XP(Q)LI) TP(Q) is compact for some O < p < x . 
(v) C9,: LP (a Q) > LP (a Q) is compact for some 1< p < x . 

(vi) dvro E VCM(Q). 
(vii) Can: /P(Q) -* /P(Q) is compact for all 0 < p < oc . 

Remark. Statement (ii) is slightly different from the compactness of C, on 
H1(OQ). In the case n = 1 and Q = B1, a short argument using the Hilbert 
transform proves that if Con: H1 (OQ) -* L1 (OQ) is compact, then it is com- 
pact on H1(OQ) (see [20] for detail). For n > 1, estimating the H1(OQ) 
norm is much more complicated. A similar singular integral characterization 
for HI (OB,) has been given by Christ and Geller in [3]. Although this may be 
the right tool to use here, it turns out to be very technical. For simplicity, we 
state and prove Theorem 1 as above. 

3. PRELIMINARY RESULTS 

In this section, we prove some steps in our main theorem. First, let us intro- 
duce a fundamental criteria for boundedness and compactness of composition 
operators. The boundedness part of the following theorem is well known (for 
example, see [24]). 

Theorem 3.1. Let Q be a bounded strongly pseudoconvex domain in C' with 
smooth boundary. Let Ao: Q -- Q be a holomorphic mapping. The following 
statements hold: 

(i) For 0 < p < 00, C(,: *P(Q) XP(Q) is bounded if and only if 

dv9a E BCM(Q). 
(ii) For 0 < p < 00, C,,: *P(Q) X'P(Q) is compact if and only if 

dv9, E VCM(Q). 
(iii) Cp: H' (OQ) -* L' (OQ) is compact if and only if dvpt E VCM(Q). 
(iv) For 1 < p < 00, C,,: LP(aQ) -* LP(aQ) is compact if and only if 

dv9l E VCM(Q) 

Remark. This theorem can be extended to a pseudoconvex domain of finite type 
in C2 with C?? boundary by using results in [14, 7, 17]. 

Note that the equivalence of (ii) through (vii) in Theorem 1 is contained in 
Theorem 3.1. 

In order to prove Theorem 3.1, let us first record the following result, whose 
statement and proof can be found in [15] for Q = BN. For the general case, 
the proof is still elementary, so we omit the details here. 

Proposition 3.2. Let Q be a bounded domain in Cn, let (o: Q -- Q be a holo- 
morphic mapping, and suppose 0 < p < 00. Then C,,: XP(Q) -* XP() 
is compact if and only if for each bounded sequence { Un } in *P (Q) which 
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converges to 0 on compacta on Q it follows that C. (un) converges to 0 in 
fP (Q)-metric. 

We now turn to the proof of Theorem 3.1. In the rest of this section dv will 
denote dvog. 

Proof of Theorem 3.1. For completeness, we present a proof of (i). Let u E 

/ P(Q). Then, with QE := {z E Q: d(z, aQ) > e}, we have 

11C(P(U)1-P(n) = sup {j Cp (u) (z) }Pdz) 

( 1 ) = SUP {s Iu(j (z)) IP d , (z)} 
0<f<< 1 An 

= lim sup ju(( (z))jPdab (z)} = Ju(w)IP dv(w). 

Therefore, by the theorem of Hormander [7], Cop: XP (Q) - 'P (Q) is bounded 
if and only if dv is a Carleson measure. This completes the proof of (i). 

Next we prove (ii). Suppose that Cap: XP(Q) -* XP(Q) is compact. We 
will show that dv e VCM(Q). Let zo e OQ, and let C(zo, r) be a Carleson 
region. Let z E Q be such that ir(z) = zo and r(z) = r. Let K(,*) be the 
Bergman kernel for Q. Define a function 

kz, p(w) = r(z) "IPK(z, z)-YK(w, z)2(['lp1+l) (w E Q), 

where y = 2([1/p] + 1) - 1/p > 0 and [x] denotes the largest integer not 

exceeding x. It is easy to check that k,, p E TP (Q) and that, moreover, by 
using local coordinates and an estimate for the Bergman kernel in [8] for a 
strongly pseudoconvex domain (and [18] for a pseudoconvex domain of finite 
type in C2 with smooth boundary) 

jjkz P1P = sup j r(z)K(z, z)-YP<K(w, Z)12p([p]+ ) da, r 
0<'E<< 1 n9Q 

< Cpr(z)K(z, z)-YPK(z, Z)2p([11pJ+1l)_ 1 r(z)- 1 < Cp 
It is clear that 

kz lp(.) -- 0asz Q 

on compacta in Q. Since Co,: kP(Q) -* kP(Q) is compact, by Proposi- 
tion 3.2, 

jjCvp(kz P)jTp(n) -+ 0 as z -aQ. 

