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Abstract
Complex biological traits often originate by integrating previously separate parts, 
but the organismal functions of these precursors are challenging to infer. If we can 
understand the ancestral functions of these precursors, it could help explain how 
they persisted and how they facilitated the origins of complex traits. Animal eyes 
are some of the best studied complex traits, and they include many parts, such as 
opsin- based photoreceptor cells, pigment cells, and lens cells. Eye evolution is under-
stood through conceptual models that argue these parts gradually came together to 
support increasingly sophisticated visual functions. Despite the well- accepted logic 
of these conceptual models, explicit comparative studies to identify organismal func-
tions of eye precursors are lacking. Here, we investigate how precursors functioned 
before they became part of eyes in Cnidaria, a group formed by sea anemones, corals, 
and jellyfish. Specifically, we test whether ancestral photoreceptor cells regulated 
the discharge of cnidocytes, the expensive single- use cells with various functions 
including prey capture, locomotion, and protection. Similar to a previous study of 
Hydra, we show an additional four distantly related cnidarian groups discharge sig-
nificantly more cnidocytes when exposed to dim blue light compared with bright blue 
light. Our comparative analyses support the hypothesis that the cnidarian ancestor 
was capable of modulating cnidocyte discharge with light, which we speculate uses 
an opsin- based phototransduction pathway homologous to that previously described 
in Hydra. Although eye precursors might have had other functions like regulating tim-
ing of spawning, our findings are consistent with the hypothesis that photoreceptor 
cells which mediate cnidocyte discharge predated eyes, perhaps facilitating the pro-
lific origination of eyes in Cnidaria.
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1  | INTRODUC TION

Complex biological traits often evolve by combining previously sep-
arate parts, which we herein term “precursors,” that originally served 
other organismal functions. Understanding ancestral functions of 
precursors will help us understand whether and how they were con-
served over time, ultimately informing how complex traits originate. 
An attractive system for exploring the ancestral functions of pre-
cursors is animal eyes, which are complex organs composed of mod-
ules with known functions, including opsin- based photoreceptors, 
pigments, and often lens cells (Oakley & Speiser, 2015). These mod-
ules also function outside of eyes, yet only when combined do they 
facilitate the complex visual tasks that eyes can do. According to a 
functional model, modules gradually accrued during eye evolution, 
sequentially adding photoreceptors, pigments, and lenses to support 
the acquisition of increasingly advanced visual tasks (Nilsson, 2013). 
The modules did not evolve de novo within eyes but probably were 
recruited from elsewhere, while also serving functions outside of 
eyes (Swafford & Oakley, 2019). As such, understanding the func-
tions of precursor modules that would later join forces and become 
eyes is particularly important for understanding eye origins.

Photoreceptor cells are a logical starting point for understanding 
eye origins because they are the keystone module of animal eyes. 
When they are outside of eyes, photoreceptor cells are called extra-
ocular, lack a visual function, and simply sense the ambient intensity 
of light (Ramirez et al., 2011). Still, they provide nondirectional infor-
mation on light levels that is useful to organisms for many sensory 
tasks, including shadow responses, circadian and seasonal entrain-
ment, depth gauges, and other organismal functions (Nilsson, 2009). 
From the perspective of the functional model of eye evolution, ex-
traocular photoreceptors predated their incorporation into eyes by 
functioning as simple light gauges for nondirectional photoreception 
(Nilsson, 2013). Although generally associated with nondirectional 
photoreception, the organismal- level functions of eye precursors 
often go untested.

We propose cnidarians (sea anemones, corals, and jellyfish) are 
a particularly interesting system for examining possible early func-
tions of eye precursors. Cnidarians convergently evolved eyes of 
many types in lineages with a jellyfish stage, including lensed eyes 
with crystallins in box jellyfish (Miranda & Collins, 2019; Picciani 
et al., 2018). At the same time, ancestral cnidarians lacked eyes 
altogether but possessed opsin proteins that may have been mul-
timodal (Leung & Montell, 2017) and were probably capable of 
sensing light (Picciani et al. 2018). Therefore, any functions relying 
on nondirectional light sensing in the cnidarian ancestor may rep-
resent an early role of eye precursors. Nondirectional light sens-
ing in Cnidaria is associated with various sensory tasks, including 
larval settlement and synchronized mass spawning in corals (Boch 
et al., 2011; Mason et al., 2012), vertical migration and spawning 
in jellyfish (Miller, 1979; Quiroga Artigas et al., 2018; Schuyler & 
Sullivan, 1997), tentacle expansion and retraction in corals and sea 
anemones (Gorbunov & Falkowski, 2002; Sawyer et al., 1994), and 
cnidocyte discharge in Hydra polyps (Plachetzki et al., 2012). Among 

