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Abstract

Custom-designed ligand-binding proteins represent a promising class of macromolecules with 

exciting applications towards the design of new enzymes or the engineering of antibodies and 

small-molecule recruited proteins for therapeutic interventions. However, several challenges 

remain in designing a protein sequence such that the binding site organization results in high 

affinity interaction with a bound ligand. Here, we study the dynamics of explicitly-solvated 

designed proteins through all-atom molecular dynamics (MD) simulations to gain insight into the 

causes that lead to the low affinity or instability of most of these designs, despite the prediction of 

their success by the computational design methodology. Simulations ranging from 500 to 1000 ns 

per replicate were conducted on 37 designed protein variants encompassing two distinct folds and 

a range of ligand affinities, resulting in more than 180 µs of combined sampling. The simulations 

provide retrospective insights into the properties affecting ligand affinity that can prove useful in 

guiding further steps of design optimization. Features indicate that entropic components are 

particularly important for affinity, which are not easily incorporated in the empirical models often 

used in design protocols. Additionally, we demonstrate that the application of machine learning 

approaches built upon the output from the simulations can help discriminate between successful 

and failed binders, such that MD could act as a screening step in protein design, resulting in a 

more efficient process.

SUPPORTING INFORMATION
The Supporting Information is available free of charge at http://pubs.acs.org.
DIG designs RMSF (Figure S1), POVME (Figure S2), dihedral (Figure S3) and ligand RMSD analysis (Figure S4), simulation length 
and replicate convergence analysis (Figures S5 and S6), static models features (Figure S7), RMSF and structural deformation of 
selected β-barrel designs (Figure S8), DIG and β-barrel designs joint unsupervised classification model (Figure S9), logistic regression 
model feature weights (Figure S10), evaluation of supervised learning classifiers using 33% or 50% of the data in the training set 
(Table S1).
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Graphical Abstract

INTRODUCTION

Protein design is a young and ambitious field that aims to expand beyond naturally-

occurring proteins to explore the massive protein sequence- and fold-spaces in the search for 

novel and customized structures1,2. Successes in the design of novel folds3,4, ligand-binding 

proteins5–7, enzymes8,9, antibodies10–12 and self-assembling supra-molecular structures13–16 

underscore this field’s progress and growing potential. However, despite an increasing 

number of achievements, the protein design process remains very challenging and time 

consuming, with usually low success rates in initial design rounds11,17.

Molecular recognition and protein-ligand binding are universally important processes that 

are however not yet fully understood or emulated. The development of novel molecules to 

treat diseases rely on the understanding of these interactions, and the improvement of 

protein-ligand affinity is far from being a negligible task18. In this context, the design of 

ligand-binding proteins offers the opportunity to better investigate the fundamentals 

affecting high affinity binding and selectivity1,5, as well as lay out the foundations for 

custom design of de novo enzymes19, biosensors20,21 and antibody engineering22,23. 

Designing ligand-binding proteins poses the extra challenge that protein scaffolds not only 

need to be structurally stable and fold in the intended conformation, but also include 

residues lining up the binding cavity that result in high-affinity interactions with the ligand. 

Thus, the functionalization of the binding site, generally with polar residues for the 

establishment of hydrogen bonds with the ligand, has to be balanced with the 

hydrophobicity of the protein core to maintain an energetically favorable folded state7 and 

the desolvation cost of the polar cavity upon ligand binding24.

The general ligand-binding design protocol involves initial sampling of disembodied amino 

acids to create a binding site with specific protein-ligand interactions. The binding site is 

then positioned in a protein scaffold, and surrounding residues are further optimized to 

generate the desired interactions or to buttress the interactions in the secondary shell5. While 

tight ligand binders have been successfully generated by computational design, in a recent 

study 17 pre-selected designs of the nuclear transport factor 2 (NTF2) scaffold had to be 

expressed and tested to yield two successful µM-binders5, while the pool of tested 
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candidates for the more hydrophobic fentanyl ligand involved 62 candidates, among which 

only three were successful first generation µM to nM binders21. More recently, the first 

completely de-novo designed β-barrel binding proteins required the generation of thousands 

of designs and experimental characterization of 56 high-scoring sequences to yield two 

successful binders in the first round of design generation7. This constitutes an expensive and 

lengthy process, as the computational design generation needs to be followed by expression 

of the highest-ranking candidates and experimental characterization, which includes assays 

to test proper protein folding and stability (such as circular dichroism and yeast-surface 

display), and ligand binding (e.g. fluorescence activation or polarization and isothermal 

titration calorimetry). Several challenges, including the evaluation of desolvation energies 

and sampling of alternate backbone conformations25 affect the design accuracy, and thus the 

majority of proteins in the initial rounds of computational design end up failing the 

experimental validation. The most common sources of failure are due to improper protein 

folding (leading to aggregation and insolubility in many cases), or absence of high-affinity 

interactions with the ligand. The few promising candidates from the first round of design can 

then be optimized by techniques such as site-saturation mutagenesis to yield tighter binding 

proteins, further lengthening the design process.

Protein function is directly determined by the macromolecule’s structure and dynamics, and 

in this sense molecular dynamics (MD) simulations are uniquely poised to assist in the 

protein design process as the simulations can inform on the designs’ dynamics beyond the 

static models generated by the empirical design protocols26,27. MD simulations have been 

successfully applied at several different steps in the protein design methodology, such as in 

the refinement of predicted protein structures28–30 or in the identification of flexible regions 

in designed proteins. The enumeration of mutations for the rigidification of these flexible 

sites31 led to verified increase in thermal stability experimentally32–34. Additionally, 

investigation of designed enzymes using short simulations provided indication of key 

disrupted catalytic interactions in unsuccessful designs, and was proposed as a screening 

method for enzyme design35.

Here, we investigate the dynamics of 37 ligand-binding designs from two different scaffolds 

and designed to bind to distinct ligands using MD simulations (Figure 1a). We survey the 

dynamical properties that reveal rational explanations for the unexpected failure of some of 

these designs, and explore the applicability of the simulations as a screening tool for early 

identification of the most promising designs prior to experimental validation (Figure 1b). 

Differences in protein structural flexibility, ligand dynamics, pocket pre-organization and 

water dynamics inside the cavity provide evidence of the predictive power of MD 

simulations when used concomitantly with the protein design process. We find that the 

application of machine learning approaches to the descriptors generated from simulations of 

the 37 designs in a retrospective analysis allows for accurate classification of the models and 

identification of the tight binder designs. This reinforces the potential of using MD 

simulations in the protein design pipeline to achieve higher efficiency and success rates in 

the design of novel functional proteins.
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METHODS

System selection and preparation

The starting structures for the simulations consisted of Rosetta-modeled ligand-binding 

proteins published previously5,7. Thorough descriptions of the design methodologies and 

experimental characterization assays employed, including ligand affinity and selectivity 

measurements, can be found in references 5 and 7. Four designs of the digoxigenin-binders 

based on Nuclear Transport Factor 2 (NTF2) folds were selected (DIG10.2, DIG10.3, 

DIG12 and DIG16, here referred to as DIG designs)5, as well as 33 designs of the 

fluorogenic 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI) binders based on a 

de novo β-barrel scaffold (Figure 1a)7. This set included examples of tight binders as well as 

unsuccessful designs, thus classified due to failures to fold properly or to bind to the ligand 

with high affinity (Table 1). Besides the modeled structures, we also performed simulations 

starting from the X-ray crystal structures of DIG10.2 (PDB code 4J8T, chains A and B) and 

DIG10.3 (PDB code 4J9A, chains C and F) to investigate possible errors introduced by the 

use of design models instead of experimentally-validated structures. Missing terminal 

residues in the crystal structures of DIG10.2 and DIG10.3 were modeled with Schrödinger’s 

Maestro (version 10.4, Schrödinger, LLC, New York, NY) based on the known protein 

sequence, and missing side chains were added with Schrödinger’s Prime36,37.

