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Editorial on the Research Topic

The Pathogenic Yersiniae–Advances in the Understanding of Physiology and Virulence,

Second Edition

Of the 18 known Yersinia species, Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica are
pathogenic to humans and animals and are widely characterized. The zoonotic obligate pathogen
Y. pestis is the causal agent of plague, a systemic disease that is usually fatal if left untreated (Zietz
and Dunkelberg, 2004; Zhou et al., 2006). Free-living Y. enterocolitica and Y. pseudotuberculosis
are the agents of yersiniosis, a rarely systemic gastrointestinal disease (Galindo et al., 2011). The
remaining species are mostly harmless to humans, although Y. ruckeri is an enteric fish pathogen
affecting mainly salmonids, while a few others display toxicity toward insects (Sulakvelidze, 2000;
Tobback et al., 2007; Fuchs et al., 2008; Chen et al., 2010). At the forefront of Yersinia research are
studies of classical microbiology, pathogenesis, protein secretion, niche adaptation, and regulation
of gene expression. In pursuit of these endeavors, new frontiers are being forged on waves of
methodological and technological innovation. In this second edition of the special research topic on
the pathogenic Yersiniae is a compilation of reviews and research articles that summarize current
knowledge and future research directions in the Yersinia pathophysiology field.

PROTEIN SECRETION

Type III secretion (T3S) is prominent protein delivery process in a large number of Gram-negative
bacteria that confers to them an ability to interact in pathogenic or symbiotic relationships with
either vertebrate or invertebrate hosts (Buttner, 2012; Deng et al., 2017). The Ysc-Yop T3S system
(T3SS) is encoded on a virulence plasmid common to all human pathogenic Yersinia (Cornelis
et al., 1998). This so-called “injectisome” has long been believed to provide a conduit through which
a restricted set of just six or seven plasmid-encoded host-modulating Yop effectors are delivered
from the bacterial cytoplasm into the eukaryotic cell cytosol (Pha and Navarro, 2016; Grabowski
et al., 2017). Using a transposon site hybridization based genome wide screen, Schesser-Bartra et al.
identified three chromosomally-encoded proteins that promote Y. pestis infection in cells and in
mice. With features indicative of host-modulating Yop effectors, they identify the first non-plasmid
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encoded secretion substrates of the Ysc-Yop T3SS. In another
study that performed heterologous complementation analyses
with the YscX and YscY protein families, Gurung et al. reveal
that the YscX and YscY protein complex produced by Y.
pseudotuberculosis is specifically critical for biogenesis and/or
function of the Ysc-Yop T3SS. The authors go on to discuss what
might be the molecular basis for this specificity.

While pathogenic potential of Yersinia for humans and
animals is heavily correlated to the plasmid encoded Ysc-
Yop T3SS, Yang et al. provide new insight into the four
independent Type VI secretion system (T6SS) copies present
in human pathogenic Yersinia. The impact of these multiple
systems on Yersinia physiology and pathogenesis is likely
to be very large given how T6SSs have capacity to deliver
multiple effectors into either prokaryotic or eukaryotic cells,
and are known to affect diverse biological processes such
as virulence, anti-virulence, stress resistance and competition
(Alteri and Mobley, 2016; Lien and Lai, 2017).

NICHE ADAPTATION

Enteropathogenic Yersinia are foodborne pathogens. Therefore
it comes as no surprise that they thrive at refrigeration
temperatures (Brocklehurst and Lund, 1990; Goverde et al.,
1994; Azizoglu and Kathariou, 2010; Keto-Timonen et al.,
2018), and in this environment even remain primed for
infection (Asadishad et al., 2013). To understand the molecular
mechanisms by which psychotropic Yersinia thrive in cold
environments may give rise to strategies by which growth
can be restricted, and this would be a strategically important
preventative measure for the food processing industry. To
investigate the genome-wide cold adaptation behavior of Y.
pseudotuberculosis, Virtanen et al. used RNA-Seq technology
to identify genes that were significantly more expressed in a
cell density specific manner at cold temperature. Among the
many genes that were up-regulated were nutrient acquisition
genes, cold shock protein genes, DEAD-box RNA helicase
genes, genes handling compatible solutes, genes involved
in transcription termination and translation initiation, and
genes involved in cell wall modification. This suggests that
Y. pseudotuberculosis establishes a core network of cold
responsive proteins to drive ribosome biogenesis and function at
low temperature.

