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Preliminary Open File Report

Geological and Geophysical Studies in Grass Valley, Nevada

INTRODUCTION

The Lawrence Berkeley Laboratory program for assessment of geothermal

reservoirs has had three main goals:

1) To evaluate, on the basis of detailed geological, geochemical and
geophysical data, the geothermal reservoirs in the mid Basin and
Range geologic province.

2) To compare and evaluate geophysical téchniques used in the explora-
tion and delineation of these reservoirs.

3) To develop new techniques, and the instrumentation required,
specifically for the deep penetration desired in geothermal
investigations.

Four areas in north central Nevada were chosen for this study; Whirlwind
Valley (Beowawe), Buffalo Valley, Grass Valley (Leach Hot Springs), and
Buena Vista Valley (Kyle Hot Springs). These areas lie within an area of
higher than normal heat flow, the Battle Mountain high heat flow area (Sass
et al. 1971) shown on Fig. 1. Temperatures at depth in some hot springs in

this area, determined by chemical geothermometers (Mariner et al. 1974)

exceed 150-170°C and total dissolved solids in the surface waters are less
than 5000 ppm. These systéms are thus in the medium temperature, high
quality category.

The Buffalo, Leach and Kyle sites were chosen because of favorable
indications of geothermal potential, they were primarily composed of Federal
land, and offered easy access and terrain amenable to equipment transportation.
This latter was an important consideration since many geophysical techniques

were to be evaluated and rugged terrain would have been a handicap to this
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aspect of the program. Beowawe was chosen for some preliminary studies
because some earlier geophysical data and drilling informétion was-avai]ab1é. :
However, complicated land access prob]ems prevented'more than some re- |
connaissance electric and seismic studies. These, and the data from.
Buffalo Va11ey,.haVe been reported by Wollenberg et al. (1975).

This report presents the results of the geological, geochemicé] and
geophysical studies in the Leach Hot Springs area in Grass Vél]ey. The
data presented were taken between the Summer of_lgzﬂiand early Summer 1976.
Analysis and overall interpretatfon of the data is still continuing, as are
several field experiments, and the Synthesis'of all this information .into
the desired subsurface mode] is not complete. However, since the Leach Hot
Springs KGRA in Grass Valley 15 soon .to become avai}ab]e for geotherma}
leasing it is {mportant that the data upoﬁ which evaluations of economic:
potential are based be'releaSed in preliminary form.

This report presents a brief summary of géologica1 and geochemical
studies of the Leach Hot Springs'area. The geophysical techniques used
are described in some detéi] and the results of the various surveys are pre-
sented. Detailed studies of these techniqugs are the subjeﬁts of reports
pfesent1y in pfeparation as are details of equﬁpment or instrumentation
developed in the course of the study. This report thus presents only the data
that pertain to the format of the overall program goals listed at the start
of this introduction. fhe data in this_pre]iminary report.is,unfortunate1y,
not on a uniform Scale. This was dictated by the necessity to reproduce the

Figures on 8 1/2 x 11 pages.
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GEOLOGIC SETTING OF THE LEACH HOT SPRINGS AREA

Active hot springs areas in the Great Basin are in almost all cases
associated with steeply dipping basin and range faults (Hose & Taylor
(1974)), often at the intersection of two major orientations of faulting.

A possible model for the numerous hot springs in the area is simply that
surface waters descend along permeable zones associated with these faults,
become heated at depths of only a few kilometers by the higher than normal
gradients in this region, and ascend to the surface. Renneryet al. (1975),
in their summary of hydrothermal convection systems in the U.S., are however,
"skeptical that geothermal gradient alone can sustain high temperatures for
the long durations of time indicated for these systems."

Certainly, if the only conduit for geothermal waters is along such
permeable fault zones, or at the intersection of two such zones, the volume
of the zone would have to be large to constitute a reservoir. The success-
ful model of an economic reservoir must consist of a source of heat, a suitable
transport mechanism, and a volume of sufficient porosity and permeability
to be exploitable as a reservoir of hot water. Because of lack of definitive
geologic information on most hot spring areas, the basis on which the estimates
by Rennery et al. (1975) of heat content are made involve rather arbitrary
assignments of volume. For example, for Leach Hot Springs, a subsurface re-
servoir of an areal extent of 4 square kilometers and a thickness of 2.5 km
has been assumed. However, in the absence of direct, or for that matter
indirect, information,a simple fault zone model could explain the surface
hot spring activity and would entail no appreciable reservoir volume at all.

The Leach Hot Springs area is located in Grass Valley, Nevada approxi-
mately 50 km south of Winnemucca. The Sonoma and Tobin Ranges bound the

valley on theeast, while the valley is constricted south of the hot springs
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by the Goldbanks Hills, locus of earlier mercury miniﬁg. Grass Valley is
bounded on the west by the basaltcapped Easf Range. The distribution of
major lithologic units in the region is illustrated on the geologic map
(Fig. 2) and their stratigraphic relationships on the cross section,
(Fig. 3). The intricate fault and lineament pattern, based strongly on
photo interpretation, (Noble, 1975) is shown on a separate map, (Fig. 4).
Paleozoic siliceous clastic rocks and greenstones are the oldest bedrock
types.in the region. In places in the Sonoma and Tobin Ranges, the Paleozoics
are in thrust-fault contact with Triassic siliceous clastic and carbonate
rocks. The Paleozoic and Triassic rocks have been intruded by granitic
rocks of probable Triassic age in the Goldbanks Hills; elsewhere the
granitics are probably of Cretaceous age. Though not exposed in the Leach
Hot Springs area, 0ligocene-Miocene rhyolitic tuffaceous rocks are probably
present in tﬁe subsurface. They are overlain by a sequence of interbedded
sandstone, fresh water limestone and altered tuffs, which are in turn over-
lain by coarser conglomeratic sediments (fanglomerates) derived from mountain
range fronts steepened by the onset of basin and range faulting. The
fanglomerates are opalized in places by siliceous hydrothermal activity
associated with fault zones; occasionally the Tocus of mercury mineralization.
Opalization of mercury deposits in the Goldbanks Hills and East Range closely
resembles the opalized sinter at Leach Hot Springs. The Tertiary sedi-
mentary sequence is overcapped by predominantly basaltic volcanic rocks
whose ages, dated by the potassium-argon method, range from 14.5 to 11.5
million years.

Characteristic of the hot spring systems observed in northern Nevada,
Leach Hot Springs is Tlocated on a fault, strongly expressed by a 10 to
15 m high scarp trending NE. Normal faulting since mid-Tertiary has offset

rock units vertically several tens to several hundred meters (idealized

cross section, Fig. 3). As shown on the fault and lineament map (Fig. 4)
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the present-day hot springs occur at the zone of intersection of the NE
trending fault and the NNW-SSE trending lineaments.

Total surfacé flow from the Leach Hot Springs system has been measured
at 130 1 min”] (O1msted, et al., 1975). Surface temperatures of the
springs reach 94” C, boiling at their altitude, and water temperatures
at depth are estimated to be 155 to 170° ¢, based on silica and alkali-
element geothermometers (Mariner gﬁ_ﬂgl.,19?4). Application of mixing-
model equations (Fournier5§§_ﬂgl,, 1974), based on silica contents and
temperatures of warm and cold spring waters, indicates that the temperature
of hot water at depth within the Leach Hot Springs system may exceed 200°C.
Material deposited by Leach Hot Springs, presently and in the past, is

predominantly 5102.

