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WHY "COMPUTING™ REQUIRES SYMBOLS

Zenon Pylyshyn
University of Western Ontaric

For some years now I have been advocating the view that to understand
what is essential about cognition as computing it is mandatory that we
preserve a number of distinctions. 1 have discussed several of these
distinctions in my book (Pylyshyn, 1984). For the present purpose I wish to
examine one of these distinctions: that between a machine and the
symbolically encoded “rules and representations” that the machine uses. (It
doesn’t matter here whether by "the machine” one means the device described
in the manufacturer’s manual, or what is sometimes called the "virtual
machine” consisting of the raw machine plus an interpreter for some higher
level programming language. This is just a conceptual distinction in any
cage since the virtual machine is no legs a real physical machine than the
one delivered from the manufacturer, only with a different initial state.)
Since the distinction between the machine and the symbol structures is one
of those distinctions that some people have been trying to do away with
(cf., Anderson and Hinton, 1981), I will review one of the fundamental
reasons why I believe that the task of providing explanations in cognitive
psychology cannot be carried out successfully without it.

The difference between a very complicated device that goes through
distinguishable states (but is not characterized as processing symbols) and
what I would call a computer in the strict sense (as well as in the usual
computer science sense) 1s exactly the difference between a Turing Machine
and any arbitrarily complicated finite state automaton, network, or
"connectionist” machine. The main difference, from our perspective, is not
that the Turing Machine®s tape is unbounded (though that does have
consequences whose relevance to cognitive science is not clear), but that
when we do not impose a bound as part of the definition of the machine
itself we force a certain kind of qualitative organization on the system.

In particular it forces us to distingulsh between a strictly finite
mechanism (the Turing machine®s finite state “control box") and a finite but
unbounded string of symbols. If it were not for that distinction it would
not be possible to have a Universal Turing machine. The finite
characterization of machines that such a distinction gives us is crucial.
Turing machines are individuated by their finite part —— that®s what allows
them to be enumerated. A finite part is similarly required for proof theory
(the axioms and rules of inference have to be finitely specified).

It is important to see that what is at stake here is the nature of the
organization captured in a certain description. An ordinary Von Neumann
style computer can clearly be characterized as a finite state automaton. Tt
can also be given a true description at the circuit level. But it°s only
when it 1s described as processing symbols (and in fact only when it°s
viewed as processing the particular symbols that are semantically
interpreted) that we can explain its input-output behavior in such a way as
to capture those regularities that are invariant over certain implementation
differences. And what®s even more to the point, it°s only when we describe
it at the symbol level that we can explain what it°s doing in semantic terms
(e.g., in terms of doing arithmetic, or playing chess, or carrying out
inferences, or whatever else the device may be correctly described as
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doing). That (at least some) human reasoning (e.g., doing arithmetic,
deciding what to have for dinner, planning a trip, deciding on the intended
referent of an anaphoric expression, etc.) is correctly characterized in
terms of such rules cannot be in dispute. The only arguable point has been
whether the behavior described by such rules can be realized by a system
that works according to some principles that do not reflect the structure of
these rules.

Consider a simple example. A semantically interpretable procedure such
as one for adding two numbers cannot be adequately described in terms of
state-transition diagrams, such as those used in the description of finite
state automata. The reason is that the general rule for adding numbers
cannot be finitely stated as a rule for producing a transition from state Sn
to state Sn+l in a computer. Rather, it must be stated as a rule (or a set
of rules) for transforming an expression of numerals into a new expression.
An interpreted rule, such as the rule for addition, applies to states which
have a particular semantic interpretation (say, as certain numbers).

Of course changes in the machine®s state are the result of physical,
not number-theoretic, causes. Consequently the way the machine must work in
order to be correctly described as following an interpreted (e.g.,
mathematical) rule, is that on every occasion in which the rule is invoked
there must be physical properties of the machine®s state that are capable of
serving as physical codes for that semantic interpretation. In other words,
for each distinct rule-relevant semantic property there must be a
corresponding distinct physical property associated with that state:
distinct semantic properties must be preserved by some distinct physical
properties —— and in fact they must be the very same physical properties
that cause the machine to behave as it does on that occasion. Such
articulation of the states into distinct properties must, furthermore,
correspond to the articulation of the semantic rule in terms of symbolic
expressions. In other words, the articulation of the states must be made
explicit if we are to both express the rules that govern the computation and
at the same time show how, in principle, such rules might be realized in a
physical system.

There are all standard ideas. What they come down to is that in order
to finitely express some computational regularity, such as that captured by
a mathematical (or other) rule, we have to refer to a structure of symbols,
and the structure of the expressions must be preserved by the structure of
the states of the system. A characterization of the machinery that does not
articulate the states of the system in this way cannot explain how the
system can exhibit regularities expressed in the form of such rules as rules
of inference. Thus if human behavior can be correctly described as
following rules —-— if capturing important regularities requires such a
formulation —- then it appears that this has implications for the mature of
the system that realizes such behavior.

People who object to the conventional view of computation as symbol
processing frequently have in mind the implausibility of the mind working
like a VAX. I have much sympathy for that view, as I keep saying: that°’s
why it°s so important in cognitive science to find out what the functional
architecture of the mind is. I would not be the least surprised to find
that it is so very different from a Von Neumann machine that it may scarcely



73

be recognizeable as a computer by examining its command set. It will, no
doubt have massive parallelism. Many people think that having a lot of
parallelism will make a fundamental difference to what we count as
computing. But the issue 1s not whether the mind is a serial or a highly
parallel computer. The issue 1is whether it processes symbols: whether it
has rules and representations. A highly parallel system can process symbols
in at least two ways. One is that it may be parallel only in the way it
implements its primitive functions, i.e., the functional architecture may be
neurally implemented in a highly parallel way. But, of course, that much is
true of the Von Neumann computer. 1Its random access memory mechanism
requires a great deal of simultaneous activity in every part of the memory.
The other way that it may be parallel is that the primitive operations need
not form a total ordering in time. But even in an architecture as radically
nonlinear as one based on populations of ACTORS, there is no conflict with
the sense of computing that I claim must be going on in the mind, so long as
each actor processes semantically interpreted symbols, as opposed to just
sending activations that have no semantic interpretations in the domain of
our perceptions, thoughts, and the like.

The point of all this is to suggest that so long as cognition (human or
otherwise) involves semantic regularities, such as knowledge based decisions
and inferences, and so long as we view it as computing in any sense, we will
need to view it as computing over symbols. No connectionist device, however
complex, will do. Nor will any analog computer, but that is a topic for
another occasion (for example, see Pylyshyn, 1984).
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