The digoxigenin and DFHBI ligands were parametrized using Antechamber and the 

generalized Amber force field (GAFF)38,39, with geometry optimization performed with 

Gaussian 0940. For DFHBI, the torsional parameters of the C2-C1-C7-C8 dihedral were 

increased to model the molecule’s expected planarity due to its aromaticity in the bound 

fluorophore state. All starting structures were processed with Maestro-integrated PROPKA 

to assign protonation states at pH 7. Dowser41 was used to hydrate the protein cavity 

following removal of the ligand’s coordinates for apo simulations. The proteins were 

solvated in water boxes with a buffer distance of 13 Å (for the β-barrels) or 15 Å (DIG 

designs) to the box edge with counter ions for charge neutrality, and 150 mM NaCl to 

simulate the experimental ionic concentration. The Amber14SB force field42,43 was used for 

the protein and NaCl, with TIP3P for the water molecules44. As a note, we re-checked the 

protein protonation in the 33 β-barrel simulations after 500 ns of sampling and observed that 

about 30% of the histidine residues were assigned a different protonation state due to 

structural rearrangements, evidencing the limitations of conventional MD when it comes to 

fixed protonation states45.

Molecular dynamics simulation protocol

All systems were simulated in their apo and ligand-bound (holo) states. We used the MD 

Kepler Workflow developed by our lab to enable automated MD minimization and 

equilibration for such a large number of systems46. Minimization consisted of five stages: 

hydrogen only, solvent, solvent and ligand, side chains, and the full system resulting in 

13,000 cycles using a combination of steepest decent and conjugate gradient methods. Since 

the majority of the starting structures were not experimentally-resolved conformations, we 

performed a long equilibration protocol and verified RMSD evolution to ensure system 

relaxation and convergence. Equilibration involved an initial heating to 100 K at constant 
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volume for 50 ps followed by heating to 298 K at constant pressure, 1 bar, for 200 ps. The 

systems were further equilibrated at 298 K and 1 bar for 2.25 ns.

Molecular dynamics simulations were run using GPU accelerated Amber1442,47 as an NPT 

ensemble with periodic boundary conditions at 1 bar and 298 K to simulate experimental 

conditions. We used a non-bonded short-range interaction cutoff of 10 Å, and the long-range 

electrostatic interactions were approximated by particle mesh Ewald48. The simulations used 

a 2 fs time step with the SHAKE algorithm to constrain hydrogen atoms. The initial design 

data set was simulated for five replicas of 1,000 ns each in the apo and holo states, while 

additional validation systems were simulated in three 500 ns replicas of each state (Table 1), 

resulting in a total sampling of 184 µs. MD input files are available for download at https://

github.com/emiliapb/Design_screening.

Analysis methods

Trajectory files were visualized in VMD49 and analysis were conducted using Jupyter 

notebooks50 and in-house scripts, using a variety of MD analysis functions from MDTraj51, 

CPPTRAJ52, PyEMMA53 and MDAnalysis54,55. The Jupyter notebooks are available for 

download on GitHub (https://github.com/emiliapb/Design_screening). Specifics of the 

different analysis methods conducted are discussed below.

Protein structural flexibility—Root mean square fluctuation (RMSF) of Cα carbons was 

calculated using CPPTRAJ, following structural alignment of the protein to backbone atoms. 

To obtain a single value informative of structural flexibility for each design, we used 

PyEMMA’s regular space clustering of the Cα coordinates with RMSD metric and a cutoff 

of 1.5 Å to obtain the number of clusters (NOC) sampled. Simulations were analyzed every 

100 frames.

To inform on the solvent accessibility of hydrophobic residues, we calculated solvent 

accessible surface area (SASA) of Ala, Ile, Leu, Phe, Val, Pro, Gly, Met and Trp residues for 

every frame in the simulations, using MDTraj’s SASA function.

Ligand dynamics—We investigated ligand displacement in the holo simulations through 

the calculation of ligand root mean square deviation (RMSD) from the starting conformation 

in the designed models. Each trajectory was aligned to the protein coordinates of the 

respective starting structure, and RMSD values calculated using CPPTRAJ.

Pocket organization—Cavity volume was investigated using POVME (Pocket Volume 

Measurer), version 2.056. Volume calculations were performed for every 100 frames of the 

aligned trajectories. Inclusion spheres were defined to encompass the binding site, and seed 

spheres were selected to include the minimal definition of the pocket, which were placed 

roughly at the center of the ligand position in the binding pocket. To allow for comparison 

across designs, the same POVME spheres were used for each scaffold and POVME’s convex 

hull option was turned off.

The side chain chi1 dihedral angles of residues designed to interact with the ligand were 

investigated using MDTraj. For protein-ligand hydrogen bond analysis, MDTraj was used to 
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calculate the distance between the hydrogen and acceptor atoms, and the angle formed 

between donor, H and acceptor atoms. H-bonds that fell within the definition of strong and 

moderately-strong bonds were counted (Strong = XH --- Y bond length of 1.2–1.5 Å and X-

H---Y angle of 170–180°, moderate = bond length between 1.5–2.2 Å and angle 130–

170°)35,57.

Water analysis—To investigate the presence of water molecules inside the protein cavity, 

we counted the number of water molecules within a sphere delimiting the binding site using 

MDAnalysis. The delimiting region was selected as a sphere of radius 8 Å from the 

coordinates of the C7 atom in the digoxigenin ligand, and a sphere of radius 7 Å centered at 

DFHBI’s C1 atom (Figure 1a). The survival probability function in MDAnalysis58 was used 

to calculate water survival probability within the same defined spheres in the last 100 ns of 

the apo simulations.

Convergence analysis—To assess the influence of simulation length and number of 

replicas on the computed features, we used the protocol described by Knapp, Ospina and 

Deane59, computing the average difference between the features for 100 rounds of random 

selection without replacement.

Machine learning—Python’s scikit-learn library was used to perform unsupervised and 

supervised learning on the features extracted from 500 ns of simulations. For the designs 

that have been simulated for 1000 ns and 5 replicas, we used the first 500 ns of the 

simulation and the first three replicas (generated using random seeds) for the calculations. 

Feature scaling was performed among the designs of a particular scaffold to prevent 

dominance of larger-valued features. Logistic regression was performed with a tolerance of 

10−4 and liblinear solver. K-nearest neighbors used k=2 or 5, uniform weights and Euclidian 

distance metric.

RESULTS AND DISCUSSION

Binding determinants for DIG designs

To investigate the dynamics of designed small-molecule binding proteins and understand the 

determinants affecting binding ability and affinity, we first investigated 4 designed proteins 

of the Nuclear Transport Factor 2 scaffold, which have been engineered to bind to the small 

molecule digoxigenin5 (Figure 1a). We conducted extensive simulations in both the apo and 

holo states of two successful, tight binder designs (DIG10.2 and DIG10.3) and two designs 

that failed to bind to the ligand despite positive predictions by the computational 

methodology (DIG12 and DIG16). DIG10.2 and DIG10.3 are third and fourth generation 

designs, respectively, generated following design optimization, and exhibit binding constants 

in the nano-molar to pico-molar range (Table 1). The structures of DIG10.2 and DIG10.3 

have been solved by X-ray crystallography and were the starting structures of the 

simulations. DIG12 and DIG16, being considered failed designs, did not have their 

structures solved experimentally and the starting structures for the simulations were modeled 

by Rosetta based on these designs sequences and the original scaffold from which they were 

engineered5.
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We first focused on the dynamics of the proteins in the simulations. The projection of the 

RMSF values on the protein structures evidences that the highly fluctuating regions are 

located in the structural motifs lining up the cavity entrance, with DIG12 in particular 

exhibiting a larger flexible region than the tight binders and thus suggesting a possible 

negative effect of the protein flexibility in the accessibility of the cavity for ligand binding 

(Supplementary Figure 1). We also looked at solvent accessibility of hydrophobic residues, 

since this is an important factor affecting protein stability. Figure 2a shows the average 

SASA/hydrophobic residue calculated for the designs. In line with what would be expected, 

tight binders show smaller SASA both in the apo and holo simulations, although DIG16 

values are not as distinct from the tight binders as DIG12. This indicates that the successful 

designs not only tend to have a better organized hydrophobic core, but also confirms the 

importance of solvent shielding of nonpolar residues and promotion of hydrophobic 

interactions for adequate structural stability.

A key unanswered question in the design process of proteins functionalized for ligand 

binding is how stable and pre-organized the pocket remains in the absence of the ligand35. 

