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Sofic entropy is an isomorphism invariant of measure-preserving actions of sofic groups in-

troduced by Lewis Bowen in [Bow10c]. Its classical analogue was introduced in the 1950s

by Kolmogorov and Sinai in order to show that Bernoulli shifts over Z are nonisomorphic

when their base measures have different Shannon entropies. This entropy rate was actively

studied over the next few decades and extended to arbitrary amenable groups by [OW87].

On the one hand, amenable groups provide an appropriate setting for entropy theory

since they have a way of performing the kind of average used to define an entropy rate.

On the other hand, statistical physicists have long been interested in some nonamenable

structures, such as the Bethe lattice. The problem of finding an appropriate entropy notion

for nonamenable group actions, and in particular the problem of isomorphism of Bernoulli

shifts in this setting, remained open until Bowen’s work. One way to briefly summarize

the idea of sofic entropy is to say that we consider the entropy per site along a sequence of

large finite systems which locally approximate the infinite one (called a sofic approximation)

rather than large finite subsystems of the infinite one. An interesting problem which arises

is what effect the choice of sofic approximation can have on the sofic entropy rate.
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This thesis presents related work on several different problems of sofic entropy theory.

In Chapter 2 (based on [Shr20b]) we study the f -invariant, a variant of sofic entropy for

free-group actions introduced in [Bow10b] which can be defined using a kind of uniform

random sofic approximation. We use a relative version of the f -invariant to show that the

sofic entropy over a kind of “stochastic block model” random sofic approximation is given by

the solution to an entropy-maximization problem. Understanding this optimization problem

may shed further light on the dependence of sofic entropy on the sofic approximation.

Chapter 4, based on [Shr20a], uses a new notion of sofic free energy density to study

Gibbs measures and Glauber dynamics for nearest-neighbor interacting particle systems on

some nonamenable groups. The main results are that, under certain reasonable conditions,

every Glauber-invariant, shift-invariant measure is Gibbs and that the Glauber evolution of

any shift-invariant measure converges to the set of Gibbs measures. These extend results of

[Hol71] for the Ising model on integer lattices.

Chapter 5, based on [Shr21], begins by proving a metastability result for states on finite

graphs which are locally similar to the Cayley graph of a finitely-generated group: the

Glauber evolution of any state on a finite graph will converge to the unique Gibbs state,

but we show that if the initial state is “pseudo-Gibbs” in that it is in some sense consistent

with some Gibbs measure on the infinite group, then that consistency will tend to persist

for a long time. We then return to the entropy-maximization problem raised in Chapter

2. We show that a maximal-entropy joining of two Gibbs measures for nearest-neighbor

interactions (not necessarily the same interaction) must be a relative product over the tail

σ-algebra, unless every joining has entropy −∞. In particular, if either is tail-trivial then

the unique maximal-entropy joining is the product. In the latter case, this provides examples

where the sofic entropy over a stochastic block model is equal to the f -invariant. We conclude

by using recent results on bisections of random regular graphs [DMS17] to show that, for

the free-boundary Ising model, the product self-joining has less than maximal f -invariant

for some nontrivial temperature range.
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CHAPTER 1

Introduction

This chapter serves as an introduction to the main results of the dissertation. Most of them

are stated precisely here; all are (re)stated in the following chapters.

In Section 1.1 we discuss notions of equilibrium in interacting particle systems. The

situation is well-understood in the euclidean lattice setting, at least under the assumption

of shift-invariance, but problems have persisted in the nonamenable setting. The standard

approach to the problems we consider here uses a definition of free energy density (or relative

entropy density) which fails when applied to trees and other nonamenable graphs. We discuss

how, using ideas from sofic entropy theory, we can define a notion of free energy density on

trees and use it to prove that a shift-invariant state is Gibbs if and only if it is Glauber-

invariant, and that any shift-invariant state converges to the set of Gibbs states when evolved

under Glauber dynamics.

In Section 1.2 we discuss sofic entropy and the f -invariant for shift systems. We provide

a formula for the relative f -invariant in terms of a random sofic approximation which is a

type of stochastic block model. We also show that the sofic entropy over this stochastic block

model is the solution to an entropy-maximization problem, and provide a partial solution

using the preceding results on Glauber dynamics.
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1.1 Equilibrium in statistical mechanics

1.1.1 The Ising model on an integer lattice

The prototypical example of the relevant type of system is the Ising model, an old and well-

studied model of magnetism introduced in [Isi25]. In this model we have a rectangular grid

R ⊂ Zr of particles, each of which can have ‘spin’ either +1 or −1. Each particle interacts

only with its nearest neighbors, and possibly with an external field. The particles should

tend to align with the field and, in the ferromagnetic case, with their neighbors.

We distinguish between a specific ‘microstate’ in {±1}R describing the exact configuration

of the system, and a ‘state’ in Prob({±1}R) which describes the statistics of the system.

More generally, we can allow the local state space {±1} to be any finite set A, and replace

the rectangular grid with a locally finite graph G = (V,E). If V is finite, the interaction is

defined using an energy function of the form

U(x) =
∑
v∈V

h(x(v)) +
∑

{v,w}∈E

J(x(v),x(w)) x ∈ AV

where h : A → R is an arbitrary function representing interaction with an ‘external field,’

J : A2 → R is a symmetric function representing the ‘pairwise interaction’, and the second

sum is over unordered pairs of adjacent vertices. We can think of the interaction as an

ordered pair (h, J). Given a state ζ ∈ Prob(AV ), we write ζ(U) for the average energy, that

is, the expectation of U .

For such systems there are several notions of ‘equilibrium.’

The first equilibrium notion is that of a (variational) equilibrium state. This is defined

using the free energy of a state which, for finite systems, is given by A(ζ) = ζ(U) − H(ζ).

The free energy often includes a dependence on a temperature T (or inverse temperature

β), but for our purposes that would unnecessarily complicate many expressions. For infinite

systems the energy of a microstate may not be well-defined. In the case G = Zr we instead
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use the free energy density defined by

a(µ) = lim sup
N→∞

1

(2N + 1)r
A(µN) (1.1)

where µN is the marginal on [−N,N ]r ⊂ Zr, which we interpret as the state of that subsys-

tem. An equilibrium state is one which minimizes the free energy (density).

For finite systems the free energy is a strictly convex function, so has a unique minimizer.

This is called the Gibbs state, and it assigns a microstate x ∈ AV probability proportional

to exp(−U(x)). For infinite systems, the energy is typically infinite so we cannot use the

same formula to define an ‘infinite-volume Gibbs state.’ Instead, we note that the finitary

Gibbs state is uniquely determined by specifying the conditional distributions of the spins at

individual vertices given the spins elsewhere; this point of view extends naturally to infinite

systems. The collection of these conditional distributions is called the ‘Gibbs specification,’

and the convention is to define infinite-volume Gibbs measures using this specification. A

good reference for this framework is [Geo11]; see also Chapter 3 below. In general the Gibbs

states form a compact, convex set which we denote G . If we wish to reference a particular

interaction Φ = (h, J) we may write G (Φ). The set of shift-invariant Gibbs measures will be

denoted G Γ(Φ).

A third notion of equilibrium relates to the Glauber dynamics, a standard model for

how a system evolves over time which may be described as follows: assign each v ∈ V an

alarm clock which rings at random intervals which are distributed as exponential random

variables with mean 1 (i.e. a Poisson clock). Different clocks and different time intervals are

independent. Each time a clock rings, we rerandomize the associated vertex conditioned on

the spins elsewhere using the Gibbs specification. In this setting it is natural to say that a

system is in equilibrium if it is invariant under the dynamics. A good reference is [Lig05];

see also Chapter 3 below.

The invariance of Gibbs states under Glauber dynamics is fairly straightforward; see

for example [Lig05, Theorem IV.2.15]. Other relationships between these three equilibrium

notions are less clear for infinite systems.
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Holley [Hol71] showed for the Ising model on Zr that free energy density is nonincreas-

ing under Glauber dynamics. Furthermore, if the initial state is shift-invariant and non-

Gibbs then the free energy density strictly decreases and the state weakly converges to G .

This implies that any shift-invariant state which is either a variational equilibrium state or

Glauber-invariant must also be Gibbs.

His approach appears to rely essentially on the fact that a large finite subsystem can,

to a good approximation, be treated as isolated. This is because the subsystem can only

interact with its surroundings through its boundary, which is relatively small. This property

has long been known to be important in statistical physics. For example, as stated in [LL58]:

the particles which take part in the interaction of a subsystem with neighboring

parts of the system, are mainly those nearest its surface. Their number in com-

parison with the total number of particles quickly falls with an increase in size

of the latter. This fact [...] implies that we can consider [separate subsystems]

as independent in a statistical sense.

In other words, the essential fact is really that Zr is amenable; this is evidenced by the

sequence of boxes
(
[−N,N ]r

)
N∈N being a ‘Følner sequence,’ which is a sequence of finite

sets that exhausts the full group and whose boundaries are vanishingly small in proportion

to the interiors. When available, such sequences are typically appropriate for averages as in

Equation 1.1.

1.1.2 Free energy density beyond integer lattices

The rectangular grid is natural for modeling an arrangement of particles in euclidean space.

However, it is also natural to study similar systems with other dependence structures. A

particular case of interest is the infinite regular tree, sometimes called the Bethe lattice.

Slightly more generally, we could consider a finitely-generated group Γ with generating set

S = {s1, . . . , sr} and identity e.

4



As mentioned above, Holley’s methods do not work when Γ is nonamenable. Lewis

Bowen’s work on sofic entropy, initiated in [Bow10b, Bow10c], suggests a solution may be

found by replacing ‘finite subsystems’ with ‘finite systems which locally look like the infinite

system.’ In Zr, finite subsystems satisfy the latter description because a large neighborhood

of any vertex far enough away from the boundary looks like Zr, and most vertices are far

from the boundary. For Γ = Fr, typical large random 2r-regular graphs have the desired

property (they tend not to have very many small loops).

An immediate problem is that, while we can pass from the state of a system to the state

of a subsystem by taking a marginal, there is no obvious analogue of this operation that will

produce a state on a separate finite system. More concretely, we must answer a question

like: if G = (V,E) is a large 2r-regular graph and µ ∈ Prob(AFr), when can we think of a

state ζ ∈ Prob(AV ) as a finitary version of µ?

Again, we can provide a useful answer to this using the framework of Bowen’s sofic

entropy theory, with more similarity to recent variants [Alp16, Aus16, Abe18]: the idea is

to require that the ‘local statistics’ of ζ are in some sense consistent with µ. To make this

more precise, fix R ∈ N and suppose that for most v ∈ V the radius-R ball BG(v,R) in

G is isomorphic to the ball BΓ(e,R) centered at the identity. Then we can identify each

of these balls in the finite graph with BΓ(e,R), so that the marginal of ζ on each of them

can be thought of as a measure on AB
Γ(e,R). The average of these marginals is the empirical

distribution, denoted PG,R
ζ ∈ Prob(AB

Γ(e,R)).

There is one problem with this description: the choices of isomorphisms BG(v,R) ∼=

BΓ(e,R) do make a difference in general. We therefore assume more structure of G in order

to ensure that there is a canonical isomorphism, and in particular a canonical way to lift

marginals of ζ.

The structure can be described as follows: the edges of the Cayley graph of Γ naturally

come directed and labeled by the generators. Assume that the edges of G are also directed

and labeled, with one si-labeled edge coming in and one going out of each vertex for each
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i. Now for any v ∈ V with BG(v,R) ∼= BΓ(e,R), there is exactly one isomorphism which

respects edge labelings and directions. Using these canonical isomorphisms, we end up with

a well-defined empirical distribution.

We will encode such a structure on G by a homomorphism σ : Γ → Sym(V ), where each

σ(si) is the permutation that sends each v ∈ V to the vertex on the other end of the si-

labeled edge coming out of v. Below, we will always refer to elements of Hom(Γ, Sym(V ))

rather than directed, edge-labeled graphs with vertex set V , but one should keep this graph-

homomorphism correspondence in mind. See Chapter 3 for a more explicit definition of the

empirical distribution of a state ζ.

In fact, using such a structure we can pull back labelings of G to labelings of Γ without

regard for local similarity; although this local similarity will be very important for other

purposes it is convenient to be able to ignore it here. Specifically, given x ∈ AV and v ∈ V

we define the pullback name Πσ
vx ∈ AΓ by

Πσ
vx(γ) = x(σγv).

Our version of the “marginal of ζ at v” is then the pushforward [x 7→ Πσ
vx]∗ζ, and we define

the empirical distribution to be the average over choices of v:

P σ
ζ =

1

|V |
∑
v∈V

[x 7→ Πσ
vx]∗ζ.

Instead of truncating at radius R, the “localness” will come from making comparisons in the

weak topology on Prob(AΓ).

For a weak-open neighborhood O of µ, we say that ζ is O-consistent with µ (over σ) if

P σ
ζ ∈ O. Let Ω(σ,O) denote the set of such ζ; we can think of these as suitable finitary

versions of µ with quality parameter O. Note that the finite set V for which Ω(σ,O) ⊂

Prob(AV ) is implicitly specified by σ via its codomain.

We can now define our notion of free energy density: let Σ = (σn ∈ Hom(Γ, Sym(Vn)))n∈N

be a sequence of homomorphisms such that for each R ∈ N the fraction of v ∈ Vn such that

6



Bσn(v,R) ∼= BΓ(e,R) approaches 1 as n → ∞. The letter Σ reflects that this is a sofic

approximation to Γ. We then define the free energy density of µ ∈ Prob(AΓ) relative to Σ by

aΣ(µ) = sup
O∋µ

lim sup
n→∞

1

|Vn|
inf

ζ∈Ω(σn,O)
A(ζ),

where the supremum is over weak-open neighborhoods of µ.

Note that aΣ(µ) has an implicit dependence on a specific nearest-neighbor interaction,

via the energy functions U : AVn → R.

Remark. The constraint “ζ ∈ Ω(σn,O)” will typically prevent the infimum from simply

being attained by the true finitary Gibbs state, which has minimal free energy among all

states on the graph of σn, rather than just among those whose empirical distributions are

close to µ.

However, in the special case where µ is the local limit of the Gibbs states on σn this

constraint becomes irrelevant. In particular, we have

aΣ(µ) = lim sup
n→∞

1

|Vn|
[
− logZn

]
where Zn is the ‘partition function,’ i.e. the normalizing factor which appears in the definition

of the Gibbs state on σn. A strong enough mode of convergence to an explicit limit was

established for the Ising model in [DM10] for nonzero external field and in [MMS12] for zero

external field. The former paper also shows how to provide an expression for the limiting

free energy density.

Using this notion of free energy density along with ideas from Holley’s paper, in Chapter

4 we will prove the following:

Theorem A. For any choice of Σ and any nearest-neighbor interaction, every µ ∈ Prob(AΓ)

minimizing aΣ is Gibbs for that interaction, unless aΣ is identically +∞.

This will follow from monotonicity of free energy density (Proposition 4.2.2) and from

the fact that free energy density is always strictly decreasing under Glauber dynamics as

long as the measure is not Gibbs (and aΣ 6= +∞).
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We also show that, under some conditions, Glauber dynamics converges to the set of

Gibbs measures:

Theorem B. Suppose µ ∈ ProbΓ(AΓ), and let µt denote its evolution under Glauber dynam-

ics. If there exist s ≥ 0 and Σ such that aΣ(µs) < +∞, then µt converges weakly to the set

of Gibbs measures as t → ∞.

Here, shift-invariance means invariance under the natural action of Γ. It is not necessary

for µ to be invariant under the full automorphism group of the Cayley graph of Γ.

The requirement that µs have finite free energy density with respect to some sofic ap-

proximation is always satisfied for many groups, including amenable groups and finite-rank

free groups. See Corollary 4.1.1.

A key step in the proof of Theorem B is to show that if a finitary state ζ is consistent

with µ then ζt is also consistent with µt; see Theorem 3.2.1. There is some decay in the

quality parameters over time, but this is controlled by the degree of local similarity of the

finite system to Γ. This is an analogue of the fact that a large finite subsystem in Zr can be

treated as isolated from its surroundings.

One application of Theorem B is Theorem E below.

1.2 Entropy of nonamenable group actions

Amenability, mentioned above in the context of free energy density, also plays a central role

in entropy theory. If Γ is a countable amenable group, the entropy rate of an element of

Prob(AΓ) is defined by an averaging process analogous to Equation 1.1. Again, it turns out

to be important that the average is taken over a Følner sequence.

The problem of nonamenability stood for several decades until work by Lewis Bowen

[Bow10b, Bow10c] extended entropy theory to sofic groups. Most reasonable groups are

known to be sofic; there are currently no known non-sofic groups. A sofic group is one which

admits a sofic approximation. Sofic approximations were essentially introduced above: a

8



sequence of homomorphisms from Γ to finite symmetric groups such that the graphs of these

homomorphisms locally look like the Cayley graph of Γ is a sofic approximation to Γ. More

generally the maps should only be required to be asymptotically homomorphisms in some

sense, but for simplicity we only consider true homomorphisms here.

Let σ ∈ Hom(Γ, Sym(V )) be a homomorphism, and let A be a finite set. Given a mi-

crostate x ∈ AV , we can define its empirical distribution by

P σ
x := P σ

δx =
1

|V |
∑
v∈V

δΠσ
vx.

We say x is an O-good model for µ ∈ Prob(AΓ) if P σ
x ∈ O. Call the set of such microstates

Ω(σ,O).

The sofic entropy of a measure µ ∈ Prob(AΓ) is the exponential growth rate of the number

of good models for µ: given a sofic approximation Σ =
(
σn

)
n∈N,

hΣ(µ) := inf
O

lim sup
n→∞

1

|Vn|
log|Ω(σn,O)|.

A measure with many good models could be seen as being “more random,” since more

microstates are consistent with it. However, standard intuition about entropy does not

always apply for nonamenable groups: in particular, sofic entropy can increase under factor

maps (so one system can generate another which is “more random”). Ornstein and Weiss

had already observed in [OW87, Appendix C] that any reasonable notion of entropy for

free-group actions would have this property.

Sofic entropy may take different values depending on Σ, but in all known occurrences

of this phenomenon one of the values is −∞. This is typically considered degenerate, since

it means that one of the approximations supports no good models for µ. It is an open

problem whether two sofic approximations may assign distinct finite entropy values to the

same measure.
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1.2.1 The f-invariant and its relative version

A related, but more tractable, problem is to count the expected number of good models over

a sequence of random homomorphisms. In [Bow10a], Bowen studied the following case:

Let Γ = Fr, and for each n let Vn = {1, . . . , n} and let σn be a random permutation

distributed uniformly on Hom(Γ, Sym(Vn)). We consider Σ = (σn)n∈N to be a random sofic

approximation. The exponential growth rate of the expected number of good models for

µ ∈ Prob(AΓ) may then be written

hΣ(µ) := inf
O

lim sup
n→∞

1

|Vn|
logE|Ω(σn,O)|.

Bowen showed that this coincides with the f -invariant of µ, which he had introduced in

[Bow10c]. If µ is a homogeneous Markov chain then f(µ) can be easily calculated.

Now suppose we have two finite sets A, B, and let µ ∈ Prob((A × B)Γ) be shift-invariant.

Write the marginals on AΓ, BΓ as µA, µB. The relative f -invariant is given by

f(µ | B) = f(µ)− f(µB),

as long as f(µB) is finite; see Chapter 2. We may try to interpret this as the growth rate of

the average number of good models for µ per good model for µB. Theorem C may be seen

as a precise version of this statement.

Each good model for µ, as an element of (A × B)V , can naturally be split into a pair of

good models for µA, µB. The converse is not quite true: a pair of good models for µA, µB

combine to form a good model for some joining (i.e. shift-invariant coupling) of the two,

but not necessarily µ. Thus it makes sense to ask: given a good model for µB, how many

extensions does it admit to a good model for µ?

In Chapter 2 we introduce a type of ‘stochastic block model’ random sofic approximation.

This consists of a fixed sequence (yn ∈ BVn)n∈N and a sequence of random homomorphisms

σn ∈ Hom(Γ, Sym(Vn)). The distribution of σn is uniform on a particular set of homomor-

phisms chosen to ensure that for any quality parameter O we have yn ∈ Ω(σn,O) for all
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large n. Thus yn is a planted partition of Vn, and µB controls the statistics of edges between

the parts.

More specifically, we will define a family of pseudometrics {d∗k}k∈N which generate the

weak∗ topology on Prob(AΓ) and, for σ0 ∈ Hom(Γ, Sym(V )), y0 ∈ BV , and k ∈ N, define

SBM(σ0,y0, k) := Unif({σ ∈ Hom(Γ, Sym(V )) : d∗k(P
σ
y0
, P σ0

y0
) = 0}).

Theorem C. Let α : X → A and β : X → B be finite observables. Let mn approach infinity

as n goes to infinity while satisfying mn = o(log log n). For each n let yn ∈ Bn and σn ∈

Hom(G, Sym(n)) be such that

d∗mn
(P σn

yn
, βG

∗ µ) = O
(

1
logn

)
.

Suppose that fµ(T, β) > −∞. With µn = SBM(σn,yn,mn),

fµ(T, α | β) = inf
O∋(αβ)G∗ µ

lim sup
n→∞

1

n
log E

σ∼µn

|{x ∈ An : (x,yn) ∈ Ω(σ,O)}|.

Using this result, we obtain a formula for the growth rate of the average number of good

models a stochastic block model admits for µA. If we do not require them to combine with

the planted good model yn for µB to form a good model for a particular joining µ, then we

end up with an optimization over all joinings:

Theorem D. Let µn, α, β be as in the statement of Theorem C. Then

inf
O∋αG

∗ µ
lim sup
n→∞

1

n
log E

σ∼µn

|Ω(σ,O)| = sup
λ∈J(αG

∗ µ, βG
∗ µ)

fλ(S, a | b).

The left-hand side here is just the sofic entropy of µA with respect to the random sofic

approximation ΣB := (µn). Taking λ to be the product joining µA × µB, we see in particular

that

hΣB
(µA) ≥ f(µA × µB)− f(µB) = f(µA).

Thus any stochastic block model supports at least as many good models (on average) as a

uniformly random graph.
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Now suppose µA and µB are both the free-boundary Ising state at low enough temperature

that f(µA) < 0 [Bow20a, Section 3.3]. We can take λ to be the diagonal joining to get

hΣB
(µA) ≥ 0.

But with Σ defined as at the beginning of this section, we have

hΣB
(µA) > f(µA) = hΣ(µA).

This is one way to see that there exist random sofic approximations with distinct entropy

values, but the difference may be explained by the fact that Σ has a possibility of not

supporting any good models for µA at all (otherwise the f -invariant would be nonnegative).

Question: can we find some µA and two stochastic block models ΣB,Σ
′
B which both

guarantee good models for µA and with hΣB
(µA) > hΣ′

B
(µA)?

If ‘yes’, it should be possible to extract two (nonrandom) sofic approximations which give

distinct finite entropy values to µA.

1.2.2 Maximal-entropy joinings

To answer this question, we will need to understand better the optimization problem which

appears in Theorem D. The following theorem is progress in that direction. To state it we

need to introduce one last concept: Suppose we have two nearest-neighbor interactions ΦA,ΦB

on AΓ and BΓ defined as above using ‘external fields’ hA, hB and ‘pair interactions’ JA, JB. We

can produce a nearest-neighbor interaction ΦA ⊕ ΦB on (A × B)Γ by setting hAB((a, b)) =

hA(a) + hB(b) and JAB((a1, b1), (a2, b2)) = JA(a1, a2) + JB(b1, b2). We will call this the sum

interaction; see also the closely-related definition of a “product specification” in [Geo11,

Example 7.18].

Theorem E. Let λ be a joining of two shift-invariant Gibbs measures µA ∈ G Γ(ΦA), µB ∈

G Γ(ΦB) for nearest-neighbor interactions ΦA,ΦB. Let Σ be a random sofic approximation to

Γ, and assume that there is some joining λ of µA, µB with hΣ(λ) > −∞.
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If λ maximizes hΣ among all joinings of µA, µB, then λ ∈ G Γ(ΦA ⊕ ΦB).

Note that, for our purposes, deterministic sofic approximations will be considered to be

a special case of random sofic approximations.

The proof uses the results above regarding Gibbs states and Glauber dynamics. An

additional key result, possibly of independent interest, is that a good model for a Gibbs

state µ is likely to stay a good model for µ for a long time when evolved under the associated

Glauber dynamics, as long as the finite system has enough local similarity to Γ. This is proven

using the main technical result used to prove Theorem B combined with a concentration

argument which relies on the fact that the Gibbs states form a face of the simplex of shift-

invariant probability measures (Lemma 3.3.1). For a precise statement of this metastability

result, see Theorem G.

The extreme (i.e. tail-trivial) Gibbs states for the product interaction are exactly the

products of extreme Gibbs states for the factors [Geo11, Equation 7.19]. It follows that

1. The supremum is attained by a joining whose disintegration over the tail σ-algebra

consists of product measures, i.e. a relatively independent joining over the tail; see

Proposition 5.3.1 for the precise interpretation of this.

2. If either µA or µB is extreme then the product joining attains the supremum. In

particular, the sofic entropy of µA over a stochastic block model generated by µB is

equal to f(µA).
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CHAPTER 2

The relative f-invariant

The f -invariant is an isomorphism invariant of free-group measure-preserving actions in-

troduced by Lewis Bowen in [Bow10b], where it was used to show that two finite-entropy

Bernoulli shifts over a finitely generated free group can be isomorphic only if their base

measures have the same Shannon entropy. In [Bow10a] Bowen showed that the f -invariant

is a variant of sofic entropy; in particular it is the exponential growth rate of the expected

number of good models over a uniform random homomorphism.

In this chapter we present an analogous formula for the relative f -invariant and use it

to prove a formula for the exponential growth rate of the expected number of good models

over a random sofic approximation which is a type of stochastic block model.

2.1 Introduction, main results

Let Γ denote the the rank-r free group with generating set {s1, . . . , sr} and identity e, and

let (X,µ, T ) be a measure-preserving Γ-system, i.e. T is a homomorphism from Γ to the

automorphism group of the standard probability space (X,µ). We will not need to make

explicit use of the σ-algebra on X, so we leave it unnamed.

An observable on X is a measurable map with domain X. In this dissertation the

codomain will be a finite set endowed with the discrete sigma algebra; in this case we call

the map a finite observable and the codomain an alphabet.
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Any observable α : X → A induces a map αΓ : X → AΓ by setting

(αΓ(x))g = α(Tgx) for all g ∈ Γ.

We call the A-coloring αΓ(x) of Γ the itinerary of x, since it records the observations that

will be made over the entire orbit of x under the action of Γ. We also similarly define the

map αH : X → AH for any subset H of Γ. We abbreviate αn := αB(e,n), where B(e, n) is the

closed ball of radius n centered at the identity in Γ, which is endowed with the word-length

metric. If β : X → B is a second finite observable, we denote by αβ : X → A × B the map

αβ(x) = (α(x), β(x)).

The (Shannon) entropy of a finite observable α : X → A is defined by

Hµ(α) = −
∑
a∈A

α∗µ(a) logα∗µ(a),

where α∗µ ∈ Prob(A) is the pushforward measure, with the convention 0 log 0 = 0. The

entropy of α can be interpreted as the expected amount of information revealed by observing

α, assuming its distribution α∗µ is known.

An early application of Shannon’s entropy to ergodic theory was its use by Kolmogorov

and Sinai to show that there exist nonisomorphic Bernoulli shifts over Z. A Bernoulli shift

over Z is a system of the form (AZ, µZ, S) for some alphabet A and µ ∈ Prob(A); S is the

shift action of Z. They did this by defining an entropy rate for Z-systems, which can be

interpreted as the average information per unit time revealed by observing the system. For

a Bernoulli shift (AZ, µZ, S), the entropy rate is simply the “base entropy” Hµ(α), where

α : An → A is the “time zero” observable.

Isomorphism invariance of the KS entropy rate is typically proven using the fact that

entropy rate is nonincreasing under factor maps (which are surjective homomorphisms of

measure-preserving systems). This fact can be interpreted as stating that a system cannot

simulate another system that is “more random.”

The entropy rate was soon generalized to systems acted on by an arbitrary amenable

group (such as Zd). Extending beyond amenable groups proved more difficult, and in fact
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it was found to be impossible for such an extension to preserve all desirable properties of

the KS entropy rate. In particular, an entropy rate for nonamenable group actions which

assigns Bernoulli shifts their base entropy cannot be nonincreasing under factor maps [OW87,

Appendix C].

The first invariant to distinguish between Bernoulli shifts over free groups is Lewis

Bowen’s f -invariant. Following [Bow10a], this can be defined by

Fµ(T, α) = (1− 2r)Hµ(α) +
r∑

i=1

Hµ(α
{e,si})

fµ(T, α) = inf
n
Fµ(T, α

n) = lim
n→∞

Fµ(T, α
n).

The main theorem of [Bow10b] is that fµ(T, α) depends on the observable α only through

the σ-algebra it generates. In particular, the common value of fµ(T, α) among all α which

generate the σ-algebra of the measurable space X (assuming such α exist) is a measure-

conjugacy invariant of the system (X,µ, T ). In the same paper, he showed that the f -

invariant of a Bernoulli shift is the Shannon entropy of the base measure; in particular,

Bernoulli shifts with different base entropies are nonisomorphic.

In [Bow10a], Bowen gave an alternate formula for the f -invariant, which we now intro-

duce.

For any homomorphism σ : Γ → Sym(n) we have a Γ-system ([n],Unif(n), σ), and we can

consider a labeling x ∈ An as an A-valued observable on this system. We denote the law of

its itinerary by P σ
x = xG

∗ Unif(n) and call this the empirical distribution of x. We say that

x is a good model for α over σ if it is difficult to distinguish the Γ-systems (X,µ, T ) and

([n],Unif(n), σ) via their respective observables α and x. To make this precise, we denote

Ω(σ,O) := {x ∈ An : P σ
x ∈ O},

which is a set of good models for α over σ if O is a weak∗-open neighborhood of αG
∗ µ ∈

Prob(AΓ); the particular set O quantifies how good the models are. The alphabet A is given
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the discrete topology and AΓ the product topology, so “weak∗-close” means marginals on

some finite sets are close in total variation norm.

