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Developing accurate ab initio molecular dynamics (AIMD) models that capture both electronic 

reorganization and nuclear quantum effects associated with hydrogen bonding is key to 

quantitative understanding of bulk water and its anomalies, as well as its role as a universal solvent. 

For condensed phase simulations, AIMD has typically relied on the generalized gradient 

approximation (GGA) of Density Functional Theory (DFT) as the underlying model chemistry for 

the potential energy surface, with nuclear quantum effects (NQEs) sometimes modeled by 

performing classical molecular dynamics simulations at elevated temperatures. Here we show that 

the properties of liquid water obtained from the meta-GGA B97M-rV functional, when evaluated 

using accelerated path integral molecular dynamics simulations, displays accuracy comparable to 

a computationally expensive dispersion corrected hybrid functional, revPBE0-D3. We show that 

the meta-GGA DFT reproduces bulk water properties including radial distribution functions, self-

diffusion coefficients, and infrared (IR) spectra with comparable accuracy of a much more 

expensive hybrid functional. This work demonstrates that the underlying quality of a good DFT 

functional requires evaluation with quantum nuclei, and that high temperature simulations are a 

poor proxy for properly treating nuclear quantum effects. 
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For close to 50 years some of the most successful models for liquid water have been based on 

empirical functional forms that capture the electronic structure and nuclear quantized motions 

implicitly through their parameterization using condensed phase data.1 While this usually provides 

good accuracy of water properties near regions of phase space where the model is parameterized, 

it often comes at the expense of transferability to other state points or for solvation studies.1 

However, the ultimate goal of this field is to create general theoretical models that are transferable, 

predictive, and at the most challenging, able to describe chemically reactive systems.  

 Over the last 20 years, a highly promising approach for achieving all of these goals has 

been advanced through ab initio molecular dynamics (AIMD) simulations, where the nuclei are 

evolved based on the interactions between the atoms calculated on the fly from the instantaneous 

electronic structure of the system. In the condensed phase, for which sampling the statistically 

relevant configurations of the system is just as important as the quality of the underlying potential 

energy surface, AIMD has almost exclusively relied on the relatively inexpensive Kohn-Sham 

Density Functional Theory (DFT)2-10, although some studies using the MP2 wavefunction method 

have been reported11-12. Since in AIMD simulations the nuclei evolve on the bare Born 

Oppenheimer potential energy surface, nuclear quantum effects (NQEs) cannot be taken into 

account implicitly and have to be treated explicitly. Water is typically the first test bed for new 

models and methods due to its small molecular size, the relative simplicity of its covalent structure, 

but also because of its inherently interesting anomalous properties that arise from complex 

intermolecular interactions as an associated liquid. 

For DFT, the approximation to the exchange-correlation functional can be organized into 

a hierarchy of increasing accuracy according to a “Jacob’s ladder” of complexity. The lowest rung 

is comprised of the local density approximation (LDA), which is greatly improved upon at the 

second rung by the generalized gradient approximation (GGA), such that the latter has dominated 

simulations of liquid water to date. The simulated properties of liquid water using early GGA 

functionals such as Becke-Lee-Yang-Parr (BLYP)13-14 or Perdew-Burke-Ernezerhof (PBE)15 are 

now well-known, in which water was found to be overstructured and glassy at ambient temperature 

and pressure7, 9, 16-18. This failure is largely due to the well-known delocalization or self-interaction 

error19, which leads to systematic red shifted errors in the monomer deformability10 and thus 

systematic overbinding when analyzed on dimer data sets20-21. 



This is made even more severe when also accounting for NQEs, since these add the 

equivalent of ~5 kcal/mol of extra zero-point energy into the O-H coordinate, thus providing even 

more propensity to delocalize the proton in the hydrogen bond.22 This is one reason perhaps why 

NQEs are typically neglected altogether in the evaluation of liquid water AIMD simulations using 

standard GGA density functionals, because they appear to work well without them included.4, 6 

The neglect of NQE has also been a practical consideration, since conventional path-integral 

methods are about two orders of magnitude more computationally expensive than simulations 

where the nuclei are treated classically. It is the latter especially that has led to an ad hoc model 

for NQEs, which is to run the classical dynamics at a higher temperature (and sometimes at 

negative pressure) to mimic an aspect of NQEs, which is the delocalization of the proton and 

weakening of the hydrogen-bonded network.  