We set out to explore the survival of the organized pocket through the calculation of cavity 

volume throughout the simulations. All designs, regardless of binding affinity, showed large 

variations of cavity volume in the apo state, indicating that the pocket deviates from its 

designed conformation but that does not necessarily preclude ligand binding (Supplementary 

Figure 2a). The non-binders DIG12 and DIG16 have occasional complete closure of the 

cavity, but the same also happens for the successful binder DIG10.2. The volume density of 

DIG10.2 at 50% of the frames, for example, shows a partially collapsed pocket 

(Supplementary Figure 2b). Of the designs, DIG10.3 is the only one that shows apo pocket 

volume density that completely encompasses the volume occupied by the ligand in the 

bound state, demonstrating the pocket pre-organization achieved in the last round of design 

optimization. The C-alpha RMSF values (Supplementary Figure 1) from the MD simulations 

indicate that the lack of cavity pre-organization among the other designs is not only due to 

sidechain flexibility but also reflects backbone-level dynamics, which overcomes a major 

limitation of protein design protocols of not accounting for backbone flexibility.

On average, we observe much larger cavity volumes for the non-binders DIG12 and DIG16 

than for the tight binders, both in the apo and holo simulations (Figure 2b). These designs’ 

scaffolds have a large cavity opening, while the scaffold of DIG10, from which DIG10.2 and 

10.3 were generated, presents a more enclosed cavity, such that the cavity volume results are 

a reflection of this. The simulations of DIG10.2 with ligand bound sampled a high number 

of cavity conformations with volumes smaller than what was originally designed, suggesting 

side chain rearrangements that result in a tighter interface around the ligand (Supplementary 

Figure 2a). The fact that the designs with the sterically most accessible cavities resulted in 

the lowest affinities with the ligand sheds light on an interesting question: cavity 

accessibility may not be as important a factor for ligand affinity given these designs innate 

flexibility, and a “close-fitting” pocket may play a bigger role as it allows for stronger 

interactions with the ligand when in the bound state.

We furthered our study of pocket pre-organization by looking at the dihedral angles sampled 

by the residues side chains specifically designed to hydrogen bond to the ligand. The DIG 
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designs present 3 interacting residues at the interior of the cavity in each of the monomer 

chains (Y34, Y101 and Y115 for DIG10.2 and DIG10.3, W57, H60 and H67 for DIG12 and 

Y39, H41 and N89 for DIG16), and we found that these remain in their designed conformer 

for a larger fraction of frames in the successful design simulations (Supplementary Figure 

3).

Besides probing protein dynamics, the simulations provide interesting insights into the 

dynamics of the ligand as well. In the holo simulations of the tight binders DIG10.2 and 

DIG10.3, very small ligand fluctuations are seen, with the ligands remaining very tightly 

bound in their original conformation in the cavity (Figure 2c). In the simulations of the non-

binder examples, on the other hand, the ligand showed a large degree of displacement from 

its starting position, probably influenced by the larger size of the cavity, including complete 

dissociation from one of the monomers in 2 out of the 5 holo DIG16 trajectories 

(Supplementary Figure 4). Somewhat surprisingly, the MD simulations were thus able to 

distinguish between tight binders and non-binder designs without requiring any ligand 

steering or information on the design’s binding affinity.

We further investigated ligand-protein interaction by counting the number of hydrogen 

bonds stablished in the holo simulations. While there’s a lot of fluctuation in the number of 

hydrogen bonds due to the dynamics of the ligands and side chains, DIG10.2 and DIG10.3 

show a larger average number of hydrogen bonds than DIG12 and DIG16 (Figure 2d). For 

these successful designs, 3 stable hydrogen bonds are maintained with the designed 

interacting side chains located at the binding site interior, while additional transient 

hydrogen bonds are occasionally established with the ligand moiety located at the more 

solvent exposed opening of the cavity. Interestingly, DIG12 also establishes a large number 

of transient hydrogen bonds besides those modeled in the design structure due to its larger 

ligand dynamics.

Binding is not only highly influenced by the direct interactions between the protein and 

ligand, but also by the dynamics of the water molecules surrounding them60. Consequently, 

we also looked at the water molecules present in the apo and holo cavity interiors to 

investigate if there were any differences in water organization between the designs. The 

protein preparation steps preceding MD production of the apo state involved using Dowser41 

to incorporate water molecules into the void left by the removal of the ligand from the model 

structure. We accompanied the presence of waters in the binding site by counting the 

number of molecules within a sphere delimiting the protein cavity. The holo simulations 

showed a smaller degree of water insertion in the cavity than the apo simulations due to the 

presence of the ligand (Figure 2e). In both states, the non-successful designs allowed for a 

greater degree of water insertion, promoted by the larger pocket volumes sampled during 

these simulations (Figure 2b).

Finally, as the absolute water count inside the cavity likely does not provide the full picture 

of the energetics of interactions, we calculated the survival probability of the waters inside 

the binding pocket in the apo simulations to get information on the stability of these 

molecules. As seen in Figure 2f, survival probability for the tight DIG binders decay more 

slowly than that for the non-binders, indicating presence of longer-lived waters inside these 
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cavities and that successful design strategies involve promotion of favorable protein-water 

interactions.

Dynamics of modeled versus resolved crystal structures

A question might arise in the application of MD simulations for design screening regarding 

the accuracy and reliability of the results obtained from possibly inaccurately modeled 

starting structures. This is a particularly valid concern since the prospective application of 

the simulations involves using structures predicted by Rosetta or some other protein design 

software that are not experimentally validated, as it antecedes experimental assays. In the 

above section, we described the dynamics and results obtained from the simulations of the 

crystal structures of DIG10.2 and DIG10.3. To try to address this question, we also 

performed simulations starting from the corresponding Rosetta-modelled structures for these 

designs, here named DIG10.2a and DIG10.3a. Simulations were run for 500 ns both in apo 

and holo states, and here we compare results from equivalent simulation lengths of the 

crystallographic structures. Overall, the dynamics obtained from the modeled structures 

showed similar distribution profiles to those derived from the simulations of the crystal 

structures (Figure 3). Hydrophobic SASA average values of modeled and resolved structure 

simulations are very similar to each other, as well as pocket volume distributions (Figures 3a 

and 3b). Water count inside the cavity is also comparable between modeled and resolved 

structure simulations (Figure 3c). In terms of ligand RMSD, DIG10.3a showed a significant 

tail of higher ligand RMSD values (Figure 3d), due to a large transient ligand displacement 

in one of the runs, but nonetheless the distributions sampled are still very distinct from that 

observed for the non-binders DIG12 and DIG16 (Figure 2c). Our results suggest that 

simulations starting from modeled structures are therefore accurate enough in sampling 

protein dynamics to be used with confidence in the assessment of these designs.

Validation on a distinct scaffold

The analysis of the DIG designs suggests the existence of energetic factors influencing 

binding ability which manifest themselves in key dynamical properties exhibited by 

successful binders. To validate these findings in a larger dataset and test the universality of 

the properties, we performed simulations of 33 experimentally-validated designs of a β-

barrel scaffold7. These de-novo designed proteins not only represent a completely different 

protein scaffold than the DIG binders, but have also been designed to bind to a distinct 

small-molecule ligand, DFHBI7. Our data set includes 24 first-generation designs, which 

were all predicted to be tight binders by the computational design methodology even though 

the majority was experimentally found to not be so: two were verified to be structurally 

unstable and thus not fold in the predicted β-barrel structure (HBI_38 and HBI_41), 20 fold 

properly but fail to bind to the ligand, and only two are successful tight binders, with ligand 

affinity values in the micro-molar range (Table 1). In the work of Dou et al these successful 

initial designs were further optimized, resulting in 9 second and third-generation designs 

with higher ligand affinity which have also been simulated and included in our analysis here 

(Table 1).