Notice that, on the other hand, 

JjCv(kpz)HP(Q) = J kz p(w)IP dv(w) 

= r(z)K(z, z)Py J K(z, W)12p([Il/p+ ) dv(w) 

' c rC(z) 1 dv(w) >C IBzr1 d V(u). 

Using this estimate, we shall show first that dV E BCM(Q): 

sup g, (r) = sup IC(z ,r) < CpjCq(kp, z)P < CpHjCfpjP < x. 
r ~~~zo,r JB(zo,. r)l 
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Next we show that dv E VCM(Q). If this was not true, there would exist 
Zn E aQ, rn E (0, 1) with rn -* 0, and C0 > 0 such that 

IB(z, rd)I IC(zr v ?C>o for all n. 

Now choose Zn E Q with 7r(Zn) A Zn and r(zn) = rn . Then 

?o- (zo ra )IIC(z ,r ) dv < Cpll C(kp zn)IIPP for all n. 

Since {kp, Zn is bounded in /P, Zn -? 0 on compacta as n -x oc, and C. 
is compact on YP, there is a subsequence kp znk such that II CV (kp znk)" X-p 
0. This contradiction completes the proof that dV E VCM(Q). 

Now we show the converse. Let dV E VCM(Q). We will show C.: XTP(Q) 
XTfP(Q) is compact. Suppose that {un} is a bounded sequence in Xt*P(Q) 

which converges to 0 on compacta in Q. To show that 

C9,(un) -O 0, in the metric of XtP(Q) 

let 5 > 0 and set 
dv35 = 2'n-n, dv. 

By using the covering lemma [23, 12], it follows that dv35 E BCM(Q) with 

v3(C(z, r)) < g,(o5)IB(z, r)I, g (oS)= sup = ((z os)} 

for all z E aQ and r > 0. 
Since dV E VCM(Q), gv(J) -O0 as 5 - 0. Thus forevery E > 0, there is 

a 5 > 0 such that g.(5) < E . Since un -O 0 on compacta in Q, there is an N 
such that for n > N, 

I lUn (z) IP dv (z) < E. 

By (1), 

IIC (un)IIP = j un (z) P dv (z) 

= j Un (z) IP dv (z) + I un (z) IP dv (z) 

< I Iun(z)IP dv (z) + j Iun(z)IP dv35(z) 

< I un(z)IP dv (z) + gv(o5) j un(z)IP du(z) 

<C +C SUp{lun 11: n = 1, 2, 

when n > N. This completes the proof of sufficiency of (ii). 
Now we prove (iii) and (iv). Note first that 

j IC,(u) (z)IP da(z) = j Po (u)(z)IP dv(z) 

for all u E LP(a) and p > 1. Note next that since TP(Q) c LP(aQ) and 
XI(Q) c A"(M), compactness of Cf, on LP(OQ) or from HI(OQ) to 
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L1(OQ) implies its compactness on TP(Q) or XI(Q), so dvV, E VCM(Q), 
by (ii). Thus we need only show the sufficiency of (iii) and (iv). 

In order to complete our proof, we need the following lemma, which can 
be obtained by using the fact that Po(z, w) E C??(Q, x Q) for any e > 0, 
and the facts that VMO(OQ)* = H1(OQ) and LP'(aQ) = (LP(OQ))* with 
I/p + 1/p' = 1. We omit the detail here. 

Lemma 3.3. Let {nu4 be a bounded sequence in H1(aQ) or LP(aQ) with 1 < 

p < oc such that un -* 0 in the w* topology. Then the sequence {Po(u,)} 
converges to 0 on compacta in Q. 

Now we continue our proof of sufficiency in (iii) and (iv). Here we present 
a proof of (iii). The proof of (iv) is similar and uses the duality LP(aQ)* = 

LP' (aO) with p and p' conjugate indices. 
We have now reduced matters to the following lemma. 