GEQCHEMISTRY

In addition to the geochemical data provided by Marineq‘gg__gl. (1974,
1975) three pools were sampled at Leach Hot Springs, and their trace-element
contents analyzed by neutron-activation methods (Bowman,et al., 1975). Re-
sults are illustrated on Figqg. 5; and show considerable variation. The
hottest pool had the lowest abundances of Na, Cl, W, Br, Cs, and Rb. The
variations observed here do not appear to be related to mixing of ground
water with the hot water system. For comparison, elemental abundances from
a cold spring in this area are: Na (29 + 1 ppm), C1 (56 + 2 ppm), W ({3 ppb),
Br (118 + 2 ppb), Cs (.23 +.02 ppb), Rb (3.7 +.6 ppb), Ba (75 + 10 ppb),

Mo (<2 ppb), and Sb (<0.2 ppb).

Field radioactivity and radioelement contents of water and spring-deposit
material were measured at Leach Hot Springs (Wollenberg, 1974). As with other
spring systems dominated by 5102, field gamma radioactivity was low, ranging

-1
from 5 to ?.5/u Rh  over the spring area. This was corroborated by the Tow



il

radioelehent content of the sinter: Thorium 1.08 bbm, équiva1ent uranium
B % ppm, and 0.35% pbtassium. Hot spring water had contents of Radon-222
and Uranium-238 below detectability limits. This is in confrast to spring
systems dominated by CaC03, where relatively high radioactivities and

uranium daughter radioelement contents were observed.

HEAT FLOW

In a joint LBL-USGS project, seven 150-200 m heat flow Ho]es were
drilled in Grass Valley in the spring of 1975. - Results of this study and
earlier shallow holes dri11ed by Glhsted et al. (1975) are repofted by Sass
_ gg;gl,'(lg?ﬁ). As illustrated on Fig. 6, conductive heat flows exceed
9 HFU in a hole ~1 km NNE of the hot springs, and are of the order of 5 HFU
at two locations, 5 km SW, and 9 Km SSE of the springs. Between the hot
springs and these two 10Cations, heat flow appears to be at or below the
average for the Battle Mountain high heat flow region. Presently (late
summer, 1976), cboperative LBL-USGS heat flow drilling is in progress in
Grass Valley, detailing the conductive heat flow pattern within the area
emcompassed by the seven hQ1es_dr111ed in 1975.

GEOPHYSICAL DATA

The geophysical data which have been qbtained in Grass le]ey,_Nevada
as parf of the UCB—LBL geothermal project include gravity, magnetics, self-
potehtia1, electric field ratio tellurics, magnetotellurics, bipole-dipole
resistivity, dipole-dipole resistivity, P-wave delay, microearthquake

monitoring, seismic ground noise, and active seismic refraction/reflection.

Survey Lines

In most cases the geophysical data were obtained along the_survey
lines shown in Figure 7, although not all methods were employed
along every line. The location of each line was determined on the basis of ‘
various factors; these are discussed below.

Most of Line A-A' lies along Grass Valley Road making access particularly
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easy. It is roughly parallel to the strike of the range-front fault
system, and serves as a tie line for the many other survey 1lines which
cross it.

Lines B-B' and E-E' were laid out to be normal to the.NE-SH trending
faults which appear to control Leach Hot Springs, while skirting Hot Springs
Ranch, privately owned property for which there were access permitting
difficulties. Conveniently, the NW-SE direction of these lines is parallel
to the major axis of the highly polarized long period (0.01-0.2 Hz) telluric
field, making for high amplitude signals when E-field ratio telluric data
were obtained.

Lines F-F', G-G', H-H', J-J', and K-K' were located approximately
parallel to Lines B-B' and E-E' to provide a system of survey Tines in the
direction of the major telluric field axis for reconnaissance E-field ratio
surveying.

Line C-C' was located to tie several lines together, while making use
of good access along an existing road.

Lines D-D', P-P', Q-Q' and R-R' were laid out to be roughly perpendicular
to the axis of Grass Valley, while avoiding private property. Additionally,
Line R-R' was located to extend well into the Sonoma Range at Panther Canyon.

Line L-L' is a tie line along the western side of Grass Valley.

Lines M-M', N-N' and T-T' were located to correlate anomalous geo-
physical features seen in data collected along lines which they intersect.

Line S-S' was laid out after permission to traverse Hot Springs Ranch
was obtained to gather data across Leach Hot Springs at a direction normal

to the range front fault system.

Presentation of Data

Contour maps have been drawn for the gravity, magnetic, P-wave delay,
bipole-dipole apparent resistivity and apparent conductance, and seismic

ground noise data.
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To facilitate the comparison of data from the various exploration
techniques, Appendix A (Figures Al through A17) shows mosf of the déta'
collected along each survey line presented in profile form with a common
distance abscissa. These profile data composites are in alphabetical order
by survey line designation. Depending on the particular geophysical methods
employed along a survey line, the data composite may inc1ﬁde gravity,-
magnetic, se]f—poténtial, bipo]e-dﬁpo1e apparent resistivity, E-field ratio
telluric , and 1 km dipole length dipole-dipole apparent resistivity data.
Also included in the.data composites is the topography along the profile

| 1ine, as well as faults and 1itho1og1c'contacts'as shown in Figures 2 and 4.

Dipole-dipole apparent resistivity pseudo-sections for dipole lengths

of 250 meters and 500 meters are shown as separafe figures in the text.

Gravity Survey

Gravity data wereobtained with a Lacoste-Romberg gfavimeter at 340

stations, covering about 200 square kilometers of Grass Val]ey,.with most
 of the.data taken at 0.5 km intervals along most of the survey lines. Along

portions of Line E-E' the data density increased to 0.25 km intervals.

Additional stations were obtained in the vicinity of Leach Hot Springs, in

the Sonoma and Tobin Ranges to the east of Grass Valley, and in the East

Range to the west of Grass Valley. The elevations of gravity stations along

the profile lines were surveyed to within + 0.03 meter. Rehote stations

in the mountain ranges were located at elevations known to + 0.3 metér.

The elevations of other stations have been estimated from topographic map

contours to within + 0.3 meter in the valley and i‘1.0_meter in the rugged

terrain.

The complete Bouguer Anomaly has been calculated using a Bouguer density

of 2.67 g/cm3. The data are contoured in Figure 8 and presented in profile

{

form in the composites of Appendix A. It is estimated that nearly all the values °
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are accurate to better than + 0.1 milligal. Station locations are shown
as dots on the map, Figure 8.

The first-order effect seen in the Bouguer Anomaly map is the thickness
of valley sediments between the Paleozoic rocks of the Sonoma Range and
the East Range (which is west of Grass Valley). The gravity low axis of
the valley near the eastern side clearly indicates the greatest thickness
of sediments, with the steep gradient east of this indicating a significant
fault steeply downthrown to the west. From here the basement surface
slopes more gently up to the west.

Seen by closer inspection of the Bouguer Anomaly map, and clearly
demonstrated in the Line E-E' profile data, is a regional gradient of
about 0.6 mGal per kilometer increasing to the northwest.

The gravity profile along Line E-E' across the major fault in the
vicinity of Leach Hot Springs shows an anomaly of -17 mGals. Basin and
Range alluvial valley fill varies widely in density, and can become very
tightly compacted,as we have learned from shallow heat flow drilling. If
an average density contrast of 0.4 to 0.3 g/cm3 between the sediments and
the bedrock is assumed,the maximum sedimentary section thickness will be
in the range of 1.0 to 1.4 kilometer.