To first verify the necessary sampling time required for appropriate distinction between the 

designs, we performed convergence analysis of the initial DIG design results as well as a 
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small set of the β-barrel designs (containing the 2 first-generation tight binders and 3 non-

binders) which were run for five 1 µs-long replicates in the apo and holo states, the same 

sampling length used for the previous designs. Analysis of the identified dynamical features 

indicated that the simulations do not need to be run so extensively, with results either 

reaching approximately constant values or maintaining constant relation among each other at 

around 500 ns (Supplementary Figure 5). Moreover, estimates of the reliability and 

reproducibility achieved using different number and combination of replicates59 indicates 

that three or four replicas yield property mean values satisfactorily converged and 

independent, within small variations, of the identity of the replicate simulations 

(Supplementary Figure 6 shows results for HBI_10 and HBI_11). A key point in our 

exploration is that we do not intend to perform an exhaustive investigation of the design 

dynamics, as this would likely require extremely long simulations and defeat the purpose of 

using molecular dynamics to increase the efficiency of the design process. Instead, we aimed 

at obtaining sufficient sampling for insightful discrimination between the large number of 

design candidates. Therefore, in the interest of time efficiency, we performed subsequent 

simulations of the remaining β-barrel designs as 500 ns triplicate runs in the apo and holo 

states, and the following results will be discussed for equivalent sampling times for all 

simulations.

In the analysis of this larger dataset, it became evident the need for an additional feature that 

would describe the conformational flexibility of the different designs. While RMSF is useful 

to investigate structural fluctuation incurred during the simulations, we turned to RMSD 

clustering of the Cα coordinates to provide a single value to represent each design’s 

flexibility and thus allow for a more direct comparison across the different proteins. As in 

the work of Demir et al., the number of clusters (NOCs) thus obtained was used as a 

representation of structural flexibility since at least in principle more flexible proteins 

sample a larger conformational ensemble in the simulations, resulting in a higher number of 

clusters to represent the variation of the Cα positions61. Figure 4 shows the 33 designs in 

terms of the structural and dynamical properties discussed above: structural stability 

(represented by the number of clusters and SASA of hydrophobic residues), cavity pre-

organization (probed by number of frames in the apo simulations with volumes smaller than 

a cutoff which would prevent ligand binding, and holo average volume), insertion of waters 

in the cavity in holo simulations, and ligand dynamics (in terms of ligand RMSD and 

average number of protein-ligand hydrogen bonds per frame).

The profiles in Figure 4 support and accentuate the trends observed from our initial reduced 

data set and evidence that these structural and dynamical descriptors can be useful in the 

classification of candidate designs. Importantly, the analysis of the same features computed 

from the original Rosetta-modelled design structures does not evidence any such distinction 

between the design categories (Supplementary Figure 7), such that the descriptors generated 

from the static structures are not sufficient to distinguish successes from failures. The 

incorporation of dynamics, however, indicates that the non-successful designs in general are 

much more flexible and explore a wider range of conformations (Figure 4a, some designs 

have equal values of apo and holo NOC and overlap in the graph), suggesting that for this 

scaffold, failure to bind to the small ligand may arise from the lack of accounting for 

structure dynamics in the structure prediction methods. We observed that several non-
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binders were structurally destabilized by the introduction of the ligand in the holo 

simulations, leading to some dramatic structural deformations in some cases (Supplementary 

Figure 8b). Tight binders, on the other hand, tended to be stabilized by the ligand in the holo 

simulations as indicated by the dampening of fluctuations in the RMSF plots 

(Supplementary Figure 8). The number of clusters analysis is particularly promising in that 

it may allow for early identification of non-stable designs, since HBI_41, one of the two 

designs that did not fold in the β-barrel structure in our data set, displayed one of the largest 

number of cluster pair values. The solvent exposure of hydrophobic residues does not allow 

for such a clear distinction between the design classes, but it’s possible to see in Figure 4b 

the suggestion of an empirical threshold at around 0.29 nm2 apo and holo SASA beyond 

which only non-successful designs can be found.

The apo simulations of some of these designs showed such a large number of frames with 

completely collapsed pockets that it became evident that another useful discriminating 

metric would be something that could capture this phenomenon. Here, we chose that as the 

number of frames with cavity volumes below a cutoff of 30 Å3, which represents a pocket 

volume too small to allow for ligand binding (the smallest pocket volume observed in the 

simulations with ligand bound was 33 Å3). This descriptor, in conjunction with the average 

cavity volume in the holo simulations, permits successful distinction between most of the 

designs (Figure 4c). Comparison of the same average cavity volume with the number of 

water molecules that insert into the pocket in the holo simulations evidences that while 

there’s a lot of variability for the non-binders, the successful designs cluster around smaller 

cavities and a reduced number of inserted water molecules (Figure 4d).

Finally, as for the DIG designs, probing ligand dynamics also provides valuable information 

for design identification (Figure 4e). While several outliers can be seen, all successful 

designs show a higher number of ligand-protein hydrogen bonds and reduced ligand 

dynamics as indicated by the low ligand RMSD values. The incorporation of protein and 

ligand dynamics into these designed scaffolds provide important additional information that 

can thus aid design selection, since all generated designs had been originally intended to 

form at least four hydrogen-bonding interactions with the ligand7.

Discriminative models for design screening

For some of the features in Figure 4 it is possible to imagine cutoffs of acceptable or 

promising values exhibited by proteins with favorable ligand interaction that could be used 

for prospective design predictions. However, as would be imagined from the complexity of 

the process investigated, each of these descriptors is not perfect in its discernment of binding 

ability, and we can see the likelihood of both false positive and false negative assignments. 

We hypothesized that taking the features jointly into account would result in a more accurate 

design classification, given the multi-dimensionality of the problem. We performed Principal 

Component Analysis (PCA) on the scaled features and projected the β-barrel dataset into 

three principal components (PC) which describe 80% of the data variance (Figure 5a). 

Confirming our hypothesis, the successful binders cluster together in regions of smaller PC1 

and PC2, while the non-binders are more spread along the principal components. This is in 

line with the general notion that protein-ligand binding can be negatively impacted by 
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several causes, and that only a specific (almost serendipitous) combination of the properties 

result in a tight interaction.

The contributions of each of the features to the principal components can be analyzed to try 

to rationalize the energetic causes most highly affecting ligand-binding (Figure 5b). Entropy 

seems to play the most pronounced role in determining binding, as properties such as water 

dynamics in the cavity, protein conformational flexibility, cavity volume and ligand 

dynamics show the highest contributions in the first principal component. Ligand-protein 

induced fit comes in as a second determining factor, with the number of frames with too-

small cavity volumes to allow for ligand insertion showing negative correlation with design 

binding ability. Finally, enthalpic components appear in the third PC, encoded by the SASA 

and number of hydrogen bonds established with the ligand.

Even though the successful and non-binder designs concentrated in different areas of the PC 

map, the separation is not absolute and there are overlaps or outliers among the two classes. 

Interestingly, the two first generation successful binders are the ones located closer to the 

area occupied by the non-binders, while the second and third generation higher affinity 

binders cluster more closely together, evidencing the successful enhancement of the 

energetic properties by the experimental optimization. While by visual inspection it can be 

hard to define a separating line between the classes, we turned to unsupervised learning and 

clustering to see if such regions could be determined in an unbiased manner. Using the k-

means algorithm, the designs were not accurately clustered when only two clusters were 

used, but assigning the data to three distinct clusters yielded interesting results with good 

clustering quality (average silhouette value of 0.45): One of the clusters was enriched in 

designs from the tight binding class, while the others contained only examples from the non-

binding designs (Figure 5c).

One of the clusters, located in the area of higher PC1 values, included designs that showed 

clearly unstable dynamics from the simulations (such as the designs shown in 

Supplementary Figure 8a), and can be interpreted as the Failed (F) cluster. The second 

cluster of only non-binders contained members in the boundary region with the tight binders 

and exhibited dynamics that would be hard to be accurately classified by visual inspection of 

the simulations. For this reason, we termed this the Uncertain (U) cluster. Their main 

distinction from the successful binders is captured by the collapse of the cavity in apo 

simulations incorporated into Principal Component 2, as all of these designs show small 

pocket volumes or completely closed cavities for significant portions of the simulations. 