For each n ∈ N, let µn = Unif(Hom(Γ, Sym(n))). Bowen showed in [Bow10a] that the

f -invariant is given by

fµ(T, α) = inf
O∋αG

∗ µ
lim sup
n→∞

1

n
log E

σ∼µn

|Ω(σ,O)|.

To make an analogy with statistical physics, we can think of αG
∗ µ as a macroscopic

statistical distribution of the state of a system; then the f -invariant is the exponential

growth rate of the expected number of microstates on a sequence of finite random graphs

that are consistent with these statistics.

More generally, given any random or deterministic sofic approximation Σ = {µn}∞n=1, we

can define the sofic entropy relative to Σ by

hΣ,µ(T, α) = inf
O∋αG

∗ µ
lim sup
n→∞

1

n
log E

σ∼µn

|Ω(σ,O)|.

Here each µn is a probability measure on the set of functions Γ → Sym(n) which is supported

on functions which are approximately free homomorphisms.

This dissertation is motivated by a desire to better understand the dependence of sofic

entropy on the sofic approximation Σ. For any choice of Σ, the sofic entropy agrees with KS

entropy if the acting group is amenable [Bow12] and with the Shannon entropy of the base

if the system is a Bernoulli shift [Bow10c]. For some systems, the sofic entropy can be finite

relative to some sofic approximations and −∞ relative to others. It is unknown whether

two deterministic sofic approximations can yield different finite entropy values for the same

system.

In this chapter, we express the entropy relative to a type of stochastic block model in

terms of the relative f -invariant, which we now introduce.

If α, β are two finite observables, the conditional entropy is

Hµ(α|β) = Hµ(αβ)− Hµ(β).
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This can be interpreted as the expected amount of information revealed by observing α if

both the value of β and the joint distribution of α and β are known. The relative f -invariant

is defined by

Fµ(T, α|β) = Fµ(T, αβ)− Fµ(T, β)

= (1− 2r)Hµ(α|β) +
r∑

i=1

Hµ(α
{e,si} | β{e,si})

fµ(T, α|β) = inf
k1∈N

sup
k2∈N

Fµ(T, α
k1 | βk2).

Both the infimum and supremum can be replaced by limits; this follows from Lemma 2.3.2

below. It follows from Corollary 2.3.5 that we could also directly define

fµ(T, α|β) = fµ(T, αβ)− fµ(T, β),

as long as fµ(T, β) > −∞.

We now define the relevant type of stochastic block model. If H is a finite subset of Γ,

we denote by dH(µ, ν) the total variation distance between the marginals of µ and ν on AH .

Our convention for the total variation distance between measures µ, ν ∈ Prob(A) is

‖µ− ν‖TV =
1

2

∑
a∈A

|µ{a} − ν{a}|.

For each k ∈ N we define a pseudometric on Prob(AΓ) by

d∗k(µ, ν) =
∑
i∈[r]

dB(e,k)∪B(si,k)(µ, ν).

Note that {d∗k}k∈N together generate the weak∗ topology on Prob(AΓ). These generalize the

function d∗σ from [Bow10a], which corresponds to the case k = 0. For O = {ν ∈ Prob(AΓ) :

d∗k(α
G
∗ µ, ν) < ε} we write

Ω(σ,O) =: Ω∗
k(σ, α, ε) ⊆ An.

Our stochastic block model is now defined as follows: given y0 ∈ Bn, σ0 ∈ Hom(Γ, Sym(n)),

and k ∈ N, let

SBM(σ0,y0, k) := Unif({σ ∈ Hom(Γ, Sym(n)) : d∗k(P
σ
y0
, P σ0

y0
) = 0}).
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The labeling y0 partitions the elements of [n] into |B| communities, and we can think of

the random homomorphism σ as a random choice of directed edges between and within the

communities. Certain statistics of these random edge choices are determined by the reference

homomorphism σ0; note that for k > 0 these statistics are more precise than those specified

by a standard stochastic block model. In Section 2.2 we define weights, which are the objects

used to record the relevant statistics.

2.1.1 Main results

Our main theorems show that the relative f -invariant can be interpreted as the growth rate

of the expected number of ways to extend a planted good model for β to a good model

for αβ, over a stochastic block model which has statistics determined by β and its planted

model.

We first prove that if βG
∗ µ is Markov then we can use a stochastic block model which

only takes into account “one-step statistics.”

Theorem F. Let α : X → A and β : X → B be finite observables, and for each n let yn ∈ Bn

and σn ∈ Hom(Γ, Sym(n)) be such that

lim
n→∞

d∗0(P
σn
yn

, βG
∗ µ) = 0.

Suppose that βG
∗ µ is a Markov measure. With µn = SBM(σn,yn, 0), we have

fµ(T, α | β) = inf
O∋(αβ)G∗ µ

lim sup
n→∞

1

n
log E

σ∼µn

|{x ∈ An : (x,yn) ∈ Ω(σ,O)}|.

Proposition 2.1.1. The assumptions of Theorem F are nonvacuous; that is, for any finite

observable β : X → B there exist sequences {yn ∈ Bn}∞n=1 and {σn ∈ Hom(Γ, Sym(n))}∞n=1

such that limn→∞ d∗0(P
σn
yn

, βG
∗ µ) = 0.

This follows from the fact that free group actions are “sofic,” which is proven for example

in [Pau11, DKP13, Pop14]. A more elementary proof is given in Section 2.4 below.
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If βG
∗ µ is not Markov, then the same formula holds with a more precise type of stochastic

block model:

Theorem C. Let α : X → A and β : X → B be finite observables. Let mn approach infinity

as n goes to infinity while satisfying mn = o(log log n). For each n let yn ∈ Bn and σn ∈

Hom(G, Sym(n)) be such that

d∗mn
(P σn

yn
, βG

∗ µ) = O
(

1
logn

)
.

Suppose that fµ(T, β) > −∞. With µn = SBM(σn,yn,mn),

fµ(T, α | β) = inf
O∋(αβ)G∗ µ

lim sup
n→∞

1

n
log E

σ∼µn

|{x ∈ An : (x,yn) ∈ Ω(σ,O)}|.

Proposition 2.1.2. The assumptions of Theorem C are nonvacuous; that is, for any finite

observable β : X → B and any sequence {mn ∈ N}∞n=1 approaching infinity while satisfying

mn = o(log log n), there exist sequences {yn ∈ Bn}∞n=1 and {σn ∈ Hom(Γ, Sym(n))}∞n=1 such

that limn→∞ d∗mn
(P σn

yn
, βG

∗ µ) = O
(

1
logn

)
.

The expressions appearing on the right-hand sides of Theorems F and C are very compa-

rable to Ben Hayes’s definition of “relative sofic entropy in the presence” [Hay16, Definition

2.5]. Some differences are that we consider expected numbers of good models over random

sofic approximations, and that Hayes takes a supremum inside the logarithm over which

good model is to be extended, while we fix a sequence {yn} of planted good models. Hayes

also does not restrict to shift systems as we do here.

Using Theorem C we prove the following formula for the growth rate of the expected

number of good models over a stochastic block model:

Theorem D. Let µn, α, β be as in the statement of Theorem C. Then

inf
O∋αG

∗ µ
lim sup
n→∞

1

n
log E

σ∼µn

|Ω(σ,O)| = sup
λ∈J(αG

∗ µ, βG
∗ µ)

fλ(S, a | b).
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Here J(αΓ
∗µ, β

Γ
∗ µ) is the set of joinings of the Γ-systems (AΓ, αG

∗ µ, S) and (BΓ, βG
∗ µ, S),

i.e. shift-invariant probability measures on (A × B)Γ whose AΓ, BΓ marginals are αΓ
∗µ, β

Γ
∗ µ,

respectively. S denotes the shift action of Γ. We use a, b to denote the maps

a : (A× B)Γ → A b : (A× B)Γ → B(
(ag, bg)

)
g∈Γ 7→ ae

(
(ag, bg)

)
g∈Γ 7→ be

which observe the A (resp. B) label at the identity.

Remark. The supremum is always greater than or equal to fµ(T, α), with equality attained

by the product joining; this means that the expected number of good models for α over a

block model with built-in good models for any β is at least the expected number of good

models over a uniformly random homomorphism. It is possible for the supremum to be

strictly larger, however. For example, suppose fµ(T, α) < 0 and α = β, and let λ be the

diagonal joining. Then

fλ(S, a | b) = 0 > fµ(T, α).

See Chapter 5 for more discussion of this optimization problem.

2.1.2 Random sofic approximations

As noted above, the f -invariant is closely related to another invariant of measure-preserving

systems called sofic entropy, which was introduced by Lewis Bowen in [Bow10c].

A homomorphism σ ∈ Hom(Γ, Sym(n)) is called (D, δ)-sofic for some finite D ⊂ Γ and

δ > 0 if

|{j ∈ [n] : σ(γ)j 6= j ∀γ ∈ D \ {e}}| > (1− δ)n.

A sequence of homomorphisms Σ =
(
σn ∈ Hom(Γ, Sym(n))

)
n∈N is called a sofic approxima-

tion if for every (D, δ) the homomorphism σn is (D, δ)-sofic for all large enough n.

The sofic entropy relative to Σ is the exponential growth rate of the number of good
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models over σn. Specifically, for any finite observable α on X we have

hΣ,µ(T, α) = inf
O∋αΓ

∗µ
lim sup
n→∞

1

n
log|Ω(σn,O)|.

This is an isomorphism invariant of the system (X,µ, T ) if α is any generating observable,

i.e. if the σ-algebra of the measurable space X is the coarsest one which is shift-invariant

and α-measurable.

By analogy with this expression, we might call the sequences of random homomophisms

appearing in expressions above “random sofic approximations.” The following proposition

provides further justification for this terminology.

Proposition 2.1.3. If (µn) is any of the sequences appearing in Theorems F, C, and D,

then for any (D, δ) there exists ε > 0 such that

P
σ∼µn

(
σ is (D, δ)-sofic

)
≥ 1− n−εn

for all large enough n.

In particular, if σ1 ∼ µ1, σ2 ∼ µ2 etc. are independent then (σn) is a sofic approximation

with probability 1.

Organization

In Section 2.2 we define weights and discuss some of their useful properties. In Section 2.3

we prove a few basic results about the functions f and F . Some of the results of these

two sections are used in Section 2.4 to show that the assumptions of the main theorems

are not vacuous. In Section 2.5 we show how the function F is related to the number of

homomorphism-labeling pairs (σ,y) that realize a given weight, which is the main ingredient

of the proofs of Theorems F and C given in the next two sections. In Section 2.8 we show

how to deduce Theorem D from Theorem C. Section 2.9 contains a proof of Proposition

2.1.3. The final section contains a proof of Lemma 2.2.3, which asserts that a weight can be

approximated by a denominator-n weight with a specified marginal.
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2.2 Weights

If α : X → A is a finite observable, for a, a′ ∈ A and i ∈ [r] let

Wα(a, a
′; i) = α{e,si}

∗ µ(a, a′) = µ{x ∈ X : α(x) = a, α(Tsix) = a′}

and also denote

Wα(a) = α∗µ(a).

For x ∈ An and σ ∈ Hom(Γ, Sym(n)) let

Wσ,x(a, a
′; i) = P σ,{e,si}

x (a, a′)

and Wσ,x(a) = P
σ,{e}
x (a).

More abstractly, any W ∈
(
Prob(A2)

)r is called an A-weight if∑
a′∈A

W (a, a′; i) =
∑
a′∈A

W (a′, a; j)

for all i, j ∈ [r] and a ∈ A. For each a ∈ A we denote this common value W (a). Note that

the objects Wα and Wσ,x defined above satisfy this condition.

We say that W has denominator n if n ·W (a, a′; i) ∈ N for all a, a′, i.

The measures W (·, ·; i) for i ∈ [r] are called the edge measures of W , and W (·) is called

the vertex measure.

For any alphabet A, we use the metric on A-weights defined by

d(W1,W2) :=
∑
i∈[r]

‖W1(·, ·; i)−W2(·, ·; i)‖TV

=
1

2

∑
i∈[r]

∑
a,a′∈A

|W1(a, a
′; i)−W2(a, a

′; i)|.

We can use weights to count good models up to equivalence under the pseudometrics d∗k

using the following proposition:

Proposition 2.2.1. If σ ∈ Hom(Γ, Sym(n)) and x ∈ An, then for any observable α : X → A

d(Wσ,xk ,Wαk) = d∗k(P
σ
x , α

G
∗ µ).
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Note this implies also that

d∗k(P
σ
x , α

G
∗ µ) = d∗0(P

σ
xk , (α

k)G∗ µ).

Proof. By definition of the distance between weights,

d(Wσ,xk ,Wαk) =
1

2

∑
i∈[r]

∑
a,a′∈AB(e,k)

∣∣Wσ,xk(a, a′; i)−Wαk(a, a′; i)
∣∣

=
1

2

∑
i∈[r]

∑
a,a′∈AB(e,k)

∣∣∣∣∣ 1n
∣∣∣∣∣∣
j ∈ [n] :

(xk)j = a

(xk)σ(si)j = a′


∣∣∣∣∣∣

− µ

x ∈ X :
αk(x) = a

αk(Tsix) = a′


∣∣∣∣∣.

For many ‘incompatible’ pairs a, a′, both terms will be zero: suppose g ∈ B(e, k) ∩ B(si, k),

so that gs−1
i ∈ B(e, k). If the second term in the absolute value is nonzero, then for some

x ∈ X we have αk(x) = a and αk(Tsix) = a′, and therefore

a′
gs−1

i
= (αk(Tsix))gs−1

i
= α(Tgs−1

i
Tsix) = α(Tgx) = (αk(x))g = ag.

The same argument shows that a′
gs−1

i

= ag for all g ∈ B(e, k) ∩ B(si, k) whenever the first

term is nonzero. Therefore we can restrict the sum to pairs a, a′ with a′
gs−1

i

= ag for all

g ∈ B(e, k) ∩ B(si, k). Equivalently, we can sum over all A ∈ AB(e,k)∪B(si,k) to get

d(Wσ,xk ,Wαk) =
1

2

∑
i∈[r]

∑
A∈AB(e,k)∪B(si,k)

∣∣∣∣∣ 1n∣∣∣{j ∈ [n] :
(
xB(e,k)∪B(si,k)

)
j
= A

}∣∣∣
− µ

{
x ∈ X : αB(e,k)∪B(si,k)(x) = A

} ∣∣∣∣∣
=
∑
i∈[r]

dB(e,k)∪B(si,k)(P σ
x , α

Γ
∗µ).

It will be useful to consider the pushforward map induced by a map between alphabets:

if π : A → B is a measurable map and W is an A-weight, then πW is the B-weight given by

πW (b, b′; i) =
∑

a∈π−1{b}

∑
a′∈π−1{b′}

W (a, a′; i).
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Note that this implies that the vertex measure of W is

πW (b) =
∑

a∈π−1{b}

W (a).

For example, let πB : A×B → B be the projection map. If W is an A×B-weight then πBW

is given by

πBW (b1) =
∑
a∈A

W
(
(a, b1)

)
πBW (b1, b2; i) =

∑
a1,a2∈A

W
(
(a1, b1), (a2, b2); i

)
.

We call this the B-marginal of W .

All weights in the present chapter will be over alphabets of the form AB(e,k)×BB(e,k′). We

use this fact to introduce some simplified notation for projections:

• πA denotes projection onto the entire A factor AB(e,k); πB is used similarly.

• For m < k and m′ < k′, πm,m′ denotes projection onto AB(e,m) × BB(e,m′).

• πm denotes the projection AB(e,k) → AB(e,m), except that if m = 0 we write πe.

We define F (W ) for an abstract weight W by

F (W ) = (1− 2r)H
(
W (·)

)
+
∑
i∈[r]

H
(
W (·, ·; i)

)
where H is the Shannon entropy. Note that this is consistent with the above definitions in

that, for example,

F (Wα) = Fµ(T, α).

We can revisit the definition of our version of the stochastic block model using weights:

Let H ⊂ Γ and let W be a denominator-n BB(e,k)-weight. Suppose there exist y ∈ Bn and

σ ∈ Hom(Γ, Sym(n)) such that W = Wσ,yk . Then

SBM(σ,y, k) = Unif({σ′ ∈ Hom(Γ, Sym(n)) : Wσ′,yk = W}),

so we can also denote this distribution by SBM(y,W ). Specifying the distribution by a weight

rather than a specific homomorphism will occasionally be more convenient.
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2.2.1 Constructing weights and good models

We borrow the first result of this type from [Bow10a]; it allows us to find a denominator-n

approximation to a given weight.

Lemma 2.2.2 (Lemma 2.3 of [Bow10a]). There is a constant C such that for any A-weight

W there is a denominator-n A-weight within distance C|A|2r/n of W .

The following lemma allows us not only to construct a denominator-n approximation to

a given weight, but also to specify a marginal of this approximation:

Lemma 2.2.3. Let W be an A × B-weight. If WB is a B-weight of denominator n with

d(WB, πBW ) < δ then there is an A×B-weight WAB with denominator n such that πBWAB = WB

and d(WAB,W ) < 265r(|A× B|2/n+ δ).

The construction is fairly involved, so is postponed to Section 2.10. The constant 265 is

not intended to be optimal.

The definition of a weight Wσ,xk in terms of a homomorphism σ and a labeling x is

straightforward. However, we will also need to know whether a given weight can be realized

in this way. The next two results address this inverse problem.

Proposition 2.2.4. If W is a denominator-n A-weight, then there exist x ∈ An and σ ∈

Hom(Γ, Sym(n)) such that W = Wσ,x.

Proof. This is implied by Proposition 2.1 of [Bow10a].

Unfortunately, this does not imply that for every denominator-n AB(e,k)-weight W there

is some σ ∈ Hom(Γ, Sym(n)) and x ∈ An such that W = Wσ,xk ; instead it provides X ∈

(AB(e,k))n such that W = Wσ,X.

However, if we already know that W is close to a weight of the form Wαk for some

observable α, then the following proposition shows that W is also close to a weight of the

form Wσ,xk .
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Proposition 2.2.5. Let α : X → A, σ ∈ Hom(Γ, Sym(n)), and X ∈ (AB(e,k))n be such that

d(Wσ,X,Wαk) ≤ ε for some ε ≥ 0. Writing x = πeX ∈ An, we have

d(Wσ,X,Wσ,xk) ≤ 2r|B(e, k)|ε.

An immediate consequence is that X ∈ Ω∗
0(σ, α

k, ε) implies πeX ∈ Ω∗
k(σ, α, cε) where

c = 1 + 2r|B(e, k)|; cf. Claim 2 in the proof of Proposition 3.2 of [Bow10a].

Proof. Claim 4 in the proof of Proposition 3.2 of [Bow10a] implies that

|{j ∈ [n] : X(j) 6= xk(j)}| ≤ n|B(e, k)|ε.

It follows that for any i ∈ [r]

|{j ∈ [n] : X{e,si}(j) 6= (xk){e,si}(j)}|

≤ |{j ∈ [n] : X(j) 6= xk(j)}|+ |{j ∈ [n] : X(σ(si)j) 6= xk(σ(si)j)}|

≤ 2n|B(e, k)|ε,

so

d(Wσ,X,Wσ,xk) =
∑
i∈[r]

∥∥(X{e,si}
)
∗Unif(n)−

(
(xk){e,si}

)
∗Unif(n)

∥∥
TV

≤
∑
i∈[r]

2|B(e, k)|ε = 2r|B(e, k)|ε.

2.3 Properties of F and f

Lemma 2.3.1 (Continuity as weight function). If W1,W2 are A-weights with d(W1,W2) ≤

ε ≤ 1 then

|F (W1)− F (W2)| ≤ 4r
(
H(ε) + ε log2|A|

)
.

where H(p) denotes the entropy of the probability measure (p, 1− p) ∈ Prob({0, 1}).
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Proof. We use Fano’s inequality in the following form (Equation (2.139) of [CT06]): suppose

X,Y are A-valued random variables defined on the same probability space and let pe =

P(X 6= Y ) be their probability of disagreement. Then

H(X | Y ) ≤ H(pe) + pe log|A|.

Using the chain rule and nonnegativity of Shannon entropy, we can deduce that

|H(X)− H(Y )| ≤ H(pe) + pe log|A|.

Let µ1, µ2 ∈ Prob(A) be the respective distributions of X1, X2. Because ‖µ1 − µ2‖TV is the

minimum value of P(X 6= Y ) over all possible couplings, if ‖µ1 − µ2‖TV < ε then

|H(µ1)− H(µ2)| ≤ H(ε) + ε log2|A|.

The assumed bound d(W1,W2) ≤ ε implies that each vertex and edge measure of W1 is

within total variation distance ε of its counterpart in W2, so

|F (W1)− F (W2)| ≤ |1− 2r| ·
∣∣H(W1(·)

)
− H

(
W2(·)

)∣∣
+
∑
i∈[r]

∣∣H(W1(·, ·; i)
)
− H

(
W2(·, ·; i)

)∣∣
≤ (2r − 1) (H(ε) + ε log2|A|)

+ r ·
(
H(ε) + ε log2|A|2

)
≤ 4r

(
H(ε) + ε log2|A|

)
.

Let α : X → A and β : X → B be observables. We say that β is a coarsening of α if each

part of the partition of X induced by β is a union of parts of the partition induced by α

(up to null sets). Equivalently, there is some function g : A → B such that β = g ◦ α almost

surely. In this situation we can also call α a refinement of β.

A useful property of the Shannon entropy Hµ(α) is monotonicity under refinement. The

function F does not share this property, but it is monotone under the following particular

kind of refinement introduced in [Bow10b]:
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We say that β is a simple splitting of α if there is some s ∈ {s±1
1 , . . . , s±1

r } and a coarsening

α̃ of α such that, up to null sets, the partition induced by β is the coarsest common refinement

of the partitions induced by α and α̃ ◦ Ts.

We say that β is a splitting of α if there are observables α = β0, β1, . . . , βn = β such that

βi is a simple splitting of βi−1 for i = 1, 2, . . . , n. We will use the following monotonicity

properties of the relative version of F :

Lemma 2.3.2 (Monotonicity under splitting).

1. If α1 is a splitting of α2 then F (α1|β) ≤ F (α2|β).

2. If β1 is a splitting of β2 then F (α|β1) ≥ F (α|β2).

Proof. 1. This is essentially Proposition 5.1 of [Bow10b]; conditioning on β makes no

difference to the proof.

2. The proof is based on the proof of Part 1, but in place of the chain rule for conditional

entropy we use the following bound:

H(α | β2) ≤ H(α, β1 | β2) (monotonicity)

= H(β1 | β2) + H(α | β1, β2) (chain rule)

≤ H(β1 | β2) + H(α | β1) (monotonicity).

We will also use the following consequence of the previous bound:

H(α{e,si} | β{e,si}
1 )− H(α{e,si} | β{e,si}

2 )

≥ −H(β
{e,si}
1 | β{e,si}

2 ) (previous bound)

≥ −
(
H(β

{si}
1 | β{e,si}

2 ) + H(β1 | β{e,si}
2 )

)
(subadditivity)

= −
(
H(β1 | β

{e,s−1
i }

2 ) + H(β1 | β{e,si}
2 )

)
(T -invariance of µ).

It suffices to check the case where β1 is a simple splitting of β2: let t ∈ {s±1
1 , . . . , s±1

r }

and let β̃ be a coarsening of β2 such that the partition induced by β1 is the same as
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the coarsest common refinement of the partitions induced by β2 and β̃ ◦ Tt up to null

sets. Then, using the two bounds just derived,

F (α|β1)− F (α|β2) = (1− 2r) (H(α|β1)− H(α|β2))

+
∑
i∈[r]

(
H(α{e,si}|β{e,si}

1 )− H(α{e,si}|β{e,si}
1 )

)
≥ (1− 2r) (−H(β1|β2))−

∑
i∈[r]

(
H(β1 | β

{e,s−1
i }

2 ) + H(β1 | β{e,si}
2 )

)
= (2r − 1)H(β1|β2)−

∑
s∈{s±1

1 ...s±1
r }

H(β1 | β{e,s}
2 )

But

H(β1 | β{e,t}
2 ) ≤ H(β1 | β2β̃

{t}) = 0,

so we can remove the t term from the sum to get

F (α|β1)− F (α|β2) ≥ (2r − 1)H(β1|β2)−
∑

s∈{s±1
1 ...s±1

r }\{t}

H(β1 | β{e,s}
2 )

=
∑

s∈{s±1
1 ...s±1

r }\{t}

(
H(β1|β2)− H(β1 | β{e,s}

2 )
)

≥ 0.

One corollary is the following convenient formula:

Corollary 2.3.3. Let α, β be finite observables such that βG
∗ µ is a Markov measure. Then

Fµ(T, α
k1 | βk2) is independent of k2. In particular,

fµ(T, α | β) = inf
k
Fµ(T, α

k | β).

Proof. By the previous proposition, for any k ≤ k2 we have

Fµ(T, α
k1 | βk) ≤ Fµ(T, α

k1 | βk2).

On the other hand, by Theorem 6.1 of [Bow10d] Fµ(T, β
k) = Fµ(T, β

k2) so

Fµ(T, α
k1 | βk) = Fµ(T, α

k1βk)− Fµ(T, β
k2).
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Applying monotonicity under splitting to the first term on the right gives

Fµ(T, α
k1 | βk) ≥ Fµ(T, α

k1βk2)− Fµ(T, β
k2) = Fµ(T, α

k1 | βk2).

This establishes independence of k2; the formula for f follows.

Proposition 2.3.4. Let α, β be finite observables. Then for any k ∈ N,

Fµ(T, α
k | β) ≤ Hµ

(
α | β

)
.

It follows that

fµ(T, α | β) ≤ Hµ

(
α | β

)
.

Proof. By Lemma 2.3.2, Fµ(T, α
k | β) ≤ Fµ(T, α | β). Using elementary properties of

Shannon entropy, we have

Fµ(T, α | β) = (1− 2r)Hµ(α | β) +
∑
i∈[r]

Hµ

(
α{e,si} | β{e,si}

)
≤ (1− 2r)Hµ(α | β) +

∑
i∈[r]

[
Hµ

(
α | β{e,si}

)
+Hµ

(
α{si} | β{e,si}

)]
≤ (1− 2r)Hµ(α | β) +

∑
i∈[r]

[
Hµ

(
α | β

)
+Hµ

(
α{si} | β{si}

)]
.

By T -invariance of µ we have

Hµ

(
α{si} | β{si}

)
= Hµ(α | β),

so the first inequality follows.

For any k1, k2 ∈ N this gives

Fµ(T, α
k1 | βk2) ≤ Hµ(α | βk2) ≤ Hµ(α | β),

so the second inequality follows upon taking the supremum over k2 then the infimum over

k1.
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We can use this bound to give a proof of the chain rule for the relative f -invariant, a

version of which first appeared in [Bow10d] (there it is called the Abramov-Rokhlin formula;

see also [BG13]):

Corollary 2.3.5 (Chain rule).

fµ(T, αβ) = fµ(T, α | β) + fµ(T, β).

Proof. By definition of the relative version of F and the chain rule for conditional entropy,

for each k1, k2 we have

Fµ(T, α
k1βk2) = Fµ(T, α

k1 | βk2) + Fµ(T, β
k2).

By Lemma 2.3.2 each term is monotone in k2, so the limits as k2 → ∞ exist. By Proposition

2.3.4 all terms are bounded above (recall we only consider finite observables, so in particular

all observables have finite entropy), so we can split the limit across the sum on the right to

get

lim
k2→∞

Fµ(T, α
k1βk2) = lim

k2→∞
Fµ(T, α

k1 | βk2) + fµ(T, β).

Taking k1 to infinity gives the result.

2.4 Non-vacuity of main theorems

2.4.1 Theorem F

Here we prove Proposition 2.1.1, which asserts the nonvacuity of Theorem F. Given β : X →

B, we need to show that there exist yn ∈ Bn and σn ∈ Hom(Γ, Sym(n)) such that

lim
n→∞

d∗0(P
σn
yn

, βG
∗ µ) = 0.

By Lemma 2.2.2, there is a sequence {Wn}∞n=1 of B-weights such that Wn has denominator

n for each n and d(Wn,Wβ) = o(1). By Proposition 2.2.4, for each n we can pick yn, σn such

that Wσn,yn = Wn. Since d∗0(P
σn
yn

, βG
∗ µ) = d(Wσn,yn ,Wβ), these suffice.
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2.4.2 Theorems C and D

Here we prove Proposition 2.1.2, which asserts the nonvacuity of Theorem C (and by exten-

sion Theorem D, since the assumptions are the same).

Let mn approach infinity as n approaches infinity while satisfying mn = o(log log n)

and let β : X → B be a finite observable. We need to show that there exist yn ∈ Bn and

σn ∈ Hom(Γ, Sym(n)) such that d∗mn
(P σn

yn
, βG

∗ µ) = O( 1
logn

).

By Lemma 2.2.2, there is a sequence {Wn}∞n=1 of weights such that Wn is a denominator-n

BB(e,mn)-weight for each n and d(Wn,Wβmn ) = O( |B
B(e,mn)|2

n
). By Proposition 2.2.4, for each

n we can pick Yn, σn such that Wσn,Yn = Wn. Let yn = πeYn. By Proposition 2.2.5,

d∗mn
(P σn

yn
, βG

∗ µ) = d(Wσn,y
mn
n

,Wβmn ) = O

(
|B(e,mn)| ·

|BB(e,mn)|2

n

)
= O

(
1

log n

)
.

2.5 Counting Lemmas

For a B-weight W , let Zn(W ) denote the number of pairs (σ,y) ∈ Hom(Γ, Sym(n))×Bn such

that Wσ,y = W .

Proposition 2.5.1. If W is a B-weight with denominator n then

(3
√
n)−r|B|2 ≤ Zn(W )

eF (W )n(n!)rn(1−r)/2
≤ (3

√
n)r|B|

2

.

Proof. We write

Zn(W ) =
∑
σ

|{y ∈ Bn : Wσ,y = W}| = (n!)r E
σ
|{y ∈ Bn : Wσ,y = W}|.

where Eσ denotes the expectation over a uniform choice of σ ∈ Hom(Γ, Sym(n)).