From preliminary reduction of gravity data too recent to be included
in Figure 8,it appears that there is a closure of the gravity low anomaly
which extends NW from the vicinity of Leach Hot Springs and is shown as open
ended to the NW. Several new gravity stations taken along a line starting
at the lowest region of this anomaly and extending to the NW to the windmill
in T.33N., R. 38E., Section 32,suggest about 5 mGals of closure. If this
is the case it suggests that, in sﬁite of the valley broadening to the NW, with
the hydrologic flow in this direction, either the depth to bedrock decreases

or there is a densification in the geologic section.
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A second anomaly of interest is the westward bulge of the steep
gradient contours at Leach Hot Springs. Not only is this feature dense,
but from other data it was found to have a high P-wave velocity and to
be very resistive. There is sinter deposition in the vicinity of the Hot
Springs, which is the obvious cause of this anomaly.

In the southeasternmost part of Grass Valley east of the Goldbanks
Hills is a somewhat confined gravity low of interest. It appears that
about 8-10 mGals of this anomaly is due to Tow densify valley fill,
suggesting that the sedimentary section may be 0.5 to 0.7 kilometer thick.
This gravity anomaly is adjacent to three high heat flow wells (Q-3, BM37
and BM3 on Fig. 6), Tow resistivity, and microearthquake activity in Panther
Canyon.

A gravity anomaly of possibly lesser interest is the high at 6 km W

on Line D-D'. This coincides with relatively high heat flow at hole QH3

as shown on Figure 6.

Magnetic_ Survey

A Geometrics Model G816 proton precession magnetometer with 1 gamma
accuracy was used for the magnetic survey of about 155 square kilometers
of Grass Valley. Stations were obtained at 0.5 km intervals along most
survey lines. Considering magnetic field fluctuations between base station
readings, the relative accuracy of readings is assumed to be better than
10 gammas. A contour map of the magnetic data based on 274 stations is
shown in Figure 9. Again the station readings are indicated by dots on the
map.

The most striking aspect of the data from the ground magnetometer survey,
shown in Figure 9, is the lack of relief: there is a range of only 200 gammas.

There is a Tow amplitude semicircular high extending westward from the

Sonoma Range and centered on Leach Hot Springs. This feature is presently

unexplained and does not appear to correlate with other data.
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An aeromagnetic survey flown at 9000 feet barometric altitude (U.S.
Geological Survey Open File Report) shows very Tlow relief
with a maximum range of 200 gammas over the entire Leach Hot Springs

quadrangle.

Self-Potential

Theoretical analyses and some limited field data have suggested that
geothermal activity might result in an associated dc field. The source for
such a field is either the motion of conducting fluids in a porous medium
or the result of thermoelectric effects. Due to the great variation of
the fluid flow properties of rocks, it is difficult to make quantitative
estimates of the streaming potentials in given geologic situations. However,
self-potential anomalies of several hundred millivolts for known subsurface
flow have been observed, and anomalies of 50 to 100 millivolts are often
observed in areas of active flow, especially along faults. Thus the flow
regime in a geothermal area may have good self-potential expression.

Therhoe]ectric potentials for a large hot buried sphere, representa-
tive of a geothermal reservoir, have been calculated for the site delineation
study in Nevada (Corwin, 1975). This study showed that values of self-
potential, negative over the center of the reservoir, as great as 60 mV
might be expected; therefore, direct detection of a hot volume at depth
might be possible.

Analysis of self-potential surveys in Buffalo and Grass Valleys has
been accomplished by Corwin (1975). In general these preliminary surveys
have revealed that: |

i. Distinct self-potential anomalies are associated with the geothermal
activity. Strong anomalies, believed to be associated with upwelling thermal

fluids along a prominent fault (Olmsted119?5) passing through the hot springs,

were discovered.
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ii. Electrode response to changes 1ﬁ soil chemistry and moisture
content appears to be the major‘source of irreproducibility and background 1
noise in self-potential surveys.

-1ii. Long wavelength andmélies associated with deep.seated thermo-
electric sources would almost certainly be concealed within the noise

sources described in ii, and by survey procedure which, in traversing large

distances using short electrode spread, accumulates significant error.

Bipole-Dipole Apparent Resistivity and Apparent Conductance

The bipo]e-dipble resistivity method (also called dipole mapping; see
Keller et al. (1975) for a thorough treatment of the méthod) has been used as
a reconnaissance exploration technique. Two sources were used: 60 ki]bwatt
and 25-k110ﬁatt motor-generator sets capable of forcing a long period (10 se-
cond) current square wave (maximum peak-to-peak amplitude of 200 amﬁeres) into
the ground between two shallow grounded electrﬁdes separated by 1.5 to 2.5 km.
‘At receiver stations located along the survey lines the resultant pbtentia1
field gradient was measured over 100-meter long dipoles oriented parallel
and perpendicular to the transmitting bipole in an L-shaped afray.. Copper-
copper sulfate porous pots were used to ground the receivef dipoles, and
Esfer]ine Angus T171B strip chart recorders were used to monitor the receiver
voltage.

The apparent resistivity,Qlk, has been ca1culated as the homoggneous
half-space resistivity necessary to produce the observed total électric
field amplitude (regardless of direction) at the centroid of the
receiver array due to the transmitter bipole moment. Similarly, the apparent
conductance, E;l , has been calculated as the conductance (conductivity-
thiqkness_product) of a layer over an infinitely resistive half space re-
quired to produce the observed total e]ectrié field amplitude at the

centroid of the receiver array due to the transmitted current. These
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quantitites can be calculated from

- 2 E:T [, RI ,2?- _ P
o= AT R RE R R W R R

[

and

:3 < IT‘Ti
= aqr K, F{;_E;T

where, as is shown in Figure 10,

Er = (Eqp° + £,2)'/2 = the total electric field amplitude at the re-
ceiver array.

I = the transmitter current.

Tx = the transmitter length.

RI and R2 = the distances from the transmitter electrodes to the centroid

of the receiver array.

Figures 11 through 20 are apparent resistivity and apparent conductance
contour maps for the five bipole-dipole transmitter Tocations occupied in
Grass Valley. The transmitters are indicated by a pair of X's connected by

a double line. A total of 333 receiver stations were occupied for the five

transmitter positions.

To be able to compare two electrical reconnaissance methods LBL
performed both bipole-dipole resistivity (controlled source) and electric
field ratio tellurics (natural field source). Bipole-dipole resistivity
has been widely used for geothermal exploration in the past five years,
but has more recently become controversial due to difficulties with inter-
pretation (McNitt, 1975). As the LBL field exploration program progressed
more reliance was placed on anomalies located and detaiied with E-field
ratio tellurics and dipole-dipole resistivity (both of which are discussed

below). While a two dimensional finite element modelling program has been
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'developed'at UCB-LBL to aid in the interpretation of the bipole-dip01é
method, the data have not as yet béen fully analyzed. However, on the
basis of the data presented in Figures 11 through 20, and the comparison
of the bipole-dipole data with that from other exploration techniques as
seen in the profile data composftes (Appendix A),'some observations can be
made. | |
For a given transmitter location the bipole-dipole method inherently
suffers ffom a lack of ability to discriminate bétwéen shallow and deep
anomalies. To circumvent this, multiple transmitter locations are required,
but then the method becomes as time consuming as other resistivity surveys
such as dipole-dipole or Sch1umbergér, and can no ?onger be considered as a
reconnaissance method. Furthermore, the apparent resistivity (or apparent
conductance) values calculated at a given receiver staiidn are very sensitive
to the transmitter location, and even to the transmitter orientation at a
particular location. For the five transmitter locations used in Gfass Valley
the apparent reéistivity maps shown in Figures 11 through 15 (or apparent
conductance maps shown in Figures 16 through 20) are in many'areas significantly
differéﬁt. For traﬁsmitter numbers 1, 2 and 3 the transmitter location is

nearly the same; only the orientation is different. An example of this is

displayed in profile form in Figure A5 in-Appendix A showing the bipo]e—dipo1e
apparent resistivity along the easterﬁ end of Line E-E'. For transmitter
- numbers 1 and 4 the valley sediments appear to become increasing con- .
ductive to the west from the vicinity of Leach Hot Springs (at approximately
1 km E). For transmitter numbers 2 and 5 the data suggest that the sediments
become more resistive.