Lemma 3.4. Let Q be a bounded strongly pseudoconvex domain in C' with 
smooth boundary. Let Ao: Q -* Q be a holomorphic mapping. 

(i) If dv , E BCM(Q), then C,,: H1 (dQ) L1 (dQ) is bounded. 
(ii) If dvp E VCM(Q), then C,,: H1 (OQ) L1 (OQ) is compact. 

Proof. Let dvV, E BCM(Q) and u E H1(aQ). It suffices to show that C(,(u) E 
L1(aQ). Since 

j Cp (u)(z)I du(z) = j Po(u)(z)I d vp(z) 

and since H6rmander's theorem holds for Po(u) with u E H1(O2) ([25]), we 
have 

||C?(U)11I C< U11,HI(an) 
and (i) follows. Now we prove (ii). Suppose dv E VCM(Q). We shall prove 
that Co,: H1(OQ) -* L1(OQ) is compact. For each 0 < 5 << 1, let dv3 
be defined as above. Since VMO(OQ)* = H1(OQ), it suffices to prove that 
for every (bounded) sequence {un} in H1(OQ) with un -* 0 in the weak* 
topology of H1(aQ), we have 

C,(u,) -O in L'(aQ)-norm. 

Let e > 0. By Lemma 3.3, there is an N > 1 and 5 > 0 such that if n > N 

IPo(un)(Z)l dv(z) < c 

and 
g(J(J) <c. 

By H6rmander's theorem again and the fact that v35(C(z, r)) < g,,(5)JB(z, r)J 
for any z E AQ and r > 0, we have 

11C(,(un)l1l < E +E sup{Hun1H1(aQ): n = 1, 2, ...} 

when n > N. This proves Lemma 3.4, and therefore the proof of Theorem 3.1 
is complete. 

As a corollary of Theorem 3. 1, we have the following result: 
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Corollary 3.5. Let Q be a bounded strongly pseudoconvex domain in C' with 
smooth boundary. Let p: Q -* Q be a holomorphic mapping. Then: 

(i) If there is a 0 < p < oc such that C.,: fP(Q) -* TP(Q) is bounded, 
then the measure dvl, Ian is absolutely continuous with respect to surface 
measure do. 

(ii) If CV,: AP(Q) - P(Q) is compact, then dvl~Ion = 0. 
(iii) If CV: AP(Q) * tP(Q) is bounded (resp. compact) for some 0 < p < 

00, then it is bounded (resp. compact) for all 0 < p < 00. 

Proof. (i) Let E be a set in aQ such that a(E) = 0. We shall show that 
vz (E) = 0 . For any e > 0, there is a sequence of nonisotropic balls {B (zj, rj)} 
on a Q such that 

00 00 

E c U B(zj, rj), and E a(B(zj, rj)) < . 
j=1 j=1 

Let C(zj, rj) be Carleson regions for j = 1, 2, . Then 

/ 00 ' 00 00 

mv(E)< U(jj r(E ) <Ev,(B(zj, r)) <jEv(C(zj rj)) 
iy=I j=I j=1 

00 

< Z Ca(B(zj, rj)) < Cc. 
j=1 

Since e is arbitrary, (i) follows, and (ii) can be obtained by using an argu- 
ment similar to the proof of (i) and the covering lemma. Since (iii) is a direct 
consequence of Theorem 3.1, the proof of Corollary 3.5 is complete. 

4. PROOF OF THE MAIN THEOREM 

In this section, we shall complete the proof of Theorem 1. As noted earlier, 
by Theorem 3.1, (ii), (iii), (iv), (v), (vi), and (vii) are equivalent. We shall 
show that (i) is equivalent to (ii). Half of this statement is contained in the 
next result. 

Theorem 4.1. Let Q be bounded strongly pseudoconvex domain in Cn with 
smooth boundary. Let p: Q -* Q be a holomorphic mapping. If Cv*: L00 (a0Q) -* 

VMO(aQ) is bounded, then 
(a) dv, Ian = 0, and 
(b) Cap: HI (a Q)- LI ( Q) is compact. 

Proof. Since Cap: H' (aQ) -* LI (aQ) is bounded and q is holomorphic, it 
follows from Corollary 3.5 (i) that dv, Ian is absolutely continuous with respect 
to a, with nonnegative Radon-Nikodym derivative g = (dvip Ian)/da E L' (a). 