Proposition 2.1 of [Bow10a] states that

E
σ
|{y ∈ Bn : Wσ,y = W}| =

n!1−r
∏

b∈B(nW (b))!2r−1∏r
i=1

∏
b,b′∈B(nW (b, b′; i))!

.

Lemma 2.2 of the same paper gives an estimate of this quantity, but for our purposes we

need to be more careful about how the estimate depends on the size of the alphabet.
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We use the version of Stirling’s approximation

kk+1/2e−k ≤ k! ≤ 3 · kk+1/2e−k,

valid for k ≥ 1. To estimate the products that appear in the expectation, we will need to

omit all factors which equal 0! = 1 since Stirling’s approximation is not valid for these. To

do this carefully, let

B′ = {b ∈ B : W (b) 6= 0}

and for each i ∈ [r] let

B′i = {(b, b′) ∈ B2 : W (b, b′; i) 6= 0}.

For the numerator of the above expectation we get

n!1−r
∏
b∈B′

(nW (b))!2r−1 ≤ (3nn+1/2 e−n)1−r
∏
b∈B′

(
3(nW (b))nW (b)+1/2e−nW (b)

)2r−1

= 31−r+|B′|(2r−1) nrn+1/2−r/2+(2r−1)|B′|/2

× e−rn+(2r−1)[n
∑

b∈B′ W (b) logW (b)+ 1
2

∑
b∈B′ logW (b)]

and a lower bound which is identical except missing the first factor. For the denominator,

let S =
∑

i∈[r]|B′i|. We get

r∏
i=1

∏
(b,b′)∈B′i

(nW (b, b′; i))! ≤
r∏

i=1

∏
(b,b′)∈B′i

3(nW (b, b′; i))nW (b,b′;i)+1/2e−nW (b,b′;i)

= 3S nnr+S/2

× en
∑

i

∑
b,b′ W (b,b′;i) logW (b,b′;i)+ 1

2

∑
i,b,b′ logW (b,b′;i)−nr,

and again we have a lower bound which is identical except missing the first factor 3S. There-

fore the quotient is bounded above by

31−r+|B′|(2r−1) n(1−r)/2+(2r−1)|B′|/2−S/2 e−nF (W )+(2r−1) 1
2

∑
b logW (b)− 1

2

∑
i,b,b′ logW (b,b′;i)

and below by

3−S n(1−r)/2+(2r−1)|B′|/2−S/2 e−nF (W )+(2r−1) 1
2

∑
b logW (b)− 1

2

∑
i,b,b′ logW (b,b′;i).
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Since W has denominator n, we have

0 ≥ (2r − 1)
1

2

∑
b∈B′

logW (b) ≥ (2r − 1)
1

2

∑
b∈B′

log
1

n
= −2r − 1

2
|B′| log n

and

0 ≤ −1

2

∑
i

∑
(b,b′)∈B′

i

logW (b, b′; i) ≤ −1

2

∑
i

∑
(b,b′)∈B′i

log
1

n
=

S

2
log n.

Therefore Zn(W ) satisfies

3−Sn((1−r)−S)/2eF (W )n(n!)r ≤ Zn(W ) ≤ 31−r+|B′|(2r−1)n((1−r)+(2r−1)|B′|)/2eF (W )n(n!)r.

Since S ≤ r|B|2 and |B′| ≤ |B|, we conclude that

3−r|B|2n((1−r)−r|B|2)/2eF (W )n(n!)r ≤ Zn(W ) ≤ 31−r+|B|(2r−1)n((1−r)+(2r−1)|B|)/2eF (W )n(n!)r,

and the stated inequality follows.

The following proposition establishes the connection between the relative version of F

and expected numbers of good models over stochastic block models.

Proposition 2.5.2. Given any denominator-n (A × BB(e,k))-weight WAB, let WB denote the

BB(e,k)-weight πBWAB. Let y ∈ Bn be a fixed labeling with py = πeWB(·), and let

µ = SBM(y,WB) = Unif({σ ∈ Hom(Γ, Sym(n)) : Wσ,yk = WB}),

assuming WB is such that the desired support is nonempty. Then

E := E
σ∼µ

∣∣{x ∈ An : Wσ,(x,yk) = WAB}
∣∣ = Zn(WAB)

Zn(WB)
.

In particular,
E

en(F (WAB)−F (WB))
∈
(
(9n)−r|B|2(|A|2+1), (9n)r|B|

2(|A|2+1)
)
.

Lemma 2.5.3. Let WAB be a A× BB(e,k) weight of denominator n. Then

∣∣{(σ,x,y) : Wσ,(x,yk) = WAB}
∣∣ ∈ {0, ∣∣{(σ,x,Y) : Wσ,(x,Y) = WAB}

∣∣}.
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Proof. Suppose
∣∣{(σ,x,y) : Wσ,(x,yk) = WAB}

∣∣ 6= 0; we then need to show∣∣{(σ,x,y) : Wσ,(x,yk) = WAB}
∣∣ = ∣∣{(σ,x,Y) : Wσ,(x,Y) = WAB}

∣∣.
The inequality ≤ is clear, since we have an injection (σ,x,y) 7→ (σ,x,yk).

The converse inequality holds because (σ,x,Y) 7→ (σ,x,Ye) in an injection from the set

on the right to the set on the left. This follows from the remark at the beginning of the

proof of Proposition 2.2.5.

Proof of Proposition. Let

µ̃ = Unif({(σ, ỹ) : Wσ,ỹk = WB});

then, since
∣∣{x ∈ An : Wσ,(x,ỹk) = WAB}

∣∣ is independent of the choice of ỹ with pỹ = πeWB(·),

E = E
(σ,ỹ)∼µ̃

∣∣{x ∈ An : Wσ,(x,ỹk) = WAB}
∣∣

=

∑
σ,ỹ

∣∣{x ∈ An : Wσ,(x,ỹk) = WAB}
∣∣∣∣{(σ, ỹ) : Wσ,ỹk = WB}

∣∣
=

∣∣{(σ,x, ỹ) : Wσ,(x,ỹk) = WAB}
∣∣∣∣{(σ, ỹ) : Wσ,ỹk = WB}

∣∣
=

∣∣{(σ,x,Y) : Wσ,(x,Y) = WAB}
∣∣

|{(σ,Y) : Wσ,Y = WB}|
(previous lemma)

=
Zn(WAB)

Zn(WB)
.

Note that our assumption that the intended support of µ is nonempty allows us to rule out

the “0” case in the application of the lemma.

The rest of the result then follows from our estimates on Zn in Proposition 2.5.1.

2.6 Proof of Theorem F

2.6.1 Upper bound

Note that we will not rely on the Markov assumption for the upper bound.
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For each k ∈ N,

inf
O∋(αβ)G∗ µ

lim sup
n→∞

1

n
log E

σ∼µn

|{x ∈ An : (x,yn) ∈ Ω(σ,O)}|

≤ inf
ε
lim sup
n→∞

1

n
log E

σ∼µn

|{x ∈ An : (x,yn) ∈ Ω∗
k(σ, αβ, ε)}|

= inf
ε
lim sup
n→∞

1

n
log E

σ∼µn

|{x ∈ An : (xk,yk
n) ∈ Ω∗

0(σ, (αβ)
k, ε)}|

≤ inf
ε
lim sup
n→∞

1

n
log E

σ∼µn

|{X ∈ (AB(e,k))n : (X,yk
n) ∈ Ω∗

0(σ, (αβ)
k, ε)}|.

Write

Ek(n, ε) := E
σ∼µn

|{X ∈ (AB(e,k))n : (X,yk
n) ∈ Ω∗

0(σ, (αβ)
k, ε)}|

= E
σ∼µn

|{X ∈ (AB(e,k))n : d
(
Wσ,(X,yk

n)
,W(αβ)k

)
< ε)}|

and assume that n is large enough that mn ≥ k.

Writing Wn(αβ, k, ε) for the set of all denominator-n weights W with d(W,W(αβ)k) < ε,

Ek(n, ε) = E
σ∼µn

∑
W∈Wn(αβ,k,ε)

|{X ∈ (AB(e,k))n : Wσ,(X,yk
n)

= W}|

=
∑

W∈Wn(αβ,k,ε)

[
E

σ∼µn

[
|{X ∈ (AB(e,k))n : Wσ,(X,yk

n)
= W}|

∣∣Wσ,yk
n
= πBW

]
× P

σ∼µn

(Wσ,yk
n
= πBW )

]
since if Wσ,yk

n
6= πBW then Wσ,(X,yk

n)
6= W . But µn conditioned on {Wσ,yk

n
= πBW} is

SBM(yn, πBW ), so we can bound the expectation above using Proposition 2.5.2, getting

Ek(n, ε) ≤ (9n)r|B
B(e,k)|2(|AB(e,k)|+1)

∑
W∈Wn(αβ,k,ε)

en(F (W )−F (πBW )) P
σ∼µn

(Wσ,yk
n
= πBW ).

Note (9n)r|B
B(e,k)|2(|AB(e,k)|+1) ≤ eon→∞(n). Fix δ > 0. By continuity of F , for all small

enough ε (possibly depending on k) we have

Ek(n, ε) ≤ en(Fµ(T,αk|βk)+δ+on→∞(1))
∑

W∈Wn(αβ,k,ε)

P
σ∼µn

(Wσ,yk
n
= πBW ).
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Bounding each probability by 1, we get

Ek(n, ε) ≤ en(Fµ(T,αk|βk)+δ+on→∞(1))|Wn(αβ, k, ε)|.

But

|Wn(αβ, k, ε)| ≤ nr|(A×B)B(e,k)|2 ≤ eon→∞(n),

so this implies

lim sup
n→∞

1

n
log Ek(n, ε) ≤ Fµ(T, α

k | βk) + δ

≤ Fµ(T, α
k | βk2) + δ

for any k2 ≥ k, by monotonicity under splitting. Taking the limit as k2 → ∞ followed by

the infimum over ε (which takes δ to 0) and k gives

inf
ε,k

lim sup
n→∞

1

n
log Ek(n, ε) ≤ fµ(T, α | β).

Since

inf
O∋(αβ)G∗ µ

lim sup
n→∞

1

n
log E

σ∼µn

|{x ∈ An : (x,yn) ∈ Ω(σ,O)}| ≤ inf
ε
lim sup
n→∞

1

n
log Ek(n, ε)

for every k, this completes the upper bound.

2.6.2 Lower bound

Fix k ∈ N. To estimate

E := E
σ∼µn

|{x ∈ An : (x,yn) ∈ Ω∗
k(σ, αβ, ε)}|

we bound below using the expected size of

Xk(σ, αβ, ε | yn) := {X ∈
(
AB(e,k)

)n
: (X,yk

n) ∈ Ω∗
0(σ, (αβ)

k, ε)}.

This is not a true lower bound but, by Equation 2.1 below, there are constants C, d, c

independent of n such that

|Xk(σ, αβ, ε | yn)| ≤ C exp
(
ndε+ nH(2|B(e, k)|ε)

)
· |{x ∈ An : (x,yn) ∈ Ω∗

k(σ, αβ, ε)}|.
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The ‘error’ factor has an exponential growth rate which vanishes as ε → 0, so will not be a

problem.

We now find a lower bound for the expectation of |Xk|. Applying Proposition 2.5.2 as

above, we have

E
σ∼µn

|Xk(σ, αβ, ε | yn)|

=
∑

W∈Wn(αβ,k,ε)

E
σ∼µn

|{X ∈ (AB(e,k))n : Wσ,(X,yk
n)

= W}|

≥
∑

W∈Wn(αβ,k,ε)

exp
[
n(F (W )− F (πBW )− on(1))

]
P

σ∼µn

(
πBW = Wσ,yk

n

)
.

For any δ > 0, for small enough ε > 0 (independent of n), by continuity of F this is at

least

exp
[
n(Fµ(α

k | βk)− δ − on(1))
] ∑
W∈Wn(αβ,k,ε)

P
σ∼µn

(
πBW = Wσ,yk

n

)
.

We give a lower bound for the sum by first rewriting it as

∑
WB denom.-n BB(e,k)−weight

|{W ∈ Wn(αβ, k, ε) : πBW = WB}| · P
σ∼µn

(Wσ,yk
n
= WB).

Fix η > 0. By Lemma 2.2.3, for all large enough n the B-weight Wσn,yn can be ex-

tended to a BB(e,k)-weight WB with d(WB,Wβk) ≤ η; to apply the lemma we can think

of the extended weight WB as having alphabet BB(e,k)\{e} × B, and recall that we assume

limn→∞ d(Wσn,yn ,Wβ) = 0. Choose σ,Y such that WB = Wσ,Y. Since WB is an extension of

Wσn,yn , we can make this choice in such a way that πeY = yn.

Let W̃B = Wσ,yk
n
. By Proposition 2.2.5,

d(W̃B,Wβk) ≤ d(W̃B,WB) + d(WB,Wβk) ≤ 2r|B(e, k)|η + η.

So, as long as η is small enough and n is large enough (depending on ε, k), by Lemma 2.2.3

|{W ∈ Wn(αβ, k, ε) : πBW = WB}| ≥ 1.
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Now consider the probability appearing in the W̃B term:

P
σ∼µn

(Wσ,yk
n
= W̃B) =

|{σ : Wσ,yk
n
= W̃B}|

|{σ : Wσ,yn = Wσn,yn}|
.

By symmetry in choice of y with the correct letter frequencies, we can write this as

P
σ∼µn

(Wσ,yk
n
= W̃B) =

∣∣∣{(σ,y) : Wσ,yk = W̃B}
∣∣∣

|{(σ,y) : Wσ,y = Wσn,yn}|

=

∣∣∣{(σ,Y) : Wσ,Y = W̃B}
∣∣∣

|{(σ,y) : Wσ,y = Wσn,yn}|
(Prop. 2.2.5)

=
Zn(W̃B)

Zn(Wσn,yn)
(definition of Zn)

≥ exp
(
n[F (W̃B)− F (Wσn,yn)]

)
· (3

√
n)−r(|BB(e,k)|2−|B|) (Prop. 2.5.1)

= exp
(
n[F (W̃B)− F (Wσn,yn)− o(1)]

)
.

By continuity of F , we then get

P
σ∼µn

(Wσ,yk
n
= W̃B) ≥ expn

(
Fµ(β

k)− Fµ(β)− 2δ + o(1)
)

for all large enough n and small enough η (again depending on k, ε), with δ > 0 the same as

chosen above. Since βG
∗ µ is a Markov chain, Fµ(β

k) = Fµ(β).

Putting this all together: for any k ∈ N, for all δ > 0 we have

E
σ∼µn

|Xk(σ, αβ, ε | yn)| ≥ exp
[
n(Fµ(α

k | βk)− 3δ − o(1))
]

for all large enough n and small enough ε > 0.

It follows that for any k ∈ N

inf
ε
lim sup
n→∞

1

n
log E

σ∼µn

|{x ∈ An : (x,yn) ∈ Ω∗
k(σ, αβ, ε)}| ≥ Fµ(T, α

k | βk).

Taking the limit as k → ∞ gives the desired bound, using Corollary 2.3.3 and that the

family of pseudometrics {d∗k : k ∈ N} generates the weak∗ topology.
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2.7 Proof of Theorem C

Let Wn = Wσn,y
mn
n

, so that

µn = SBM(yn,Wn).

Note that, by definition of µn,

P
σ∼µn

(
Wσ,ymn

n
= Wn

)
= 1.

Lemma 2.7.1. With Wn as just defined in terms of mn, σn, and yn, we have

lim
n→∞

F (Wn) = fµ(T, β).

Proof. The assumption in the theorem statement that d∗mn
(P σn

yn
, βG

∗ µ) = O
(

1
logn

)
implies the

existence of a constant C such that

d(Wn,Wβmn ) ≤
C

log n
.

By Lemma 2.3.1 we have

|F (Wσ,ymn )− F (Wβmn )| ≤ 4r
(
H( C

logn
) + C

logn
|B(e,mn)| log2|B|

)
= o(1)

using that mn = o(log log n). Since mn approaches infinity as n goes to infinity we have

fµ(T, β) = limn→∞ F (Wβmn ), so the result follows.

Lemma 2.7.2. If mn = o(log log n), then for any k > 0 and ε > 0 we have |BB(e,mn)|k =

o(nε).

Proof. This is certainly true if |B| = 1; assume therefore that |B| ≥ 2.

Our assumption mn = o(log log n) guarantees that

(2r − 1)mn <
r − 1

r

ε

k log|B|
log n

for all large enough n. Therefore

|B(e,mn)| =
r(2r − 1)mn − 1

r − 1
<

ε

k log|B|
log n.
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This inequality can be rearranged to give

|BB(e,mn)|k < nε.

Since ε > 0 is arbitrary, the result follows.

In the remainder of this section we prove Theorem C by first proving the right-hand side

is an upper bound for the left, then proving it is also lower bound.

2.7.1 Upper bound

Just as in the proof of the upper bound in Theorem F, for each k ∈ N and ε > 0 we have

inf
O∋(αβ)G∗ µ

lim sup
n→∞

1

n
log E

σ∼µn

|{x ∈ An : (x,yn) ∈ Ω(σ,O)}| ≤ lim sup
n→∞

1

n
log Ek(n, ε),

where

Ek(n, ε) := E
σ∼µn

|{X ∈ (AB(e,k))n : (X,yk
n) ∈ Ω∗

0(σ, (αβ)
k, ε)}|

= E
σ∼µn

|{X ∈ (AB(e,k))n : d
(
Wσ,(X,yk

n)
,W(αβ)k

)
< ε)}|.

We assume that n is large enough that mn ≥ k.

Since µn is SBM(σn,yn,mn) rather than SBM(σn,yn, k), we cannot apply Proposition 2.5.2

directly to this expression. We get around this as follows: Let

Wn(m,m′) :=
{
Wσ,(X,ym′ ) : σ ∈ Hom(Γ, Sym(n)), X ∈ (AB(e,m))n, y ∈ Bn

}
.

All elements of this set are denominator-n AB(e,m) × BB(e,m′)-weights; we avoid the question

of exactly which weights are in this set, but call such weights attainable. For k ≤ m and

k′ ≤ m′ let

Wn(m,m′;αβ, k, k′; ε) =
{
W ∈ Wn(m,m′) : d

(
πk,k′W, Wαkβk′

)
< ε
}

denote the set of such weights whose appropriate marginal is within ε of the (AB(e,k)×BB(e,k′))-

weight Wαkβk′ . For now we take m = k = k′ but we will need more generality below. Then

Ek(n, ε) = E
σ∼µn

∑
W∈Wn(k,mn;αβ,k,k;ε)

|{X ∈ (AB(e,k))n : Wσ,(X,ymn
n ) = W}|
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so we can apply Proposition 2.5.2 to get

Ek(n, ε) ≤ (9n)r|B
B(e,mn)|2(|AB(e,k)|+1)

∑
W∈Wn(k,mn;αβ,k,k;ε)

en(F (W )−F (πBW ))1{πBW=Wn}.

By Lemma 2.7.2 we have (9n)r|B
B(e,mn)|2(|AB(e,k)|+1) ≤ eon→∞(n). Using this and Lemma

2.7.1 we have

Ek(n, ε) ≤
∑

W∈Wn(k,mn;αβ,k,k;ε)

en(F (W )−f(T,β)+on→∞(1))1{πBW=Wn},

where the little o is uniform over all terms in the sum. Here we use the assumption that

fµ(T, β) is finite.

By definition of Wn(k,mn), for any W ∈ Wn(k,mn;αβ, k, k; ε) we can pick some σ ∈

Hom(Γ, Sym(n)), X ∈ (AB(e,k))n, and y ∈ Bn so that W = Wσ,(X,ymn ). Then since Xymn is a

splitting of Xyk, by Lemma 2.3.2 we have

F (W ) = F (σ,Xymn) ≤ F (σ,Xyk) = F (πk,kW ).

By continuity of F , for all small enough ε (depending on k) we have

F (πk,kW ) ≤ F (W(αβ)k) + δ = Fµ(T, (αβ)
k) + δ.

Along with the above, this implies that

Ek(n, ε) ≤ en(F (T,(αβ)k)−f(T,β)+on(1)+δ)
∑

W∈Wn(k,mn;αβ,k,k;ε)

1{πBW=Wn}.

Bounding all terms in the sum by 1, we get

Ek(n, ε) ≤ en(F (T,(αβ)k)−fµ(T,β)+on(1)+δ) |Wn(k,mn;αβ, k, k; ε)|.

Using Lemma 2.7.2 we have

|Wn(k,mn;αβ, k, k; ε)| ≤ |Wn(k,mn)| ≤ nr|AB(e,k)×BB(e,mn)|2 ≤ eon→∞(n),

so this implies

lim sup
n→∞

1

n
log Ek(n, ε) ≤ Fµ(T, (αβ)

k)− fµ(T, β) + δ.
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Taking the infimum over ε and k, and using the chain rule for f (Corollary 2.3.5, again using

the assumption that fµ(T, β) is finite), gives

inf
ε,k

lim sup
n→∞

1

n
log Ek(n, ε) ≤ fµ(T, αβ)− fµ(T, β) = fµ(T, α | β).

Since

inf
O∋(αβ)G∗ µ

lim sup
n→∞

1

n
log E

σ∼µn

|{x ∈ An : (x,yn) ∈ Ω(σ,O)}| ≤ inf
ε
lim sup
n→∞

1

n
log Ek(n, ε),

for every k, this completes the upper bound.

2.7.2 Lower bound

In this section we denote

Xk1,k2(σ, αβ, ε | y) := {X ∈
(
AB(e,k1)

)n
: (X,yk2) ∈ Ω∗

0(σ, α
k1βk2 , ε)}

Ω∗
k(σ, αβ, ε | y) := {x ∈ An : (x,y) ∈ Ω∗

k(σ, αβ, ε)}

(note the dependence on n is implicitly specified by σ ∈ Hom(Γ, Sym(n)) and y ∈ Bn), and

with Σ = {µn}∞n=1

hΣ,µ(T, α | β : k, ε) := lim sup
n→∞

1

n
log E

σ∼µn

|{x ∈ An : (x,y) ∈ Ω∗
k(σ, αβ, ε)}|

= lim sup
n→∞

1

n
log E

σ∼µn

|Ω∗
k(σ, αβ, ε | y)|.

The following two claims are used to relate the sizes of the sets defined above.

Claim 2.7.3. Let k ≤ min(k1, k2). For any σ,y we have

πe [Xk1,k2(σ, αβ, ε | y)] ⊆ Ω∗
k(σ, αβ, cε | y)

where c = 1 + |B(e, k)|.

Proof. If (X,yk2) ∈ Ω∗
0(σ, α

k1βk2 , ε), then

πk,k(X,yk2) ∈ Ω∗
0(σ, (αβ)

k, ε);
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this follows from the fact that total variation distance is nonincreasing under pushforwards.

Applying Proposition 2.2.5, we get

(πeX,y) = πe

(
πk,k(X,yk2)

)
∈ Ω∗

k(σ, αβ, cε).

Claim 2.7.4. Fix σ,y, and k ≤ min(k1, k2). As established in the previous claim, we can

consider πe as a map from Xk1,k2(σ, αβ, ε | y) to Ω∗
k(σ, αβ, cε | y). There are constants C, d

independent of n such that πe is at most C exp
(
ndε+ nH(2|B(e, k)|ε)

)
-to-one.

Proof. If Ω∗
k(σ, αβ, cε | y) is empty, then the claim is vacuously true. Otherwise, fix x ∈

Ω∗
k(σ, αβ, cε | y). If X ∈ π−1

e {x}, then πe(X,yk) = (x,y). By Claim 3 in the proof of

Proposition 3.2 of [Bow10a] the number of such pairs (X,yk), and therefore the number of

such X, is bounded above by

3
√
2|A× B||B(e,k)|

(
n|B(e,k)|ε−1

)
exp

(
nH(2|B(e, k)|ε)

)
where H is the Shannon entropy. (We give more explicit constants here than in [Bow10a] to

make the dependence on n clear).

Claim 2 implies that

|Xk1,k2(σ, αβ, ε | y)| ≤ C exp
(
ndε+ nH(2|B(e, k)|ε)

)
· |Ω∗

k(σ, αβ, cε | y)|, (2.1)

where C, d are independent of n.

We now find a lower bound for the expectation of |X |. Fix k1, k2 ∈ N, and suppose n is
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large enough that mn ≥ max(k1, k2). Using Proposition 2.5.2 and Lemma 2.7.2, we have

E
σ∼µn

|Xk1,k2(σ, αβ, ε | yn)|

=
∑

W∈Wn(k1,mn;αβ,k1,k2;ε)

E
σ∼µn

|{X ∈ (AB(e,k1))n : Wσ,(X,ymn
n ) = W}|

≥
∑

W∈Wn(k1,mn;αβ,k1,k2;ε)

exp
[
n(F (W )− F (πBW )− on(1))

]
1{πBW=Wσ,y

mn
n

}

≥ inf
W∈Wn(k1,mn;αβ,k1,k2;ε)

exp
[
n(F (W )− F (πBW )− on(1))

]
×

∑
W∈Wn(k1,mn;αβ,k1,k2;ε)

1{πBW=Wσ,y
mn
n

}

We bound the infimum below as follows: Given any W ∈ Wn(k1,mn;αβ, k1, k2; ε), we can

let X,y, σ be such that W = Wσ,(X,ymn ). Then by Lemma 2.3.2 and continuity of F

F (W )− F (πBW ) = F (σ,X|ymn)

≥ F (σ,X|yk2)

= F (πk1,k2W )− F (πBπk1,k2W )

≥ Fµ(T, α
k1|βk2)− δ

for any δ > 0 for all small enough ε (with “small enough” dependent only on k1, k2). This

implies that the infimum is bounded below by

exp
[
n(Fµ(T, α

k1|βk2)− on(1)− δ)
]
.

We bound the sum below by first rewriting it as

∣∣{W ∈ Wn(k1,mn;αβ, k1, k2; ε) : πBW = Wσ,ymn
n

}
∣∣.

The following claim, then, implies that the sum is bounded below by 1.

Claim 2.7.5. For all large enough n,

{
W ∈ Wn(k1,mn;αβ, k1, k2; ε) : πBW = Wσ,ymn

n

}
6= ∅.
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Proof. By Lemma 2.2.3, if

n > 680|AB(e,k1) × BB(e,mn)|2r/ε

and d(Wσ,ymn
n

,Wβmn ) < ε
530r

then there is a (AB(e,k1)×BB(e,mn))-weight W with πBW = Wσ,ymn
n

and d(W,Wαk1βmn ) < ε. By definition of µn and Lemma 2.7.2, both conditions are met for

all large enough n.

The claim will follow if we show that W is attainable.

With W as chosen above, by Proposition 2.2.4 we can choose σ̃ ∈ Hom(Γ, Sym(n)),

X̃ ∈ (AB(e,k1))n, and Ỹ ∈ (BB(e,mn))n such that W = Wσ̃,(X̃,Ỹ).

Let ỹ = πeỸ ∈ Bn. To complete the proof we show that ỹmn = Ỹ, i.e.

ỹ
(
σ̃(g)i

)
=
(
Ỹ(i)

)
g

for all i ∈ [n] and g ∈ B(e,mn). We prove this by induction on the word length |g|.

The base case |g| = 0 (i.e. g = e) follows immediately from the definition of ỹ.

For the inductive step, write g = ht with |h| = |g| − 1 and t ∈ {s±1
1 , . . . , s±1

r }. Then,

assuming the result holds for h,

ỹ
(
σ̃(g)i

)
= ỹ

(
σ̃(h)σ̃(t)i

)
=
(
Ỹ(σ̃(t)i)

)
h
.

Now since Wσ̃,Ỹ = Wσn,y
mn
n

, we can pick j ∈ [n] such that

Ỹ(i) = ymn
n (j) and Ỹ(σ̃(t)i) = ymn

n (σ(t)j).

This implies(
Ỹ(σ̃(t)i)

)
h
=
(
ymn
n (σ(t)j)

)
h
= yn(σ(g)j) =

(
ymn
n (j)

)
g
=
(
Ỹ(i)

)
g
.

Hence for all large enough n we have

E
σ∼µn

|Xk1,k2(σ, αβ, ε | yn)| ≥ exp
[
n(Fµ(T, α

k1 | βk2)− on(1)− δ)
]
,
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and therefore

lim sup
n→∞

1

n
log E

σ∼µn

|Xk1,k2(σ, αβ, ε | yn)| ≥ Fµ(T, α
k1 | βk2)− δ.

Combining this lower bound with Equation (2.1) and the definition of hΣ,µ(T, α | β :

k, cε), we get

dε+H(2|B(e, k)|ε) + hΣ,µ(T, α | β : k, cε) ≥ Fµ(T, α
k1 | βk2)− δ.

Taking the inf in ε then letting δ go to zero gives

inf
ε
lim sup
n→∞

1

n
log E

σ∼µn

|{x ∈ An : (x,yn) ∈ Ω∗
k(σ, αβ, ε)}| ≥ Fµ(T, α

k1 | βk2)

for k ≤ min(k1, k2). First take k2 → ∞, then k1 → ∞, then take the infimum over k. We

get

fµ(T, α | β) ≤ inf
ε,k

lim sup
n→∞

1

n
log E

σ∼µn

|{x ∈ An : (x,yn) ∈ Ω∗
k(σ, αβ, ε)}|

= inf
O∋(αβ)G∗ µ

lim sup
n→∞

1

n
log E

σ∼µn

|{x ∈ An : (x,yn) ∈ Ω(σ,O)}|

where the last line follows because the collection of pseudometrics {d∗k : k ∈ N} generates

the weak∗ topology on Prob((A× B)Γ).

2.8 Proof of Theorem D

By analogy with sofic entropy, we denote Σ := {µn}∞n=1 and denote the left-hand side of the

formula in the theorem statement as hΣ,µ(T, α).

Endow Prob(AΓ) with the metric

d(λ, ν) :=
∞∑
r=1

2−rdB(e,r)(λ, ν).