these light responses, so far we know that at least two of them are 
mediated by opsins: light- induced spawning in the hydrozoan jel-
lyfish Clytia (Quiroga Artigas et al., 2018) and light modulation of 
cnidocyte discharge in Hydra (Plachetzki et al., 2012). In the jellyfish 
Clytia, a gonad- specific opsin of the xenopsin type (opsin9) controls 
secretion of a neuropeptide that causes oocyte maturation (Quiroga 
Artigas et al., 2018). Blue/cyan light induces the highest levels of 
oocyte maturation followed by gamete release, both of which fail to 
occur in genetically modified gonads that lack opsin9. In turn, another 
xenopsin (HmOps2) expressed in photosensory cells in the tentacles 
of Hydra polyps may modulate the discharge of neighboring sting-
ing cells, the cnidocytes, in response to different intensities of blue 
light (Plachetzki et al., 2012). Here, the evidence for opsin is not via 
a knockout experiment, relying instead on a pharmacological agent 
that targeted a co- expressed ion channel known to be involved in 
opsin- based phototransduction.

Because cnidocytes were clearly present in ancestral cnidarians 
and benefit from strong sensory regulation, we hypothesize modu-
lation of cnidocyte discharge by light was an ancestral function in 
cnidarians. A cnidocyte is a powerful weapon that produces a bal-
listic organelle, the cnidocyst, which is discharged upon proper cues 
(Figure 1; Kass- Simon et al., 2002). The cnidocyst itself is a capsule, 
very often containing toxins, with a harpoon- like tubule that releases 
its contents after the explosive firing. Cnidocytes are strongly regu-
lated, because they are single- use and energetically costly to replace 
(Anderson & Bouchard, 2009). Therefore, to maximize efficient use, 
multiple sensory modalities, including chemosensation, mechano-
sensation, and photosensation, regulate cnidocyte discharge, with 
cnidocytes in the tentacles being highly regulated for efficient prey 
capture (Anderson & Bouchard, 2009). Assuming sensory regulation 
was always important for cnidocytes, then both function (regulation) 
and structure (cnidocyte) may date to the origin of cnidarians. In this 
study, we investigate whether this nonvisual light response occurs 
in distantly related groups of Cnidaria other than Hydra. Using well- 
established cnidocyte capture assays and phylogenetics, we test 

F I G U R E  1   Undischarged cnidocysts from an anthozoan polyp
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whether the intensity of blue light also affects the discharge of cni-
docytes in four other eyeless species and whether this light response 
is likely to date to the cnidarian ancestor. Future studies could di-
rectly assess the molecular basis of the light modulated cnidocyte 
discharge. Our study brings into focus the early functional history 
of light responses in Cnidaria and how ancient sensory tasks may 
have facilitated eye origins by sustaining simple roles for extraocular 
photoreceptor cells.

2  | MATERIAL S AND METHODS

2.1 | Taxon sampling

We tested how light conditions affect cnidocyte capture in four dis-
tantly related species, which represent four orders (Corallimorpharia, 
Actiniaria, Pennatulacea, Semaeostomeae), three subclasses 
(Hexacorallia, Octocorallia, Discomedusae), and two classes 
(Anthozoa, Scyphozoa). Most of these species occur in the coast of 
California and can be cultured over long periods of time, which helps 
with performing cnidocyte capture assays. We purposely chose dis-
tantly related species to span the breadth of Cnidaria, and we ac-
knowledge that future studies that test more species and life stages 
could improve understanding of the evolution of cnidocyte firing.