These profile data also show the resistive anomaly assdciated with
the sinter spring deposits at 0.5t02.5 km E. The transmitter number 5

bipole-dipole data do not show this feature at all.
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As is quite reasonably the case, the resjstivity structure in the
immediate vicinity of the transmitter has a marked effect upon the received
data, yet the method provides no means of accessing this structure short of
including in the survey for each transmitter many receiver stations at the
site of all other transmitters. These transmitter sites would not ordinarily
be in the area of interest for receiver stations and therefore, increase the
time for the survey.

The comparison of apparent conductance with apparent resistivity data
should allow a discrimination of layered models with a resistive basement
from more nearly uniform models. However, almost without exception, when
the Grass Valley resistivity and conductance maps are compared for a
particular transmitter location (Figure 11 versus Figure 16, Figure 12 versus
Figure 17, etc.) the anomaly patterns are nearly identical. (High resistivity

features have Tow conductance, and vice versus.)

Electric Field Ratio Tellurics

The electric (E) field ratio telluric method discussed here is an
abbreviated version of the conventional telluric current method in which
the natural electric field of the earth is measured at a roving station
and referenced to that at a base station. At both locations an orthogonal
array of grounded electric dipoles is used to measure the horizontal electric
field vector. The apparent resistivities under the two locations are pro-

protional to the areas of correlated closures traced out by the E-field vector.

The need for a more rapid, less expensive, reconnaissance electrical
method than bipole-dipole resistivity led UCB-LBL to experimentation with a
telluric current technique described by Neuenschwander and Metcalf (1942),
Dahlberg (1945), and Yungul (1973). For this E-field ratio telluric method

(Beyer, et al., 1975) the ratio of a particular component of the telluric
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field is measured as is seen by two co-linear consecutiQe electric dipoles
aldng a survey line; dipole lengths of 500 meters, and'occasiona11y 250
meters were used in Grass Valley. As shown in Figure 21 three equispaced
electrodes are emplaced in the ground along the line. The signals from the
two e]ectric'dip01es (using the central electrode as common) are bandpass
filtered and used, respectively, as inputs tothe X and Y channels of an

X-Y plotter. The phase difference between the signals seen by the two
dipoles is small for the long period(20 second) data recorded in Nevada
unless a high contrast near surface lateral fesistivity discontinuity exists
within the span of the array. For in-phase signals the X-Y plotter will
draw a straight line with a slope equal to the ratio of the electric fields
observed along the dipoles. The array is leap-frogged along the survey line
to obtain a continuous.set of electric field intensity ratios. When success-
ively multiplied together these ratios yield a profile of the component-of
the re]atfve electric field strength in the direction of_the survey line.

Exb1orat10h depth is an inverse function .of the frequency of the incident
electromagnetic field. In using the E-field ratio telluric method fo% re-
connaissance two frequencies which are peaks in the natural electromagnetic
spectrum have been used: 0.05 Hz (filters banded at 0.03-0.06 Hz) for
deep probing and the 8 Hz Schumann resonance band (filters set at 6-10 Hz)
for investigating shallow features. _

The 8 Hz éigna1s cou]d not be handled in quite the same manner as the
10ng period tellurics due to two considerations: considerable phase shift
was observed between the signals seen by the two in-line dipoles, and the
X-Y plotter which was used (the Simpson Model No. 2745 X-Y, Y-T Recorder)

has a maximum frequency response of 2 Hz. For these reasons each of the two
incoming telluric signals was rectified and integrated - stofed capacitively

with a slow discharge rate. The capacitor voltages were read into the
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X and Y channels of the plotter to produce a Tine whose slope represents

the ratio of the average amplitudes of the telluric signals in the profile
direction. As with the 0.05 Hz data, these ratios are successively multiplied
along the survey line.

The E-field ratio telluric method at 0.05 and 8 Hz has been used as a
reconnaissance method to traverse 152 line-kilometers in Grass Valley. The
data are plotted with the other profile data in Appendix A.

Quantitative interpretation of the E-field ratio in terms of earth
resistivity is straightforward for simple models. For example, at a semi-
infinite vertical contact the current density normal to the contact must be
continuous, so the ratio of the normal components of the electric field at
the contact must be proportional to the resistivity ratio, whereas away from
the contact over a homogeneous half space the electric field is proportional
to the square root of the resistivity.

E-field ratio telluric response over two-dimensional resistivity
structures can be calculated with arbitrary profile line angle with respect
to strike (o), arbitrary incident magnetic field polarization angle with
respect to strike (@'), and arbitrary incident magnetic field ellipticity (€).
Figure 22 shows such a model for the eastern end of Line E-E' in Grass Valley.
The parameters<t = -45 , @>= +45 were selected to approximate the field
conditions of incident magnetic field polarization direction and profile
line direction with respect to strike. For these values of ™ and Gg the
incident magnetic field ellipticity, € , has little influence on the data.
Since the E-field ratio data is expressed in relative amplitude it can be
shifted along the ordinate to yield a moderately good fit between the field
data and the computer model generated data. The resistivity model structure
shown 1in Figure 22 was developed as a preliminary interpretation of dipole-

dipole resistivity data to be discussed below.
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The E- f1e1d ratio te11ur1c survey has proved to be qu1te valuable
for 10cat1ng severa] anomalies. Along Line E-E' (see Figure A5) the 0.05 Hz
data clearly demark resistive spring deposits from 0 km to 2 km E, as do
the telluric profiles along Lines A-A' (Figure A1) and S-S' (Figure A17).
From the 8 Hz telluric data it appears that this resistive feature is overlain
by a conductﬁve anomaly, posSiny saturated alluvium from the spring.activity.
At 3 km-E on Line E-E' the E-field ratio 1ncfeases sharply to the east
indicating whi;h;fau]t of several in this vicinity offers a significant
lateral resistivity contrast. At the western end of Line E-Ef between
.11 km and 14 km W the 8 Hz tellurics indicates somewhat higher reéistivity
~ than over the rest of the valley, while the deeper penetrating 0.05 Hz data
suggest a condﬁctive anomaly in an area where the graﬁity ahd'P—wave delay
data indicate only a thin 1ayer of alluvium.

‘The telluric survey along fhe.eastern énd of Line H-H' (see Figure A8)
proved to be of particular value in finding the Tow resistivity anomaly |
in the southeastern part of Grass Valley near Panther Canyon.