Note that this induces the weak* topology (where A is given the discrete topology and AΓ

the product topology).
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Writing µA = αG
∗ µ ∈ Prob(AΓ), we then have

hΣ,µ(T, α) = inf
ε>0

lim sup
n→∞

1

n
log E

σ∼µn

|{x ∈ An : d(P σ
x , µA) < ε}|.

We will similarly denote µB = βG
∗ µ ∈ Prob(BΓ).

2.8.1 Lower bound

Let λ ∈ Prob((A×B)Γ) be any joining of (the shift systems with respective measures) µA and

µB. Then for any x ∈ An and y ∈ Bn we have

d(P σ
x , µA) ≤ d(P σ

(x,y), λ),

where d is defined on Prob((A× B)Γ) analogously to the definition given on Prob(AΓ) above.

This inequality holds because total variation distance is nonincreasing under pushforwards.

Consequently

hΣ,µ(T, α) ≥ inf
ε>0

lim sup
n→∞

1

n
log E

σ∼µn

|{x ∈ An : d(P σ
(x,yn), λ) < ε}| = fλ(S, a | b).

Taking the supremum over joinings λ gives the lower bound.

2.8.2 Upper bound

For ε > 0, let

Jε := {λ ∈ ProbS((A× B)Γ) : d(aG∗ λ, µA) < ε and d(bG∗ λ, µB) < ε}

be the set of shift-invariant “approximate joinings” of µA and µB. Since Prob((A × B)Γ) is

compact, for each ε > 0 there exist λ1, . . . , λm ∈ Jε such that

Jε ⊆
m⋃
i=1

B(λi, ε).
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By definition of µn we have Pσ∼µn(d(P
σ
yn
, µB) < ε) = 1 for all large enough n. Therefore

hΣ,µ(T, α) = inf
ε
lim sup
n→∞

1

n
log E

σ∼µn

|{x ∈ An : P σ
(x,yn) ∈ Jε}|

≤ inf
ε
lim sup
n→∞

1

n
log

m∑
i=1

E
σ∼µn

|{x ∈ An : P σ
(x,yn) ∈ B(λi, ε)}|

= inf
ε

max
1≤i≤m

lim sup
n→∞

1

n
log E

σ∼µn

|{x ∈ An : P σ
(x,yn) ∈ B(λi, ε)}|

≤ inf
ε
sup
λ∈Jε

lim sup
n→∞

1

n
log E

σ∼µn

|{x ∈ An : P σ
(x,yn) ∈ B(λ, ε)}|.

Note that the entire expression in the inf is decreasing as ε → 0, so we may replace the inf

with a limit. Rather than taking a continuous limit we write

hΣ,µ(T, α) ≤ lim
m→∞

sup
λ∈J1/m

lim sup
n→∞

1

n
log E

σ∼µn

|{x ∈ An : P σ
(x,yn) ∈ B(λ, 1/m)}|.

For each m pick λm ∈ J1/m to get within 1/m of the supremum. Then the right-hand

side is equal to

lim
m→∞

lim sup
n→∞

1

n
log E

σ∼µn

|{x ∈ An : P σ
(x,yn) ∈ B(λm, 1/m)}|. (∗)

Let λmj
be a subsequence with weak* limit λ0. By weak* continuity of pushforwards

under projection we have λ0 ∈ J(µA, µB). Now for any δ > 0, for all large enough j we have

both 1/mj < δ/2 and d(λmj
, λ0) < δ/2, so by the triangle inequality

B(λmj
, 1/mj) ⊆ B(λ0, δ).

It follows that the expression in (∗), and hence hΣ(α), is bounded above by

lim sup
n→∞

1

n
log E

σ∼µn

|{x ∈ An : P σ
(x,yn) ∈ B(λ0, δ)}|.

Taking the infimum over δ shows that

hΣ(µ, α) ≤ fλ0(S, a | b) ≤ sup
λ∈J(µA,µB)

fλ(S, a | b).
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2.9 Proof of Proposition 2.1.3

All sequences of interest are of the form

µn = SBM(σn,yn,mn) = Unif({σ ∈ Hom(Γ, Sym(n)) : Wσ,ymn
n

= Wn})

with yn ∈ Bn, σn ∈ Sym(n), mn = o(log log n), and where Wn is the BB(e,mn)-weight Wσn,y
mn
n

.

In the case of Theorem F we simply have mn = 0 for all n.

The theorem will follow from the following:

Lemma 2.9.1. Let ζn denote the uniform measure on Hom(Γ, Sym(n)). Then for any finite

D ⊂ Γ and δ > 0 there exists ε > 0 such that

P
σ∼ζn

(σ is (D, δ)-sofic) ≥ 1− n−εn

for all large enough n.

This can be proven by making superficial changes to the proof of the similar result in

[Bow20b].

To prove Proposition 2.1.3, it now suffices to show that for any ε > 0

P
σ∼ζn

(Wσ,ymn
n

= Wn) ≥ n−εn

for all large enough n. To do this, first note that the left-hand side here depends only on

the vector pyn ∈ Prob(B) of letter frequencies. Therefore

P
σ∼ζn

(∃y ∈ Bn s.t. Wσ,ymn = Wn) ≤
∑

y : py=pyn

P
σ∼ζn

(Wσ,ymn = Wn)

= exp{nH(pyn) + o(n)} P
σ∼ζn

(Wσ,ymn
n

= Wn).

But by Proposition 2.2.5, if σ ∈ Hom(Γ, Sym(n)) and Y ∈ (BB(e,mn))n are such that Wσ,Y =

Wn = Wσn,y
mn
n

, then the projection Ye ∈ Bn satisfies (Ye)
mn = Y. Therefore for each σ

∣∣{Y ∈ (BB(e,mn))n : Wσ,Y = Wn}
∣∣ = |{y ∈ Bn : Wσ,ymn = Wn}|.
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Hence

E
σ∼ζn

∣∣{Y ∈ (BB(e,mn))n : Wσ,Y = Wn}
∣∣ = E

σ∼ζn
|{y ∈ Bn : Wσ,ymn = Wn}|

≤ |B|n P
σ∼ζn

(∃y ∈ Bn s.t. Wσ,ymn = Wn).

Combining these last few statements, we see that

P
σ∼ζn

(Wσ,ymn
n

= Wn) ≥ exp{−2n log|B|+ o(n)} E
σ∼ζn

∣∣{Y ∈ (BB(e,mn))n : Wσ,Y = Wn}
∣∣.

We can ignore the first factor here since it only decays exponentially fast. By Proposition

2.5.1,

E
σ∼ζn

∣∣{Y ∈ (BB(e,mn))n : Wσ,Y = Wn}
∣∣ = Zn(Wn)

(n!)r
≥ (3

√
n)−r|BB(e,mn)|2eF (Wn)nn(1−r)/2.

The third factor is clearly not a problem and can also be ignored. For the first factor,

1

n log n
log(3

√
n)−r|BB(e,mn)|2 = −r

|BB(e,mn)|2

n

log 3
√
n

log n
→ 0 as n → ∞

using Lemma 2.7.2. For the second factor, first note that by definition of F (Wn) we have

F (Wn) = (1− 2r)H
(
Wn(·)

)
+
∑
i∈[r]

H
(
Wn(·, ·; i)

)
≥ −2rH

(
Wn(·)

)
≥ −2r log

∣∣BB(e,mn)
∣∣.

So
1

n log n
log eF (Wn)n =

F (Wn)

log n
≥ −2r

log
∣∣BB(e,mn)

∣∣
log n

→ 0 as n → ∞,

again using Lemma 2.7.2. This implies that for every ε > 0 we have

(3
√
n)−r|BB(e,mn)|2eF (Wn)n ≥ n−εn

for all large enough n, which implies the result.
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a0 a1 · · ·

b0 → b·c b·c

b1 → b·c b·c
... → b·c b·c

Figure 2.1: Picking entries of the vertex measure WAB(·). First choose entries of the form

WAB((a, b)) for a 6= a0 by rounding down W ((a, b)), then fill in the first column in a way that

guarantees the correct B-marginal.

2.10 Proof of Lemma 2.2.3

We show how to construct a denominator-n weight WAB that has a given B-marginal WB and

is close to a given (A×B)-weight W whose B-marginal πBW is close to WB. As in the theorem

statement, we assume

d(πBW,WB) < δ.

To minimize the appearance of factors of 1
2
, in this section we work with the ℓ1 distance

on weights, which is twice the distance defined above. Therefore the previous assumption

becomes

d1(πBW,WB) =
∑
i∈[r]

∑
b,b′∈B

|πBW (b, b′; i)−WB(b, b
′; i)| < 2δ.

We fix distinguished elements a0 ∈ A and b0 ∈ B which will be referred to throughout

this section.

2.10.1 The vertex measure

We first define the weight’s vertex measure by

WAB((a, b)) =
1
n
bn ·W ((a, b))c a ∈ A \ {a0}, b ∈ B

WAB((a0, b)) = WB(b)−
∑
a̸=a0

WAB((a, b)) b ∈ B.

See Figure 2.1.
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Note that |WAB((a, b))−W ((a, b))| ≤ 1/n for a 6= a0 and

|WAB((a0, b))−W ((a0, b))| ≤ |WB(b)− πBW (b)|+ |A|/n.

Therefore the ℓ1 distance between the vertex measures is

∑
a,b

|WAB((a, b))−W ((a, b))| ≤ |A||B|/n+
∑
b∈B

(
|WB(b)− πBW (b)|+ |A|/n

)
≤ 2δ + 2|A||B|/n.

2.10.1.1 Nonnegativity

The terms defined by rounding down W using the floor function are guaranteed to be non-

negative, but the others are not. In the following we show how to repair any negativity.

Let −R/n denote the sum of all negative terms in the vertex measure. Since W contains

only nonnegative terms we have

1{WAB((a,b))<0} · |WAB((a, b))| ≤ |WAB((a, b))−W ((a, b))| for all a, b.

Therefore

R/n ≤
∑
b∈B

|WAB((a0, b))−W ((a0, b))| ≤ 2δ + |A||B|/n.

Suppose there is some b ∈ B such that WAB((a0, b)) < 0. Since WAB has denominator n,

we must have WAB((a0, b)) ≤ −1/n. By construction, we have

∑
a∈A

WAB((a, b)) = WB(b) ≥ 0,

so there exists some a+ ∈ A with WAB((a
+, b)) ≥ 1/n. Increase WAB((a0, b)) by 1/n and

decrease WAB((a
+, b)) by 1/n.

The number of times we must repeat this step before all terms are nonnegative is exactly

R, and each step moves the measure by ℓ1 distance 2/n; therefore the final edited vertex

measure is distance at most 2R/n from the original WAB. If we now let WAB denote the new,
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nonnegative vertex measure, by the above bound on R/n we get∑
a,b

|WAB((a, b))−W ((a, b))| ≤ 6δ + 4|A||B|/n.

2.10.2 The B half-marginal

For the purposes of this construction we use the B “half-marginal,” which we denote

W (b, (a′, b′); i) :=
∑
a∈A

W ((a, b), (a′, b′); i).

This is an element of Prob
(
(B× (A× B))r

)
.

Before constructing the edge measure of WAB, in this section we first construct what will

be its half-marginal.

For each i ∈ [r], b, b′ ∈ B, and a′ ∈ A we define

WAB(b, (a
′, b′); i) = 1

n
bn ·W (b, (a′, b′); i)c for a′ 6= a0, b 6= b0, (2.2)

WAB(b, (a0, b
′); i) = WB(b, b

′; i)−
∑
a′ ̸=a0

WAB(b, (a
′, b′); i) for b 6= b0, (2.3)

WAB(b0, (a
′, b′); i) = WAB((a

′, b′))−
∑
b̸=b0

WAB(b, (a
′, b′); i). (2.4)

See Figure 2.2 for a representation of which terms are defined by each equation.

The definition of the terms in (2.4) ensures that∑
b∈B

WAB(b, (a
′, b′); i) = WAB((a

′, b′)) for all a′, b′, i.

This will ensure that WAB has the correct vertex measure. Note also that by line (2.3)∑
a′∈A

WAB(b, (a
′, b′); i) = WB(b, b

′; i) for all b ∈ B and b′ ∈ B \ {b0}.

Using this and definition (2.4) we also get∑
a′∈A

WAB(b0, (a
′, b′); i) = WB(b0, b

′; i).
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(a0, b0) (a1, b0) (a2, b0) (a0, b1) (a1, b1) (a2, b1) (a0, b2) (a1, b2) (a2, b2)

b0 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

b1 → b·c b·c → b·c b·c → b·c b·c

b2 → b·c b·c → b·c b·c → b·c b·c

Figure 2.2: A diagram of how the half-marginal WAB(·, (·, ·); i) is chosen if A = {a0, a1, a2}

and B = {b0, b1, b2}. First obtain the entries marked b·c by rounding down W . Then choose

the entries marked → according to Equation 2.3 which ensures that the B-marginal is WB.

Then choose the entries marked ↓ according to Equation 2.4 which ensures that the vertex

weight is the one we chose above.

This will ensure that the B-marginal of WAB is WB.

We show now that the half-marginal WAB(·, (·, ·); i) is ℓ1-close to W (·, (·, ·); i) by consider-

ing separately the contributions to the ℓ1 distance from terms defined using Equations (2.2),

(2.3), and (2.4).

(2.2) terms: Each of the terms of WAB defined using the floor in Equation (2.2) is distance at

most 1/n from the corresponding term of W ; therefore the total contribution

of these terms to the ℓ1 distance is∑
b∈B\{b0}

a′∈A\{a0},b′∈B
i∈[r]

|WAB(b, (a
′, b′); i)−W (b, (a′, b′); i)| ≤ |A||B|2r/n.

(2.3) terms: By the triangle inequality,

|WAB(b, (a0, b
′); i)−W (b, (a0, b

′); i)|

=

∣∣∣∣∣
(
WB(b, b

′; i)−
∑
a′ ̸=a0

WAB(b, (a
′, b′); i)

)
−(

πBW (b, b′; i)−
∑
a′ ̸=a0

W (b, (a′, b′); i)

)∣∣∣∣∣
≤ |WB(b, b

′; i)− πBW (b, b′; i)|+
∑
a′ ̸=a0

|WAB(b, (a
′, b′); i)−W (b, (a′, b′); i)|.
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The total contribution of such terms is therefore

∑
b∈B\{b0}, b′∈B

i∈[r]

|WAB(b, (a0, b
′); i)−W (b, (a0, b

′); i)|

≤

≤d1(WB,πBW )︷ ︸︸ ︷∑
b∈B\{b0}, b′∈B

i∈[r]

|WB(b, b
′; i)− (πB)∗W (b, b′; i)|

+

=contribution from (2.2) terms︷ ︸︸ ︷∑
b∈B\{b0}

a′∈A\{a0}, b′∈B
i∈[r]

|WAB(b, (a
′, b′); i)−W (b, (a′, b′); i)|

≤ 2δ + |A||B|2r/n.

(2.4) terms: Again applying the triangle inequality,

|WAB(b0, (a, b
′); i)−W (b0, (a, b

′); i)|

≤ |WAB((a, b
′))−W ((a, b′))|+

∑
b ̸=b0

|WAB(b, (a, b
′); i)−W (b, (a, b′); i)|.

Summing over all a ∈ A, b′ ∈ B and i ∈ [r], we see that the total contribution
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of such terms is bounded by

∑
a∈A,b′∈B
i∈[r]

[
|WAB((a, b

′))−W ((a, b′))|+
∑
b̸=b0

|WAB(b, (a, b
′); i)−W (b, (a, b′); i)|

]

=
∑
i∈[r]

vertex measure︷ ︸︸ ︷∑
a∈A
b∈B

|WAB((a, b))−W ((a, b))|

+

(2.2) terms︷ ︸︸ ︷∑
b∈B\{b0}

a′∈A\{a0}, b′∈B
i∈[r]

|WAB(b, (a
′, b′); i)−W (b, (a′, b′); i)|

+

(2.3) terms︷ ︸︸ ︷∑
b∈B\{b0}, b′∈B

i∈[r]

|WAB(b, (a0, b
′); i)−W (b, (a0, b

′); i)|

≤ r · [6δ + 4|A||B|/n] +
[
|A||B|2r/n

]
+
[
2δ + |A||B|2r/n

]
≤ 8rδ + 6|A||B|2r/n.

Adding up the contributions of the three types of terms, we see that the ℓ1 distance between

the half-marginals of W and WAB is bounded by

10rδ + 8|A||B|2r/n.

2.10.2.1 Nonnegativity

Again, the preceding construction does not guarantee that all terms are nonnegative. In the

following we describe how to correct negativity.

Let −R/n be the sum of all negative terms of the half-marginal. As above, we get

R/n ≤ 10rδ + 7|A||B|2r/n.

Suppose there is some b− ∈ B, (a′−, b′−) ∈ A×B, and i ∈ [r] such that WAB(b−, (a
′
−, b

′
−); i) <
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0. Then WAB(b−, (a
′
−, b

′
−); i) ≤ −1/n. Since∑

a′∈A

WAB(b−, (a
′, b′−); i) = WB(b−, b

′
−; i) ≥ 0

and ∑
b∈B

WAB(b, (a
′
−, b

′
−); i) = WAB((a

′
−, b

′
−)) ≥ 0

there exist a′+ ∈ A and b+ ∈ B such that

WAB(b−, (a
′
+, b

′
−); i) ≥ 1/n and WAB(b+, (a

′
−, b

′
−); i) ≥ 1/n.

Decrease both of these terms by 1/n, and increase WAB(b−, (a
′
−, b

′
−); i) and WAB(b+, (a

′
+, b

′
−); i)

by 1/n. This moves the half-marginal by ℓ1 distance 4/n.∑
a′∈A

WAB(b, (a
′, b′); i) = WB(b, b

′; i) and
∑
b∈B

WAB(b, (a
′, b′); i) = WAB((a

′, b′)).

This step must be done at most R times to eliminate all negative entries, so the final

half-marginal satisfies∑
i∈[r]

∑
b∈B

∑
(a′,b′)∈A×B

|WAB(b, (a
′, b′); i)−W (b, (a′, b′); i)| ≤ (10rδ + 8|A||B|2r/n) +R · 4/n

≤ 50rδ + 36|A||B|2r/n.

2.10.3 The edge measure

Finally, we define the edge measure of WAB by

WAB((a, b), (a
′, b′); i) = 1

n
bn ·W ((a, b), (a′, b′); i)c

for a 6= a0 and (a′, b′) 6= (a0, b0),
(2.5)

WAB((a0, b), (a
′, b′); i) = WAB(b, (a

′, b′); i)−
∑
a̸=a0

WAB((a, b), (a
′, b′); i)

for (a′, b′) 6= (a0, b0),

(2.6)

WAB((a, b), (a0, b0); i) = WAB((a, b))−
∑

(a′,b′ )̸=(a0,b0)

WAB((a, b), (a
′, b′); i). (2.7)
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(a0, b0) (a1, b0) (a2, b0) (a0, b1) (a1, b1) (a2, b1) (a0, b2) (a1, b2) (a2, b2)

(a0, b0) → ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

(a1, b0) → b·c b·c b·c b·c b·c b·c b·c b·c

(a2, b0) → b·c b·c b·c b·c b·c b·c b·c b·c

(a0, b1) → ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

(a1, b1) → b·c b·c b·c b·c b·c b·c b·c b·c

(a2, b1) → b·c b·c b·c b·c b·c b·c b·c b·c

(a0, b2) → ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

(a1, b2) → b·c b·c b·c b·c b·c b·c b·c b·c

(a2, b2) → b·c b·c b·c b·c b·c b·c b·c b·c

Figure 2.3: A diagram of how the edge measure WAB((·, ·), (·, ·); i) is chosen if A = {a0, a1, a2}

and B = {b0, b1, b2}. First obtain the entries marked b·c by rounding down entries of W . Then

choose entries marked ↓ according to Equation 2.6, which ensures that the B half-marginal

is the one chosen above. Then choose entries marked → according to Equation 2.7, which

ensures that the vertex measure is the one chosen above.
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See Figure 2.3.

It follows from this definition that WAB is a (signed) weight with B-marginal WB.

We now check that WAB is ℓ1-close to W . We consider separately the contribution to the

ℓ1 distance of terms defined in equations (2.5), (2.6), and (2.7):

(2.5) terms: Each term of WAB defined using the floor function in equation (2.5) is distance

at most 1/n from the corresponding W term. The total contribution of these

terms to the ℓ1 distance is therefore at most |A|2|B|2r/n.

(2.6) terms: Applying the triangle inequality to terms defined in equation (2.6),

|WAB((a0, b), (a
′, b′); i)−W ((a0, b), (a

′, b′); i)|

≤ |WAB(b, (a
′, b′); i)−W (b, (a′, b′); i)|

+
∑
a̸=a0

|WAB((a, b), (a
′, b′); i)−W ((a, b), (a′, b′); i)|

≤ |WAB(b, (a
′, b′); i)−W (b, (a′, b′); i)|+ |A|/n.

By the ℓ1 bound on the distance between the half-marginals, the total contri-

bution of all such terms is therefore

∑
i∈[r]

∑
b

∑
(a′,b′) ̸=(a0,b0)

(|WAB(b, (a
′, b′); i)−W (b, (a′, b′); i)|+ |A|/n)

≤ [50rδ + 36|A|2|B|2r/n] + |A|2|B|2r/n

= 50rδ + 37|A|2|B|2r/n

(2.7) terms: Applying the triangle inequality to terms defined in equation (2.7):

|WAB((a, b), (a0, b0); i)−WAB((a, b), (a0, b0); i)|

≤ |WAB((a, b))−W ((a, b))|

+
∑

(a′,b′ )̸=(a0,b0)

|WAB((a, b), (a
′, b′); i)−W ((a, b), (a′, b′); i)|.
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Therefore the total contribution of all such terms is∑
i∈[r]

∑
a,b

|WAB((a, b), (a0, b0); i)−WAB((a, b), (a0, b0); i)|

=
∑
i∈[r]

∑
a,b

[
|WAB((a, b))−W ((a, b))|

+
∑

(a′,b′) ̸=(a0,b0)

|WAB((a, b), (a
′, b′); i)−W ((a, b), (a′, b′); i)|

]

=

vertex measure︷ ︸︸ ︷∑
i∈[r]

∑
a,b

|WAB((a, b))−W ((a, b))|

+

(2.5) terms︷ ︸︸ ︷∑
i∈[r]

∑
a̸=a0

∑
b

∑
(a′,b′ )̸=(a0,b0)

|WAB((a, b), (a
′, b′); i)−W ((a, b), (a′, b′); i)|

+

(2.6) terms︷ ︸︸ ︷∑
i∈[r]

∑
b

∑
(a′,b′ )̸=(a0,b0)

|WAB((a0, b), (a
′, b′); i)−W ((a0, b), (a

′, b′); i)|

]

≤ r · [6δ + 3|A||B|/n] +
[
|A|2|B|2r/n

]
+
[
50rδ + 37|A|2|B|2r/n

]
≤ 56rδ + 41|A|2|B|2r/n.

Summing up the contributions from terms of all three types, we get that

d1(WAB,W ) ≤ 106rδ + 79|A|2|B|2r/n.

2.10.3.1 Nonnegativity

We can modify a solution with negative entries to get a nonnegative one similarly to above.

Let −R/n be the sum of all negative entries; then

R/n ≤ 106rδ + 78|A|2|B|2r/n.

Suppose there is some entry

WAB((a−, b−), (a
′
−, b

′
−); i) ≤ −1/n.
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We want to increment this term by 1/n without affecting the vertex measure or the B

marginal. Since

∑
(a′,b′)∈A×B

WAB((a−, b−), (a
′, b′); i) = WAB((a−, b−)) ≥ 0

there exists some (a′+, b
′
+) ∈ A× B such that WAB((a−, b−), (a

′
+, b

′
+); i) ≥ 1/n; similarly since

∑
a∈A

WAB((a, b−), (a
′, b′−); i) = WAB(b−, (a

′
−, b

′
−); i) ≥ 0

there exists some a+ such that WAB((a+, b−), (a
′
−, b

′
−); i) ≥ 1/n. Increase

WAB((a−, b−), (a
′
−, b

′
−); i) and WAB((a+, b−), (a

′
+, b

′
+); i)

by 1/n, and decrease

WAB((a−, b−), (a
′
+, b

′
+); i) and WAB((a+, b−), (a

′
−, b

′
−); i)

by 1/n. This moves the weight by ℓ1 distance 4/n.

Since R is the maximum number of times we need to do this before there are no more

negative entries, the final weight satisfies

d1(WAB,W ) ≤ 106rδ + 79|A|2|B|2r/n+ 4R/n ≤ 530rδ + 391|A|2|B|2r/n.

To simplify, we write

d1(WAB,W ) ≤ 530r(δ + |A× B|2/n),

or

d(WAB,W ) ≤ 265r(δ + |A× B|2/n).
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CHAPTER 3

Gibbs measures and Glauber dynamics

This chapter contains definitions and fundamental results which are common to Chapters 4

and 5.

As above, Γ will denote a group with a fixed set of r generators {s1, . . . , sr}. We will

also use the symbol Γ to denote the group’s left Cayley graph, which has vertex set Γ and

an i-labeled directed edge (γ, siγ) for every i ∈ [r] and γ ∈ Γ.

For some finite alphabet A, we define the shift action of Γ on AΓ by

(βy)(γ) = y(γβ)

for β, γ ∈ Γ. We can think of this as moving the center of the labeling to β−1. We say that

a measure µ ∈ Prob(AΓ) is shift-invariant if β∗µ = µ for any β ∈ Γ, where β∗ denotes the

pushforward. We denote the set of shift-invariant probability measures by ProbΓ(AΓ).

If V is a finite set, we can consider the set Hom(Γ, Sym(V )) of homomorphisms from Γ

to the group of permutations of V . Given σ ∈ Hom(Γ, Sym(V )), we write the permutation

which is the image of γ ∈ Γ by either σγ or σ(γ). We can associate to σ a directed graph

with vertex set V and an i-labeled edge (v, σsi(v)) for each i ∈ [r] and v ∈ V .

The graph of any σ can be thought of as a finite system which locally looks like Γ, just

as a large rectangular grid locally looks like the integer lattice Zr. The labeling of the edges

gives a canonical way to lift elements of AV to elements of AΓ; see below.

Either Γ or the graph of some σ can be endowed with a natural graph distance: the

distance between a pair of vertices is defined to be the minimal number of edges in a path
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between them, ignoring edge directions. Let Bσ(v,R) denote the closed radius-R ball cen-

tered at v ∈ V , and similarly define BΓ(γ,R) for γ ∈ Γ.

Give AΓ the metric

d(x,y) =
∑
γ∈Γ

(3r)−|γ|1{x(γ)̸=y(γ)};

the factor 3 is chosen to ensure convergence. Note that diam AΓ ≤ 3. This metric induces

the product topology (with A having the discrete topology).

Let d̄ denote the corresponding transportation metric on Prob(AΓ) (the set of Borel

probability measures); specifically, with Lip1(A
Γ) denoting the set of 1-Lipschitz real-valued

functions, we define

d̄(µ, ν) = sup
{
|µf − νf | : f ∈ Lip1(A

Γ)
}
.

Here µf denotes the integral of f with respect to µ. Note that d generates the product

topology on AΓ (which is compact), and d̄ generates the weak topology induced by the pair-

ing with continuous functions (which is also compact).

For any set V and any x ∈ AV , v ∈ V , a ∈ A we let xv→a ∈ AV be given by

xv→a(w) =

 x(w), w 6= v

a, w = v.

Recall that an element of AV is referred to as a microstate and an element of Prob(AV ) as a

state.

3.1 Interaction

Let V be an at most countable set and fix σ ∈ Hom(Γ, Sym(V )). We will apply this in

two cases: when V is finite, and when V = Γ and σ is the action of Γ on itself by right

multiplication. We will distinguish between these cases by giving notation superscripts of σ

or Γ respectively (e.g. Ωσ versus ΩΓ).
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A nearest-neighbor interaction with alphabet A is a pair Φ = (J, h) where J : A2 → R is

symmetric and h : A → R. With S = {s1, . . . , sr, s−1
1 , . . . , s−1

r }, for v ∈ V let Φv : A
V → R be

given by

Φv(x) = h(x(v)) +
∑
s∈S

J(x(v), x(σsv)).

If V is finite then we can define the energy U : AV → R by

U(x) =
∑
v∈V

h(x(v)) +
∑
v∈V

∑
i∈[r]

J(x(v), x(σsiv)).

This can also be written

U(x) =
∑
v∈V

Uv(x)

where

Uv(x) = h(x(v)) +
1

2

∑
s∈S

J(x(v), x(σsv)).

Note that Uv can be thought of as “energy per vertex at v.” In contrast, Φv might be

described as “energy due to interactions involving v.”

Note that if we define

umax = max
a∈A

(
h(a) + rmax

b∈A
J(a, b)

)
and

umin = min
a∈A

(
h(a) + rmin

b∈A
J(a, b)

)
then for any V, σ and any x ∈ AV we have

umin ≤ 1

|V |
U(x) ≤ umax.

An Ising model with no external field has A = {−1, 1}, J(x) = βab, and h ≡ 0 for some

β ≥ 0 (the inverse temperature). The Bernoulli shift with base measure p ∈ Prob(A) also

fits into this framework by taking J ≡ 0 and h(a) = − log p({a}).

The present framework does not include systems with hard constraints, like the 0-

temperature Ising model or the hardcore model.
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3.2 Glauber dynamics

For a ∈ A let

cv(x, a) = Zv(x)
−1 exp{−Φv(x

v→a)} ,

where Zv(x) is the normalizing factor which makes cv(x, ·) a probability measure on A. We

can think of cv(x, ·) as the transition rates for the spin at v conditioned on the current state

of the system being x. Note that this only depends on the coordinates of x at vertices

adjacent to v.

The Glauber dynamics is the continuous-time Markov process with state space AV and

generator Ω given by

Ωf(x) =
∑
v∈V

∑
a∈A

cv(x, a)[f(x
v→a)− f(x)].

If V is finite then this gives a well-defined linear operator on C(AV ). Otherwise we need to

first define Ω on a ‘core’ of ‘smooth’ functions for which the sum converges, then take the

closure of Ω; see [Lig05] for details. The generator induces a Markov semigroup denoted

{S(t) : t ≥ 0}.