2.2 | Animal cultures

We cultured polyps of the sea anemone Diadumene lineata (Verrill, 
1869) [=Haliplanella luciae] (Actiniaria, Hexacorallia) and the 
scyphozoan Aurelia aurita (Linnaeus, 1758) ("species 1" strain, 
Semaeostomeae, Discomedusae) in natural seawater at room tem-
perature (22°C ± 1°C) under a 12:12 hr photoperiod with an ar-
tificial white fluorescent light. We also cultured specimens of the 
corallimorph Corynactis californica Carlgren, 1936 (Corallimorpharia, 
Hexacorallia), collected from oil platforms off Santa Barbara, 
California (USA) on 18 February 2015 and colonies of Renilla koel-
likeri Pfeffer, 1886 (Pennatulacea, Octocorallia), collected in the 
Santa Barbara Channel on 10 June 2015, in a seawater open sys-
tem (16°C ± 2°C) with a 12:12 hr photoperiod. Animals were fed 
3- day- old Selcon®- enriched Artemia nauplii (San Francisco Strain 
Brine Shrimp Eggs) on a daily basis. We performed all experiments 
with animals starved for 24 hr.

2.3 | Cnidocyte assays

Because the polyp is widely accepted to be the ancestral stage among 
cnidarians, while the pelagic jellyfish evolved later in Medusozoa 
(Collins, 2002; Collins et al., 2006; Kayal et al., 2018), we focused 
our experiments on the polyp stage for inferring the ancestral state 
of the cnidocyte response to light in the cnidarian ancestor. All of 
our study species produce eyeless polyps, and only Aurelia produces 

a pelagic jellyfish (which possess simple eyes). Additionally, there 
are three types of cnidocytes (spirocytes, ptychocytes, and nema-
tocytes) among anthozoans, but only the nematocytes are widely 
distributed across cnidarians. As such, when we refer to cnidocytes 
throughout the text, we are specifically referring to nematocytes.

Cnidocyte capture assays followed the method described in 
Watson and Hessinger (1989). After double- coating fishing line 
with 20% (w/v) gelatin preheated to ~70°C, 2 cm- long monofila-
ment fishing line probes (Essentials South Bend®) were left to dry 
for ~20 min and then used for contacting one tentacle of each in-
dividual. We exposed healthy individuals to one of two different 
light intensities (dim light, 0.1 W/cm2; bright light, 2.8 W/cm2) from 
a blue LED (SuperBright LEDs) light source with a spectral peak at 
470 nm for approximately two (Aurelia, N = 33), three (Corynactis, 
N = 30; Renilla, bright light, N = 39; dim light, N = 27; maintained 
at ~ 16°C in a cold chamber during experimentation), or four hours 
(Diadumene, dim light, N = 40; bright light, N = 33). Because polyps 
took different amounts of time to relax after being moved into the 
experimental setup, they were exposed for varying amounts of time. 
Light intensity was measured using the Jaz spectrometer (Ocean 
Optics). Gelatin- coated probes were mounted in 100% glycerol, and 
discharged nematocysts were counted at 400× or 600× magnifica-
tion of an Olympus BX61 microscope. We counted nematocysts by 
searching the whole length and width of the probe (one probe per 
individual) with proper focal adjustments. Probes were discarded 
whenever counting could not be done by the lack of a focal point or 
agglomeration of nematocysts.

2.4 | Phylogenetic analysis

We used a maximum likelihood approach to infer the ancestral 
states (light modulated cnidocyte discharge, present or absent) on 
the time- calibrated phylogeny from Picciani et al. (2018). We used R 
4.0.2 and the function rayDISC from the R package corHMM v1.22 
(Beaulieu et al., 2013) to estimate the marginal likelihoods of internal 
nodes with symmetrical rates model since the asymmetrical one was 
not significantly better and could lead to overparameterization (like-
lihood ratio test; chi- square test; df = 1; p = 0.1). Because genetic 
data are scarce for Renilla, this species is missing from the phylogeny, 
and thus, we scored another pennatulacean (Umbellula) in our tree 
as a surrogate taxa. Additionally, because outgroups lack cnidocytes 
altogether, we used a root prior to fix the root state as absent.