Dipole-Dipole Resistivity

To determine the detailed electrical resistivity structure of the
subsurface in areas of interest (pqssibly 1ocated by E-field ratio tellurics
or bipole-dipole resistivity) the d.c. resistivity méthod has been used. To
probe td the depths reqﬁired for geothermal exploration, electrode separations
of ten kilometers or more is often required.  For such surveys the polar
dipole-dipole arréy h01d$ considerab]é ]dgistica1 advantage over arrays such
as Schlumberger or Wenner in that the whole distance need not be spanned
with wire. Constant transmitter and receiver dipb]e lengths, a, are employed,
with increased depth'of-penetration being achieved-by increasing.the separatidn
between the transmitter and réceiver dipoles at unit intervals of N x a, where
N =1,2,3... The upper limit on N is determined by the maximum.depth of

interest or the separation at which the signal at the receiver is Tost in the
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te]iufic or insfrumental noise. Using the CUrrent,.I, injeqted into the
ground at the transmitter dipole, and the resulting voltage, V, observed at
the receiver dipole, an apparent resistivity:/ql, is calculated assuming a
homogeneous half space:
- i S NG (RS

- As depicted in F1gure 23 the calcu1ated va1ues of/O are conventionally
plotted at the intersection of 11nes angling. down at 45 degrees from the
centers of the transmitting and receiving d1p01e5 to produce an apparent
résistivity pseudo-séction (Ha110f3195?, Marshall & Madden,1959). (N.B. o
For the unjhitiated, the apparent résistivity values plotted in the pseudo-
section'cannot-be construed as determinations of the resistivity of the
earth at corresponding Tocations; the apparent resistivity pseudo-section
is only a form of displaying the'dataQ)- |

. Depending upon the.reso1uti0n aﬁd the depth of er]oration desired to
investigate a particular féature, dipole-dipole surveys using three different
dfpo1e lengths (a) were performed: a total of 70 line-ki]ometérs was. surveyed
using 1 km dipoles; 26_1ine—ki10meters uéing 500 meter dipoles; and 11 line-
kilometers wifh 250 meter dipoles. In all cases the transmittef—receiver
separations were carried to at least an N spacing of 10. | |

The equipment used to perform thése éurveys was'thé same as that used

for bipole-dipole reéistivity measurements, with the addition of clock
synchronized signa1 averagers to increase the signal-to-noise ratio at the
-feceivers.' The synchronous detection resulted in 1ncreésed data accuracy
and increased.depﬁ10f:penetrat10n because it permitted use of greater trans-

mitter-receiver separations.
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To interpret the dipole-dipole resistivity field data, a computer

~ program using a finite difference technique has been developed in our
laboratory to calculate dipole-dipole apparent resistivity pseudo-sections
over complex two-dimensional models.

Line E-E' whiéh trends NW-SE across Grass Valley just north of Leach
Hot Springs has been surveyed using every geophysica] technique applied by
LBL as a méans of comparing the interpretation of each method.

Figure 24 shows one attempt at modelling the 1 km dipole length dipole-
dipole apparent resistivity pseudo-section for Line E-E'. The general
configuration of the contact between the bedrock (shown as 200 Sa~m) and
the overlying conductive méterial was determined primarily on the basis of
the gravity, P-wave delay and reflection seismic data. The model represents
moderately high near-surface resistivity (shown as 30 and 12'ui—m) in the
central portion of the valley, grading down into a massive conductive
(]ﬂﬂ -m) zone in the region of thickest sedimentary section. At 1 km E
is the near surface resistivity high which also shows up markedly in the
E-field ratio telluric data, and is ﬁresumed to be the result.of spring
deposition as well as fault displacement. East of this is a somewhat thicker
sedimentary section before the bedrock surface is faulted up to become' the
Sonoma Rangé._ Gravity and P—wave.de1ay data indicate a.dense, high-velocity
~anomaly at 10 km W. This is included in the resistivity model as a thining
of the conductive section to 250 meters in this regfon, but the result is
an unacceptable'increase of many values in the model generated pseudo-section.
Between 11 and 15 km W is a somewhat thicker conductive (3-7 L -m) sedi-
“mentary section. UWhile shallow apparent resistivity values were not found
along this part of the line, the effects are definitely seen in apparent
'resistivitiés found for Targer N-spacings for which receiver electrodes were

placed between 11 and 15 km W. The tellurics also shows this to be a con-
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ductive region.

Models for a conductive layer overlying a more resistive half-space
can be rather insensitive to the resistivity of the half-space with the
result that it can be difficult to determine bedrock resistivity. A model
similar to that shown in Figure 24 has been calculated with the 200 (. -m
bedrock resistivity reduced to 20 S -m; only relatively subtle changes
appeared in the pseudo-section.

A 500 meter dipole length dipole-dipole pseudo-section (Figure 25A)
was obtained as a compromise between desires for greater resolution than that
afforded by the 1 km dipole length data and for sufficient penetration to
see the bottom of the deep conductive anomaly in the center of the valley.
Figure 25b shows a moderately successful modelling attempt with one signifi-
cant modification of the concept of Figure 24, which is based upon a model
for the seismic reflection data (see Figure 80, which will be discussed
in the seismic section of this report). The modification is the addition
to the resistivity model of a thick moderately conductive (851 -m) zone
beneath the 12 5Z-m and 151 -m layers to the west of 0 km in Figure 25b.
Comparing this figure with Figures 3 and 80, the 12 m layer is interpreted
ag the Quaternary alluvium with a P-wave velocity of 1.8 km/sec., and the
1SL -m layer is seen as the Tertiary sediments and volcanics with a velocity
of 2.9 km/sec. The 832.—m section is then the older, complexly folded and
faulted (resulting in high permeability and Tow resistivity) ?a]eozoic
rock , which is part of a thrust sheet presumed to underlie the Tertiary
section in the valley. Beneath this are younger Paleozoic formations with
high resistivity (200£2 -m) and velocity (5.0 km/sec.). An interpretation
of‘this sort allows the deeper Paleozoic bedrock io be resistive while
allowing a thick enough conductive section for low apparent resistivity values

to appear in the pseudo-section at large N-spacings.
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Figure 26'5hows an excellent two;dimensional computer model fit to
the 250 meter dipole length pseudo-section run on Line A-A'. Signfficant
| points displayed in the model are (1) the 3052 -m block from 3.0 to 3.5 km N,
which represents resistﬁve.spring deposits, (2) the pOssibi]ity of more
extensive silicification to the north and northwest forming a thin near
surface resistive layer, and (3) the 20 (L -m "basement" beneath the 2 énd
4R -m alluviun. Models with a basement resistivity of 1005 -m would not
fit the observed data.

The dfpo]e-dipo]e pseudo-section and model for Line B-B', Figures 27a
and b suggest that the Grass Valley sedimentary section becomes somewhat
more resistive (2€¥ -m) at depth to the south and west of Leach Hot Springs
than was found to the northwest of the hot springs along Line E-E'. Judging
from topography the direction of hydrologic flow in the valley is to the
northwest. The Line M-M' dipole-dipole resistivity data shown in Figure 28
bear out the increase of resistivity to the south. Line M-M' follows the
gravity low axis of the valley, the region of thickest sedimentary section,
and intersects Lines E-E' and B-B' at the centersof their 1 and 2{C -m anomalies.

Across Line D-D' the gravity and E-field ratio telluric data (see
Figure A4) are of particular help in designing a model for the dipole-dipole
résistivity (Figufes 29a and b). Dense, resistive material (possibly a
horst of basement rock, or hydrothermal deposition) occurs at 5.0 to 6.5 km W. It
is interesting to note that the Tow resistivity anomafy in the dipoTe-dipo]e
apparent resistivity pseudo-section is not the result of a conductive'anoma1y
at 5 km W, but is rather due to low resistivity features on either sidé.

Low E-field ratio telluric anomalies at the eastern end of Line H-H'
and on LinesP-P', Q-Q' and R-R' (Figures A8, Al4, Al5, A16) led to dipole-
dipole resistivity surveys and modelling along Lines H-H' and T-T' (Figurés

30a and b, and Figures 31 a and b, respectively). Two-dimensional modelling
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has been used here for survey lines which are perpendicular to each other
in a quite tightly confined portion of the valley, so agreement between

the two models should not be expected to be perfect. The models do suggest
however, that a very conductive (2—352.-m) anomalous feature entends from
near the surface down to the shallow (600-800 meters deep) basement, and
possibly continues to the south at depth under resistive (10-30\Z -m)
surface material. There is no surface expression of the near surface por-
tion of the conductive anomaly, but heat flow hole Q-3 (Figure 6) at this

location yields 4.9 HFU.
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Magnetotellurics

In the summer of 1974 preliminary tests of a mégnetote]Turic system
1ncorporating a Josephson effect superconducting magnetometer for the
magnetic field sensor were conducted. Problems with e]ectrbnics and
shielding of the sensor from high amplitude trqnsiehtS'(SFERICS) prevented
completion of a full magnetotelluric survey of the area.