Given x ∈ AV , random or deterministic, we let xt denote the AV -valued random variable

which is the evolution of x to time t.

For any continuous function f : AV → R we interpret S(t)f(x) as the expected value of

f(xt).

The semigroup also acts on probability measures, but on the right: µS(t) is interpreted

as the evolution of µ ∈ Prob(AV ) to time t. We will also often write µt := µS(t); the relevant

semigroup will typically be clear from context. The right action convention is appropriate

because [µS(t)]f = µ[S(t)f ], where µf denotes the integral of f .

Further details of the construction of the dynamics will only be needed for proofs of the

following two results. The relevant details are contained in Section 3.7.
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There is an approximate equivariance between the Glauber semigroups and the empirical

distribution:

Theorem 3.2.1. There is a constant M > 0 such that for any x ∈ AV , σ ∈ Hom(Γ, Sym(V )),

and t ≥ 0

d̄
(
Sσ(t)P σ

x , P σ
xS

Γ(t)
)
≤ ∆σ · teMt.

A proof is given in Section 3.7.1.

It may be helpful to clarify that the first term on the left, Sσ(t)P σ
x , is the evolution to

time t of the function P σ
• : AV → Prob(AΓ) evaluated at x ∈ AV . The second term is the

evolution of the empirical distribution P σ
x . So this theorem says that the expected empirical

distribution after running the finitary dynamics for time t is close to the result of evolving

the original empirical distribution for time t, as long as σ locally looks like Γ.

We also use the following Lipschitz bound on the Markov semigroup:

Lemma 3.2.2. If µ, ν ∈ Prob(AΓ) then

d̄
(
µSΓ(t), νSΓ(t)

)
≤ exp(Mt) d̄(µ, ν).

3.3 Gibbs measures

If V is finite, the Gibbs measure ξV ∈ Prob(AV ) is defined by

ξV {x} = Z−1
V exp{−U(x)}

where ZV is the normalizing constant. Note that

ξV (y(v) = a | y(w) = x(w) ∀w 6= v) =
exp{−U(xv→a)}∑
b∈A exp{−U(xv→b)}

= cv(x, a),

since
exp{−U(xv→a)}
exp{−U(xv→b)}

=
exp{−Φv(x

v→a)}
exp{−Φv(xv→b)}

.
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On the infinite graph Γ we must use a different approach, since the sum defining the

total energy will not converge. We use a natural generalization of [Lig05, Definition IV.1.5];

see also [Geo11] for a much more general treatment of infinite-volume Gibbs measures.

Let Tγ denote the σ-algebra on AΓ generated by the coordinate maps corresponding to

all vertices except for γ ∈ Γ. We call µ ∈ Prob(AΓ) a Gibbs measure if for each γ ∈ Γ and

a ∈ A, the function y 7→ cγ(y, a) is a version of the conditional expectation µ({x : x(γ) =

a} | Tv)(y). This means that for every integrable f : AΓ → R and γ ∈ Γ we have∫ ∑
a∈A

cγ(x, a)f(x
γ→a)µ(dx) =

∫
f(x)µ(dx).

We may also describe this relation by saying that µ is invariant under re-randomizing the

spin at γ using the kernel cγ.

Note that [Geo11] requires all finite-dimensional conditional expectations to be specified

by the potential in a particular way, not just the single-site ones; see Proposition 5.5.2 below

for a proof that the definitions are equivalent in this setting.

If µ is Gibbs then for any ‘smooth’ f

µΩΓf =

∫ (∑
γ,a

cγ(x, a)[f(x
γ→a)− f(x)]

)
µ(dx) = 0.

It follows that µΩΓ = 0, which means Gibbs measures are Glauber-invariant.

We will denote the set of all Gibbs measures for the interaction Φ by G (Φ), or just G if

the specific Φ is clear from context or irrelevant. The shift-invariant Gibbs measures will be

denoted by G Γ(Φ) or G Γ.

The fact that G Γ is a face of the simplex ProbΓ(AΓ) will be important:

Lemma 3.3.1. Let θ ∈ Prob(ProbΓ(AΓ)) and suppose
∫
µ θ(dµ) ∈ G Γ. Then θ(G Γ) = 1.

This is stated in the case Γ = Zr in Georgii’s book [Geo11, Theorem 14.15(c)]. The

proof works just as well in our generality, and goes as follows: It suffices to show that if
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µ, ν ∈ Prob(AΓ) are shift-invariant, µ ∈ G Γ, and ν is absolutely continuous to µ then ν is

also Gibbs. Under these assumptions, since ν � µ we can write ν = fµ for some measurable

f . But since ν, µ are shift-invariant, f must be µ-a.s. equal to a shift-invariant function. Since

µ is shift-invariant, the σ-algebra of shift-invariant measurable subsets of AΓ is contained in

the tail σ-algebra up to µ-null sets. Therefore f is µ-a.s. equal to a tail-measurable function.

From this we can conclude that ν is Gibbs.

3.4 Good models for measures on AΓ

Let V be a finite set and let σ ∈ Hom(Γ, Sym(V )). A labeling x ∈ AV is said to be a

good model for µ ∈ Prob(AΓ) over σ if the empirical distribution P σ
x is close to µ in the

weak topology. More precisely, we can say x is O-good if P σ
x ∈ O for some weak-open

neighborhood O 3 µ. The set of such x is denoted Ω(σ,O). An interpretation of this

relationship is that average local quantities of the finite system are consistent with µ.

We define the empirical distribution of a state ζ ∈ Prob(AV ) by

P σ
ζ := ζP σ

x =

∫
P σ
x ζ(dx) ∈ ProbΓ(AΓ)

and say that ζ is O-consistent with µ (for some neighborhood O 3 µ) over σ if P σ
ζ ∈ O. We

can still interpret this in terms of averages of local quantities: now the average also involves

a random microstate x with law ζ. We denote the set of such states by Ω(σ,O). This way

of lifting a finitary state is used in [Alp16]; it also essentially appears in the notion of “local

convergence on average” introduced in [MMS12, Definition 2.3].

This consistency is stable under Glauber dynamics in the following sense:

Proposition 3.4.1. Suppose σ ∈ Hom(Γ, Sym(V )), ζ ∈ Prob(AV ), and µ ∈ Prob(AΓ). Let

ζt, µt denote their evolutions under Glauber dynamics on σ,Γ respectively. Then for any

t ≥ 0

d̄
(
P σ
ζt , µt

)
≤
[
∆σt+ d̄

(
P σ
ζ , µ

)]
exp(Mt),

where M > 0 depends only on the interaction and Γ.
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We give the proof here, since it uses only results already stated:

Proof. For any f ∈ Lip1(A
Γ), the triangle inequality gives∣∣P σ

ζtf − µtf
∣∣ ≤ ∣∣P σ

ζtf − P σ
ζ S

Γ(t)f
∣∣+ ∣∣P σ

ζ S
Γ(t)f − µtf

∣∣
=
∣∣ζ[Sσ(t)P σ

x f − P σ
xS

Γ(t)f
]∣∣+ ∣∣P σ

ζ S
Γ(t)f − µSΓ(t)f

∣∣.
Using that ζ is a probability measure and the definition of d̄, this implies the bound∣∣P σ

ζtf − µtf
∣∣ ≤ max

x∈AV
d̄
(
Sσ(t)P σ

x , P
σ
xS

Γ(t)
)
+ d̄
(
P σ
ζ S

Γ(t), µSΓ(t)
)
.

The first term may be controlled with Theorem 3.2.1 and the second with Lemma 3.2.2 to

get ∣∣P σ
ζtf − µtf

∣∣ ≤ [∆σt+ d̄
(
P σ
ζ , µ

)]
exp(Mt).

The result then follows by taking the supremum over f ∈ Lip1(A
Γ).

3.5 Free energy density

Given σ ∈ Hom(Γ, Sym(V )), the free energy of ζ ∈ Prob(AV ) is given by

A(ζ) = ζ(U)− H(ζ),

where ζ(U) =
∫
U(x) ζ(dx) is the average energy and H(ζ) is the Shannon entropy.

Given a sequence Σ = (σn)n∈N with σn ∈ Hom(Γ, Sym(Vn)) such that |Vn| → ∞ and

∆σn → 0, we define the free energy density of µ ∈ ProbΓ(AΓ) relative to Σ by

aΣ(µ) = lim
O↓µ

lim sup
n→∞

inf
ζ∈Ω(σn,O)

1

|Vn|
A(ζ).

We follow the convention that the infimum of the empty set is +∞.

The outermost limit is over the net of weak-open neighborhoods of µ, partially ordered

by inclusion. Note that for each n the expression infζ∈Ω(σn,O)
1

|Vn|A(ζ) is nondecreasing as

O ↓ µ, so the limit exists and is equal to the supremum over O 3 µ.
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It is straightforward to check from the definitions that ζ(U)/|V | = P σ
ζ (Ue). Consequently

we have

aΣ(µ) = µ(Ue)− hmod
Σ (µ),

where hmod is the ‘modified sofic entropy’ in [Alp16], except with a lim inf instead of lim sup.

Since this connection will not be used below, we omit the proof. It may also be interesting

to investigate other sofic free energy densities with hmod replaced by a different type of sofic

entropy.

Since the map µ 7→ aΣ(µ) is defined in terms of a supremum over neighborhoods of µ, it

is lower semi-continuous. Consequently, it attains its minimum on ProbΓ(AΓ).

Note also that as long as Ω(σn,O) is nonempty, for every ζ in this set we have

umin − log|A| ≤ 1

|Vn|
[
ζ(U)− H(ζ)

]
≤ umax.

In particular,

aΣ(µ) ∈
[
umin − log|A|, umax

]
∪ {+∞}.

The case aΣ(µ) = +∞ can actually occur, for example if µ is ergodic and the sofic entropy

relative to Σ is −∞. This is because, in the ergodic case, ζ being consistent with µ is the

same as being mostly supported on labelings which are good models for µ, but if the sofic

entropy is −∞ then there are no good models.

Note, however, that the function µ 7→ aΣ(µ) is not identically +∞ for any choice of Σ,

since the point mass at a constant labeling in AΓ always has good models.

If µ were not shift-invariant then the expression defining aΣ(µ) would still make sense,

but would take the value +∞ for any Σ. This is because empirical distributions are always

shift-invariant and ProbΓ(AΓ) is closed so, no matter what Σ we choose, any small enough

neighborhood of µ contains no empirical distributions. In fact, we will see below that for

some Γ (for example Γ = F2 ×F2) there even exist shift-invariant measures which cannot be

approximated by empirical distributions over any Σ. In these cases the obstruction is that

empirical distributions always have finite support.
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Following [Bow03], a shift-invariant measure in ProbΓ(AΓ) is called periodic if it has finite

support, and a group Γ is said to have property pa if the set of periodic measures is dense

in ProbΓ(AΓ) for every finite alphabet A; in other words, if every shift-invariant probability

measure on AΓ has periodic approximations.

In Section 4.3 we prove the following:

Proposition 3.5.1. A group Γ has property pa if and only if for every finite alphabet A

and every µ ∈ ProbΓ(AΓ) there exists a sequence Σ =
(
σn ∈ Hom(Γ, Sym(Vn))

)
n∈N such that

∆σn → 0 and aΣ(µ) < +∞.

Property pa was proved to hold for free groups by Bowen in [Bow03, Theorem 3.4].

Kechris later studied another equivalent property in [Kec12] which he called “md”; see also

the survey [BK20] for more recent information on which groups are known to have this

property. In particular:

• Amenable groups have property pa.

• If two nontrivial groups are both either finite or property-pa, then their free product

has property pa.

• The recent negative solution to Connes’ embedding conjecture [JNV20] implies that

the direct product F2 × F2 does not have property pa.

3.5.0.1 Calculation

In some cases it can be possible to calculate the free energy density. Fix a sequence Σ with

∆σn → 0, and for each n let ξn ∈ Prob(AVn) denote the unique finitary Gibbs measure.

Suppose that P σn
ξn

wk−→ µ. Then for any O 3 µ we have ξn ∈ Ω(σn,O) for all large enough n.

But ξn, by virtue of being the Gibbs measure, has minimal free energy among all probability

measures on AVn , so

inf
ζ∈Ω(σn,O)

A(ζ) = A(ξn) = − logZn
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where Zn is the normalizing constant appearing in the definition of ξn. It follows that

aΣ(µ) = − lim inf
n→∞

1

|Vn|
logZn.

The main theorem of [MMS12] implies that, for the Ising model with no external field

on a regular tree, the weak limit of P σn
ξn

is 1
2
(µ+ + µ−) for any Σ, where µ+, µ− are the

Gibbs measures with +,− boundary conditions respectively. In this case 1
|Vn| logZn actually

converges, and the limit can be written down explicitly; see [DM10].

3.6 Measuring non-Gibbs-ness

As in [Hol71], we make use of the function

F0(s) =

 s− s log s− 1, s > 0

−1, s = 0

which appears in an expression for the time derivative of free energy [Proposition 4.2.1]. This

function is concave, nonpositive, and equal to 0 if and only if s = 1. A graph is included in

Figure 3.1. If µR ∈ Prob(AB(e,R)) has full support, we define

∆R
a (µR) =

∑
y∈AB(e,R)

µR{y} · F0

(
exp{−Φe(y)}

exp{−Φe(ye→a)}
µR{ye→a}
µR{y}

)
.

This measures the average failure of µR to be consistent with the Gibbs specification.

Lemma 3.6.1. Suppose µ ∈ Prob(AΓ) is a translation-invariant measure such that for every

R ≥ 1 the marginal µR ∈ Prob(AB(e,R)) has full support and ∆R
a (µR) = 0 for every a ∈ A.

Then µ is Gibbs.

Proof. Fix R ≥ 1, and let SB(e,R)\{e} denote the σ-algebra generated by sites in B(e,R)\{e}.

Then by definition of conditional expectation, for any a ∈ A

µ
(
{x ∈ AΓ : x(e) = a} | SB(e,R)\{e}

)
(y) =

µR{ye→a}∑
b∈A µR{ye→b}

,
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Figure 3.1: Graph of F0

where on the right-hand side we use the shorthand µR{y} = µR{y ↾B(e,R)} for y ∈ AΓ. Our

assumption that µR has full support and ∆R
a (µR) = 0 implies that

µR{ye→a}∑
b∈A µR{ye→b}

=

(∑
b∈A

µR{ye→b}
µR{ye→a}

)−1

=

(∑
b∈A

exp{−Φe(y
e→b)}

exp{−Φe(ye→a)}

)−1

= ce(y, a)

Taking R to infinity, by martingale convergence we get

µ(· | Te)(y) = ce(y, ·).

By translation invariance, it follows that µ is Gibbs.

3.7 Proofs of statements involving infinitary dynamics

We first give some additional setup regarding the Glauber dynamics on AΓ. First, recall

that on an infinite graph we must first define the Markov generator on a ‘core’ of ‘smooth’

functions. Let C(AΓ) denote the space of continuous real-valued functions on AΓ, with the

supremum norm ‖·‖∞. The smooth functions are defined as follows: given f ∈ C(AΓ) and
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v ∈ Γ, let

∆f (v) = sup{|f(η1)− f(η2)| : η1(u) = η2(u) ∀u 6= v},

|||f ||| =
∑
v∈Γ

∆f (v),

and

D(AΓ) = {f ∈ C(AΓ) : |||f ||| < ∞}.

Every function which depends on only finitely many coordinates is in D(AΓ), so D(AΓ) is

dense in C(AΓ). For every f ∈ D(AΓ) the series defining Ωf converges absolutely, and

Ωf ∈ C(AΓ).

Note that the condition |||f ||| < ∞ does not imply that f is continuous; in fact for every

tail-measurable f we have |||f ||| = 0.

Continuing to follow mostly the notation from Liggett’s book, let

cu(v) = sup
{
‖cu(η1, ·)− cu(η2, ·)‖TV : η1(γ) = η2(γ) ∀γ 6= v

}
.

Then

Θβ(u) =
∑
v∈Γ

β(v)cu(v)

defines a bounded linear operator on ℓ1(Γ).

The closure Ω̄Γ is a Markov generator, so its domain is a dense subset of the continuous

functions C(AΓ) and the range of I − λΩ̄Γ is all of C(AΓ) for all λ ≥ 0. We also have

‖f‖ ≤ ‖(I−λΩ̄Γ)f‖ for all λ ≥ 0 [Lig05, comment after Definition 2.1]. In particular I−λΩ̄Γ

is injective. An important consequence is that we have a contraction (I − λΩ̄Γ)−1 : C(AΓ) →

C(AΓ).

3.7.1 Approximate equivariance (Proof of Theorem 3.2.1)

For β ∈ RΓ, let

‖β‖ = sup
γ∈Γ

|β(γ)|(3r)|γ|.
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Lemma 3.7.1. For any continuous g : AΓ → R,

1

3
|||g||| ≤ ‖∆g‖ = |g|Lip.

In particular, every Lipschitz function is in D(AΓ).

Proof. For the inequality:

|||g||| =
∑
γ

∆g(γ) ≤
(
sup
γ

∆g(γ)(3r)
|γ|
)∑

γ

(3r)−|γ| ≤ 3 sup
γ

∆g(γ)(3r)
|γ|.

Now similarly, for any x,y ∈ AΓ

|g(x)− g(y)| ≤
∑

γ :x(γ)̸=y(γ)

∆g(γ) (using continuity)

≤ sup
γ

∆g(γ)(3r)
|γ|

∑
γ :x(γ)̸=y(γ)

(3r)−|γ|

= sup
γ

∆g(γ)(3r)
|γ| · d(x,y),

so

|g|Lip ≤ sup
γ

∆g(γ)(3r)
|γ| = ‖∆g‖.

The converse inequality follows from the fact that for any γ ∈ Γ

∆g(γ) ≤ (3r)−|γ||g|Lip.

Lemma 3.7.2. With respect to the norm ‖·‖ on RΓ, Θ has operator norm at most

M := sup
γ

∑
h∈Γ

ch(γ)(3r)
d(h,γ) < ∞.

Proof. For any γ ∈ Γ,

[Θβ](γ) · (3r)|γ| ≤
∑
h∈Γ

|β(h)|ch(γ)(3r)|γ|

≤
∑
h∈Γ

|β(h)|ch(γ)(3r)|h|+d(h,γ)

≤ ‖β‖
∑
h∈Γ

ch(γ)(3r)
d(h,γ),
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so, taking the supremum over γ, we see that ‖Θβ‖ ≤ ‖β‖M and hence the operator norm is

bounded by M .

Finiteness of M follows from the fact that always ch(γ) ≤ 2, and ch(γ) = 0 if h, γ are not

adjacent. So for any γ ∑
h∈Γ

ch(γ)(3r)
d(h,γ) ≤ 2 · 2r · (3r)1 = 12r2.

We can now give a proof of Lemma 3.2.2:

Proof of Lemma 3.2.2. By [Lig05, Theorem 3.9(c)],

∆SΓ(t)f ≤ exp(tΘ)∆f ∀f ∈ D(AΓ).

Taking ‖·‖ norms of both sides gives, by Lemma 3.7.1,

|SΓ(t)f |Lip ≤ exp(Mt)|f |Lip.

The result follows from this and the definition of d̄.

Proposition 3.7.3. For all small enough λ > 0, for all g ∈ D(AΓ) we have

|(I − λΩ̄)−kg|Lip ≤ [1− λM ]−k|g|Lip.

Proof. Recall from [Lig05, proof of Theorem 3.9] that for all small enough λ > 0

∆(I−λΩ̄)−kg ≤ [(1 + λε)I − λΘ]−k∆g

for any g ∈ D(AΓ). If we apply the ‖·‖ norm to both sides we get, by Lemma 3.7.1,

|(I − λΩ̄)−kg|Lip ≤ [1− λ(M − ε)]−k|g|Lip.

The stated bound follows after dropping ε, which is positive.

Define

|||f |||R =
∑
|γ|≥R

∆f (γ).
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If f ∈ D(AΓ) then limR→∞ |||f |||R = 0; if f is Lipschitz then for any R ≥ 0

|||f |||R ≤ 3|f |Lip(2/3)R.

The following result establishes an approximate equivariance of P σ
x with the generator:

Proposition 3.7.4. Let V be a finite set and σ ∈ Hom(Γ, Sym(V )). For any f ∈ D(AΓ),

R ∈ N, and x ∈ AV , ∣∣ΩσP σ
x f − P σ

xΩ
Γf
∣∣ ≤ 3|||f |||R + 2δσR|||f |||.

Proof. From the definitions of Ωσ and P σ
x ,

ΩσP σ
x f =

∑
v∈V

∑
a∈A

cv(x, a)
[
P σ
xv→af − P σ

x f
]

=
1

|V |
∑

v,w∈V

∑
a∈A

cv(x, a)
[
f(Πσ

wx
v→a)− f(Πσ

wx)
]
.

We can compare this to if the sum is restricted to pairs v, w which are nearby in the graph

σ: ∣∣∣∣∣∣ΩσP σ
x f − 1

|V |
∑
w∈V

∑
v∈Bσ(w,R−1)

∑
a∈A

cv(x, a)
[
f(Πσ

wx
v→a)− f(Πσ

wx)
]∣∣∣∣∣∣

≤ 1

|V |
∑
w∈V

∑
v ̸∈Bσ(w,R−1)

∑
a∈A

cv(x, a)|f(Πσ
wx

v→a)− f(Πσ
wx)|

Now since the labelings xv→a and x differ only at v, their lifted labelings Πσ
wx

v→a and Πσ
wx

differ only at preimages of v under the map γ 7→ σγw. Let Πσ
w{v} ⊂ Γ denote the set of

these preimages. Then the above is bounded by

1

|V |
∑
w∈V

∑
v ̸∈Bσ(w,R−1)

∑
a∈A

cv(x, a)
∑

γ∈Πσ
w{v}

∆f (γ) =
1

|V |
∑
w∈V

∑
v ̸∈Bσ(w,R−1)

∑
γ∈Πσ

w{v}

∆f (γ).

Since for each w the sets in the collection {Πσ
w{v} : v 6∈ Bσ(w,R − 1)} are disjoint and

contained in the complement of BΓ(e,R− 1), we can bound this by

1

|V |
∑
w∈V

∑
γ ̸∈BΓ(e,R−1)

∆f (γ) = |||f |||R.
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Now suppose w ∈ V is such that Bσ(w,R) ∼= BΓ(e,R): then for each v ∈ Bσ(w,R − 1)

the intersection BΓ(e,R − 1) ∩ Πσ
w{v} consists of a single point, which we call γv. We then

have cv(x, a) = cγv(Πσ
wx, a). From this we can get∣∣∣∣∣ ∑

v∈Bσ(w,R−1)

∑
a∈A

cv(x, a)
[
f(Πσ

wx
v→a)− f(Πσ

wx)
]

−
∑

γ∈BΓ(e,R−1)

∑
a∈A

cγ(Π
σ
wx, a)

[
f
(
(Πσ

wx)
γ→a
)
− f

(
Πσ

wx
)]∣∣∣∣∣ (∗)

=

∣∣∣∣∣∣
∑

v∈Bσ(w,R−1)

∑
a∈A

cv(x, a)[f(Π
σ
wx

v→a)− f
(
(Πσ

wx)
γv→a

)
]

∣∣∣∣∣∣
≤

∑
v∈Bσ(w,R−1)

∑
a∈A

cv(x, a)
∣∣f(Πσ

wx
v→a)− f

(
(Πσ

wx)
γv→a

)∣∣
Now our construction also guarantees that the labelings Πσ

wx
v→a and (Πσ

wx)
γv→a differ only

at sites in Πσ
w{v} other than γv, all of which lie outside BΓ(e,R − 1). Therefore we can

continue

(∗) ≤
∑

v∈Bσ(w,R−1)

∑
a∈A

cv(x, a)
∑

γ∈Πσ
w{v}

|γ|≥R

∆f (γ)

≤
∑
|γ|≥R

∆f (γ)

= |||f |||R.

In the second-to-last line, we have again used that Πσ
w{v1} and Πσ

w{v2} are disjoint if v1 6= v2.

For other ‘bad’ w where Bσ(w,R) 6∼= BΓ(e,R), approximating the sum over v by the

sum over γ in this way may be inaccurate, but the fraction of w ∈ V which are bad is

only δσR. For these w we note that the magnitudes of both sums in (∗) can be bounded by∑
γ∈Γ∆f (γ) = |||f |||.

So far we have shown that∣∣∣∣∣∣ΩσP σ
x f − 1

|V |
∑
w∈V

∑
|γ|<R

∑
a∈A

cγ(Π
σ
wx, a)

[
f
(
(Πσ

wx)
γ→a
)
− f

(
Πσ

wx
)]∣∣∣∣∣∣ ≤ 2|||f |||R + 2δσR|||f |||.
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To finish, we compare the second term on the left-hand side to P σ
xΩ

Γf using an approach

similar to above:∣∣∣∣∣ 1

|V |
∑
w∈V

∑
|γ|<R

∑
a∈A

cγ(Π
σ
kx, a)

[
f
(
(Πσ

kx)
γ→a
)
− f

(
Πσ

kx
)]

− 1

|V |
∑
w∈V

∑
γ∈Γ

∑
a∈A

cγ(Π
σ
wx, a)

[
f
(
(Πσ

wx)
γ→a
)
− f

(
Πσ

wx
)]∣∣∣∣∣

≤ 1

|V |
∑
w∈V

∑
|γ|≥R

∑
a∈A

cγ(Π
σ
wx, a)

∣∣f((Πσ
wx)

γ→a
)
− f

(
Πσ

wx
)∣∣

≤ 1

|V |
∑
w∈V

∑
|γ|≥R

∆f (γ)

= |||f |||R.

Lemma 3.7.5. For all small enough λ > 0, for any m ∈ N and g ∈ Lip(AΓ) we have

‖(I − λΩσ)−mP σ
x g − P σ

x (I − λΩ̄Γ)−mg‖ℓ∞(AV ) ≤ λ∆σ|g|Lip
m∑
k=1

(1− λM)−k.

Proof. We use induction on m, starting with the base case m = 1. Throughout, we assume

λ is small enough for Proposition 3.7.3 to apply.

Given g ∈ Lip(AΓ), let f = (I − λΩ̄Γ)−1g. Then for any R ∈ N

‖P σ
x g − (I − λΩσ)[P σ

x f ]‖ℓ∞(AV ) = ‖P σ
x [f − λΩ̄Γf ]− (I − λΩσ)[P σ

x f ]‖ℓ∞(AV )

= λ‖ΩσP σ
x f − P σ

x Ω̄
Γf‖ℓ∞(AV )

≤ λ(3|||f |||R + 2δσR|||f |||) (Prop. 3.7.4)

≤ λ(9 · (2/3)R + 6δσR)|f |Lip.

Taking the infimum over R gives

‖P σ
x g − (I − λΩσ)[P σ

x f ]‖ℓ∞(AV ) ≤ λ∆σ|f |Lip

≤ λ∆σ(1− λM)−1|g|Lip. (Prop. 3.7.3)

Since (I − λΩσ)−1 is a contraction on ℓ∞(AV ),

‖(I − λΩσ)−1P σ
x g − P σ

x (I − λΩ̄Γ)−1g‖ℓ∞ = ‖(I − λΩσ)−1 [P σ
x g − (I − λΩσ)[P σ

x f ]]‖ℓ∞

≤ λ∆σ(1− λM)−1|g|Lip.
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This proves the base case.

Now assuming the m case and the base case, we prove the m+ 1 case:

‖(I − λΩσ)−(m+1)P σ
x g − P σ

x (I − λΩ̄Γ)−(m+1)g‖ℓ∞

=
∥∥(I − λΩσ)−1

[
(I − λΩσ)−mP σ

x g − P σ
x (I − λΩ̄Γ)−mg

]
+
[
(I − λΩσ)−1P σ

x (I − λΩ̄Γ)−mg − P σ
x (I − λΩ̄Γ)−1(I − λΩ̄Γ)−mg

] ∥∥
ℓ∞

≤ ‖(I − λΩσ)−mP σ
x g − P σ

x (I − λΩ̄Γ)−mg‖∞ (contraction)

+ λ∆σ(1− λM)−1|(I − λΩ̄Γ)−mg|Lip (base case)

≤ λ∆σ|g|Lip
m+1∑
k=1

(1− λM)−k. (inductive hyp., Prop. 3.7.3)

This completes the induction.

Proof of Theorem 3.2.1

Given g ∈ Lip1(A
Γ), for all large enough m we can apply the previous lemma with λ = t/m,

which gives

‖(I − t
m
Ωσ)−mP σ

x g − P σ
x (I − t

m
Ω̄Γ)−mg‖ℓ∞(AV ) ≤ t

m
∆σ|g|Lip

m∑
k=1

(1− t
m
M)−k.

Let m → ∞. The left-hand side converges (by Hille-Yosida; [Lig05, Theorem 2.9(b)]) to

‖Sσ(t)P σ
x g−P σ

xS
Γ(t)g‖∞ while the lim sup of the right-hand side is bounded by ∆σteMt|g|Lip,

since

lim sup
m→∞

1

m

m∑
k=1

(1− t
m
M)−k ≤ lim sup

m→∞

1

m

m∑
k=1

(1− t
k
M)−k = eMt.

Since g ∈ Lip(AΓ) was arbitrary, the inequality of transportation distance follows.
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CHAPTER 4

Free energy, Gibbs measures, and Glauber dynamics

for nearest-neighbor interactions on trees

We extend results of R. Holley beyond the integer lattice to a large class of groups which

includes free groups. In particular we show that a shift-invariant measure is Gibbs if and

only if it is Glauber invariant. Moreover, any shift-invariant measure converges weakly to

the set of Gibbs measures when evolved under Glauber dynamics. These results are proven

using the notion of free energy density relative to a sofic approximation by homomorphisms,

introduced in Chapter 3. We also show that any shift-invariant measure which minimizes

free energy density is Gibbs.

4.1 Introduction, main results

In the present chapter we focus on extending results of Holley in [Hol71] to the nonamenable

setting. He studied a natural notion of free energy density for systems with sites indexed

by Zr, and used it to relate Gibbs measures and Glauber dynamics. His approach does not

seem to work for nonamenable groups due to non-negligibility of the boundary of large finite

subsystems.