Suppose the assertion (a) is not true. Then there is a Borel set G c aQ and 
e > 0 such that 0 < a(G) << 1 and I > g(z) > e > 0 on G. For each 
0 < s <<? 1, we choose zj E AQ so that IB(z3, 5) n GI = a(J)IGI IB(z5, J)I, 
where a(5) is a positive constant satisfying CIn) < a(o5) < 1 and C(n) is a 
constant depending only on n. 

Let F = qr'(G). Then for any h E L00(aQ), we claim that 

C ((h o OF) = hg??G, on aQ. 
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To see this, let u E L1(O ). Then 

(u, C((h o OF) = (C?,(u), (ho ?o)F) = j Po(u)(( (z))h(( (z)) da(z) 

= j (PO(U) o ?o)((h o )( ? o = 
JPo(u)hFdvG 

= j Uh Ggdu = (u, ghZG). 

If we now let 

hz _I l9g(z) if z E G, 
0 if Z EOf2\G 

then hg = ZG, and from the above claim and the fact that C;,: L??(OQ) 
VMO(Of) is bounded we conclude that ZG E VMO(Of2). 

To complete the proof, we shall show that ZG is not in VMO(9Q). In what 
follows, let B = B(zj, d). Since 

JBI JZG du = IG n BI1IBI = a(J)IGI, 

we have 

= jI-(1 -a(3)IGI)IGnBI ? 2a(3)IGI ? 2C(f)IGI. 

Therefore, zG ? VMO(Q), and the proof of (a) is complete. 
Now we prove (b). Since VMO(OQ)* - H1 (On), it suffices to prove that for 

every bounded sequence {un} C H1 (On) which converges to 0 in the weak * 
topology of H1 (On), it follows that C~,(us) converges to 0 in L1 (OQ)-norm. 
Let {un} be such a sequence. By part (a), ((z) E Q for u-a.e. z E OQ, and 
thus by Lemma 3.3, C~,(un)(z) -* for a-a.e. z E OQ. But Cv,(un) -* 

weakly in the topology of L' (On). To see this, note that for g E L??(OQ) 

(CZd(ua), S g) = ( In , C (g)) -0 

as n -*oc since C~p(g) E VMO(OQ) and VMO(89Q)* = H'(OQ). Now by 
[6, p. 295], IIC (hn)IIL-(fi) 0 as n -o a nd (b) follows. The proof of 
Theorem 4.1 is complete. 

We now finish the proof of Theorem 1. As noted above, by Theorem 4.1, (i) 
implies (ii). Next we show that (ii) implies (i). Let g E L 0(Oi). We show 
that C~p(g) E VMO(OQ). Since we are assuming Co,: H'(OQ) L1(OQ) is 
compact, it is obvious that Co*: L??(OQ) -BMO(OQ) is bounded, so we need 
only show that C~p(g) E VMO(OQ) . Notice again that VMO(OQ)* = H(Q 
and that VMO(O82) is a separable Banach space. So by Corollary V.12.8 in [4], 
C p(g) E VMO(E9A) if for each sequence {un} C H' (On) which converges to 0 
intheweak* topology of H ( (OQ) it follows that (Cp(g)c nvg ) -o 0 as n -nor. 
Now let {un} be such a sequence in H' (an). By the Uniform Boundedness 
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Theorem, {fu, } is a bounded sequence in H1 (aQ). Suppose it is not true that 
(Cv* (g), un) -+ 0 as n -+ oc. Then there is a subsequence, we use the same 
notation, {fUnj and Eo > 0 so that 

(2) K(g, Cp (Un)) = (CV(g) , Un) I > Eo 

for all n. Since C.n: H I(aOn) -* L1 (aQ) is compact, there is a subsequence 
funk} and v E L1(OQ) such that Cq(un,) -* V in Ll(OQ)-norm. We shall 
show that v = 0, contradicting (2). Since Un -* 0 in the weak* topology of 
H1(OQ), Po(Un) -* 0 on compacta in Q by Lemma 3.3. Since (ii) implies (iv) 
in Theorem 1 has already been proved, it follows from (ii) in Corollary 3.5 that 

Cq,(un)(Z) = PO(un)(q,(z)) -* 0, for a.e. Z E OM 

as n -* oc. Therefore, v = 0. The proof of Theorem 1 is now complete. 
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