It follows that psychotropic Yersinia are enriched in a
variety of foods on a global scale (Hilbert et al., 2003;
Ozdemir and Arslan, 2015; Le Guern et al., 2016). Moreover,
changing food consumption practices and globalization of the
international food trade have contributed to increased frequency
of yersiniosis (Gupta et al., 2015). At the same time, orally
ingested Yersinia have the potential to survive passage through
the gastrointestinal tract. It has been postulated that surviving
bacteria may contribute to the onset or persistence of gut
inflammation (Hugot et al., 2003). Although experimental mouse
models of Crohn’s disease do not discount contributions made
by infecting enteropathogenic Yersinia (Meinzer et al., 2008;
Murthy et al., 2014; Fonseca et al., 2015; Han et al., 2017),
support stemming from cohort studies of Yersinia infected
clinical material is underwhelming (Kallinowski et al., 1998;

Lamps et al., 2003; Knosel et al., 2009; Chiodini et al.,
2013; Leu et al., 2013). To further investigate this issue,
Le Baut et al. analyzed the prevalence of Yersinia species
in a total of 470 illeal samples taken from Crohn’s disease
patients and healthy controls. Significantly, Yersinia species
were detected with equal frequency in both disease and healthy
ileum tissue, suggesting that they are well adapted to this
niche. Hence, there is now a need to characterize the effect of
resident Yersinia on maturation and regulation of the mucosal
immune response.

GENE EXPRESSION CONTROL

Behind every successful niche adaptation is a complex
regulatory circuitry that controls specific gene expression
profiles. For example, the two-component or histidine-
aspartate phosphorelay systems are vital for the monitoring
of environmental and intracellular signals to produce changes
in gene expression or behavioral responses (Stock et al., 2000;
Laub and Goulian, 2007). In Yersinia, a large number of two-
component systems are known (Marceau, 2005), with a few of
them making recognized contributions to Yersinia survivability
in the environment or in an infected host (Flamez et al.,
2008; Reboul et al., 2014). A notable two component system is
EnvZ/OmpR that enables many bacteria to alter gene expression
in response to osmotic and acid stress (Walthers et al., 2005;
Chakraborty and Kenney, 2018). The work of Jaworska et al.
reports on OmpR-mediated control of iron acquisition via
transcriptional repression of the HemR1 and HemR2 heme
receptors. This regulatory circuit works in conjunction with the
transcriptional repressor Fur to prevent over-accumulation of
iron/heme by Y. entercolitica.

Another two component system is BarA/UvrY. Responding
to metabolic end products such as short chain fatty acids,
BarA/UvrY signaling is the primary regulator of the widespread
Csr global regulatory system, and in this way can profoundly
influence multiple metabolic, behavioral and virulence traits
in many bacteria (Vakulskas et al., 2015). In the report by
Schachterle et al. BarA/UvrY signaling was found to repress the
formation of Y. pseudotuberculosis biofilms through activation
of the CsrB regulatory RNA. It is likely that this is pleiotropic
repression affecting multiple elements of biofilm formation and
maintenance by Y. pseudotuberculosis.

The primary requirement for mature biofilm formation by
Yersinia is the production of an exopolysaccharide (EPS) that
requires the hmsHFRS locus to coordinate its synthesis and
transport (Bobrov et al., 2008). Moreover, c-di-GMP enhances
EPS production, and the levels of this signaling molecule are
tightly controlled by the opposing actions of two diguanylate
cyclases (encoded by hmsT and hmsD) and a phosphodiesterase
(hmsP) (Kirillina et al., 2004; Bobrov et al., 2011). The study
of Fang et al. describes a novel AraC-like transcriptional
activator termed BfvR that controls Y. pestis biofilm formation
via stimulating transcription from the hmsHFRS and hmsCDE
operons to elevate EPS and c-di-GMP production. This identifies
BfvR as the first AraC family transcription regulator reported to
control biofilm formation in Yersinia.
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MICROBIOLOGY AND PATHOGENESIS OF

NON-MAMMALIAN YERSINIA INFECTIONS

Although not known to be harmful to humans, the enteric fish
pathogen Y. ruckeri is still a pathogen of great interest as it has
capacity to causes significant economic losses in the aquaculture
industry (Tobback et al., 2007). This is reflected by a recent surge
of reports that offer improved understanding of the biological
processes contributing to Y. ruckeri infection and pathogenicity.
The review by Guijarro et al. assimilates this new knowledge
to provide up-to-date insight into the molecular mechanisms of
the Y. ruckeri infection process. Complementing this review is a
report byWrobel et al. that analyzed the complete DNA sequence
of the unique pYR4 plasmid from a highly virulent isolate of Y.
ruckeri. This cryptic plasmid has potential to impact positively on
Y. ruckeri virulence since it encodes for a type IV pilus and a type
IV secretion system that are well established virulence associated
factors in other bacteria (Craig et al., 2004; Giltner et al., 2012;
Gonzalez-Rivera et al., 2016; Grohmann et al., 2018).