More specifically, his approach can be viewed as dependent on the following approximate

equivariance:
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state on Zr state on Zr

state on large rectangle state on large rectangle

Glauber dynamics

marginal ≈⟳ marginal

Glauber dynamics

We can imagine that this works because, in a large rectangle, most vertices are far from the

boundary. Therefore the dynamics in the rectangle can, to a good approximation, be treated

as isolated from the exterior of the rectangle. The composition · ·
· ·

corresponds to running

the infinitary dynamics with influence from outside the rectangle while the composition · ·
· ·

corresponds to first isolating the rectangle then running the finitary dynamics.

There is no stated result in Holley’s paper which directly corresponds to this phenomenon,

but it can be compared to Theorem 3.2.1 above.

To work with nonamenable groups we will instead use an “extrinsic” approach to free

energy density which is inspired by recent work on the entropy theory of nonamenable group

actions, initiated by Lewis Bowen [Bow10c] to solve similar problems which appear in that

area.

4.1.1 Related work

In one respect, Holley [Hol71] worked in slightly more generality than we do here: he con-

sidered finite-range interactions, not just nearest-neighbor interactions. Higuchi and Shida

[HS75] extended his results to spin systems on Zr which may have infinite-range interactions,

but the strength of the interactions is assumed to decay sufficiently quickly.

The method of the present thesis may be compatible with such generalizations, but for

the sake of simplicity we choose not to pursue them here.

More recently, Jahnel and Külske [JK19] have extended the free energy density approach

to non-reversible dynamics on integer-lattice systems.

Caputo and Martinelli [CM06] have shown that if we evolve the product of plus-biased
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Bernoulli measures by Ising Glauber dynamics on an infinite tree, then it converges weakly

to the “plus boundary conditions” Gibbs measure.

There has been some other work on notions of free energy density for Ising models on

nonamenable groups, but these notions do not appear to have the properties we want for

our present purposes. Dembo and Montanari [DM10] consider, as we do below, a sequence

of finite graphs that locally converge to an infinite tree. Their work differs from ours in

that they study the limiting free energy density of the (unique) Gibbs measures on these

finite graphs, while we study the free energy density of finitary measures which are locally

consistent with a chosen infinitary measure (which is not necessarily Gibbs).

4.1.2 Precise statements of basic definitions and main theorems

The correspondence between finite and infinite systems is established using empirical distri-

butions, which we recall here. Let σ ∈ Hom(Γ, Sym(V )) and x ∈ AV . For any v ∈ V there

is a natural way to lift x to a labeling Πσ
vx ∈ AΓ, starting by lifting xv to the root e. More

precisely, (
Πσ

vx
)
(γ) = x

(
σγ(v)

)
.

The empirical distribution of x is defined by

P σ
x = (v 7→ Πσ

vx)∗Unif(V ) =
1

|V |
∑
v∈V

δΠσ
vx ∈ Prob

(
AΓ
)
.

This captures the ‘local statistics’ of x. This notation was used in the approach to sofic

entropy in [Aus16].

To state our results we use the following way of measuring local similarity of a finite graph

σ to Γ: for σ ∈ Hom(Γ, Sym(V )), we say Bσ(v,R) ∼= BΓ(e,R) if there is an isomorphism

of the induced subgraphs Bσ(v,R),BΓ(e,R) which respects both edge labels and directions.
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Define

δσR =
1

|V |
|{v ∈ V : Bσ(v,R) 6∼= BΓ(e,R)}|

∆σ = inf
R

(
9 · (2/3)R + 6δσR

)
.

The constants which appear here are connected to the choice of metric d in Chapter 3 above.

If ∆σ is small, then σ looks like Γ to a large radius near most vertices. This is a way of saying

that the action of σ is approximately free. Note also that a sequence σn Benjamini-Schramm

converges to the infinite tree Γ (or equivalently is a sofic approximation to the group Γ) if

and only if ∆σn → 0.

As mentioned above, our central tool is a notion of “free energy density” of a measure

µ ∈ Prob(AΓ) with respect to a nearest-neighbor potential. This free energy density is

defined relative to a choice of Σ = (σn ∈ Hom(Γ, Sym(Vn))n∈N with ∆σn → 0. It may be

+∞, but if it is finite then it is nonincreasing as µ evolves according to Glauber dynamics

(Proposition 4.2.2). Moreover if µ is not Gibbs then it is strictly decreasing; Proposition 4.2.3

gives a stronger version of this claim. For every choice of Σ there exist measures with finite

free energy density, so this implies the following:

Theorem A. For any choice of Σ and any nearest-neighbor interaction, every µ ∈ Prob(AΓ)

minimizing aΣ is Gibbs for that interaction, unless aΣ is identically +∞.

The converse is false, since a Gibbs measure may have free energy density +∞ with

respect to some Σ. It is unclear whether a Gibbs measure may have finite but non-minimal

free energy density.

Theorem B. Suppose µ ∈ ProbΓ(AΓ), and let µt denote its evolution under Glauber dynam-

ics. If there exist s ≥ 0 and Σ such that aΣ(µs) < +∞, then µt converges weakly to the set

of Gibbs measures as t → ∞.

It is possible to avoid the degenerate case of infinite free energy density by an appropriate

choice of Σ when Γ has a property called “property pa”; see Section 3.5 for a definition and

the relevant result (Proposition 3.5.1). Hence we have the following:
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Corollary 4.1.1. If Γ has property pa, then a shift-invariant measure is Gibbs if and only

if it is Glauber-invariant.

4.2 Proof of Theorem B

Proposition 4.2.1. Let ζ0 ∈ Prob(AV ), and let ζt denote its evolution under Glauber dy-

namics. Then for all t > 0, ζt has full support and

d

dt
A(ζt) =

∑
x,v,a

F0

(
exp{−Φv(x)}

exp{−Φv(xv→a)}
ζt{xv→a}
ζt{x}

)
ζt{x}cv(x, a).

Our proof of this proposition is based on the proof of the analogous result in Holley’s

paper [Hol71], with some minor changes.

For x ∈ AV , write

P (x) = exp{−U(x)}.

This is just the Gibbs measure on V , except without the normalizing factor. It is easy to

see that

A(ζ) =
∑
x

ζ{x} log ζ{x}
P (x)

.

Proof of proposition. A calculation using the Markov generator shows that

d

dt
ζt{x} =

∑
v,a

[
ζt{xv→a}cv(xv→a,x(v))− ζt{x}cv(x, a)

]
.

In particular, if x is such that ζt{x} = 0 but there exist v, a such that ζt{xv→a} > 0, then
d
dt
ζt{x} > 0. Unless t = 0 this would imply the existence of times where ζs gives negative

mass to {x}. Therefore ζt has full support for all t > 0.
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Therefore

d

dt
A(ζt) =

∑
x∈AV

d

dt

[
ζt{x} log

ζt{x}
P (x)

]
=
∑
x∈AV

d

dt
[ζt{x}] log

ζt{x}
P (x)

=
∑
x∈AV

∑
v,a

[
ζt{xv→a}cv(xv→a,x(v))− ζt{x}cv(x, a)

]
log

ζt{x}
P (x)

.

For x,y ∈ AV , define

A(x,y) =



−
∑
a,v

a̸=x(v)

cv(y, a), x = y

cv(y, a), x 6= y, x = yv→a for some v ∈ V, a ∈ A

0, else.

This has the following useful properties:

∑
x

A(x,y) = 0 ∀y. (4.1)

Proof. For any y,

∑
x

A(x,y) = A(y,y) +
∑
v∈V

∑
a̸=y(v)

A(yv→a,y) + 0 = 0. ◁

∑
y

A(x,y)P (y) = 0 ∀x. (4.2)

Proof. For any x,

∑
y

A(x,y)P (y) = A(x,x)P (x) +
∑
v∈V

∑
a̸=x(v)

A(x,xv→a)P (xv→a) + 0 = 0

=
∑
a,v

a̸=x(v)

[
− cv(x, a) exp{−U(x)}+ cv(x

v→a,x(v)) exp{−U(xv→a)}
]

= 0.
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In fact every term of this last sum is zero because

cv(x, a) exp{−U(x)}
cv(xv→a,x(v)) exp{−U(xv→a)}

=
exp{−Φv(x

v→a)} exp{−U(x)}
exp{−Φv(x)} exp{−U(xv→a)}

= 1. ◁

Using these two properties of A, and the fact that ζt has full support, we see that

d

dt
A(ζt) =

∑
x,y

A(x,y)ζt{y} log
ζt{x}
P (x)

=
∑
x,v,a

F0

(
P (x)

P (xv→a)

ζt{xv→a}
ζt{x}

)
ζt{x}cv(x, a).

The desired formula follows from the fact that P (x)
P (xv→a)

= exp{−Φv(x)}
exp{−Φv(xv→a)} , also used above.

We first use the previous result to show that free energy density is nonincreasing.

Proposition 4.2.2. Suppose µ ∈ Prob(AΓ), and let Σ =
(
σn ∈ Hom(Γ, Sym(Vn))

)
n∈N such

that ∆σn → 0.

Then aΣ(µ0) ≥ aΣ(µt) for all t ≥ 0.

Proof. If aΣ(µ0) = +∞ then the result is trivial, so suppose aΣ(µ0) < +∞. This means that

for any O 3 µ0 we have Ω(σn,O) 6= ∅ for all large enough n.

Let Ut be an arbitrary weak-open neighborhood of µt. By Proposition 3.4.1 there exists

U0 3 µ0 such that, for all large enough n, we have ζt ∈ Ω(σn,Ut) whenever ζ0 ∈ Ω(σn,U0).

Suppose n is large enough that Ω(σn,U0) 6= ∅. Since F0 ≤ 0, the previous proposition

implies that for any ζ0 ∈ Prob(AVn) and any t > 0

d

dt
A(ζt) ≤ 0.

Therefore for any t ≥ 0

A(ζ0) ≥ A(ζt),

and hence

inf
ζ∈Ω(σn,U0)

A(ζ) ≥ inf
ζ∈Ω(σn,Ut)

A(ζ).
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Now by definition of aΣ we have

aΣ(µ0) = sup
O∋µ0

lim sup
n→∞

1

|Vn|
inf

ζ∈Ω(σn,O)
A(ζ)

≥ lim sup
n→∞

1

|Vn|
inf

ζ∈Ω(σn,U0)
A(ζ)

≥ lim sup
n→∞

1

|Vn|
inf

ζ∈Ω(σn,Ut)
A(ζ).

Taking the supremum over Ut gives the result.

By a more careful analysis we can get the following proposition, the second part of which

may be interpreted as semicontinuity of the time derivative of aΣ(µt) as a function of the

measure:

Proposition 4.2.3. Suppose µ ∈ ProbΓ(AΓ) is not Gibbs. Then there exist c, T > 0 and an

open neighborhood O 3 µ such that if µ0 ∈ O then

1. There exists δ > 0 such that for any σ ∈ Hom(Γ, Sym(V )) with ∆σ < δ and any

ζ0 ∈ Ω(σ,O) we have A(ζ0) ≥ A(ζt) + ct|V | for all t ∈ [0, T ].

2. If Σ =
(
σn ∈ Hom(Γ, Sym(Vn))

)
n∈N is such that ∆σn → 0 then aΣ(µ0) ≥ aΣ(µt) + ct

for all t ∈ [0, T ].

Here we take the convention that +∞+ ct = +∞.

Proof. Since µ is not Gibbs, there exists R such that either µR does not have full support

or ∆R
a (µR) < 0 for some a ∈ A. We will come back to these two cases in a moment, but for

now let R be fixed so that one of them occurs. We may assume R ≥ 1.

Fix σ ∈ Hom(Γ, Sym(V )). Let

s = min

{
exp{−Φe(x)}∑

b∈A exp{−Φe(xe→b)}
: x ∈ AB(e,1)

}
> 0,

and call v ∈ V good if Bσ(v,R) ∼= BΓ(e,R), and let V ′ be the set of such v. Then

d

dt
A(ζt) ≤ s

∑
x,v,a
v good

F0

(
exp{−Φv(x)}

exp{−Φv(xv→a)}
ζt{xv→a}
ζt{x}

)
ζt{x}.
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Let P̃ σ,R
ζ ∈ Prob(AB

Γ(e,R)) be given by

P̃ σ,R
ζ {y} =

1

|V ′|
∑
x,v

v good
x↾B(v,R)=y

ζ{x}

Note that P̃ σ,R
ζ is close to the BΓ(e,R)-marginal of P σ

ζ in total variation distance if most

vertices are good. Then, applying Jensen’s inequality,

d

dt
A(ζt) ≤ s

∑
a∈A

∑
y∈ABΓ(e,R)

∑
x,v

v good
x↾B(v,R)=y

F0

(
exp{−Φv(x)}

exp{−Φv(xv→a)}
ζt{xv→a}
ζt{x}

)
ζt{x}

≤ s|V ′|
∑
a∈A

∑
y∈ABΓ(e,R)

P̃ σ,R
ζt

{y} · F0

 exp{−Φe(y)}
exp{−Φe(yv→a)}

P̃ σ,R
ζt

{ye→a}

P̃ σ,R
ζt

{y}

 .

We now consider the two cases mentioned above. First, if µR does not have full support,

there exist y ∈ AB(e,R), v ∈ B(e,R) and a ∈ A such that µR{y} 6= 0 but µR{yv→a} = 0.

Using translation-invariance of µ, we may assume v = e. Then

µR{y} · F0

(
exp{−Φe(y)}

exp{−Φe(ye→a)}
µR{ye→a}
µR{y}

)
= −µR{y} < 0.

By continuity of F0, there exists ε > 0 such that

|a− µR{y}| < ε and 0 ≤ b < ε ⇒ a · F0

(
exp{−Φe(y)}

exp{−Φe(ye→a)}
b

a

)
< −µR{y}

2
.

In particular, if ‖P̃ σ,R
ζt

− µR‖TV < ε then

d

dt
A(ζt) < −s|V ′|µR{y}

2
.

In this case we will take c = s µR{y}/4.

Now consider the other case, in which ∆R
a (µR) < 0 for some a. By definition of ∆R

a (µR),

we can pick y such that

C := µR{y} · F0

(
exp{−Φe(y)}

exp{−Φe(ye→a)}
µR{ye→a}
µR{y}

)
< 0.
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and proceed in the same way, picking ε > 0 such that

|a− µR{y}| < ε and |b− µR{ye→a}| < ε ⇒ a · F0

(
exp{−Φe(y)}

exp{−Φe(ye→a)}
b

a

)
< −C

2
.

In particular, if ‖P̃ σ,R
ζt

− µR‖TV < ε then

d

dt
A(ζt) < −s|V ′|C

2
.

In this case we will take c = sC/4.

In either case, we now have chosen ε > 0 such that if ‖P̃ σ,R
ζt

− µR‖TV < ε then

d

dt
A(ζt) < −2|V ′|c.

Let O1 = {ν ∈ Prob(AΓ) : ‖νR −µR‖TV < ε}. By continuity of (µ0, t) 7→ µt, we can pick

O, T such that if µ0 ∈ O then µt ∈ O1 for all t ∈ [0, T ].

Fix µ0 ∈ O. By Proposition 3.4.1, for any η > 0 there exists U 3 µ0 and δ > 0 such that

if ζ0 ∈ Ω(σn,U) and ∆σ < δ then d̄(P σ
ζt
, µt) < η for all t ∈ [0, T ]. If we pick η small enough,

this implies ζt ∈ Ω(σ,O1) for all t ∈ [0, T ]. Hence if ζ0 ∈ Ω(σn,U) and ∆σ < δ then for any

t ∈ [0, T ]

A(ζt)− A(ζ0) ≤ −2|V ′|ct.

Now by definition we have

|V ′| = (1− δσR)|V |.

If δ is small enough then ∆σ < δ implies δσR < 1/2, so that 2|V ′| > |V |. This completes the

proof of the first part.

For the second part, for all large enough n we have ∆σn < δ and therefore

A(ζ0) ≥ A(ζt) + |Vn|ct

≥ inf
ζ∈Ω(σn,B(µt,η))

A(ζ) + |Vn|ct
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for all t ∈ [0, T ]. Then, since the first limit in the definition of aΣ is a supremum

aΣ(µ0) ≥ lim sup
n→∞

inf
ζ0∈Ω(σn,U)

1

|Vn|
A(ζ0)

≥ lim sup
n→∞

inf
ζ∈Ω(σn,B(µt,η))

1

|Vn|
A(ζ) + ct.

Taking η to zero gives the result.

Proof of Theorem. Suppose for the sake of contradiction that µt does not converge to the

set of Gibbs measures; then we can pick some ν ∈ ProbΓ(AΓ) which is a limit point of

{µt : t ≥ 0} but not a Gibbs measure.

By Proposition 4.2.3, we can pick δ, T > 0 and an open neighborhood O 3 ν such that

for every t with µt ∈ O we have aΣ(µt) ≥ aΣ(µt+T ) + δT .

On the other hand, under the assumption that aΣ(µs) < +∞, the set {aΣ(µt) : t ≥ s} is

bounded: an upper bound is aΣ(µs) by Proposition 4.2.2, and a lower bound is umin− log|A|.

This is a contradiction, so the theorem follows.

4.3 Connection to property PA

We first prove the following:

Proposition 4.3.1. A group Γ has property pa if and only if for any µ ∈ ProbΓ(AΓ) there

exists a sequence Σ =
(
σn ∈ Hom(Γ, Sym(Vn))

)
n∈N and a sequence (xn ∈ AVn)n∈N with

P σn
xn

wk−→ µ and ∆σn → 0.

Some ideas for this proof were shared with me by Lewis Bowen.

Proof. The ‘if’ direction is clear, since each P σn
xn

is periodic.

For the other direction, suppose Γ has property pa and let µ ∈ ProbΓ(AΓ). By definition

of property pa, we can pick a sequence of periodic measures (µn)n∈N converging to µ.
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Fix n ∈ N. The support of µn consists of finitely many orbits under Γ; let {y1, . . . ,yk} ⊂

AΓ be a set which contains exactly one element of each orbit, and denote the (finite) orbits

by Γyi. Then we can write

µn =
k∑

i=1

ai Unif(Γyi).

Pick natural numbers m1, . . . ,mk, and let Vn be the disjoint union of mi copies of Γyi for

each i. Let σn ∈ Hom(G, Sym(Vn)) act separately on each copy of each orbit. Let xn ∈ AVn

be given by

xn(v) = v(e).

Then

P σn
xn

=
k∑

i=1

mi∑k
j=1mj

Unif(Γyi),

so if m1, . . . ,mk are chosen appropriately then we can ensure P σn
xn

→ µ.

Now we need to show that we can ensure ∆σn → 0. Let ν ∈ Prob({0, 1}Γ) be the

product measure with uniform base. Then then above argument implies the existence of

sequences
(
σn ∈ Hom(Γ, Sym(Vn))

)
n∈N and zn ∈ (A × {0, 1})Vn with P σn

zn → µ × ν. If we

write zn = (xn,yn) with xn ∈ AVn and yn ∈ {0, 1}Vn , then P σn
xn

→ µ and P σn
yn

→ ν. We will

show that the latter fact implies ∆σn → 0. Suppose v ∈ Vn, γ ∈ Γ are such that σγ
nv = v.

Then for any β ∈ Γ,

(
Πσn

v yn

)
(βγ) = yn

(
σβγ
n v
)
= yn

(
σβ
nv
)
=
(
Πσn

v yn

)
(β).

In particular, for any finite set D ⊂ Γ we have

P σn
yn

{w ∈ {0, 1}Γ : w(βγ) = w(β) ∀β ∈ D} ≥ 1

|Vn|
|{v ∈ Vn : σγ

nv = v}|.

But by assumption, as n → ∞ the left-hand side converges to

ν{w ∈ {0, 1}Γ : w(βγ) = w(β) ∀β ∈ D} ≤ ν{w : w(βγ) = w(β) ∀β ∈ D s.t. βγ 6∈ D}

= 2−|Dγ\D|,
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and hence

lim sup
n→∞

1

|Vn|
|{v ∈ Vn : σγ

nv = v}| ≤ 2−|Dγ\D|.

As long as γ 6= e, the set D can be chosen to make |Dγ \D| arbitrarily large, so that

lim
n→∞

1

|Vn|
|{v ∈ Vn : σγ

nv = v}| = 0.

For any R ∈ N, it can be checked that if σγ
nv 6= v for all γ 6= e such that |γ| ≤ 2R + 1

then the map

BΓ(e,R) → Bσ(v,R)

γ 7→ σγv

is an isomorphism of the (labeled, directed) induced subgraphs. Therefore

δσn
R ≤

∑
γ∈BΓ(e,2R+1)\{e}

1

|Vn|
|{v ∈ Vn : σγ

nv = v}| → 0,

which, since R is arbitrary, implies ∆σn → 0.

4.3.1 Proof of Proposition 3.5.1

Note aΣ(µ) = +∞ if and only if there exists an open neighborhood O 3 µ such that

Ω(σn,O) is empty for infinitely many n. Therefore if aΣ(µ) < +∞ there exists a sequence

ζn ∈ Prob(AVn) with P σn
ζn

→ µ. Since each P σn
ζn

is periodic, this shows that if for every µ

there exists Σ with aΣ(µ) < +∞ then Γ has property pa.

Conversely, if Γ has property pa and µ ∈ ProbΓ(AΓ) is given, then by the above proposi-

tion we can pick Σ and (xn)n∈N with ∆σn → 0 and P σn
xn

→ µ. But then for any open O 3 µ

we have δxn ∈ Ω(σn,O) for all large enough n, so aΣ(µ) < +∞.
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CHAPTER 5

Metastability and maximal-entropy joinings of Gibbs

measures on finitely-generated groups

We prove a metastability result for finitary microstates which are good models for a Gibbs

measure for a nearest-neighbor interaction on a finitely-generated group. This is used to

show that any maximal-entropy joining of two such Gibbs states is a relative product over

the tail σ-algebra, except in degenerate cases.

We also use results on extremal cuts of random graphs to further investigate optimal

self-joinings of the Ising model on a free group.

5.1 Introduction, main results

As above, let Γ be a countably infinite group with r generators s1, . . . , sr, and let A be a

finite set. We will also use Γ to denote the left Cayley graph of the group, which has vertex

set Γ and an si-labeled directed edge (γ, siγ) for each i ∈ [r] = {1, 2, . . . , r}.

The group Γ acts on itself by right multiplication; note that this action consists of

isomorphisms of the Cayley graph which preserve edge labels and directions. We also let Γ

act on the set of labelings AΓ: given x ∈ AΓ and β ∈ Γ, the shifted labeling βx is given by(
βx
)
(γ) = x(γβ).

This also induces an action on Prob(AΓ) by pushforwards. A probability measure invariant

under this action will be called shift-invariant; the set of such measures will be denoted

ProbΓ(AΓ).
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We will think of a measure µ ∈ ProbΓ(AΓ) as specifying local statistics of finite systems

according to the following paradigm:

Given a finite set V and a homomorphism σ ∈ Hom(Γ, Sym(V )), we can construct a

multigraph with an si-labeled directed edge (v, σsiv) for each v ∈ V and i ∈ [r]; this will be

called the graph of σ.

If x ∈ AV is any labeling of V by elements of A, we can pull back x to a labeling of Γ.

This is called a pullback name of x, and is denoted

Πσ
vx :=

(
x(σγv)

)
γ∈Γ ∈ AΓ.

The empirical distribution of x over σ is the distribution of these pullback names if the

basepoint v is chosen uniformly at random:

P σ
x :=

(
v 7→ Πσ

vx)∗Unif(V ) =
1

|V |
∑
v∈V

δΠσ
vx ∈ ProbΓ(AΓ).

The shift-invariance of every empirical distribution is the reason we assumed µ above was

shift-invariant.

By analogy with statistical physics we will call x a microstate, and we will call it a good

model for µ if its empirical distribution (over some given σ) is close to µ. More specifically,

if O is some weak-open neighborhood of µ then we say x is an O-microstate if P σ
x ∈ O. We

call the set of such x

Ω(σ,O) = {x ∈ AV : P σ
x ∈ O}.

This is equivalent to Lewis Bowen’s framework of “approximating partitions” introduced in

[Bow10c] to define sofic entropy. We will discuss entropy below.

This notion of “good model” is most meaningful when the graph of σ has a high degree

of local similarity to Γ. We will measure this in the following way: given R ∈ N, define

δσR =
1

V
|{v ∈ V : Bσ(v,R) 6∼= BΓ(e,R)}|.
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Here the isomorphism is between the subgraphs induced by the radius-R balls centered at v

in the graph of σ and those centered at the identity in the Cayley graph of Γ. Recall that

we consider edges of the graph of σ and of the Cayley graph to be directed and labeled by

the generators of Γ; we require isomorphisms to respect this structure.

We then make the slightly more ad hoc definition

∆σ = inf
R

(
9 · (2/3)R + 6δσR

)
.

The particular constants appearing here come from our choice of metric on AΓ (see Chapter

3) and from the proof of Theorem 3.2.1. If ∆σ is small, then the graph of σ looks like Γ to a

large radius near most vertices. Note that the notation ∆σ does not need to explicitly specify

which Γ the graph of σ is being compared to, since the relevant Γ is always the domain of σ.

Let Σ = (σn ∈ Hom(Γ, Sym(Vn))n∈N be a sequence of homomorphisms, with Vn finite

sets. Recall that Σ is a sofic approximation to Γ if limn→∞∆σn = 0. The sofic entropy of

µ ∈ ProbΓ(AΓ) relative to Σ is defined by

hΣ(µ) = inf
O∋µ

lim sup
n→∞

1

|Vn|
log|Ω(σn,O)|,

where the infimum is over weak-open neighborhoods of µ. Informally, we would expect

|Ω(σn,O)| to grow exponentially with |Vn|, with a higher exponential growth rate indicating

fewer constraints imposed by µ on its good models (so µ is “more random”). In general,

though, sofic entropy may behave in counterintuitive ways. While it is an isomorphism

invariant, an example of Ornstein and Weiss [OW87] shows that it may increase under

factor maps when Γ is not amenable.

The assumption ∆σn → 0 is interpreted here as a kind of Benjamini-Schramm conver-

gence, but we can also view it as requiring the actions Γ ↷σn Vn to be “asymptotically free.”

More generally we could only require that they be “asymptotically actions” (see for example

[Bow20a]) but for simplicity we only consider true homomorphisms here.
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Here, we restrict attention to measures µ which are Gibbs for some nearest-neighbor

interaction; relevant definitions are given in Chapter 3. For a nearest-neighbor interaction

Φ, we denote the set of Gibbs measures by G (Φ) ⊂ Prob(AΓ). The set of shift-invariant

Gibbs measures is denoted G Γ(Φ). An interaction also comes with an associated “Glauber

dynamics” which is a natural and useful model for the random evolution of a system over

time. We will use subscripts to denote evolution under Glauber dynamics; for example xs is

the (random) evolution of the microstate x0.

Our first main result, Theorem G, establishes the metastability of Gibbs microstates

under Glauber dynamics:

Theorem G. Let µ ∈ G Γ(Φ) for some nearest-neighbor interaction Φ. Denote its evolution

under the Glauber dynamics for Φ as {µt : t ≥ 0}.

Given any neighborhood U1 of µ and t, ε > 0, there exists a neighborhood U0 of µ and δ > 0

such that, for any finite set V and any homomorphism σ : Γ → Sym(V ), if x0 ∈ Ω(σ,U0)

and ∆σ < δ then xs ∈ Ω(σ,U1) for all s ∈ [0, t] with probability at least 1− ε.

We call this “metastability” because, if we let the Glauber dynamics run forever, the law

of x will converge to the (unique) Gibbs measure on AV . In particular, we will eventually

lose control of its empirical distribution. Theorem G only says that for any fixed time t, it

can be arranged for the empirical distribution to stay close to µ for time t with probability

as close to 1 as desired. The only requirements are that ∆σ be small enough and that P σ
x

start close enough to µ.

Recall that Theorem 3.2.1 gives a type of equivariance between the Glauber dynamics on

Γ and on graphs of homomorphisms σ with small ∆σ: it implies that if x is a good model for

µ (not necessarily Gibbs) then the expected empirical distribution of the evolved microstate

xt stays close to the evolved measure µt. The rate at which it drifts away is controlled by ∆σ.

But if µ is Gibbs then it is Glauber-invariant, so in fact the expected empirical distribution

stays close to µ.

It turns out to be somewhat difficult to conclude that the empirical distribution actually
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stays close to µ with high probability. We do this in two steps: first we use the fact that

the Gibbs measures form a face of the convex set ProbΓ(AΓ), combined with the mentioned

equivariance result, to show that the empirical distribution of x stays approximately Gibbs

for the desired amount of time with high probability. We then use this approximate Gibbs-

ness to show that the empirical distribution tends to move slowly, so typically stays close µ.

Using Theorem G we establish Theorem E, which says that any maximal-entropy joining

of two Gibbs measures (possibly for different interactions) must itself be a Gibbs measure

for a natural “sum interaction,” except in degenerate cases:

Theorem E. Let λ be a joining of two shift-invariant Gibbs measures µA ∈ G Γ(ΦA), µB ∈

G Γ(ΦB) for nearest-neighbor interactions ΦA,ΦB. Let Σ be a random sofic approximation to

Γ, and assume that there is some joining λ of µA, µB with hΣ(λ) > −∞.

If λ maximizes hΣ among all joinings of µA, µB, then λ ∈ G Γ(ΦA ⊕ ΦB).

Here, a random sofic approximation is a sequence of random homomorphisms such that

for any δ > 0 the probability of the event {∆σn < δ} approaches 1 superexponentially fast;

see Section 5.3. The f -invariant, introduced in [Bow10b], can be written as the sofic entropy

relative to a random sofic approximation to a free group [Bow10a].

By Lemma 5.3.1, we can equivalently say that a maximal-entropy joining of two Gibbs

measures must be a relative product over the tail σ-algebra.