Since this early pioneering work, improved physics and computational methods have 

advanced on several fronts. First is the inclusion of simple and practical non-local dispersion 

corrections such as DFT-D23-24, (r)VV1025-26, vdW-DF27, or the Tkatchenko and Scheffler vdW28-

29. The accounting for non-local dispersion is known to counteract the overstructuring of liquid 

water by GGA functionals.9, 30. The second is the investigation of DFT functionals that are 

classified on higher rungs of Jacobs ladder than GGAs, such as hybrid and double hybrid 

functionals at rungs four and five, in which the Hamiltonian is a fully nonlocal operator due to 

inclusion of some percentage of exact exchange4, 8. The self-interaction problem in DFT is known 

to also be mitigated by including exact exchange in the density functional, and thus to significantly 

improve the description of water’s bond deformation energies.31 Finally, new methods such as the 

ab initio ring polymer contraction (AI-RPC) approach22, combined with multi-time scale (MTS) 

propagation32 and appropriate thermostats33, allows for accurate inclusion of NQEs in AIMD 

calculations  at a significantly reduced cost.34 The ability to now simulate NQEs much more 

reliably and cheaply22, 34 offers the opportunity to assess the ad hoc estimator of NQEs (if they are 

estimated at all) comprised of a classical trajectory run at an elevated temperature5, 35. 

To illustrate the interplay of all three advances, the current snapshot of progress on 

simulating liquid water from first principles is that the hybrid non-empirical functional revPBE0 

that includes the empirical D3 dispersion correction (revPBE0-D3) and simulated with NQEs, 

shows very good agreement with bulk phase experimental properties at ambient conditions.4 This 

in turn has informed the fact that while dispersion-corrected GGA models such as revPBE-D3 



show good agreement with many water properties using classical dynamics6, 35, it arises from a 

fortuitous cancellation of errors in which the neglect of exact exchange counterbalances the neglect 

of quantum nuclei4. This leaves the AIMD field for liquid water and solvation studies facing a 

computationally painful prospect of needing to include exact exchange at roughly two orders of 

magnitude the cost of a GGA functional to get liquid properties and/or their trend with temperature 

and pressure that is reliable. 

A number of ab initio studies on liquid water have attempted to reproduce basic 

experimental water properties using approximate density functionals and classical trajectories, in 

some cases artificially raising or lowering the temperature to mimic the effects of NQEs. The 

question is how much correct physics is required to declare true victory in a model chemistry for 

liquid water and its role as an aqueous solvent? Considering the history of AIMD simulations, 

what likely matters for an accurate description of bulk water is not whether exact exchange must 

be included, or whether it is dressed with an additive dispersion term, but that a well-optimized 

DFT functional should be balanced among interactions so as to accurately describe water covalent 

bonds and their deformability. In turn, an accurate potential energy surface for the water monomer 

is necessary for an accurate description of intermolecular hydrogen-bonding31, thereby allowing 

for nuclear quantum effects to operate effectively for describing the proton dynamics. In this study 

we examine this balance for the semi-local meta-GGA functional B97M-rV that builds in the non-

local correlation VV10 functional into the fitting procedure36-38 in order to compare it against the 

established hybrid GGA functional revPBE0-D3 for liquid water24. In addition, we perform 200 

ps simulations for the meta-GGA functional using thermostatted ring polymer molecular dynamics 

(TRPMD) to compare its properties against a classical simulation at an elevated temperature of 

330K.  

 Figure 1 shows the intermolecular radial distribution functions (RDFs) for oxygen-oxygen 

gOO(r), hydrogen-hydrogen gHH(r), and oxygen-hydrogen gOH(r), comparing the meta-GGA and 

hybrid functional simulated with classical and quantum nuclei, and compared against experimental 

data39-40. Under classical dynamics, the meta-GGA functional is in very good agreement with the 

hybrid GGA functional and with the experimental data, although the meta-GGA slightly 

underestimates the second peak and overestimates the intensity in the interstitial region, which is 

evidence of lower tetrahedrality. The addition of NQEs moves the DFT models more closely to 



the experimental values for the RDFs involving hydrogen and thus yield small improvements in 

the gOO(r) as well. 

 
Figure 1. Water radial distribution functions (RDF) using either classical or quantum dynamics 
for B97M-rV and the previously published revPBE0-D3 results4. (A) gOO(r), (B) gHH(r), and (C) 
gOH(r). AIMD simulations of water performed at the experimental bulk liquid density at 300 K. 
The experimental data is shown as gray shade for reference.39-40 The additional curves in black 
eliminates the unphysical density at low r and conforms to the isothermal compressibility that 
overcomes problems with the original experimental analysis.41 

Both functionals are slightly too incompressible due to shifting of the first peak position out to 

higher values of r.41 It is possible that the finite Gaussian basis set using TZV2P (see Methods) 

and the plane wave cutoffs used in AIMD are also contributing to this disagreement. In previous 

work we examined the errors introduced with a small plane wave cutoff and small basis for the 

binding energies of the S22 data set, and binding and isomerization energies for WATER20 data 

sets.3 In particular we benchmarked CP2K using the mDZVP and mTZV2P basis sets, and plane 

wave cutoffs of 400 Ry and 800 Ry, and compared them to all electron calculations using a def2-