By August 1975 these problems had been corrected and 17 stations were
occupied in Grass Valley. These stations were located along the main
geophysical traverse lines, Figdre 7. Two Josephson effect magnetometers
were used, a Devleco Model 8230.3 axis magnetometer and a 3 axis dc SQUID
magnetometer developed by Prof. John Clarke under funding from the USGS
(Clarke, 1976). Thfee components of the magnetic fie]d and two horizontal
electric components were amplified and fi]tered}ahd recorded on a Honeywell
5600 FM tape recorder. At.many of the stations outputs from'bﬁth magnetometers ;
were recorded simultaneously for coherence studies on the magnetic field
and for performance studies on the magnetometers. These expefiments are
being analyzed for a separate report} |

A read-after-write head on the recorder was used to monitor the recorded =
signals on a paper_chart'recorder in the field. |

Two basic recording bands were used to accommodate,with wide dynamic
range of the signals,to the restricted range of the recorder.(50 db): a |
low frequency band from .01 to 5 Hz and a high ffequency'baﬁd from 1 Hz to
40 Hz. | |

The electric fields were measured with_orthogonal'électrode arrays of
500 meter 1engths. _Copper-copper sul fate porous.pots were used as receiver
eiectrodes. The magnetometer axes were aligned with fhe e]éctrode arms.
and the orientation (EX:N59°N? Ey:NB]“E) was the.ﬁéme.at évery station

(ngure 32):
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The data presented in this report were analyzed using conventional
power spectral fechniques (e.g. Vozoff,1972,and Sims,et al.,1971). While
other analysis methods are being developed in this program the resulting
apparent resistivities using this conventional approach provide a useful
picture of the subsurface conductivity distribution.

The electric and magnetic fields were played back and demodutated
from the FM recorder. These data were fed directly to a multichannel A/D
converter and placed on digital tape. The data were also monitored on a
multichannel analog chart recorder and segments containing bad data were
identified and listed for omission in the subsequent digital processing.

The remaining data were divided into discrete time segments, each of which was
Fourier transformed. A1l possible cross-spectra and auto-spectra for the
components of the field were computed. The cross-spectra and auto-spectra
were averaged over both the ensemble of time segments and over frequency
intervals of constant Q. For frequencies between 0.01 Hz and 1 Hz, the
ensemble averages typically contained ten 500 second long time sequences. For
frequencies between 1 Hz and 40 Hz, the ensemble averages contained about
thirty 8 second long time sequences.

An average two-dimensional impedence tensor was calculated for -each
frequency window using expressions for the tensor elements which are unbiased
by noise in the electric field (Simsqgj;gl,,ig?]). (We choose a form for
the impedence tensor which is unbiased by electric field noise since we
expect e]ectri; signals over a conductive body to be relatively smaller com-
pared with the noise than are the magnetic signals.) The impedence tensors
were rotated to find the principle (or strike) direction which minimized the
magnitude of the sum of the off-diagonal tensor elements. Finally, the
apparent resistivitieS/a (paralle] to strike) and/oy (perpendicular to strike)

were calculated from the rotated impedence tensor. We assess the quality
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of the resistivity data by computing the coherency, q , between the measured
electric fields and the electric fields predicted by forming the product
of the measured magnetic field and the unrotated impedence tensor. The
low frequencies (< 1 Hz) were rated as: good if 0.95*1]¢ 1, fair if 0.89
<1nN< 0.95, and poor if1n< 0.89. For the high frequencies (7 1 Hz) our
ratings are as follows: good if 0.904114 1, fair if 0.72<1 < 0.90, and
poor if n< 0.72. |
The rotated apparent resistivities fqr each station are plotted in

Figures 33 to 48 as a function of T]/2, where T is the period in seconds.

0

A is obtained from the rotated pair Ex/Hy, E)y from the rotated pair

Ey/Hx. Figures 33 to 39 are in order from West toIEast along line E-E'.
Figures 40 to 46 are arranged in order of location from south to north along
line A-A'. Figures 47 and 48 show the apparent resistivities obtained on
Tines M-M' and B-B' respectively. For almost all of Grass Valley the
principle directions for the rotated values of Qﬁkare nearly the same

fTab]e 1% and the rotation angles are the same for all frequencies.

These results indicate that the major'range front-valley contact controls

the kegiona] current flow. whfie detailed interpretation requires numerical
modelling of iﬁdividua] station data,a qualitative descfiptiou of the
electrical section is provided Ey the pseudo-sections of f; values on lines
E-E' and A-A' in ngures 49 and 50. These proﬁide a graphicdl representation

1/

of apparent resistivity as a function of T 2 (which in turn is proportional
to depth) and station location.

The very Tow values of apparent resistivity observed in the vicinity of
Leach Hot Springs should be viewed with caution until detailed modelling is
complete. This type of anomaly is characteristic of contacts between zones

of differing resistivity where local electric fields perpendicular to the

contact on the conductive side are attenuated. It should also be noted
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that Tow values of apparent resistivity reflecting low levels of electric

field are poorly determined since the signal to noise ratio is low.

Seismological Methods

Several techniques based on seismological observations have been
suggested and app]fed, with varying and often controversial results, to
the problem of detecting and delineating the geothermal reservoir. In
keeping with the general goal of the LBL program, studies were undertaken
of these applications which either showed promise scientifically or were
in general use in the field. The aim of the research effort, the testing
and evaluation of these seismic.methods, involves a balanced approach with
theoretical analysis, field studies, and model generation. The methods
selected for study are:

1 Micrdearthquakes

a. spatial/temporal distribution
b. mechanisms
2. Wave Propagation Characteristics (Distant Sources)
a. velocity distribution (p-delays)
b. attenuation
3. Ambient Microseism Characteristics ("Ground Noise")
a. spatial variation in field of -
amplitude
frequency
wavenumber
b. reservoir-generated signals
4. Reflection Survey
a. structure
b. velocity

c. direct reservoir detection
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5. Refraction Survey
a. Structure

b. velocity

In developing the prograh it became clear that data either did not
exist, or were not accessible, of a sufficient quality and covefage to
evaluate the methods in a uniform manner. This prompted.three lines of
philosophy characteristic of the effort:

1. A prospect area was selected for comparative assessment technidue

'studies. |
2. Contractural data-gathering services were used when available.
3. Equipment was fabricated at LBL only when unique in design or not
available elsewhere. | |
In keeping with this approacﬁ, evaluation of methods 1-3 required fabrication
of a special-purpose, wide-bandwidth, multichannel field seiSmfc data
acquisition system; methods 4 and 5 were done by contract with a geophysical
exploration company; and the area ultimately seleﬁted for the comparative
methodology effort was Grass Valley, Nevada. Data presented later in this
report represent the stage of the investigation and preliminary interpre-

tation as of August 1976.