We also mention two brief corollaries: Corollary 5.3.4 shows that if µA is a shift-invariant

extreme point of G (ΦA) and µB is any element of G Γ(ΦB), then in fact their product joining is

the only joining which is Gibbs for the sum interaction. In particular, for any Σ the product

joining is the joining with maximal hΣ. By “extreme” here we mean extreme in the convex

set of all Gibbs measures, which is equivalent to triviality on the tail σ-algebra. In particular,

ergodicity is not a sufficient condition. As discussed below, one example illustrating this is

the Ising model on a free group, which is ergodic for all ε > 0.
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Corollary 5.3.5 shows that, except in degenerate cases, Gibbs measures have nonzero sofic

entropy over any deterministic sofic approximation.

Our final main result is Theorem H, which asserts that, for free-boundary Ising models

at low temperatures, the self-joining with maximal f -invariant is neither the product nor the

diagonal joining. Non-maximality of the diagonal joining actually follows in much greater

generality from Theorem E, since the diagonal joining is Gibbs only in degenerate cases.

The product joining is always Gibbs for the sum interaction. But for temperatures low

enough that the f -invariant is negative, the product joining cannot be maximal because it

has smaller f -invariant than the diagonal.

Theorem H actually extends non-maximality of the product to slightly higher tempera-

tures. To do this, we show that if the product joining of µ has optimal f -invariant, then a

typical random homomorphism supports good models for µ. We can rule out this possibility

for free-boundary Ising models at low temperatures using [DMS17].

It remains open whether non-maximality of the product holds all the way up to the

reconstruction threshold, at and above which the product joining is maximal by Corollary

5.3.4. A similar type of result in the recent paper [CLM20] suggests that it may.

5.1.1 Overview

In Section 5.2 we prove Theorem G, our main metastability result. In Section 5.3 we give an

application of this theorem, characterizing which joinings of two Gibbs states have maximal

sofic entropy over a random sofic approximation. Finally, in Section 5.4 we show that, below

a certain (nontrivial) temperature, the product self-joining of a free-boundary Ising state

does not have maximal f -invariant.
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5.2 Metastability of near-Gibbs-ness

If we apply Proposition 3.4.1 with ζ = δx and µ ∈ G Γ we get

d̄
(
Sσ(t)P σ

x , µ
)
≤
(
d̄
(
P σ
x , µ

)
+∆σt

)
eMt. (5.1)

In particular, if x is a good model over σ for a Gibbs measure µ, then the expected empirical

distribution of xt stays close to µ for a long time. The first main theorem of the present

chapter, Theorem G, states that, in fact, the empirical distribution itself stays close to µ for

a long time with high probability.

The remainder of this section is devoted to the proof of this theorem. First we use Lemma

3.3.1 to show that Equation 5.1 implies P σ
xt

must stay close to G Γ for a long time with high

probability. We then control the ‘lateral motion,’ showing that as long as P σ
xt

stays close to

G Γ it does not tend to move much at all.

5.2.1 Concentration from convexity

Let I denote the weak*-continuous map

I : Prob(ProbΓ(AΓ)) → ProbΓ(AΓ)

ξ 7→
∫

ν ξ(dν).

Lemma 3.3.1 stated that θ(G Γ) = 1 whenever I(θ) ∈ G Γ. The following result is an

approximate version of this: if I(θ) is close to G Γ, then most of the mass of θ must be close

to G Γ.

Proposition 5.2.1. Given any weak* neighborhood W of G Γ and ε > 0, there exists a weak*

neighborhood U of G Γ such that if I(ξ) ∈ U then ξ(W) > 1− ε.

Proof. By the portmanteau theorem, the set E = {ξ : ξ(W) > 1 − ε} is weak*-open, and

it clearly contains the set Prob(G Γ) of probability measures supported on G Γ. We complete
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the proof by contradiction: suppose that for each neighborhood U of G Γ the intersection

(I−1U) ∩ Ec is nonempty.

For each n ∈ N, let Un be the set of measures within d̄-distance 1/n of G Γ. By assumption,

we can pick a sequence ξn ∈ (I−1Un)∩Ec. Now Prob(ProbΓ(AΓ)) is compact, so ξn has some

convergent subsequence ξnj
. Note the limit of this sequence must still be in the closed set

Ec. By definition of the sets Un and continuity of I, the limit must also be in I−1(G Γ).

But since G Γ is a face of ProbΓ(AΓ) (Lemma 3.3.1), in fact I−1(G Γ) = Prob(G Γ) ⊆ E .

This is a contradiction, so there must exist some neighborhood U of G Γ with I−1U ⊆ E .

Proposition 5.2.2. Let W be a weak* neighborhood of G Γ. Let ε, t > 0. Then there exists

a weak* neighborhood U of G Γ and δ > 0 such that if P σ
x0

∈ U and ∆σ < δ, then P σ
xt

∈ W

with probability at least 1− ε.

Proof. The previous proposition guarantees the existence of a neighborhood V of G Γ such

that if Sσ(t)P σ
x0

∈ V then P σ
xt

∈ W with probability at least 1− ε.

Since G Γ is compact, we can pick η > 0 such that
⋃

µ∈G Γ Bd̄(µ, 2η) ⊂ V . Let U =⋃
µ∈G Γ Bd̄(µ, ηe−Mt) and let δ = ηe−Mt/t. Then by (5.1) whenever P σ

x0
∈ U and ∆σ < δ we

have Sσ(t)P σ
x ∈ V .

5.2.2 Controlling lateral motion

Having shown that Glauber dynamics tends to stay within the set of good models for near-

Gibbs measures, we now show that it tends to move slowly within this region.

Given x0 ∈ AV , σ ∈ Hom(Γ, Sym(V )), g : AΓ → R, and τ > 0, we define a martingale

(M g,τ
k )∞k=0 by

M g,τ
k = P σ

xkτ
g − P σ

x0
g −

k−1∑
s=0

LτP
σ
xsτ

g

where

Lτ := Sσ(τ)− I.
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We first show that the terms in the sum stay small as long as P σ
xsτ

stays close to G Γ

(which we know is likely to happen as long as P σ
x0

is close enough to G Γ), then we show that

the martingale itself likely stays small by bounding the variance. This will imply that P σ
xt
g

tends to stay near its initial value.

5.2.2.1 Bounding deviation from martingale

It is straightforward from the definitions to show that µ ∈ G Γ then µΩΓ = 0. We now show

that if µ is near G Γ then µΩΓ is near 0.

Let ‖f‖BL = max{|f |Lip, ‖f‖∞} denote the bounded Lipschitz norm of a real-valued

function on AΓ. Under this norm, the set {f : ‖f‖BL < ∞} is a Banach space which we call

BL. Every µ ∈ Prob(AΓ) induces a continuous linear functional Iµ on BL defined by

Iµf =

∫
f dµ.

If we endow the continuous dual BL∗ with the standard dual (operator) norm, it is easy to

see that

d̄(µ, ν) = ‖Iµ − Iν‖BL∗ .

Since ΩΓg is a continuous function whenever g ∈ BL, for any µ ∈ Prob(AΓ) we can define

µΩΓ ∈ BL∗ by (
µΩΓ

)
g :=

∫
ΩΓg dµ ∀g ∈ BL .

Lemma 5.2.3. The map

Prob(AΓ) → BL∗

µ 7→ µΩΓ

is continuous.

Proof. We first show that the family F = {ΩΓf : ‖f‖BL ≤ 1} is uniformly bounded and

equicontinuous. Uniform boundedness is fairly straightforward. We now establish equicon-

tinuity: Suppose x,y ∈ AΓ are such that d(x,y) < (3r)−k; then x and y agree on B(e, k) so
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for all γ ∈ B(e, k − 1) and a ∈ A we have

cγ(x, a) = cγ(y, a).

So for such γ, if ‖f‖BL ≤ 1 we have∣∣cγ(x, a) [f(xγ→a)− f(x)]− cγ(y, a) [f(y
γ→a)− f(y)]

∣∣
≤ cγ(x, a)

[
|f(x)− f(y)|+ |f(xγ→a)− f(yγ→a)|

]
≤ cγ(x, a)

[
2 · (2r)−k

]
.

For γ 6∈ B(e, k − 1) we have d(xγ→a,x) = (3r)−|γ|, so∣∣cγ(x, a) [f(xγ→a)− f(x)]− cγ(y, a) [f(y
γ→a)− f(y)]

∣∣ ≤ ∣∣cγ(x, a)− cγ(y, a)
∣∣(3r)−|γ|.

Hence

|ΩΓf(x)− ΩΓf(y)| ≤
∑

γ∈B(e,k−1)

∑
a∈A

2cγ(x, a) · (3r)−k

+
∑

γ ̸∈B(e,k−1)

∑
a∈A

(cγ(x, a) + cγ(y, a))(3r)
−|γ|

≤ 2|B(e, k − 1)|(3r)−k + 2
∞∑
s=k

rs(3r)−s

= 2|B(e, k − 1)|(3r)−k + 3 · 3−k

= ok→∞(1).

Since this bound is uniform over f ∈ F , the family F is equicontinuous.

Suppose (µn)
∞
n=1 is a sequence of probability measures with weak* limit ν. For any

ε > 0, by Arzelà-Ascoli we can pick a finite collection ΩΓf1, . . . ,Ω
Γfk ∈ F which is uniformly

ε-dense in F . Hence

lim sup
n→∞

‖µnΩ
Γ − νΩΓ‖BL∗ = lim sup

n→∞
sup

{∣∣∣∣∫ ΩΓf dµ−
∫

ΩΓf dν

∣∣∣∣ : ‖f‖BL ≤ 1

}
≤ lim sup

n→∞

[
max

{∣∣∣∣∫ ΩΓfi dµn −
∫

ΩΓfi dν

∣∣∣∣ : 1 ≤ i ≤ k

}
+ 2ε

]
= 2ε.

Since ε is arbitrary, this shows that µnΩ
Γ converges to νΩΓ.
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Proposition 5.2.4. For any x ∈ AV , τ > 0, and g with |g|Lip ≤ 1

|Lτ (P
σ
x g)| ≤ τ

[
∆σeMτ +

∥∥∥∥SΓ(τ)g − g

τ
− ΩΓg

∥∥∥∥
∞
+ ‖P σ

xΩ
Γ‖BL∗

]
.

Proof. For any g,

|Lτ (P
σ
x g)| = |Sσ(τ)P σ

x g − P σ
x g|

≤ |Sσ(τ)P σ
x g − P σ

xS
Γ(τ)g|+ |P σ

xS
Γ(τ)g − P σ

x g|.

By Theorem 3.2.1, if |g|Lip ≤ 1 then the first term here is bounded by ∆στeMτ . For the

second term, we have

|P σ
xS

Γ(τ)g − P σ
x g| ≤ τ

[
P σ
x

∣∣∣∣SΓ(τ)g − g

τ
− ΩΓg

∣∣∣∣+ ∣∣P σ
xΩ

Γg
∣∣]

≤ τ

[∥∥∥∥SΓ(τ)g − g

τ
− ΩΓg

∥∥∥∥
∞
+ ‖P σ

xΩ
Γ‖BL∗

]
.

5.2.2.2 Martingale concentration

Proposition 5.2.5. Fix t > 0 and g with |g|Lip ≤ 1. Then for any m ∈ Z we have

E
[
(M g,t/m

m )2
]
≤ 9t

[
1

|V |
+

t

m

]
.

Proof. Let τ = t/m. Let ξ1, ξ2, . . . denote the martingale increments given by

ξk = M g,τ
k −M g,τ

k−1 = P σ
xkτ

g − P σ
x(k−1)τ

g − LτP
σ
x(k−1)τ

g.

Let Kk be the number of times a spin changes in the Glauber dynamics starting at x0

during the time interval [(k − 1)τ, kτ). We will use that Kk is Poisson with mean τ |V |.

We need the following two lemmas:

Lemma 5.2.6. If x,x′ ∈ AV differ at exactly one site w ∈ V , then

|P σ
x g − P σ

x′g| ≤
3

|V |
.
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Proof. Recall that we are assuming |g|Lip ≤ 1. Using the definitions of empirical distribution

and the distance on AV ,

|P σ
x g − P σ

x′g| ≤
3

|V |
≤ 1

|V |
∑
v∈V

|g(Πσ
vx)− g(Πσ

vx
′)|

≤ 1

|V |
∑
v∈V

d(Πσ
vx,Π

σ
vx)

=
1

|V |
∑
v∈V

∑
γ∈Γ

(3r)−|γ|1{x(σγv)̸=x′(σγv)}.

By assumption, x(σγv) 6= x′(σγv) if and only if σγv = w. Using this fact and changing the

order of summation gives

|P σ
x g − P σ

x′g| ≤
3

|V |
≤ 1

|V |
∑
γ∈Γ

(3r)−|γ|
∑
v∈V

1{σγv=w}.

But σγ is a permutation, so
∑

v∈V 1{σγv=w} = 1. The result now follows from the bound∑
γ∈Γ(3r)

−|γ| ≤ 3.

Lemma 5.2.7. For any k ∈ N,

E[ξ2k] ≤ 9|V |−2 E[K2
k ].

Proof. For each k let Fk be the σ-algebra generated by (x0,xτ , . . . ,xkτ ).

We first expand out ξ2k using its definition, and then simplify the resulting expression

using that LτP
σ
x(k−1)τ

g is Fk−1-measurable:

E[ξ2k | Fk−1] = E
[(

P σ
xkτ

g − P σ
x(k−1)τ

g − LτP
σ
x(k−1)τ

g
)2

| Fk−1

]
= E

[(
P σ
xkτ

g − P σ
x(k−1)τ

g
)2

| Fk−1

]
+ E

[(
LτP

σ
x(k−1)τ

g
)2

| Fk−1

]
+ E

[
2
(
P σ
xkτ

g − P σ
x(k−1)τ

g
)(

−LτP
σ
x(k−1)τ

g
)
| Fk−1

]
= E

[(
P σ
xkτ

g − P σ
x(k−1)τ

g
)2

| Fk−1

]
+
(
LτP

σ
x(k−1)τ

g
)2

− 2LτP
σ
x(k−1)τ

g · E
[
P σ
xkτ

g − P σ
x(k−1)τ

g | Fk−1

]
= E

[(
P σ
xkτ

g − P σ
x(k−1)τ

g
)2

| Fk−1

]
−
(
LτP

σ
x(k−1)τ

g
)2

.
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Dropping the second term, we’re left with

E[ξ2k | Fk−1] ≤ E
[(

P σ
xkτ

g − P σ
x(k−1)τ

g
)2

| Fk−1

]
.

By the previous lemma, each of the Kk spin flips moves P σ
x g by at most 3/|V |, so we

have

|P σ
xkτ

g − P σ
x(k−1)τ

g| ≤ 3
|V |Kk.

Putting this into the previously obtained bound and taking expectations gives the claimed

result.

Using Lemma 5.2.7 and that Kk ∼ Pois(τ |V |), we see that

E[ξ2k] ≤ 9|V |−2 E[K2
k ] =

9
|V |2 [τ |V |+ (τ |V |)2] = 9τ [ 1

|V | + τ ].

Therefore, since the martingale increments are uncorrelated,

E
[
(M g,t/m

m )2
]
=

m∑
k=1

mE[ξ2k] ≤ 9t[ 1
|V | +

t
m
].

By similar methods we can prove the following lemma, which controls the empirical

distribution at times between multiples of t/m:

Lemma 5.2.8. For any t, κ > 0, g with ‖g‖BL ≤ 1, m ∈ N, and 0 ≤ j ≤ m− 1,

P
(
∃s ∈ [jt/m, (j + 1)t/m] with |P σ

xs
g − P σ

xjt/m
g| > κ

)
≤ 9

t

m

[
1

|V |
+

t

m

]
.

Proof. By Lemma 5.2.6 the probability is bounded above by

P(Kj > |V |κ/3).

The result follows from applying Chebyshev’s inequality, using that Kj has law Pois(t|V |/m).
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5.2.3 Proof of Theorem G

Fix κ > 0 such that B(µ, 9κ) ⊂ U1. Let F be a finite κ-dense (in uniform norm) subset of

{f : ‖f‖BL ≤ 1}; we showed above that this set is compact in the uniform norm. Then for

any µ, ν ∈ Prob(AΓ),

d̄(µ, ν) ≤ sup {|µg − νg| : g ∈ F}+ 2κ.

For any given t, ε > 0, by Proposition 5.2.5 and Doob’s maximal inequality we can pick

M ∈ N such that for any x0 ∈ AV

P
(
max
g∈F

max
0≤j≤m

|M g,t/m
j | ≤ κ

)
≥ 1− ε (*)

whenever |V |,m ≥ M (recall that the martingale has an implicit dependence on a choice

of initial microstate x0 ∈ AV ). By Lemma 5.2.8 we can make M larger if necessary to also

ensure that for each 0 ≤ j ≤ m we have

P
(
max
g∈F

max
s∈[0,t]

|P σ
xs
g − P σ

x⌊sm/t⌋t/m
g| ≤ κ

)
≥ 1− ε. (**)

Assume that m is also large enough that∥∥∥∥SΓ(t/m)g − g

t/m
− ΩΓg

∥∥∥∥
∞

≤ κ/t

for every g ∈ F and that eMt/m ≤ 2. Assume also that ∆σ ≤ κ/t and let W = {ν :

‖νΩΓ‖BL∗ < κ/t}; this is an open neighborhood of G Γ by continuity of the map ν 7→ νΩΓ

(Lemma 5.2.3). Then, by Proposition 5.2.4, P σ
x ∈ W implies

|Lt/m(P
σ
x g)| ≤ 4κ

m
.

We have also shown (Proposition 5.2.2) that there exist a weak neighborhood U of G Γ and

δ > 0 such that if P σ
x0

∈ U and ∆σ < δ, then for each s ≤ t we have P(P σ
xs

∈ W) ≥ 1− ε/m.

Therefore under these assumptions

P(P σ
xkt/m

∈ W ∀0 ≤ k ≤ m) ≥ 1− ε. (***)
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Suppose that x0 ∈ Ω(σ,U). Then the the probability that the events appearing in (*),

(**), and (***) all occur is at least 1 − 3ε. Assume they do all occur. Given g ∈ F and

s ∈ [0, t], pick j = bsm/tc. Then 0 ≤ j ≤ m so we have

|P σ
xs
g − µg| ≤ |P σ

xjt/m
g − µg|+ κ

≤ |M g,t/m
j |+ |P σ

x0
g − µg|+

j−1∑
k=0

|Lt/m(P
σ
xkt/m

g)|+ κ

≤ κ+ d̄(P σ
x0
, µ) + j · 4κ

m
+ κ.

So if also d̄(P σ
x0
, µ) ≤ κ then for any s ∈ [0, t] we have

sup{|Pxsg − µg| : g ∈ F} ≤ 7κ

so

d̄(P σ
xs
, µ) ≤ 9κ

and hence P σ
xs

∈ U1.

In summary: let U0 = U ∩ B(µ, κ). If P σ
x0

∈ U0, |V | ≥ M , and ∆σ < δ, then with

probability at least 1− 3ε we have P σ
xs

∈ U1 for all s ∈ [0, t]. Since ∆σ can only be small if

|V | is large, we can remove the explicit requirement of a lower bound on |V | by making δ

smaller if necessary.

5.3 Maximal-entropy joinings

Recall that we call a sequence of random homomorphisms Σ = (σn ∈ Hom(Γ, Sym(Vn)))n∈N

a random sofic approximation to Γ if for any δ > 0 there exists c > 0 such that

P(∆σn > δ) < n−cn.

Examples include deterministic sofic approximations by homomorphisms, uniformly random

homomorphisms, and stochastic block models (see Proposition 2.1.3). The assumption that
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the maps be true homomorphisms has been adopted for simplicity and with a particular

application in mind, but is probably not necessary; see [ABL19] for a more general definition.

Recall also that the exponential growth rate for the expected number of good models for

µ ∈ ProbΓ(AΓ) is the sofic entropy

hΣ(µ) = inf
O∋µ

lim sup
n→∞

1

|Vn|
logE|Ω(σn,O)|.

If every term of Σ is deterministic then this is the standard sofic entropy. If Γ is a free group

and each term of Σ is uniform then this is the f -invariant [Bow10a].

Given two measures µA ∈ ProbΓ(AΓ) and µB ∈ ProbΓ(BΓ), which joinings of the two

maximize hΣ for a fixed Σ? This question arose in Chapter 2 and may be of more general

interest.

The following theorem provides some information in the case where both systems are

Gibbs measures for nearest-neighbor interactions. To state it we need one definition, which

is essentially equivalent to [Geo11, Example 7.18]: given two nearest-neighbor interactions

ΦA = (JA, hA),ΦB = (JB, hB) with respective finite alphabets A, B, define their sum ΦA ⊕ ΦB

to be the pair (JA ⊕ JB, hA ⊕ hB), where

[JA ⊕ JB]
(
(a1, b1), (a2, b2)

)
= JA(a1, a2) + JB(b1, b2)

[hA ⊕ hB](a, b) = hA(a) + hB(b).

This is a nearest-neighbor interaction with alphabet A× B.

We will use cAv(x, ·) ∈ Prob(A) to refer to the transition rates for the Glauber dynamics of

ΦA, and UA : AV → R to refer to the energy, and similarly for cB, UB. Without superscripts,

c, U will refer to ΦA ⊕ ΦB. Note that if x ∈ (A × B)V then cv(x, (a, b)) = cAv(xA, a)c
B
v(xB, b)

and U(x) = UA(xA) +UB(xB). In particular, the Glauber dynamics for ΦA ⊕ΦB is a coupling

of the Glauber dynamics of the summands.

If µA ∈ G Γ(ΦA) and µB ∈ G Γ(ΦB), then µA×µB ∈ G Γ(ΦA⊕ΦB); in particular, there always

exist joinings which are Gibbs for the sum interaction.
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Theorem E. Let λ be a joining of two shift-invariant Gibbs measures µA ∈ G Γ(ΦA), µB ∈

G Γ(ΦB) for nearest-neighbor interactions ΦA,ΦB. Let Σ be a random sofic approximation to

Γ, and assume that there is some joining λ of µA, µB with hΣ(λ) > −∞.

If λ maximizes hΣ among all joinings of µA, µB, then λ ∈ G Γ(ΦA ⊕ ΦB).

In particular, since hΣ is upper semicontinuous, there is a Gibbs joining which has max-

imal hΣ among all joinings.

The following proposition shows that we can interpret the conclusion of Theorem E as

saying that λ is a relatively independent joining over the tail.

Proposition 5.3.1. Suppose λ ∈ G (ΦA ⊕ ΦB) has A, B-marginals µA ∈ G (ΦA), µB ∈ G (ΦB)

respectively. Then for λ-a.e. (x,y) ∈ (A × B)Γ, for every measurable EA ⊂ AΓ, EB ⊂ BΓ we

have

λ
(
EA × EB

∣∣T AB
)
(x,y) = λ

(
EA × EB

∣∣T A ⊗ T B
)
(x,y)

= µA

(
EA

∣∣T A
)
(x) · µB

(
EB

∣∣T B
)
(y),

where T AB,T A,T B respectively denote the tail σ-algebras on (A× B)Γ, AΓ, BΓ.

This proposition is proven in Section 5.5.

Recall Theorem B, which states that the Glauber evolution of any shift-invariant measure

converges to the set of Gibbs measures, as long as the group Γ has property pa.

One could prove our Theorem E using Theorem B roughly as follows: Let Φ = ΦA ⊕ΦB.

Starting with an arbitrary λ ∈ J(µA, µB), if we evolve under Glauber dynamics for Φ then

eventually λt will become as close as we like to G Γ(Φ), while staying in J(µA, µB) (since the

marginals are invariant). If we evolve a collection of good models for λ for the same amount

of time, our metastability result (Theorem G) implies that they mostly stay good models for

approximate joinings. It can also be shown that the evolved collection is almost as large as

the initial one, and that most of the evolved states are good models for Gibbs states. From

this we could conclude that there is a Gibbs state with at least as many good models as λ.
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However, it turns out to be easier to directly use Proposition 4.2.3, which was the main

technical result used to prove Theorem B.

Here is a brief summary of the proof of Theorem E:

Suppose λ is a joining of µA, µB which is not Gibbs. Fix n and O 3 λ. Let p0 be the

uniform distribution on Ω(σn,O) ⊂ (A × B)Vn , and let pt denote its evolution under the

Glauber dynamics for Φ.

Since the marginals of λ are Gibbs, and hence invariant under the Glauber dynamics, the

average energy pt(U) is approximately constant over time. But we know that the free energy

A(pt) is strictly decreasing since λ is not Gibbs. This means that the Shannon entropy

of pt must be strictly increasing (up to a small error). But the Shannon entropy of p0 is

log|Ω(σn,O)|, and pt is mostly supported on good models for approximate joinings of µA, µB

(with the quality of the approximation getting better as ∆σn → 0).

The evolved measure pt having strictly larger entropy means that its support, which is

mostly good models for approximate joinings of µA, µB, must be strictly larger than the set

of good models for the particular joining λ. This will imply that hΣ(λ) is not maximal.

Note that we do not know whether pt stays mostly supported on good models for λt; we

just know that its expected empirical distribution is near λt. So we cannot simply say that

hΣ(λt) is increasing.

The connection between entropy and the size of support is made using the following

variant of Fano’s inequality, standard versions of which can be found in [CT06].

Lemma 5.3.2. Let F be a finite set and let p ∈ Prob(F). If E ⊂ F satisfies p(E) ≥ 1− ε

for some ε > 0 then

log|E| ≥ H(p)− [log 2 + ε log|F|].

Proof. Using the definition of Shannon entropy and splitting terms according to E and its
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complement,

H(p) = −
∑
x∈E

p{x} log p{x} −
∑
x ̸∈E

p{x} log p{x}

= −

[
p(E)

∑
x∈E

p{x}
p(E)

log
p{x}
p(E)

+ p(E) log p(E)

]

−

[
(1− p(E))

∑
x ̸∈E

p{x}
1− p(E)

log
p{x}

1− p(E)
+ (1− p(E)) log(1− p(E))

]
.

Let pE ∈ Prob(E) denote the renormalized restriction of p to E, and similarly define pEc ∈

Prob(Ec). Then the above can be written

H(p) = p(E)H(pE) + (1− p(E))H(pEc) + H(p(E), 1− p(E))

≤ log|E|+ ε log|F|+ log 2.

Rearranging gives the claimed inequality.

The following proposition shows that the number of good models for any non-Gibbs

joining is strictly smaller (by an exponential factor) than the number of good models for

approximate joinings.

Proposition 5.3.3. Suppose λ ∈ J(µA, µB) is not in G (Φ). There exist constants C1, C2 > 0

such that for any ε, η > 0 there exist δ > 0 and O 3 λ such that if σ ∈ Hom(Γ, Sym(V ))

satisfies ∆σ < δ then

|Ω(σ, Jη(µA, µB))| ≥ |Ω(σ,O)| · 1
2
exp
[
|V |(C1 − εC2)

]
.

Proof. Note that if Ω(σ,O) is empty then the inequality is trivially satisfied, so we will

assume below that this is not the case.

First, using that λ is not Gibbs, pick δ, c, T > 0 and O 3 λ as appear in Proposition

4.2.3. Fix t ∈ (0, T ] arbitrarily.

Note that for convenience we may assume ε < η. By Theorem G, by making δ,O smaller if

necessary we can ensure that if x0 ∈ Ω(σ,O) and ∆σ < δ then P σ
xt

∈ Jε(µA, µB) with probabil-

ity at least 1−ε. Consequently, if we let p0 = Unif(Ω(σ,O)) then pt(Ω(σ, J
ε(µA, µB))) > 1−ε;
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note that since diam AΓ, diam BΓ ≤ 3 this implies P σ
pt ∈ J4ε(µA, µB). Also, for convenience we

may shrink O if necessary to ensure O ⊂ Jε(µA, µB).

We now show that the entropy of pt is increasing, up to a small error. By choice of

δ, c, t,O we have

A(pt) ≤ A(p0)− c|V |t,

or equivalently

H(pt) ≥ H(p0) + c|V |t− [p0(U)− pt(U)].

Since the empirical distributions of p0, pt have approximately the same marginals, the differ-

ence in average energy is small. Specifically, since P σ
p0

∈ Jε(µA, µB) and P σ
pt ∈ J4ε(µA, µB)

|pt(U)− p0(U)| = |V | · |P σ
ptUe − P σ

p0
Ue|

≤ |V | ·
(
|P σ

ptUe − [µAU
A
e + µBU

B
e ]|+ |[µAU

A
e + µBU

B
e ]− P σ

p0
Ue|
)

≤ |V | ·
(
|πAP σ

ptU
A
e − µAU

A
e |+ |πBP σ

ptU
B
e − µBU

B
e |

+ |πAP σ
p0
UA
e − µAU

A
e |+ |πBP σ

p0
UB
e − µAU

B
e |
)

≤ 5ε|V |(|UA
e |Lip + |UB

e |Lip)

so

H(pt) ≥ H(p0) + c|V |t− 5ε|V |(|UA
e |Lip + |UB

e |Lip).

By Lemma 5.3.2,

log|Ω(σ, Jε(µA, µB))|

≥ H(pt)− [log 2 + ε|V | log|A× B|]

≥ H(p0) + c|V |t− [5ε|V |(|UA
e |Lip + |UB

e |Lip)]− [log 2 + ε|V | log|A× B|]

= log|Ω(σ,O)|+ |V |
(
ct− ε[5|UA

e |Lip + 5|UB
e |Lip + log|A× B|]

)
− log 2.

Since Ω(σ, Jε(µA, µB)) ⊂ Ω(σ, Jη(µA, µB)), exponentiating both sides gives the claimed inequal-

ity with C1 = ct and C2 = 5|UA
e |Lip + 5|UB

e |Lip + log|A× B|.
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Proof of Theorem E. Suppose λ is not Gibbs, and pick ε, η > 0. By Proposition 5.3.3 we

can pick δ > 0 and O 3 λ such that if σ ∈ Hom(Γ, Sym(V )) satisfies ∆σ < δ then

|Ω(σ, Jη(µA, µB))| ≥ |Ω(σ,O)| · 1
2
exp
[
|V |(C1 − εC2)

]
.