Finally, the cluster to which all of the tight binders were assigned, here termed Successful 

(S) cluster, contains only 4 incorrectly classified designs. One of the false positives in this 

classification is HBI_38, the non-stable design that did not display as different feature 

profiles as HBI_41 in Figure 4. HBI_38 and the tight binder HBI_11 differ by only two 

mutations in the N terminal that lead to the formation of a stabilizing intramolecular 

disulfide bridge in HBI_11, and thus the misclassification of HBI_38 is not surprising given 

the likely much longer timescale that would be required to properly sample the difference 

between these designs structural stability.
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Remarkably for such a complex problem, the unsupervised learning approach here employed 

on the features measured from the simulations was thus able to identify the high affinity 

binders with only 4 inaccurate classifications and no false negative assignments. We estimate 

that the early identification of the 12 unsuccessful designs from the F cluster and the 6 

designs from the U cluster could have saved about 6 weeks of work, including protein 

expression, purification, folding and binding assays. However, this is likely to be a low-

bound estimate as the Baker lab is very well equipped for protein characterization and the 

entire process could probably take 2 to 3 times longer in a different lab. On the other hand, 

the MD system preparation, simulation and analysis workflow greatly automates the 

required steps such that the whole set of proteins can be simulated and analyzed in less than 

2 weeks, using parallel GPUs and requiring minimal human intervention.

This unsupervised approach is useful to identify inherent differences between designs of the 

same structural scaffold, but lacks transferability with the DIG design results 

(Supplementary Figure 9). However, taking advantage of the availability of experimentally-

validated labels, we explored the use of supervised learning for the classification of the joint 

design scaffold62,63. K-nearest neighbors and logistic regression classifiers were trained 

using 5-fold cross validation on the 10 dynamical fingerprints identified in the joint, 37 β-

barrel and DIG design simulations, and showed good classification performance (Table 2). 

The precision values, the rate of true positive classifications over all positive assignments 

(including false positives), indicate the presence of misclassified non-binders. However, the 

recall metric at 1.0 for both algorithms, given as the ratio of true positive assignments over 

all assignments of the real positive class (including false negatives), indicates a complete 

absence of tight binders being classified as unsuccessful designs. In the same way, the high 

accuracy of the classifications and the Matthew correlation coefficient (MCC) and F1 scores, 

all used as measures of a classifier performance and with a maximum value of 1.0 for a 

perfect classification, evidence the generality of the proposed approach. Moreover, the 

feature weights of the logistic regression model indicate that pocket dynamics plays the most 

determinant role for identifying non-binders, quantified by the insertion of water molecules 

in the cavity when in the ligand-bound state and the collapse of the cavity when in the 

absence of the ligand (Supplementary Figure 10). Logistic regression, in particular, resulted 

in good classifiers even when trained on small sets (50% or even 33% of the dataset, 

Supplementary Table 1), suggesting that not many designs need to be experimentally 

validated in order to yield accurate predictions in a prospective study.

Finally, to further test the universality of this approach, we constructed models solely on the 

β-barrel designs and checked the predictions on the DIG dataset. With a large set of β-barrel 

designs available, we further split the data into training and validation sets to verify absence 

of overfitting. Using logistic regression, training the model on 70% of the β-barrel designs 

yields perfect classification of the designs of the distinct DIG scaffold (Table 3). Conversely, 

models trained solely on the 4 DIG designs display lower accuracy and precision due to the 

much smaller training set in this case, but the recall still indicates a perfect absence of false 

negative classification (Table 4). Interestingly, the 12 non-binders correctly identified 

correspond exactly to the designs classified in the F cluster using unsupervised learning. 

Regardless of the classification approach employed, the computation of dynamical 

fingerprints64 from molecular dynamics simulations of designed proteins, thus, emerges as a 
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potential general and scaffold-independent screening methodology to aid the challenging 

protein design process (Figure 1b).

CONCLUSIONS

In this work, we used MD simulations to investigate the dynamics of designed ligand-

binding proteins as a source of insight into the failure of some of these designs to bind to the 

ligand with high affinity. It became evident that the design model generated by the protein 

design protocol may differ from the ensemble of structures accessed by the simulations, such 

that the modeled structural descriptions can be further enriched by the incorporation of 

dynamic fingerprints.

The results obtained here suggest that successful and non-successful designs differ in their 

dynamical properties. Entropic components play a significant role in determining ligand 

affinity, which are complex and often very challenging to incorporate in the empirical 

models of protein design. Easily measured MD-realized descriptors (including number of 

clusters, cavity volume, hydrophobic solvent-accessible surface area, water count in cavity 

and number of protein-ligand hydrogen bonds) allow for the investigation of multiple design 

candidates, and analysis of these enthalpic and entropic feature profiles in a data set of 33 β-

barrel designs resulted in a 88% accuracy of binding ability classification using 

unsupervised learning. This data set included 24 first-generation designs, among which only 

two were found to bind with high affinity, and 9 optimized second and third-generation 

designs7. The application of the unsupervised learning method in the screening of the first 

generation designs would result in the identification of the two successful binders and 4 false 

positive non-binders, which constitutes a 4-fold enrichment ((2/6)/(2/24)) over the initial 

candidate design data set and a minimum net time and effort “savings” of one month of 

work. Moreover, the application of supervised learning in the form of k-nearest neighbors or 

logistic regression classifiers on the full dataset consisting of two different protein scaffolds 

resulted in accurate classification with no false negatives, suggesting the generality of this 

approach. The results here described emphasize how MD can act as a promising screening 

step in the protein design process, avoiding the experimental testing of non-stable and low 

affinity designs and increasing the efficiency of the pipeline.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGEMENTS

EPB thanks JiaJie Xiao and Jamel Meslamani for helpful discussions. This work was funded in part by the National 
Biomedical Computation Resource (NBCR) through NIH P41 GM103426. REA has an equity interest in, and is a 
cofounder and on the scientific advisory board of, Actavalon, Inc.

REFERENCES

(1). Huang P; Boyken SE; Baker D The Coming of Age of de Novo Protein Design. Nature 2016, 537, 
320–327. [PubMed: 27629638] 

Barros et al. Page 14

J Chem Theory Comput. Author manuscript; available in PMC 2020 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(2). Woolfson DN; Bartlett GJ; Burton AJ; Heal JW; Niitsu A; Thomson AR; Wood CW De Novo 
Protein Design: How Do We Expand into the Universe of Possible Protein Structures? Curr. 
Opin. Struct. Biol 2015, 33, 16–26. [PubMed: 26093060] 

(3). Huang P-S; Feldmeier K; Parmeggiani F; Fernandez Velasco DA; Höcker B; Baker D De Novo 
Design of a Four-Fold Symmetric TIM-Barrel Protein with Atomic-Level Accuracy. Nat. Chem. 
Biol 2016, 12, 29–34. [PubMed: 26595462] 

(4). Lin Y-R; Koga N; Tatsumi-Koga R; Liu G; Clouser AF; Montelione GT; Baker D Control over 
Overall Shape and Size in de Novo Designed Proteins. Proc. Natl. Acad. Sci. USA 2015, 112, 
E5478–E5485. [PubMed: 26396255] 

(5). Tinberg CE; Khare SD; Dou J; Doyle L; Nelson JW; Schena A; Jankowski W; Kalodimos CG; 
Johnsson K; Stoddard BL; Baker D Computational Design of Ligand-Binding Proteins with High 
Affinity and Selectivity. Nature 2013, 501, 212–216. [PubMed: 24005320] 

(6). Thomas F; Dawson WM; Lang EJM; Burton AJ; Bartlett GJ; Rhys GG; Mulholland AJ; Woolfson 
DN De Novo-Designed Α-helical Barrels as Receptors for Small Molecules. ACS Synth. Biol 
2018, 7, 1808–1816. [PubMed: 29944338] 

(7). Dou J; Vorobieva AA; Sheffler W; Doyle LA; Park H; Bick MJ; Mao B; Foight GW; Lee MY; 
Gagnon LA; Carter L; Sankaran B; Ovchinnikov S; Marcos E; Huang P-S; Vaughan JC; Stoddard 
BL; Baker D De Novo Design of a Fluorescence-Activating β -Barrel. Nature 2018, 561, 485–
491. [PubMed: 30209393] 