Seismic Data and Preliminary Interpretation

1. Microearthquakes

A. The microearthquake study was conducted in three parts. First was
a reconnaissance period usiné 8 Sprengnether M.E.Q.-800 smoked paper re-
corders, with 4.5 Hz geophones. Initially a large array was set out covering
the whole valley for 6 weeks to determine areas.of éctivity. Based on this

information, the instruments were moved to each area of activity. The
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reconnaissance study indicated earthquakes occurring in a triangular area
bounded by Leach Hot Springs, Panther Canyon, and the Goldbanks Hills

(Figure 7). However, no activity was apparent in the immediate Hot Springs
Area. Faulting mechanisms were inconclusive, indicating a complex faulting
pattern. Over the period of recording the average occurrence of micro-
earthquakes was 2-§/ﬁay, with magnitudes from -.5 to 1.0. No reliable depths
were determined from the reconnaissance study. The second phase of study
reoccupied the valley using a 12-station telemetered data system, with 4.5 Hz
vertical and horizontal geophones, recording on FM analog tape (DC-80 Hz).
This study confirmed the absence of microearthquakes around the Hot Springs
area, and confirmed an active region to the south in Panther Canyon and the
Goldbanks Hills. Also detailed was the complexity of faulting in this area,
with no single throughgoing fault plane indicated as controlling the earth-
quakes. However, the epicenters seem to define a linear source region
between the Goldbanks Hills and Panther Canyon. The rate of occurrence was
still about 2-3 per day. Depths were determined from 3 to 5 km. Magnitudes
ranged from -.5 to 1.0.

The final survey phase concentrated in the southern part of the valley
as shown in Figure 51. Single-component, vertical, 4.5 Hz geophones were
used normally, though for a period of time six stationsincluded a horizontal
component. The 3 shaded areas in Figure 51 correspond to zones of earth-
quake swarm activity, though no two areas were ever active simultaneously.
The swarms characteristically consist of 20-30 earthquakes. Excluding
these swarms, there is an average of one earthquake per day in the area.

The magnitudes vary from -0.5 to 1.0. Focal depths are 5-8 km in the SW
Swarm, 3-5 km in the central swarm, and 2-5 km in the NE swarm. Composite

fault plane solutions are generally inconsistent, but for the SW swarm,
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right lateral strike slip seems the controlling mechanism. Wadati dia-
~ grams show Poisson's ratio in the range 0.25 to 0.30 over the entire region,

with no apparent anomalies.

2. Propagation Characteristics

The telemetry system provides re]ative timing betweeﬁ stations to
+ 0.005 sec. An almost daily source bf large explosions at a mine 45 km
due east of the Hot Springs allowed a study of relative. P-wave arrival
times. Eighty sites were occupied ih a grid with 1 km'centefs, bounded by
survey lines E-E' and D-D' (see Figure 7). Around the Hot Springs, grid
spacing was reduced to 0.5 km for a radius of 2 km. Relative P-wave
arrival times, corrected for average velotity qnd referenced to bedrock
(site 4.5E on E-E') are shown in Figure 52. The delay pattern, greatest
in the center of the va]fey and minimum on the edges, reflects valley fill.
However, around the Hot Springs the relative timeé are advanced; i.e. delays
of up to -0.150 sec. This appears to be due to higher Qe]ocity silicified
sediments extending to depth around the springs. The high gradient in delay
to the north of the Hot Springs indicates a sharp boundary in the anomalous
high velocity material. |

Further evidence for a sinter depoSit around the hot springs is seen
in the vafiations of frequency content of records at different'sifes. Figure
52 shows the same distant explosion recorded at 3 differenf-sites,.a11 re-
corded with the same gain. The bedrock and valley sites are simi]dr in
frequency content with slightly differing amplitudes. The Hot Sprihgﬁ re-
cord, in contrast, shows a marked increase in the frequency content of the

P-wave, with a slight increase in amplitude.

A more pronounced effect is seen in Figure 54 for a local microearth-
quake, affecting the S-wave. These observations indicate that the high

velocity zone also has a very high Q relative to the surrounding areas. The
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explosion arrivals came from almost due east, while the microearthquake
occurred south of the station. Only stétions near the Hot Springs show
this effect indicating an inhomogeneity of small lateral extent but ex-
tending from the surface to appreciable depth. The effect decreases with
distance from the Hot Springs, disappearing at approximately one kilometer

distance.

3. Ambient Microseism Characteristics (Ground Noise).

The ground noise experiments were designed to investigate the spatial
distribution of the ambient background microseisms, in amplitude and fre-
quency, plus parameters such as the propagation direction and the apparent
velocity. To study the spatial distribution, 24 locations were occupied
from July 1 - 14, 1975; and 47 additional locations were occupied from
October 12 - 24, 1975. Due to the limitation in the number of radio trans-
mitters available in 1975, we were able to acquire data from only seven
different locations simultaneously. A reference station was occupied
throughout the experiment.

For processing, data were carefully selected from quiet recording
periods. At least 28 simultaneous blocks of data were chosen from each of
the seven stations, carefully avoiding transient signals or cultural noise.
Each data block of 6.4 second length was filtered and digitized at 80 sps.

The resulting 512-point records were tapered and transformed into the fre-
quency domain by means of the FFT algorithm. The Fourier transform multiplied
by its complex conjugate produced the power spectral density. The estimated
power spectral density at each location is the average over at least 28 data
blocks, to increase the statistical confidence. The velocity spectral density,
VSD, in millimicron/sec/Hz, was obtained by taking square root of the power
spectral density estimate and correcting for system responses. The noise

level in dB for a particular frequency band at a station is obtained by
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integrating the velocity spectral density over.the frequency band and
normalizing by the same quantity at the reference-stat{on. Data from

four representative locations are presented to illustrate the characteristics
of.the seismic ground noise in Grass Va]]éy. Figures 55 to 58 show the
velocity spectral density (VSD) plots for each location; error bars indfcate
‘the 95% confidence 1imits. Figufes 59 to 62 present contours of relative
ground noise level in particu1ar frequency bands; the values are given in

dB with respect to the reference site REF.

At all frequencies the Hot Springs area shows background 1eve1; The
valley center with thiékest a]lu§iﬂm apparently enhances the microseism
level uhiform]y in the 4-10 Hz range. However, at lower and higher fre-
quencies, the effect is spotty, with some va1]ey regions showing very low
levels.
| In order tostudy the propagation parameters of the microseisms, we
fielded a 12-element roving afray at 16 representative locations in the
area from July 3 - 19, 1976. The array coﬁfiguration and its response in
wavenumber space are shown in Figure 63.- Data acquisition equipment is
identical to that used in the previous study, except that data were trans-
mitted by cable for the short distances, instead of-bj radio. Twenty—foﬁr
. transient-free data blocks were selected simultaneously from each of the 12
.elements of the array. HiQh—reso]ution wavenumber analysis, based on the
construction of complex weighting functioﬁs (maxiwumlike1ihood filters) from
the input data blocks for each array element, was used to estimate tﬁe power
spectral density in two-dimensional wavenumber space at particular fre-
quencies. The peak of the resulting three—dimensionai (kx, ky, f) power
spectral density function indicates the appareht velocity and direction of
'coherenf seismic waves propagating across the array, i.e., the dominant

horizontal wavenumber. The high-resolution technique minimizes the Spurious



= =

effects of the side lobes in the array response.

Figures 64 to 66 show representative wavenumber plots at specific
frequencies for three sites. At valley sites the dominant energy propagates
from the east at low velocity near 300 m/s: probably Rayleigh waves guided
in the upper 10-20 m of alluvium. The dominant waves near the Hot Springs
are considerably higher velocity, around 1 km/s. The method represents a
powerful, objective, quantitative analysis technique for determining the

propagation parameters of background noise and their spatial variations.