2.5 | Statistical analysis and accessibility

We analyzed counts of nematocysts captured in the gelatin probes 
using R 3.6.1. For every species, data were non- normal (Shapiro– 
Wilk test, p < 0.001; except for Diadumene, which had data from 
treatment with dim light following a normal distribution) and fre-
quency distributions were highly skewed though they had roughly 
the same shape. Given that, we used the Wilcoxon rank- sum test to 
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compare sample means of each light treatment, assuming a signifi-
cance level (α) of 0.05. Data for two species, Renilla and Corynactis, 
possessed many trials when no cnidocytes fired. To account for such 
heavily skewed data, we also used a zero- inflated negative binomial 
regression (R package “pscl”) to test whether experimental condition 
(bright vs. dim light) and species (the four tested, mentioned above) 
could explain variation in cnidocyte firing counts beyond a statisti-
cally distinct process generating the accumulation zeros in our data.

3  | RESULTS

3.1 | Light modulates cnidocyte discharge in 
distantly related cnidarians

Our analyses reveal a clear trend across distantly related cnidar-
ians to use light for modulating the discharge of their cnidocytes 

(Figure 2) and indicate the cnidarian ancestor was also able to do so 
(Figure 3). Overall, the discharge of cnidocytes into probes was sig-
nificantly higher for polyps exposed to a dim compared with bright 
blue LED light (Figure 2). Our statistical power was very high (~100%) 
for Diadumene and Aurelia, indicating that we can be very confident 
in the effect of light intensity on cnidocyte discharge in these two 
long- diverged taxa (~700 mya). Conversely, power was lower for the 
other two taxa (Renilla and Corynactis; 40.3% and 52.9%, respec-
tively) so that despite significant effects (p = 0.025 in Corynactis; 
p = 0.022 in Renilla), these should be considered with caution be-
cause low power may increase the chance of false positive results 
(Christley, 2010).

Our zero- inflated negative binomial model agrees with our other 
statistical tests and additionally finds evidence for an overabun-
dance of zeros in our count data, especially among dim conditions 
and within Corynactis and Renilla (Zero- inflation model, p < 0.01 
for each). This model was preferred to a simple negative binomial 

F I G U R E  2   Cnidocyte discharge increases when polyps are exposed to dim blue light, a response conserved across long- diverged 
cnidarian species. Under dim blue light (470 nm; 0.1 W/cm2), discharge of cnidocysts in the gelatin matrix was significantly higher than in 
bright blue light (470 nm; 2.8 W/cm2) assays (Wilcoxon Rank- Sum Test, two- tailed; Aurelia: p < 0.0001, Corynactis: p = 0.025, Diadumene: 
p < 0.0001, Renilla: p = 0.022; see Materials and Methods for details). Center lines in box plots correspond to the sample mean, top and 
bottom extremes represent upper and lower 95% confidence interval points, and whiskers are one standard deviation lines
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regression (Vuong test statistic for AIC values, p < 0.001), indicating 
that accounting for excess zeros in our cnidocyte firing is a better 
descriptor of our data than not. In this model, both species and ex-
perimental condition significantly explain variation in cnidocyte fir-
ing (Analysis of Deviance, p < 0.01 for each). Taken together, and as 
is most evident in distribution of our data (Figure 2), we believe that 
light modulation of cnidocyte firing is likely across these taxa.

3.2 | Species- specific variation in numbers of 
discharged cnidocytes

The octocoral Renilla discharged substantially fewer cnidocytes on 
average (from each treatment) than all other species, while the scy-
phopolyp Aurelia discharged more cnidocytes than the octocoral, the 
sea anemone Diadumene and the corallimorph Corynactis. That could 
be explained by either a comparable density of cnidocytes among 
species but differential use, variation of cnidocyte density in ten-
tacles among species or a combination of both. For instance, octo-
corals often lack cnidocytes altogether, and other species of Renilla 
possess low numbers of a simple type of nematocyte (Mariscal & 
Bigger, 1977). In turn, scyphopolyps depend primarily on only one 
type of cnidocyte, the nematocyte, as opposed to most anthozoans, 
which use two types of cnidocytes (nematocytes and spirocytes) for 

lassoing prey (Fautin, 2009). That the scyphopolyp Aurelia relies only 
on nematocytes might explain its higher discharge averages com-
pared with other species.