(8). Bjelic S; Nivon LG; Çelebi-Ölçum N; Kiss G; Rosewall CF; Lovick HM; Ingalls EL; Gallaher JL; 
Seetharaman J; Lew S; Montelione GT; Hunt JF; Michael FE; Houk KN, Baker D Computational 
Design of Enone-Binding Proteins with Catalytic Activity for the Morita-Baylis-Hillman 
Reaction. ACS Chem. Biol 2013, 8, 749–757. [PubMed: 23330600] 

(9). Burton AJ; Thomson AR; Dawson WM; Brady RL; Woolfson DN Installing Hydrolytic Activity 
into a Completely de Novo Protein Framework. Nat. Chem 2016, 8, 837–844. [PubMed: 
27554410] 

(10). Strauch E-M; Bernard SM; La D; Bohn AJ; Lee PS; Anderson CE; Nieusma T; Holstein CA; 
Garcia NK; Hooper KA; Ravichandran R; Nelson JW; Sheffler W; Bloom JD; Lee KK; Ward 
AB; Yager P; Fuller DH; Wilson IA; Baker D Computational Design of Trimeric Influenza-
Neutralizing Proteins Targeting the Hemagglutinin Receptor Binding Site. Nat. Biotechnol 2017, 
35, 667–671. [PubMed: 28604661] 

(11). Chevalier A; Silva DA; Rocklin GJ; Hicks DR; Vergara R; Murapa P; Bernard SM; Zhang L; 
Lam K; Yao G; Bahl CD, Miyashita S-I; Goreshnik I; Fuller JT; Koday MT; Jenkins CM; Colvin 
T; Carter L; Bohn A; Bryan CM; Fernández-Velasco DA; Steward L; Dong M; Huang X; Jin R; 
Wilson IA; Fuller DH; Baker D Massively Parallel de Novo Protein Design for Targeted 
Therapeutics. Nature 2017, 550, 74–79. [PubMed: 28953867] 

(12). Koday MT; Nelson J; Chevalier A; Koday M; Kalinoski H; Stewart L; Carter L; Nieusma T; Lee 
PS; Ward AB; Wilson IA; Dagley A; Smee DF; Baker D; Fuller DH A Computationally 
Designed Hemagglutinin Stem-Binding Protein Provides in Vivo Protection from Influenza 
Independent of a Host Immune Response. PLOS Pathog 2016, 12, e1005409. [PubMed: 
26845438] 

(13). King NP; Sheffler W; Sawaya MR; Vollmar BS; Sumida JP; André I; Gonen T; Yeates TO; Baker 
D Computational Design of Self-Assembling Protein Nanomaterials with Atomic Level 
Accuracy. Science. 2012, 336, 1171–1174. [PubMed: 22654060] 

(14). Fletcher JM; Harniman RL; Barnes FRH; Boyle AL; Collins A; Mantell J; Sharp TH; Antognozzi 
M; Booth PJ; Linden N; Miles MJ; Sessions RB; Verkade P; Woolfson DN Self-Assembling 
Cages from Coiled-Coil Peptide Modules. Science. 2013, 340, 595–599. [PubMed: 23579496] 

(15). Hsia Y; Bale JB; Gonen S; Shi D; Sheffler W; Fong KK; Nattermann U; Xu C; Huang P-S; 
Ravichandran R; Yi S; Davis TN; Gonen T; King NP; Baker D Design of a Hyperstable 60-
Subunit Protein Icosahedron. Nature 2016, 535, 136–139. [PubMed: 27309817] 

(16). Bale JB; Gonen S; Liu Y; Sheffler W; Ellis D; Thomas C; Cascio D; Yeates TO; Gonen T; King 
NP; Baker D Accurate Design of a Megadalton-Scale Two-Component Icosahedral Protein 
Complexes. Science. 2016, 353, 389–394. [PubMed: 27463675] 

(17). Regan L; Caballero D; Hinrichsen MR; Virrueta A; Williams DM; Hern CSO Protein Design: 
Past, Present, and Future. Pept. Sci 2015, 104, 334–350.

Barros et al. Page 15

J Chem Theory Comput. Author manuscript; available in PMC 2020 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(18). Martin SF; Clements JH Correlating Structure and Energetics in Protein-Ligand Interactions: 
Paradigms and Paradoxes. Annu. Rev. Biochem 2013, 82, 267–293. [PubMed: 23746256] 

(19). Zanghellini A De Novo Computational Enzyme Design. Curr. Opin. Biotechnol 2014, 29, 132–
138. [PubMed: 24794534] 

(20). Feng J; Jester BW; Tinberg CE; Mandell DJ; Antunes MS; Chari R; Morey KJ; Rios X; Medford 
JI; Church GM; Fields S; Baker D A General Strategy to Construct Small Molecule Biosensors 
in Eukaryotes. Elife 2015, 4, e10606. [PubMed: 26714111] 

(21). Bick MJ; Greisen PJ; Morey KJ; Antunes MS; La D; Sankaran B; Reymond L; Johnsson K; 
Medford JI; Baker D Computational Design of Environmental Sensors for the Potent Opioid 
Fentanyl. Elife 2017, 6, e28909. [PubMed: 28925919] 

(22). Roy A; Nair S; Sen N; Soni N; Madhusudhan MS In Silico Methods for Design of Biological 
Therapeutics. Methods 2017, 131, 33–65. [PubMed: 28958951] 

(23). Entzminger KC; Hyun J; Pantazes RJ; Patterson-Orazem AC; Qerqez AN; Frye ZP; Hughes RA; 
Ellington AD; Liebermanl RL; Maranas CD; Maynard JA De Novo Design of Antibody 
Complementarity Determining Regions Binding a FLAG Tetra- Peptide. Sci. Rep 2017, 7, 10295. 
[PubMed: 28860479] 

(24). Mondal J; Friesner RA; Berne BJ Role of Desolvation in Thermodynamics and Kinetics of 
Ligand Binding to a Kinase. J. Chem. Theory Comput 2014, 10, 5696–5705. [PubMed: 
25516727] 

(25). Dou J; Doyle L; Greisen PJ; Schena A; Park H; Johnsson K; Stoddard BL; Baker D Sampling 
and Energy Evaluation Challenges in Ligand Binding Protein Design. Protein Sci 2017, 26, 
2426–2437. [PubMed: 28980354] 

(26). Kiss G; Pande VS; Houk KN Molecular Dynamics Simulations for the Ranking, Evaluation, and 
Refinement of Computationally Designed Proteins. In Methods Enzymol; 2013; Vol. 523, pp 
145–170. [PubMed: 23422429] 

(27). Childers MC; Daggett V Insights from Molecular Dynamics Simulations for Computational 
Protein Design. Mol. Syst. Des. Eng 2017, 2, 9–33. [PubMed: 28239489] 

(28). Privett HK; Kiss G; Lee TM; Blomberg R; Chica RA; Thomas LM; Hilvert D; Houk KN; Mayo 
SL Iterative Approach to Computational Enzyme Design. Proc. Natl. Acad. Sci. USA 2012, 109, 
3790–3795. [PubMed: 22357762] 

(29). Lindert S; Mccammon JA Improved cryoEM-Guided Iterative Molecular Dynamics-Rosetta 
Protein Structure Refinement Protocol for High Precision Protein Structure Prediction. J. Chem. 
Theory Comput 2015, 11, 1337–1346. [PubMed: 25883538] 

(30). Leelananda SP; Lindert S Iterative Molecular Dynamics-Rosetta Membrane Protein Structure 
Refinement Guided by Cryo-EM Densities. J. Chem. Theory Comput 2017, 13, 5131–5145. 
[PubMed: 28949136] 

(31). Yu H; Huang H Engineering Proteins for Thermostability through Rigidifying Flexible Sites. 
Biotechnol. Adv 2014, 32, 308–315. [PubMed: 24211474] 

(32). Joo JC; Pack SP; Kim YH; Yoo YJ Thermostabilization of Bacillus Circulans Xylanase: 
Computational Optimization of Unstable Residues Based on Thermal Fluctuation Analysis. J. 
Biotechnol 2011, 151, 56–65. [PubMed: 20959126] 

(33). Liu J; Yu H; Shen Z Insights into Thermal Stability of Thermophilic Nitrile Hydratases by 
Molecular Dynamics Simulation. J. Mol. Graph. Model 2008, 27, 529–535. [PubMed: 18948044] 