Moreover, there has been great interest in the function and
taxonomical distribution of insecticidal genes among Yersinia
spp., owing in part to their potential in contributing new
knowledge to the ecology, evolution and pathogenicity of human
pathogenic Yersinia (Pinheiro and Ellar, 2007; Fuchs et al., 2008,
2011; Hares et al., 2008; Spinner et al., 2012, 2013; Alenizi
et al., 2016). Using Y. frederiksenii as a model system that
displays toxicity toward insects, Springer et al. were able to
demonstrate a distinct contribution of the novel heat-stable
cytotonic enterotoxin to oral and intrahemocoelic toxicity of
infected insects. These findings led the authors to discuss how the
ability to enter invertebrates may constitute a selective advantage
to Yersinia isolates in environmental survival and evolution
of virulence.

NEW FRONTIERS IN YERSINIA

BIOLOGY RESEARCH

Conventional antibiotics have saved the lives of many by
decreasing the morbidity and mortality of bacterial infectious
diseases. However, the global emergence of bacteria resistant
to these antibiotics means that they no longer work effectively,
and this presents a major healthcare issue that creates
tremendous global social and economic suffering (Aminov,
2010). Consequently, alternative solutions to this healthcare
crisis that are effective and reliable must be swiftly identified.
In recent years, one such alternate approach has been to
isolate anti-bacterials that function by targeting a virulence
determinant (Clatworthy et al., 2007; Maura et al., 2016). Ideally,
these so called “anti-infectives” or “virulence blockers” would
be specific for pathogenic bacteria and have a bacteriostatic
effect that would synergize with the immune system to clear
the infection. A classic example of this endeavor is the
identification of novel chemical inhibitors of the T3SS (Keyser
et al., 2008; Duncan et al., 2012). Despite the success of
identifying chemical inhibitors of the T3SS, none of these
have yet reached the market. This issue is addressed in a

report by Morgan et al. which describes the development
of an experimental pipeline that would help transition from
high throughput screening to inhibitor validation and initial
determination of their mode of action. In so doing, the
authors consider important new possible modes of action for
T3SS inhibitors.

Bacterial virulence regulation is exquisitely fine-tuned so
that subsets of virulence factors are expressed only at times
of need. Alterations in the local environment account for
triggering changes in this virulence gene expression profile.
Responses are rapid, and it is now clear that post-transcriptional
regulatory effects, such as small non-coding RNAs contribute
to the rapidity of this re-programming. Benefitting from
progressive developments in genome-wide omics-based methods
of exploration, several RNA-based regulatory systems have
been discovered in pathogenic Yersinia. These discoveries have
been reviewed by Knittel et al. in the context of Yersinia
niche colonization, metabolic adaptation, acute and chronic
infection, and evolution. By inference, at least some RNA-based
regulatory systems could serve as a suitable target of anti-infective
drug development.

The second edition of this research topic, provides many
examples demonstrating the great capacity of Yersinia species
to adapt and thrive in diverse environmental niches. This is
reiterated by the timely review by Davis, which sheds light on
the ability of Yersinia sub-populations to phenotypically diversify
during an infection in order to balance the need to maintain
bacterial growth while resisting attack from different cellular
elements of an activated immune system. Underpinning this
phenotypic diversification is the ability of subsets of bacteria to
make temporal and spatial adjustments to their gene expression
profiles in response to the microenvironment. Having the
technology to detect gene expression profiles in distinct sub-
populations of bacteria offers a unique opportunity to understand
the yin and yang of interactions between individual bacteria and
specific immune cell types. In turn, this may eventually enable
the generation of more efficacious approaches to treat infections
by having the option of tailoring novel antibacterials or their
immunomodulatory counterparts that can favorably influence
the outcome of this bacteria-immune cell interplay.
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