4  | DISCUSSION

Our study presents empirical support for a sensory task that we 
suggest as a possible role for ancestral photoreceptors that predate 
cnidarian eyes. By testing whether the modulation of cnidocyte dis-
charge by light occurs among long- diverged cnidarian lineages and 
reconstructing the state of the cnidarian ancestor, we find support 
for the hypothesis that this light response is a deeply conserved sen-
sory task preserved over millions of years. Because we find a broad 
diversity of cnidarian polyps discharge significantly more cnidocytes 
during exposure to dim blue light compared with bright blue light, 
we suggest that ancestral photoreceptors in Cnidaria regulated the 
discharge of cnidocytes. Several ecological reasons could explain 
why distantly related species tend to discharge more cnidocytes in 
dimmer light (see discussion in Plachetzki et al. 2012). For example, 
fine tuning cnidocyte discharge to maximize prey capture either at 
dusk, when zooplankton migrate to surface waters, or when prey 
items cast a shadow on the polyp. Although we do not rule out other 
possible light sensing functions, because cnidocyte discharge is still 
the primary means of defense and prey capture of almost all cnidar-
ians, such a long- standing photoreceptive function could have fa-
cilitated multiple convergent eye origins in the group by maintaining 
phototransduction pathways and enabling them to be later exploited 
for vision.

Organization of cnidocytes and their sensory apparatus vary ex-
tensively between cnidarian classes (Anderson & Bouchard, 2009), 
yet a similar innervation pattern (Anderson et al., 2004) suggests pho-
toreceptor cells could still have persisted in the circuitry controlling 
cnidocyte discharge. Spatial positioning of cnidocytes in tentacles 
varies considerably— from patchy in hydrozoans and scyphozoans to 
uniform in sea anemones and corals (Anderson & Bouchard, 2009). 
Additionally, receptor complexes associated with cnidocytes can be 
produced solely by the cnidocytes themselves or receive projections 
from nearby ciliary cells (Watson & Mire- Thibodeaux, 1994). Given 
such seemingly divergent organization, an alternative to homology 
of light modulation of cnidocyte discharge would be convergence 
of such light responsiveness via repeated co- option of photorecep-
tor cells into cnidocyte circuitry. If convergent, the ancestral cnido-
cyte circuitry would have lacked photoreceptor cells, which would 
have been later independently assimilated into the circuitry of cni-
docytes. But cnidarian photoreceptor cells are strongly peptidergic 
(Martin, 2002, 2004; Plickert & Schneider, 2004), and cnidocytes 
are innervated by networks of peptidergic neurons in all cnidar-
ian classes regardless of their cnidocyte organization (Anderson 
et al., 2004; Westfall, 2004). These observations on peptidergic 
neurons, coupled with our inference that light modulation of cnido-
cyte discharge was ancestral, are consistent with a hypothesis that 
the cnidarian ancestor possessed photoreceptor cells that could 

F I G U R E  3   Maximum likelihood ancestral state reconstruction 
on the main phylogeny from Picciani et al. (2018). Marginal 
likelihoods of ancestral states (light modulated cnidocyte discharge 
present, green; absent, white) at the cnidarian ancestor node are 
shown in the pie chart and inferred with a symmetric Markov two- 
state model (equal rates) of trait evolution. Letters and blue ovals 
show where studied species are placed in the phylogeny (A: Renilla, 
B: Diadumene, C: Corynactis, D: Aurelia). Tip states of groups for 
which we lack information on light modulated cnidocyte discharge 
are scored as missing data and shown as rectangles half colored in 
green. Horizontal bars indicate lineages in which eyes convergently 
evolved. Scale bar denotes time in millions of years. See Figure S1 
for the whole phylogeny with ancestral states
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send modulatory signals to cnidocytes and that these cells likely per-
sisted in cnidocyte circuitry over evolutionary time.

Of the various light sensing genes in cnidarians, only xenopsins 
(called cnidops in cnidarians) are known to mediate photoreception 
in both Medusozoa and eyeless Anthozoa, suggesting that xenop-
sins could be used to sense light for cnidocyte discharge. For in-
stance, different light sensing molecules, either nonopsin proteins 
or opsin types other than xenopsin, could be used for light detection 
in species of anthozoans. Even though anthozoans can sense light 
with cryptochromes and two opsin types besides xenopsin (Gornik 
et al., no date; Ramirez et al., 2016; Reitzel et al., 2013; Picciani 
et al., 2018), only the xenopsin seems to be used for light sensing 
by medusozoans. Interestingly, it is both the light sensitive molecule 
in photoreceptor cells of eyes and photosensory neurons that mod-
ulate the discharge of cnidocytes in Hydra (Plachetzki et al., 2012). 
It is likely that a homologous light response would be mediated by 
a light sensing molecule shared among all cnidarians, such as xen-
opsin. Demonstrating that the modulation of cnidocyte discharge in 
anthozoans is done with photoreceptors that use xenopsins would 
reinforce photoreceptor homology.