Since the probability that ∆σn < δ approaches 1 superexponentially fast in n, this implies

lim sup
n→∞

1

|Vn|
logE|Ω(σn, J

η(µA, µB))| ≥ lim sup
n→∞

1

|Vn|
logE|Ω(σn,O)|+ (C1 − εC2)

≥ inf
O∋λ

lim sup
n→∞

1

|Vn|
logE|Ω(σn,O)|+ C1 − εC2

= hΣ(λ) + C1 − εC2

Since ε > 0 was arbitrary,

lim sup
n→∞

1

|Vn|
logE|Ω(σn, J

η(µA, µB))| ≥ hΣ(λ) + C1.

Taking the infimum over η > 0 gives

hΣ(λ) + C1 ≤ inf
η>0

lim sup
n→∞

1

|Vn|
logE|Ω(σn, J

η(µA, µB))|.

The remainder of the proof is analogous to the proof of Theorem D.

By compactness, we can let F ⊂ Jη(µA, µB) be a finite set with Jη(µA, µB) ⊂
⋃

θ∈F Bd̄(θ, η).

Then

hΣ(λ) + C1 ≤ lim sup
n→∞

1

|Vn|
logE

∣∣∣∣∣Ω
(
σn,

⋃
θ∈F

B(θ, η)

)∣∣∣∣∣
= max

θ∈F
lim sup
n→∞

1

|Vn|
logE|Ω (σn,B(θ, η))|

≤ sup
θ∈Jη

lim sup
n→∞

1

|Vn|
logE|Ω (σn,B(θ, η))|.

Now for each m ∈ N take η = 1/m, and let θm ∈ Jη(µA, µB) get within 1/m of the supremum

in the last line of the previous display. By compactness, we can pass to a weakly-convergent

subsequence θmk
with limit θ∞, which must lie in J(µA, µB). Given O 3 θ∞, for m large
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enough we have B(θm, 1/m) ⊂ O. Therefore

hΣ(λ) + C1 ≤ lim sup
n→∞

1

|Vn|
logE|Ω (σn,B(θm, 1/m))|+ 1

m

≤ lim sup
n→∞

1

|Vn|
logE|Ω (σn,O)|+ 1

m
.

Taking m to infinity then the infimum over O gives

hΣ(λ) + C1 ≤ hΣ(θ∞).

Since C1 > 0 and θ∞ ∈ J(µA, µB), this means that hΣ(λ) is not maximal, unless every joining

has hΣ = −∞.

In some cases, this allows us to say exactly which measure maximizes hΣ:

Corollary 5.3.4. Suppose µA ∈
[
exG (ΦA)

]
∩ ProbΓ(AΓ) and µB ∈ G Γ(ΦB). Then

G (ΦA ⊕ ΦB) ∩ J(µA, µB) = {µA × µB}.

In particular,

sup
λ∈J(µA,µB)

hΣ(λ) = hΣ(µA × µB).

Note that we require µA to be an extreme point of the set of all Gibbs measures, not just

the shift-invariant ones.

Proof. By [Geo11, Equation (7.19)], we have

exG (Φ) = {µ× ν : µ ∈ exG (ΦA), ν ∈ exG (ΦB)}.

Let λ be a joining of µA, µB which is in G (Φ), and write its extreme decomposition in G (Φ)

as

λ =

∫
µ× ν ξ(dµ, dν).

Then taking the marginal on AΓ gives

µA =

∫
µ ξ(dµ, dν),
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so extremality of µA implies that ξ gives full mass to the set {(µA, ν) : ν ∈ exG (ΦB)}.

Therefore

λ = µA ×
∫

ν ξ(dµ, dν) = µA × µB.

For example, at and above the reconstruction threshold, the free-boundary Ising Gibbs

measure µFB is extreme [BRZ95, Iof96]. Therefore given any other fixed Gibbs measure

(possibly for another nearest-neighbor potential and temperature), the product joining with

µFB has maximal hΣ.

We also note the following corollary:

Corollary 5.3.5. If µ ∈ ProbΓ(AΓ) is a Gibbs measure and |A| > 1, then for every deter-

ministic sofic approximation Σ we have hΣ(µ) 6= 0.

Since for deterministic sofic approximations we always have hΣ(µ) ∈ {−∞}∪ [0,+∞) we

could also write the conclusion as “either hΣ(µ) = −∞ or hΣ(µ) > 0.” Informally, we could

then say that any deterministic sofic approximation either supports no good models for µ

at all, or else the number of good models has a strictly positive (upper) exponential growth

rate.

Proof. Suppose hΣ(µ) 6= −∞. Since the diagonal self-joining µ4 µ is not Gibbs, Theorem

E implies the existence of some other self-joining λ with hΣ(λ) > hΣ(µ4 µ). But then

hΣ(µ) = hΣ(µ4 µ) < hΣ(λ) ≤ 2hΣ(µ),

where the last inequality depends on Σ being deterministic.

5.4 Non-optimal Gibbs joinings

One might wonder whether the converse of Theorem E is true: does every joining of two

Gibbs measures which is Gibbs for their sum interaction maximize entropy? In particular,
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Theorem D leads us to wonder when the product joining is non-maximal, since in this case

the sofic entropy over the relevant stochastic block model is different from the f -invariant.

In this section we restrict to a particular random sofic approximation: Assume that

Γ is the rank-r free group, and let σn ∈ Hom(Γ, Sym([n])) be uniformly random. The

paper [Bow10a] shows that hΣ is the f -invariant introduced in [Bow10b]; see also the survey

[Bow20a] for more information on the f -invariant.

A particularly useful property, not shared by all variants of sofic entropy, is additivity:

f(µ× ν) = f(µ) + f(ν).

We also restrict to a particular class of Gibbs measures: the (free boundary conditions)

Ising measure with transition probability ε ∈ (0, 1/2] is the Γ-indexed, {−1,+1}-valued

stationary Markov chain with uniform single-vertex marginals and transition matrix1− ε ε

ε 1− ε

 .

We denote the distribution by isε ∈ ProbΓ({±1}Γ). For each ε, the measure isε is Gibbs

for the nearest-neighbor interaction with h ≡ 0 and J(a, b) = −βab, where the “inverse

temperature” β is determined by the relation

ε

1− ε
= exp(−2β).

If ε is small then β is large, so we think of this as “low temperature.” We can also think of

isε as a model for broadcasting information, where we start with a uniformly random bit at

the identity and transmit it across edges with error probability ε.

Since isε is a Markov chain, its f -invariant can be easily calculated. It is given by

f(isε) = log 2 + r(H(ε)− log 2) (5.2)

where H(ε) = −[ε log ε+(1−ε) log(1−ε)] [Bow20a, Section 3.3]. In particular, f(isε) < 0 for

small enough ε. It is also not too difficult to show that if isε 4 isε is the diagonal self-joining
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then

f(isε 4 isε) = f(isε).

Therefore if f(isε) < 0 then the product joining is not optimal, since 2f(isε) < f(isε). We

can extend this to the case f(isε) = 0, since Theorem E implies that the diagonal joining is

non-optimal.

This already answers the question posed at the beginning of this section in the negative:

the product joining is always Gibbs for the sum interaction, but is not maximal for small

enough ε. In the rest of this section we extend further the range of ε where this is true.

To do this, we will use a result of [DMS17] to argue that, for some ε below the recon-

struction threshold but above where the f -invariant is 0, the optimal Ising self-joining is not

the product or the diagonal joining.

We first introduce some relevant terminology. For a finite graph G = (V,E), a bisection

is a partition V = V1 t V2 where |V1| = |V2| if |V | is even, or the sizes differ by 1 if |V | is

odd. The cut size of a bipartition V = V1 t V2 is the number of edges whose endpoints lie

in different parts. The smallest cut size of any bisection of G is denoted mcut(G). For the

graph of σ ∈ Hom(Γ, Sym(V )), we will simply write mcut(σ).

The relevant result we will use is the following:

Theorem 5.4.1 (modification of [DMS17, Theorem 1.5]). Let σ ∈ Hom(Γ, Sym(V )) be

chosen uniformly at random. Then as |V | → ∞,

mcut(σ)

|V |r
P−→ εc =

1

2
− P∗

1√
2r

+ or→∞(r−1/2),

where P∗ ≈ 0.7632.

Here “ P−→” denotes convergence in probability. Note that the existence of some related

limits was established earlier in [BGT13], but the particular form of the asymptotic εc (found

in [DMS17]) is useful here due to its comparability to εf (defined below).

The constant P∗ is the limiting ground state energy density of the Sherrington-Kirkpatrick

model; we will not need its precise definition here.
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Proof of Theorem. Let Greg(V, d) denote a d-regular graph with vertex set V , chosen uni-

formly at random (undefined unless |V |d is even). Theorem 1.5 of [DMS17] states that

mcut(Greg(V, 2r))

|V |r
P−→ εc.

They actually prove the stronger result that this holds when Greg(V, d) is a random multi-

graph chosen according to the configuration model. By the main theorems of [GJK02], the

same holds with Greg(V, d) replaced by a uniformly random σ ∈ Hom(Γ, Sym(V )).

The main result of this section is the following:

Theorem H. If ε < εc then the product self-joining of isε has non-maximal f -invariant.

Let εf < 1/2 be the smaller solution to f(isε) = 0. If ε ≤ εf then f(isε) ≤ 0; we have

remarked above that this implies non-optimality of the product joining. A Taylor expansion

of H yields from Equation 5.2

εf =
1

2
−
√

log 2
1√
2r

+ or→∞(r−1/2).

Since
√
log 2 ≈ 0.8326 > 0.7632 ≈ P∗,

εf < εc for all large r.

Therefore this theorem does, in fact, extend the range of non-maximality of the product (for

large enough r).

The connection between the Ising model and mcut is that if a graph G admits a good

model for isε, then mcut(G) must not be much bigger than ε|V |r: since the single-vertex

marginal of isε is uniform, this good model must approximately bisect V , and since the

transition probability is ε, the cut size of the corresponding partition must be approximately

ε|V |r (since |V |r is the total number of edges). More precisely:

Lemma 5.4.2. For every δ > 0 there exists a neighborhood O 3 isε such that for every

σ ∈ Hom(Γ, Sym(V ))

Ω(σ,O) 6= ∅ ⇒ mcut(σ) < |V |r(ε+ δ).
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Proof. Let ρ = δ
2r+1

, and let O be the set of ν ∈ ProbΓ({±1}Γ) whose marginal on BΓ(e, 1)

is within total variation distance ρ of the same marginal of isε.

Suppose we have x ∈ Ω(σ,O). Then∣∣∣∣ 1
|V | |{v ∈ V : x(v) = +1}| − 1

2

∣∣∣∣ < ρ

so we can pick y ∈ {±1}V with∣∣∣∣|{v ∈ V : y(v) = +1}| − |V |
2

∣∣∣∣ ≤ 1 and 1

|V |
|{v ∈ V : y(v) 6= x(v)}| < ρ.

Now y induces a bisection of V , and∣∣∣∣∣ 1

|V |r
∑
v∈V

∑
i∈r

1{y(v)̸=y(σiv)} − ε

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

|V |r
∑
v∈V

∑
i∈r

1{x(v)̸=x(σiv)} − ε

∣∣∣∣∣
+

1

|V |r
∑
v∈V

∑
i∈r

∣∣1{y(v)̸=y(σiv)} − 1{x(v)̸=x(σiv)}
∣∣.

The first term is at most ρ by definition of O: to see this, write

1

|V |r
∑
v∈V

∑
i∈r

1{x(v)̸=x(σiv)} =

∫
1

r

∑
i∈[r]

1{z(e)̸=z(si)} P
σ
x (dz).

To bound the second term, write

∑
v∈V

∑
i∈r

∣∣1{y(v)̸=y(σiv)} − 1{x(v)̸=x(σiv)}
∣∣

≤
∑
v∈V

∑
i∈r

[
1{y(v)̸=x(v)} + 1{y(σiv) ̸=x(σiv)}

]
= 2r

∑
v∈V

1{y(v)̸=x(v)} ≤ 2r|V |ρ.

Therefore the cut size of the bisection induced by y is at most

|V |rε+ |V |rρ+ 2r|V |ρ = |V |r(ε+ δ).

5.4.1 Proof of Theorem H

Non-optimality of the product joining for ε < εc follows from the next two lemmas.
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Lemma 5.4.3. Suppose that isε× isε has maximal f among all self-joinings of isε. Then for

any δ > 0

lim inf
n→∞

1

n
logP

(mcut(σn)
rn

< ε+ δ
)
≥ 0.

Proof. A standard argument shows that

inf
O∋isε

lim sup
n→∞

1

n
logE

[
|Ω(σn,O)|2

]
= sup

λ∈J(isε,isε)
f(λ) = 2f(isε),

where the second equality uses our assumption that the product joining is optimal. Therefore

for any η, for all small enough O we have

E
[
|Ω(σn,O)|2

]
< exp

[
n(2f(isε) + η)

]
for all large enough n. Similarly, since f(isε) = infO∋isε lim supn→∞

1
n
logE|Ω(σn,O)|, for any

O 3 isε we have

E|Ω(σn,O)| > exp
[
n(f(isε)− η)

]
for infinitely many n.

By Lemma 5.4.2, for all small enough O 3 isε we have

P(mcut(σn)
rn

< ε+ δ) ≤ P(Ω(σn,O) 6= ∅).

Using the Paley-Zygmund inequality,

P(Ω(σn,O) 6= ∅) ≥ P
(
|Ω(σn,O)| > 1

2
E|Ω(σn,O)|

)
≥ (1− 1

2
)2
[
E |Ω(σn,O)|]2

E
[
|Ω(σn,O)|2

]
> 1

4
exp

[
− 2ηn

]
for infinitely many n. Hence

lim inf
n→∞

1

n
logP

(mcut(σn)
rn

< ε+ δ
)
> −2η

and, since η > 0 is arbitrary, the result follows.
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Lemma 5.4.4. If ε < εc then for all small enough δ > 0

lim inf
n→∞

1

n
logP(mcut(σn)

rn
< ε+ δ) < 0.

Proof. Theorem 5.4.1 implies that limn→∞ E mcut(σn)
rn

= εc, so if δ is small enough that ε+δ <

εc then for any 0 < t < εc − (ε+ δ)

P(mcut(σn)
rn

< ε+ δ) = P(mcut(σn)
rn

− E mcut(σn)
rn

< ε+ δ − E mcut(σn)
rn

)

≤ P(mcut(σn)
rn

− E mcut(σn)
rn

< −t) (for all large n)

≤ P(
∣∣∣mcut(σn)

rn
− E mcut(σn)

rn

∣∣∣ ≥ t).

By a standard “switching” argument (Lemma 5.4.5), we have

P(|mcut(σn)
rn

− E mcut(σn)
rn

| ≥ t) ≤ 2 exp(−t2nr/8) ∀t > 0.

The result follows.

5.4.2 Concentration of random homomorphisms

Here we develop an analogue of [Wor99, Theorem 2.19], which proves exponential concen-

tration for functions which are not changed much under “switching.” Similar concentration

techniques also appear in the survey [McD98].

Given τ1, τ2 ∈ Sym(n), we write τ1 ∼ τ2 if

|{j ∈ [n] : τ1(j) 6= τ2(j)}| = 2.

Note that 2 is the smallest positive number of disagreements between two permutations. If

τ1 ∼ τ2 and i, j ∈ [n] are the points where they disagree, then it must be that τ1(i) = τ2(j)

and τ2(i) = τ1(j). For this reason we say they differ by a switching.

We extend this to homomorphisms σ1, σ2 : Fr → Sym(n) by saying σ1 ∼ σ2 whenever

there is exactly one i0 ∈ [r] with σi0
1 ∼ σi0

2 and for all i 6= i0 we have σi
1 = σi

2.

If σ1 ∼ σ2 then |mcut(σ1)−mcut(σ2)| ≤ 2. The following lemma establishes concentration

for functions with this property.
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Lemma 5.4.5. Suppose g is a real-valued function on Hom(Fr, Sym(n)) such that |g(σ1)−

g(σ2)| ≤ c whenever σ1 ∼ σ2. Then if σ is chosen uniformly at random

P
(
|g(σ)− E g(σ)| > t

)
≤ 2 exp

(
−t2

2nrc2

)
.

Proof. We choose σ by picking σi(j) in lexicographic order on (i, j) ∈ [r] × [n] uniformly

from all allowable choices. Let

{∅,Hom(Fr, Sym(n))} = F0 ⊆ F1 ⊆ · · · ⊆ Fnr = P(Hom(Fr, Sym(n)))

be the filtration induced by these choices. If we show that

|E[g(σ) | Fk]− E[g(σ) | Fk−1]| ≤ c for all k,

then the result will follow from Azuma-Hoeffding.

Fix k = i0r + j0 ∈ [nr], so that Fk records the choice of σi0(j0) and all previous choices.

It is helpful to think of, for σ0 ∈ Hom(Γ, Sym(n)),

E[g(σ) | Fk](σ0) = E[g(σ) | σi(j) = σi
0(j) ∀(i, j) ≤ (i0, j0)]

E[g(σ) | Fk−1](σ0) = E[g(σ) | σi(j) = σi
0(j) ∀(i, j) < (i0, j0)].

We need to show that the difference between these two quantities is bounded by c for each

fixed σ0.

Let A ⊂ [n] be the set of allowed values for σi(j) given the event U := {σi(j) =

σi
0(j) ∀(i, j) < (i0, j0)}. For each a ∈ A let Ua = U ∩ {σi(j) = a}. Note that each Ua

has the same probability, namely 1
|A| P(U). For convenience write a0 = σi

0(j). Then we can

rewrite the above quantities as

E[g(σ) | Ua0 ] and E[g(σ) | U ].

Then

|E[g(σ) | Ua0 ]− E[g(σ) | U ]| =

∣∣∣∣∣E[g(σ) | Ua0 ]−
1

|A|
∑
a∈A

E[g(σ) | Ua]

∣∣∣∣∣
≤ 1

|A|
∑
a∈A

∣∣∣E[g(σ) | Ua0 ]− E[g(σ) | Ua]
∣∣∣
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For σ ∈ U and a ∈ A, let Saσ denote the unique switching of σ with (Saσ)
i(j) = a (or take

Saσ = σ if σ ∈ Ua already). Note that σ ∈ U implies Saσ ∈ Ua. Moreover, if σ ∼ Unif(Ua0)

then Saσ ∼ Unif(Ua) (since Sa is a bijection). Therefore∣∣∣E[g(σ) | Ua0 ]− E[g(σ) | Ua]
∣∣∣

≤
∣∣∣E[g(Saσ) | Ua0 ]− E[g(σ) | Ua0 ]

∣∣∣+ ∣∣∣E[g(Saσ) | Ua0 ]− E[g(σ) | Ua]
∣∣∣

≤ c+ 0,

so the result follows.

5.5 Proof of Proposition 5.3.1

First fix EA ⊂ AΓ and EB ⊂ BΓ, and let (Λn)n∈N be an increasing sequence of finite subsets of

Γ with
⋃

n∈N Λn = Γ. It suffices to assume that EA, EB are cylinder sets, i.e. each depends

on only finitely many coordinates.

Extending the convention used above when defining Gibbs measures (and following

[Geo11]), for a finite set Λ ⊂ Γ we let T AB
Λ be the sub-σ-algebra of the Borel σ-algebra

on (A× B)Γ generated by the coordinate maps for v ∈ Γ \ Λ. We similarly define T A
Λ ,T

B
Λ .

Then the tail σ-algebra on (A × B)Γ is T AB =
⋂

n∈N T AB
Λn

, so by backwards martingale

convergence we have

λ
(
EA × EB

∣∣T AB
)
(x,y) = lim

n→∞
λ
(
EA × EB

∣∣T AB
Λn

)
(x,y)

for λ-a.e. (x,y).

Lemma 5.5.1. If EA, EB ⊂ AΓ, BΓ are cylinder sets and n is large enough that both depend

only on coordinates in Λn, then

λ
(
EA × EB

∣∣T AB
Λn

)
(x,y) = µA(EA

∣∣T A
Λn

)
(x) · µB

(
EB

∣∣T B
Λn

)
(y)

for λ-a.e. (x,y) ∈ (A× B)Γ.
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The assumption on n may not be necessary, but it is convenient and sufficient for our

purposes.

Proof. If m > n then we write F AB
m\n for the σ-algebra generated by coordinates in Λm \Λn.

For w ∈ AΛn we will write w ∈ EA to mean that any extension of w to an element of AΓ would

be in EA; this makes sense because we assume that EA is only determined by coordinates in

Λn. For (x,y) ∈ (A× B)Γ we write λm{(x,y)} for the λ-measure of all labelings which agree

with (x,y) on Λm.

The first step is to show that

λ
(
EA × EB

∣∣F AB
m\n
)
(x,y) =

∑
w∈AΛn , z∈BΛn

w∈EA, z∈EB

λm

{(
xΛn→w,yΛn→z

)}
∑

w∈AΛn ,z∈BΛn

λm

{(
xΛn→w,yΛn→z

)} .
It is clear that this is F AB

m\n-measurable. To show that it is a version of the conditional

expectation, let F ∈ F AB
m\n. Pick (u1,v1), . . . , (uk,vk) ∈ (A× B)Λm\Λn such that a labeling is

in F if and only if its restriction to Λm \ Λn is one of those k options. Then

∫
F



∑
w∈AΛn , z∈BΛn

w∈EA, z∈EB

λm

{(
xΛn→w,yΛn→z

)}
∑

w∈AΛn ,z∈BΛn

λm

{(
xΛn→w,yΛn→z

)}
 dλ(x,y)

=
k∑

i=1

∑
w′∈AΛn ,z′∈BΛn

λm

{(
uiw

′,viz
′)}

∑
w∈AΛn , z∈BΛn

w∈EA, z∈EB

λm

{(
uiw,viz

)}
∑

w∈AΛn ,z∈BΛn

λm

{(
uiw,viz

)}
=

k∑
i=1

∑
w∈AΛn , z∈BΛn

w∈EA, z∈EB

λm

{(
uiw,viz

)}

=
k∑

i=1

∑
w∈AΛn , z∈BΛn

1{w∈EA, z∈EB}λm

{(
uiw,viz

)}
=

∫
F

1{x∈EA,y∈EB}dλ(x,y).
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Now let v ∈ Λn. Let λm\v be interpreted like λm but looking at agreement on Λm \ {v}.

Then by the (single-site) Gibbs property and product structure

λm

{(
x,y

)}∑
a∈A
b∈B

λm

{(
xv→a,yv→b

)} =
λm\v

{(
x,y

)}
cv(xy,x(v)y(v))∑

a∈A
b∈B

λm\v
{(

x,y
)}

cv(xy, ab)

= cAv(x,x(v))c
B
v(y,x(v)).

Similarly
µA,m{x}∑

a∈A µA,m{xv→a}
= cAv(x,x(v))

and similarly for µB. Given
(
x,y

)
and

(
x′,y′) which agree on Λm \ Λn, let

(
x,y

)
=
(
x0,y0

)
, . . . ,

(
xl,yl

)
=
(
x′,y′)

be such that for each i = 0, . . . , l − 1 the labelings
(
xi,yi

)
,
(
xi+1,yi+1

)
differ at exactly one

site vi ∈ Λn, with the former agreeing with (x,y) at that site and the latter with (x′,y′).

Then

λm

{(
x,y

)}
λm

{(
x′,y′

)} =
l−1∏
i=0

λm

{(
xi,yi

)}
λm

{(
xi+1,yi+1

)}
=

l−1∏
i=0

cAvi(xi,xi(vi))c
B
vi
(yi,yi(vi))

cAvi(xi+1,xi+1(vi))cBvi(yi+1,yi+1(vi))

=
l−1∏
i=0

cAvi(xi,xi(vi))

cAvi(xi+1,xi+1(vi))

l−1∏
i=0

cBvi(yi,yi(vi))

cBvi(yi+1,yi+1(vi))

=
µA,m{x}
µA,m{x′}

µB,m{y}
µB,m{y′}

.

So if we fix
(
x′,y′) then for any

(
x,y

)
agreeing with it on Λm \ Λn we have

λm

{(
x,y

)}
= CmµA,m{x}µB,m{y}

where

Cm =
λm

{(
x′,y′)}

µA,m{x′}µB,m{y′}
.
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Returning to the first result of the present proof, this gives

λ
(
EA × EB

∣∣F AB
m\n
)
(x,y) =

∑
w∈AΛn , z∈BΛn

w∈EA, z∈EB

λm

{(
xΛn→w,yΛn→z

)}
∑

w∈AΛn ,z∈BΛn

λm

{(
xΛn→w,yΛn→z

)}

=

∑
w∈AΛn , z∈BΛn

w∈EA, z∈EB

CmµA,m

{
xΛn→w

}
µB,m

{
yΛn→z

}
∑

w∈AΛn ,z∈BΛn

CmµA,m

{
xΛn→w

}
µB,m

{
yΛn→z

}

=

∑
w∈AΛn

w∈EA

µA,m

{
xΛn→w

} ∑
z∈BΛn

z∈EB

µB,m

{
yΛn→z

}
∑

w∈AΛn

µA,m

{
xΛn→w

} ∑
z∈BΛn

µB,m

{
yΛn→z

}
= µA

(
EA

∣∣F A
m\n
)
(x) · µB

(
EB

∣∣F B
m\n
)
(y),

where the last line follows from the same argument used above on the conditional expectation

of λ.

Taking m to infinity gives the result, by upwards martingale convergence; on the right-

hand side we have convergence for µA-a.e. x and µB-a.e. y, which is λ-a.e. (x,y) because λ

has marginals µA, µB.

Throughout the thesis we have used a ‘single-site’ definition of Gibbs states which is a

slight generalization of [Lig05, Definition IV.1.5]. It is comforting to know, and sometimes

useful above, that in our setting this is equivalent to [Geo11, Definition 2.9] which requires

all finite-dimensional conditional distributions to be specified by the potential. The following

proposition establishes this using some work done in the previous proof.

Proposition 5.5.2. If µA ∈ G (Φ) as defined in Chapter 3, then all finite-dimensional con-

ditional expectations are specified by Φ as in the definition of Gibbs states in [Geo11].

Proof. We begin by recalling from the proof above that if m is large enough that Λm contains
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Λ, then for any x,x′ which agree on Λ

µA,m{x}
µA,m{x′}

=
l−1∏
i=0

cAvi(xi,xi(vi))

cAvi(xi+1,xi+1(vi))

where x0, . . .xl ∈ AΓ and v0, . . . , vl ∈ Λ are chosen as above, except now we add the assump-

tion that Λ = {v0, . . . , vl}. The normalizing factors from the cAvi terms in the the same factor

of the product cancel (since they are independent of the label at vi), so using the definitions

from Chapter 3 we can write this as

µA,m{x}
µA,m{x′}

=
l−1∏
i=0

exp
(
− Φvi(xi)

)
exp

(
− Φvi(xi+1)

)
=

l−1∏
i=0

exp
(
− h(xi(vi))−

∑
s∈S J(xi(vi),xi(σ

svi)
)

exp
(
− h(xi+1(vi))−

∑
s∈S J(xi+1(vi),xi+1(σsvi)

) .
Using the definition of the xi’s and vi’s, and separating the h and J terms, we can write this

as
l−1∏
i=0

exp
(
− h(x(vi))

)
exp

(
− h(x′(vi))

) l−1∏
i=0

exp
(
−
∑

s∈S J(x(vi),xi(σ
svi)
)

exp
(
−
∑

s∈S J(x
′(vi),xi+1(σsvi)

) .
For the first piece, since x,x′ only differ at v0, . . . , vl we have

l−1∏
i=0

exp
(
− h(x(vi))

)
exp

(
− h(x′(vi))

) =
exp

(
−
∑

v∈Λ h(x(v))
)

exp
(
−
∑

v∈Λ h(x
′(v))

) .
To deal with the second piece, for the numerator we have

l−1∑
i=0

∑
s∈S

J(x(vi),xi(σ
svi)
)

=
l−1∑
i=0

 ∑
s∈S

σsvi=vj for some j<i

J(x(vi),x(σ
svi)
)
+

∑
s∈S

σsvi=vj for some j>i

J(x(vi),x
′(σsvi))

+
∑
s∈S

σsvi ̸=vj ∀j

J(x(vi),x(σ
svi)



130



and for the denominator we have

l−1∑
i=0

∑
s∈S

J(x′(vi),xi+1(σ
svi)
)

=
l−1∑
i=0

 ∑
s∈S

σsvi=vj for some j<i+1

J(x′(vi),x(σ
svi)
)
+

∑
s∈S

σsvi=vj for some j≥i+1

J(x′(vi),x
′(σsvi))

+
∑
s∈S

σsvi ̸=vj ∀j

J(x′(vi),x
′(σsvi)

 .

Assuming e 6∈ S, the conditions on the first two sums here are equivalent to those on the

first two sums in the numerator.

Now consider the second sum from the exponent in the numerator:

l−1∑
i=0

∑
s∈S

σsvi=vj for some j>i

J(x(vi),x
′(σsvi) =

l−1∑
i=0

∑
s∈S

l−1∑
j=0

1{j>i}1{σsvi=vj}J(x(vi),x
′(vj))

=
l−1∑
j=0

l−1∑
i=0

∑
s∈S

1{i<j}1{vi=σs−1vj}J(x(vi),x
′(vj))

=
l−1∑
j=0

∑
s∈S

σs−1
vj=vi for some i<j

J(x(σs−1

vj),x
′(vj)).

Since S = {s1, . . . , sr, s−1
1 , . . . , s−1

r } is closed under taking inverses and J is symmetric, this is

equal to the first sum from the exponent in the denominator. Therefore these terms cancel,

and we have
µA,m{x}
µA,m{x′}

=
exp

(
− ΦΛ(x)

)
exp

(
− ΦΛ(x′)

)
where

ΦΛ(x) =
∑
v∈Λ

h(x(v)) +
l−1∑
i=0

 ∑
s∈S

σsvi=vj for some j<i

J(x(vi),x(σ
svi)
)
+

∑
s∈S

σsvi ̸=vj ∀j

J(x(vi),x(σ
svi)

 .
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Note that the first sum in the square brackets counts pairwise interactions between adjacent

sites in Λ (counting each pair once) while the second sum counts interactions with the outer

boundary.

By an argument similar to the one at the end of the previous proof, we can use this to

show that µA(·|T A
Λ )(x) is specified by ΦΛ in the desired way.
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