(34). Chen J; Yu H; Liu C; Liu J; Shen Z Improving Stability of Nitrile Hydratase by Bridging the Salt-
Bridges in Specific Thermal-Sensitive Regions. J. Biotechnol 2012, 164, 354–362. [PubMed: 
23384947] 

(35). Kiss G; Rothlisberger D; Baker D; Houk KN Evaluation and Ranking of Enzyme Designs. 
Protein Sci 2010, 19, 1760–1773. [PubMed: 20665693] 

(36). Jacobson MP; Pincus DL; Rapp CS; Day TJF; Honig B; Shaw DE; Friesner RA; Friesner RA A 
Hierarchical Approach to All-Atom Protein Loop Prediction. Proteins 2004, 55, 351–367. 
[PubMed: 15048827] 

(37). Jacobson MP; Friesner RA; Xiang Z; Honig B On the Role of the Crystal Environment in 
Determining Protein Side-Chain Conformations. J. Mol. Biol 2002, 320, 597–608. [PubMed: 
12096912] 

Barros et al. Page 16

J Chem Theory Comput. Author manuscript; available in PMC 2020 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(38). Wang J; Wolf RM; Caldwell JW; Kollman PA; Case DA Development and Testing of a General 
Amber Force Field. J. Comput. Chem 2004, 25, 1157–1174. [PubMed: 15116359] 

(39). Wang J; Wang W; Kollman PA; Case DA Automatic Atom Type and Bond Type Perception in 
Molecular Mechanical Calculations. J Mol Graph Model 2006, 25, 247–260. [PubMed: 
16458552] 

(40). Frisch MJ; Trucks GW; Schlegel HB; Scuseria GE; Robb MA; Cheeseman JR; Scalmani G; 
Barone V; Mennucci B; Petersson GA; et al. Gaussian 09, Revision C.01 Gaussian, Inc.: 
Wallingford CT 2010.

(41). Gumbart J; Trabuco LG; Schreiner E; Villa E; Schulten K Regulation of the Protein-Conducting 
Channel by a Bound Ribosome. Structure 2009, 17, 1453–1464. [PubMed: 19913480] 

(42). Case DA; Babin V; Berryman JT; Betz RM; Cai Q; Cerutti DS; Cheatham TE, I.;Darden TA; 
Duke RE; Gohlke H; Goetz AW; Gusarov S; Homeyer N; Janowski P; Kaus J; Kolossváry I; 
Kovalenko A; Lee TS; LeGrand S; Luchko T; Luo R; Madej B; Merz KM; Paesani F; Roe DR; 
Roitberg A; Sagui C; Solomon-Ferrer R; Seabra G; Simmerling CL; Smith W; Swails J; Walker 
RC; Wang J; Wolf RM; Wu X; Kollman PA AMBER 14 University of California, San Francisco 
2014.

(43). Maier JA; Martinez C; Kasavajhala K; Wickstrom L; Hauser KE; Simmerling C ff14SB: 
Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. 
Theory Comput 2015, 11, 3696–3713. [PubMed: 26574453] 

(44). Jorgensen WL; Chandrasekhar J; Madura JD; Impey RW; Klein ML Comparison of Simple 
Potential Functions for Simulating Liquid Water. J. Chem. Phys 1983, 79, 926–932.

(45). Radak BK; Chipot C; Suh D; Jo S; Jiang W; Phillips JC; Schulten K; Roux B Constant-pH 
Molecular Dynamics Simulations for Large Biomolecular Systems. J. Chem. Theory Comput 
2017, 13, 5933–5944. [PubMed: 29111720] 

(46). Purawat S; Ieong PU; Malmstrom RD; Chan GJ; Yeung AK; Walker RC; Altintas I; Amaro RE A 
Kepler Workflow Tool for Reproducible AMBER GPU Molecular Dynamics. Biophys. J 2017, 
112, 2469–2474. [PubMed: 28636905] 

(47). Salomon-Ferrer R; Go AW; Poole D; Grand S. Le; Walker RC Routine Microsecond Molecular 
Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. J. 
Chem. Theory Comput 2013, 9, 3878–3888. [PubMed: 26592383] 

(48). Darden TA; York D; Pedersen L Particle-Mesh Ewald: An N.log(N) Method for Ewald Sums in 
Large Systems. J. Chem. Phys 1993, 98, 10089–10092.

(49). Humphery W; Dalke A; Schulten K VMD-Visual Molecular Dynamics. J. Molec. Graph 1996, 
14, 33–38. [PubMed: 8744570] 

(50). Kluyver T; Ragan-Kelley B; Pérez F; Granger B; Bussonnier M; Frederic J; Kelley K; Hamrick J; 
Grout J; Corlay S; Ivanov P; Avila D; Abdalla S; Willing C Jupyter Notebooks - a Publishing 
Format for Reproducible Computational Workflows. Position. Power Acad. Publ. Play. Agents 
Agendas 2016, 87–90.

(51). Mcgibbon RT; Beauchamp KA; Harrigan MP; Klein C; Swails JM; Hernandez CX; Schwantes 
CR; Wang L-P; Lane TJ; Pande VS MDTraj: A Modern Open Library for the Analysis of 
Molecular Dynamics Trajectories. Biophys. J 2015, 109, 1528–1532. [PubMed: 26488642] 

(52). Roe DR; Cheatham TE PTRAJ and CPPTRAJ: Software for Processing and Analysis of 
Molecular Dynamics Trajectory Data. J. Chem. Theory Comput 2013, 9, 3084–3095. [PubMed: 
26583988] 

(53). Scherer MK; Trendelkamp-Schroer B; Paul F; Perez-Hernandez G; Hoffmann M; Plattner N; 
Wehmeyer C; Prinz J-H; Noe F PyEMMA 2: A Software Package for Estimation, Validation, and 
Analysis of Markov Models. J. Chem. Theory Comput 2015, 11, 5525–5542. [PubMed: 
26574340] 

(54). Michaud-Agrawal N; Denning EJ; Woolf TB; Beckstein O MDAnalysis : A Toolkit for the 
Analysis of Molecular Dynamics Simulations. J. Comput. Chem. Chem 2011, 32, 2319–2327.

(55). Gowers RJ; Linke M; Barnoud J; Reddy TJE; Melo MN; Seyler SL; Domanski J; Dotson DL; 
Buchoux S; Kenney IM; et al. MDAnalysis : A Python Package for the Rapid Analysis of 
Molecular Dynamics Simulations. In Proc. of the 15th Python in Science Conf.; 2016; pp 98–
105.

Barros et al. Page 17

J Chem Theory Comput. Author manuscript; available in PMC 2020 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(56). Durrant JD; Votapka L; Amaro RE POVME 2.0: An Enhanced Tool for Determining Pocket 
Shape and Volume Characteristics. J. Chem. Theory Comput 2014, 10, 5047–5056. [PubMed: 
25400521] 

(57). Steiner T The Hydrogen Bond in the Solid State. Angew. Chem. Int. Ed 2002, 41, 48–76.

(58). Liu P; Harder E; Berne BJ On the Calculation of Diffusion Coefficients in Confined Fluids and 
Interfaces with an Application to the Liquid - Vapor Interface of Water. J. Phys. Chem. B 2004, 
108, 6595–6602.

(59). Knapp B; Ospina L; Deane CM Avoiding False Positive Conclusions in Molecular Simulations: 
The Importance of Replicas. J. Chem. Theory Comput 2018, 14, 6127–6138. [PubMed: 
30354113] 

(60). Mobley DL; Dill KA Binding of Small-Molecule Ligands to Proteins: “What You See” Is Not 
Always “What You Get.” Structure 2009, 17, 489–498. [PubMed: 19368882] 

(61). Demir Ö; Baronio R; Salehi F; Wassman CD; Hall L; Hatfield GW; Chamberlin R; Lathrop RH; 
Amaro RE Ensemble-Based Computational Approach Discriminates Functional Activity of p53 
Cancer and Rescue Mutants. PLoS Comput. Biol 2011, 7, e1002238. [PubMed: 22028641] 

(62). Domingos P A Few Useful Things to Know about Machine Learning. Commun. ACM 2012, 55, 
78–87.