Other roles besides modulation of cnidocyte discharge are also 
possible for photoreceptors in the cnidarian ancestor, thought to 
be a solitary polyp lacking symbionts (Kayal et al., 2018). Several 
functions, including larval settlement and phototaxis, could also be 
ancestral— but we do not yet know whether they use opsins. If not 
opsin- mediated, it seems unlikely such photoreceptors became as-
similated into eyes that invariably use opsin. A topic for future re-
search would be to test whether other light- dependent functions are 
mediated by opsins, and if so, whether the functions are ancestral in 
Cnidaria. Second, opsin- expressing ectodermal cells in the gonads 
of Clytia control oocyte maturation (Quiroga Artigas et al., 2018), so 
that spawning is another candidate for an ancestral photoreceptive 
function in cnidarians. Testing whether light- influenced spawning 
is ancestral would require a survey of other species besides Clytia. 
A broad survey could be facilitated by the many available reports 
of light- influenced spawning in Cnidaria (see item S1 in Picciani 
et al., 2018). Understanding the phototransduction pathways un-
derlying spawning across species using genetic and experimental 
approaches would also be important to uncover the identity of pho-
toreceptor cells and their relationship to eye precursors.

In addition to photoreceptor cells, other key precursor modules 
like pigments and crystallins probably predated cnidarian eye ori-
gins and served other organismal functions prior to visual function. 
For instance, one module— the biosynthesis machinery of melanin 
that includes tyrosinases— is present in species of both Anthozoa 
and Medusozoa (Dunlap et al., 2013; Esposito et al., 2012), the two 
major cnidarian sister lineages, and therefore could also be ancestral. 
Melanin synthesis is involved in many biological processes outside 
of cnidarian eyes, including functioning as a trigger for scyphopol-
yps to strobilate and produce jellyfish (Berking et al., 2005; Van 
den Branden et al., 1980; Van den Branden, Van den Sande, & 
Decleir, 1980). Moreover, melanin is also used by corals, sea fans, 
and anemones to create a physical barrier against pathogens, and 

melanin synthesis is correlated with disease resistance in corals 
(Mydlarz et al., 2008; Mydlarz & Palmer, 2011; Palmer et al., 2008, 
2012; Petes et al., 2003; Zaragoza et al., 2014). Another precursor 
module, the crystallin proteins, forms lenses in the eyes of box jel-
lyfish and may be derived from proteins with nonoptical functions 
(Piatigorsky et al., 1989, 2001; Piatigorsky et al., 1993). We know 
relatively little about the origins, both structural and functional, of 
box jellyfish lens crystallins, though they are thought to be closely 
related to vertebrate saposins (Piatigorsky et al., 2001). Crystallin 
homologs seem to occur in sea anemones (Nicosia et al., 2014) and 
could perhaps be present in other lineages of eyeless cnidarians 
or could have occurred ancestrally and been lost in most eyeless 
species.

By testing a wide breadth of cnidarian diversity for a light- 
influenced response known to involve a family of opsins used for 
vision, our results highlight one possible early role for eye precur-
sors in Cnidaria was to modulate cnidocyte discharge. These results 
contribute to our understanding of eye evolution by using a phylo-
genetic context to propose an explanation for where the photore-
ceptor cells of eyes come from, and what functions they possibly 
had before becoming functionally integrated with other structures 
to mediate vision. It also raises interesting questions about how sen-
sory tasks continued to evolve in lineages that acquired eyes. Which 
novel functions were cnidarians able to perform once they evolved 
directional photoreceptors and image- forming eyes? Did those new 
functions supersede ancestral functions? As proposed by Nilsson 
(2013), the evolution of increasingly complex visual tasks can be 
studied concomitantly with eye morphology so we can understand 
evolutionary trajectories accompanying both function and struc-
ture. By advancing a possible ancient role for cnidarian eye precur-
sors, our study helps to start dissecting the functional drivers that 
can elaborate morphological complexity.
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