4. Reflection Survey

_ For structural control, a Vibroseis (registered trade name, Continental
0il1 Co.) reflection survey was conducted in the vicinity of the Hot Springs.
Line E-E', from 5.25W to 2.25E, was surveyed, as was a cross line, E-X,
centered at the Hot Springs. Fifty meter group intervals, 1200% stack and 16
58-12 Hz sweeps of 16 sec. length were used. Resulting sections—conventional,
relative amplitude, and migrated—are shown in Figures 67 to 72. Data
quality is generally quite good except in the immediate Hot Springs area
where the fault-bounded silicified section is apparent in the lack of re-
flections. Faulting is evident; by reflection correlation and presence of
diffractions, on section E-E'. Velocify analyses on E-E' were generally
good and differentiated clearly the major Tithologic units in the section,
i.e., Qal (6000ft/s), Tertiary (9000ft/s), Paleozoic (13000ft/s), and deep

basement (17000ft/s), approximately modelled as 1.8, 2.9, 4.0, and 5.0 km/s,

respectively.

5. Refraction Survey

As a further study, a refraction line on E-E' and its extension south-
east was surveyed, with a spread from 2.8 to 2.0F and 100 m group intervals.
Seven shotpoints (up to 60 sweeps) from 7.6W (VP305) to 10.75E (VP-61) were

used. Records are shown in Figures 73 to 79.
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As an aid in interpretation, a generalized model, based on the pre-.
liminary reflection and refraction interpretation, was constructed for
finite element computation of the equivalent refraction spread aﬁd'shotpofnt
VP257. The initial model is shown in Figure 80 and the resﬁ1ting second
section in Figure 81. Agreement is generally good, although details differ.
The outlook ﬁs encouraging for further use of the finite element technique

in modeling.
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SUMMARY

The detailed analysis and synthesis of all the geophysical data is
not complete. Important heat flow data essential to the definition of a
reservoir model arestill being acquired,and many of the geophysical 1ines
have yet to be interpreted in terms of detailed computer models of the sub-
surface resistivity. However, several important conclusions can be drawn
from the data,and these focus attention on two main areas of geothermal
potential. {

In the vicinity of Leach Hot SSrings there is evidence of a long
history of silicic deposition from thermal waters. The seismic P-wave
delay map, Figure 52, most clearly outlines an area of anomalously high
velocity of at least 3 km2 areal extent. The ground noise studies show
this to be an area of Tow attenuation, high Q, and the reflection study
verifies this conclusion. Further, an analysis of the velocities, P-delays
and reflections indicates that the silicified zone must be at least 2 km
thick and thus, at that point in the section, must extend well into the
Pa]eozoic basement.

The densification accompanying the presumed silicification is evident
in the "shoulder" on the Bouguer map of the area, Figure 8. The telluric
reconnaissance profiles on lines A-A', E-E' and S-S' all showed a resistive
picture in this area and the preliminary resistivity modelling for the
dipole-dipole resistivity pseudo-section of Line A-A' (Figure 26) also requires
a zone of higher resistivity in this area. None of the analyses to date
has defined the shape of this silicified zone with depth.

Some further indication of the extent of the silicification and its
possible fault control was found in hole QH1 (Figure 6) where the Hot Springs
fault zone was drilled through and found to be highly silicic at a point

about 1 km from Leach Hot Springs.
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The geophysical data confirm the general geologic cross section
(Figure 3 ), at least on Line E-E'. Further analysis will lead to some
redefinition of the location, and possibly dip, of the faults and will
also modify the vertical Tithologic section. More cross sections can be
drawn from the composite data of other lines that will lead to a better
subsurface model of the geology. Tentatively, a vertical section at

station 2W on Line E-E', drawn from both electrical and seismic data, is

composed of the following layers:

Layer Thickness Resistivity Velocity Geology
1 .4 to .5 km 10-20 $tm 1.8 km/sec. Recent Sed.
= .8 to 1.0 km 1-5 2=m 2.9 km/sec. Tertiary Sed.and
4 1.0 8-30.9m 4.0 km/sec. e
4 e 200 St=m 5.0 km/sec. Paleozoic

The low resistivity zone, here identified with Tertiary sediments, is con-
fined in areal extent to a region of roughly oval shape extending NW from
the Springs to the intersection of 1ine M-M' and F-F'. (See the composite
profile for Tine M-M', Figure 12A in Appendix A).This low coincides well with
the axis of the gravity Tow but is displaced slightly to the east of the
center of the graben-like feature in the fault map, Figure 4. The heat flow
value in this zone, Q1 is not high by Battle Mountain standards (2.24 HFU)
suggesting that an accumulation of conductive sediments (e.g.,ancient playa
deposits) in the deepest portion of the valley is responsible for the re-
sistivity anomaly.

Finally, it should be noted that the telluric profile and the dipole-
dipole data on line E-E' show a zone of low resistivity at depth starting
at about 10W and extending west. Apart from a small gravity high in this

vicinity none of the other data extend to this point. Since the geologic
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model suggests a steady thinning of the Quaternary and Tertiary cover in
this area,the resistivity lows should be included in any further studies of
the area.

The remaining area of obvious geotherma1 interest is that of Panther
Canyon and the valley immediately west of it. This area is dominated by
a strong NE trending gravity feature which offsets topography and the
Bouguer contours (Figure 8). This trend matches a regional NE-SW Tlineament
pattern observed on ERTS and high altitude photographs. It is also the
only portion of the Grass Valley area that is seismically active (Figure 51).
The seismic zone is one of complicated faulting and frequent microearthquakes.
It is also located at the northern extreme of the Pleasant Valley fault,
scene of the large Pleasant Valley earthquake in 1915 (M 7-8).

There is a strong electrical conductivity high on this area (see pro-
file data for lines H, L and T in Appendix A and the dipole-dipole pseudo-

sections, Figures 30 and 31) and the heat flow in Q3 is 4.9 HFU.
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TABLE I
MAGNETOTELLURIC APPARENT RESISTIVITY:
ROTATION OF AXES TO PRINCIPAL DIRECTIONS

AXIS ROTATION in DEGREES
(Clockwise is positive)

+

+

| +

|+

l

I+ |+

I+ I+

I+ I+ |+ |

|+

10
10
5

10

10 -

10
10

10

18

10

10
10

5

3
10
10
10

(low freq. only)

Except at a few stations the amount of axis rotation is fairly
constant over frequency, especially at the lower frequencies.
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Lithologic map, Leach Hot Springs area. Qal: alluvium,

Qos: older sinter deposits, Qsg: sinter gravels, QTg:
Quaternary-Tertiary gravels and fanglomerates, Tb: Tertiary
basalt, Tr: Tertiary rhyolite, Tt: tuff, Ts: Tertiary
sedimentary rocks, Kagm: quartz monzonite, Kg: granitic
rock, md: mafic dike, TRg: Triassic granitic rocks,

TR: undifferentiated Triassic sedimentary rocks, P: un-
differentiated Paleozoic sedimentary rocks.
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Fault map of the Leach Hot Springs area. Hachured lines
indicate down-faulted sides of scarplets; ball symbol
indicates downthrown side of other faults.
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Figure 10: Bipole-dipole apparent resistivity and apparent conductance
array. .
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Figure 51: Grass Valley microearthquake survey results.

Stations (triangles) shown in phase three configuration. ;

Shaded areas are zones of earthquake swarm activity. : #
Preferred faulting mechanism is indicated for SW .
swarm - others are complex faulting. Heat flow measurement CBE 767-6290
is shown.
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Figure 64: Wavenumber plot for site A2N near the hot springs.
Contours at 4.32 Hz in dB as shown in legend.
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Figure T3: Refraction spread for SP at VP 305. Spread is from
2.0E (left) to 2.8W (right).
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APPENDIX A

GEOPHYSICAL DATA PROFILE COMPOSITES

Grass Valley, Nevada
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