(63). Chicco D Ten Quick Tips for Machine Learning in Computational Biology. BioData Min 2017, 
10, 1–17. [PubMed: 28127402] 

(64). Riniker S Molecular Dynamics Fingerprints (MDFP): Machine Learning from MD Data to 
Predict Free-Energy Differences. J. Chem. Inf. Model 2017, 57, 726–741. [PubMed: 28368113] 

Barros et al. Page 18

J Chem Theory Comput. Author manuscript; available in PMC 2020 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
(a) Summary of the design data set used in the simulations, constituting two protein 

scaffolds (β-barrels and DIG designs) designed to bind distinct ligands. Representative 

designs are shown on the top with ligands highlighted, and the structure of the ligands are 

shown on the bottom panels. DFHBI stands for fluorogenic 3,5-difluoro-4-

hydroxybenzylidene imidazolinone. Key atoms mentioned later in the text are indicated by 

their respective numbering in the ligand molecule. (b) Schematics of the prosed use of MD 

as a screening tool in the protein design process.
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Figure 2. Evaluation of binding determinants for DIG designs
(a) Solvent accessible surface area (SASA) of hydrophobic residues. Tight binders are 

colored in turquoise and non-binders in orange. Results from apo simulations are shown in 

lighter colors, and holo simulations in darker. Error bars represent standard deviation across 

the five replicates. (b) Average cavity volumes for apo and holo simulations. Color scheme 

is the same as (a). (c) Ligand RMSD distribution for all replicates. (d) Box plot of the 

number of hydrogen bonds established between protein and ligand. Black line represents the 

mean value. The box extends to the lower and upper quartile and whiskers show the top 5 

percentile and 95 bottom percentile of the data. (e) Average water count inside the cavity for 

apo and holo simulations. Coloring scheme is the same as (a). (f) Water survival probability 

in apo simulations for water molecules located within the cavity. Results are shown for one 

of the monomers only.
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Figure 3. Comparison of results from the crystal (DIG10.2 and 10.3) and modeled structure 
(DIG10.2a and 10.3a) simulations
(a) Solvent accessible surface area (SASA) of hydrophobic residues. Tight binders are 

colored in turquoise (for simulations starting from the crystal structure) or gray (for 

simulations starting from the modeled structures) and non-binders in orange. Results from 

apo simulations are shown in lighter colors, and holo simulations in darker. Error bars 

represent standard deviation across the five replicates (b) Pocket volume distributions. 

DIG10.2 and DIG10.3 are represented in turquoise, DIG10.2a and DIG10.3a are shown in 

silver. Holo simulation results are shown with filled curves, and apo simulations with just 

the curve outline. (c) Cavity water count. Coloring scheme is the same as in (a) (d) Ligand 

RMSD distributions. Coloring scheme is the same as in (b).

Barros et al. Page 21

J Chem Theory Comput. Author manuscript; available in PMC 2020 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. β-barrel designs distribution in terms of the identified discriminative features for 
design screening.
(a) Number of clusters (NOC) analysis, (b) SASA of hydrophobic residues, (c) Number of 

frames with volume below a cutoff of 30 Å3 versus average holo cavity volume, (d) the 

same average holo cavity volume versus number of water molecules inserted in the pocket in 

the holo simulations and (e) average number of protein-ligand hydrogen bonds versus ligand 

RMSD. Non-binders are shown in orange, successful designs are shown in turquoise and 

structurally unstable designs in black.
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Figure 5. Unsupervised learning model for design classification.
(a) Three-dimensional plot of β-barrel simulations distribution in terms of the principal 

components of the discriminative features. Non-binders are shown in orange, structurally 

unstable designs in black, first-generation tight binders shown as turquoise circles and 

optimized tight binders as turquoise diamonds. (b) Color representation of feature 

contribution to the principal components. (c) Representation of cluster assignment on the 2-

dimensional plot in terms of principal components 1 and 2. Clusters are named Successful 

(S), Uncertain (U) and Failed (F) clusters.
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Table 1.

Summary of designed protein data set5,7

Design name KD Classification* Number of apo and holo replicates Replicate simulation length (ns)

DIG10.2 8.9 nM Binder 5 1,000

DIG10.2a 8.9 nM Binder 5 500

DIG10.3 541 pM Binder 5 1,000

DIG10.3a 541 pM Binder 5 500

DIG12 - Non-binder 5 1,000

DIG16 - Non-binder 5 1,000

HBI_06 - Non-binder 3 500

HBI_10 - Non-binder 5 1,000

HBI_11 12.8 µM Binder 5 1,000

HBI_15 - Non-binder 3 500

HBI_19 - Non-binder 3 500

HBI_21 - Non-binder 3 500

HBI_22 - Non-binder 3 500

HBI_24 - Non-binder 3 500

HBI_26 - Non-binder 5 1,000

HBI_27 - Non-binder 3 500

HBI_32 49.8 µM Binder 5 1,000

HBI_33 - Non-binder 3 500

HBI_34 - Non-binder 3 500

HBI_36 - Non-binder 3 500

HBI_38 - Unstable 3 500

HBI_41 - Unstable 3 500

HBI_42 - Non-binder 3 500

HBI_48 - Non-binder 3 500

HBI_49 - Non-binder 5 1,000

HBI_50 - Non-binder 3 500

HBI_52 - Non-binder 3 500

HBI_54 - Non-binder 3 500

HBI_55 - Non-binder 3 500

HBI_56 - Non-binder 3 500

b11_loop ~0.5 µM** Binder 3 500

b11L5F.1 ~0.5 µM** Binder 3 500

b11L5F_nC1 ~0.5 µM** Binder 3 500

b11L5F_nC2 ~0.5 µM** Binder 3 500

b11L5F_nC3 ~0.5 µM** Binder 3 500
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Design name KD Classification* Number of apo and holo replicates Replicate simulation length (ns)

b11L5F_nC4 ~0.5 µM** Binder 3 500

b11L5F.2 ~0.5 µM** Binder 3 500

mFAP0 ~0.5 µM** Binder 3 500

mFAP1 0.56 µM Binder 3 500

*
Unsuccessful designs are subdivided into two categories: “Unstable” for designs that showed improper folding or aggregation and “Non-binder” 

for folded designs that did not show ligand affinity within the sensitivity of the binding assays5,7.

**
estimated KD values based on rough titration data from Dou, J. et al7
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Table 2.

Evaluation of the supervised learning classifiers using 5-fold cross validation
a
.

Validation metric
Classification algorithm

k-nn (k = 5) Logistic regression

Accuracy 0.84 ± 0.16 0.93 ± 0.10

Precision 0.79 ± 0.21 0.87 ± 0.17

Recall 1.0 ± 0.0 1.0 ± 0.0

MCC 0.74 ± 0.25 0.87 ± 0.16

F1S 0.87 ± 0.13 0.92 ± 0.10

a
Values correspond to average and standard deviation of the 5 cross validations.
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Table 3.

Evaluation of the generality of the classifiers, with models trained exclusively on the β-barrel designs
a
.

Validation metric

Training + validation set: 33 β-barrel designs (70:30 split) Test set: 4 NTF2 designs

k-nn ( k = 5) Logistic regression

Validation set Test set Validation set Test set

Accuracy 0.83 ± 0.09 1.0 ± 0.0 0.91 ± 0.08 1.0 ± 0.0

Precision 0.70 ± 0.15 1.0 ± 0.0 0.80 ± 0.19 1.0 ± 0.0

Recall 0.98 ± 0.05 0.95 ± 0.15 1.0 ± 0.0 1.0 ± 0.0

MCC 0.71 ± 0.13 0.96 ± 0.13 0.83 ± 0.16 1.0 ± 0.0

F1S 0.81 ± 0.09 1.0 ± 0.0 0.87 ± 0.13 1.0 ± 0.0

a
Values correspond to average and standard deviation of 10 rounds of random splits of the data set according to the 70%:30% training:validation 

ratio.
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Table 4.

Evaluation of the generality of the classifiers, with models trained exclusively on the DIG designs.

Validation metric Training set: 4 DIG designs Validation set: 33 β-barrel designs

k-nn (k = 2) Logistic regression

Accuracy 0.70 0.70

Precision 0.52 0.52

Recall 1.0 1.0

MCC 0.53 0.53

F1S 0.69 0.69
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