QZVPPD basis set evaluated with fine grids.3 We found that the B97M-rV functional overbinds 

by 1-2%, and the isomerization energy errors were very small under the standard AIMD simulation 

conditions.3 Furthermore, we also compared the classical MD structure for liquid water using the 

smaller TZV2P basis set (the one used here) and find that we get very close to the same result 

when using the larger MOLOPT mTZV2P basis set reported previously (see Figure S1). It is 

noteworthy that a similar NQE study of the SCAN+rVV10 meta-GGA functional42 found that the 

structural properties of liquid water were significantly overstructured and in relatively poor 

agreement with experiment compared to the two functionals examined here.43 Overall this appears 
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to be due to the fact that the bare SCAN functional44 significantly overbinds in general, the addition 

of rVV10 makes the overbinding worse, and the AIMD simulation conditions likely exacerbates 

this further.38  

Figure 2 presents a comparison of the functionals on the two different rungs, and the 

differences due to classical vs. nuclear quantum dynamics, on the complementary set of probability 

distributions that probe different features of the hydrogen-bonding network, including: the 

covalent bond length dOH, hydrogen bonding angle q defined by the OD- HD-OA vertices, proton 

transfer coordinate 𝛿 = 𝑑$%&% − 𝑑$(&%, as well as for the molecular dipole µ. Under classical 

dynamics, the hybrid functional shows a slightly shorter covalent bond (Figure 2A) greater 

linearity of the hydrogen-bond (Figure 2B), and a larger molecular dipole moment (Figure 2D) 

which aligns with the RDF profiles in that revPBE0-D3 is slightly more structured overall 

compared to the meta-GGA.  

 
Figure 2. Analysis of the hydrogen bond network using either classical or quantum dynamics for 
B97M-rV and revPBE0-D3 4. Shown are the probability density functions (PDFs) of: (A) covalent 
bond length, dOH, (B) hydrogen bond angle q, (C) proton transfer coordinate, 𝛿, on semilogarithmic 
scale, and (D) molecular dipole µ. The insets illustrate the definition of dOH and 𝛿 and q.  

 

However, Figure 2 makes clear that the differences in the underlying performance of the 

functionals is negligible compared to the influence of treating the nuclei quantum mechanically, 

which changes the hydrogen-bonding network fundamentally. In addition to the broadening of 
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these distributions due to proton delocalization, there is now non-zero probability of 𝛿 > 0 (Figure 

2C), indicating the presence of transient autoprotolysis.45 It is interesting to see the competing 

effects introduced by the nuclear quantum effects46, where proton delocalization along the covalent 

bond tends to strengthen hydrogen bonds, but while also slightly bending the hydrogen-bonds to 

being less linear. These competing effects are finely balanced at 300K46 and thus give rise to the 

rather small changes in the RDFs when comparing the classical vs. quantum dynamical averaging 

in Figure 1.  

Figure 3 continues the trend that the underlying differences between the two functionals 

are small relative to the (approximate) TRPMD treatment of the nuclear motions for the dynamical 

properties such as the IR spectra (Figure 3A) and self-diffusion coefficient (Figure 3B). For the 

calculated classical IR spectra, B97M-rV and revPBE0-D3 exhibit blue shifts of ~200 cm-1 and 

~50 cm-1 for the stretching and bending mode, respectively, as well as low frequency librational 

modes that are red-shifted by ~80 cm-1, indicating that the intermolecular hydrogen bonding 

network has somewhat more extensive rocking motions. However, the NQEs correct both 

functionals so that their peak positions better align with the peaks of the experimental IR spectra47, 

with high frequency red shifts and low frequency blue shifts both consistent with the greater degree 

of proton delocalization. We note that the broadening of the peaks is an artifact of the approximate 

nature of the TRPMD, which has been seen previously4, 48, as opposed to the underlying accuracy 

of the functionals themselves. In addition, both functionals show overall excellent agreement with 

the self-diffusion coefficient, which are within error bar of the experimental value49, although the 

NQE has the opposite effect on the water self-diffusivity for the two functionals. It is not 

straightforward to explain this trend given the interplay between the functional and the proton 

delocalization promoted by NQEs, but nonetheless the effect is small compared to the error bars 

on the diffusion constant. 

It has already been established that the revPBE-D3 GGA functional simulated with 

classical dynamics benefits from a cancellation of errors, i.e. the electronic model deficiencies 

cancel the neglect of NQEs at room temperature.3-4 By contrast, excellent DFT functionals may at 

first appear to be inferior for dynamics using classical trajectories when in fact their better 

underlying electronic structure requires their accompaniment with appropriately described nuclear 

quantum effects.3-4 For a long time, the problem of simulating nuclear quantum effects has been 

so exorbitantly expensive that a simpler approach has been taken in which the water system is 



heated up to ~330K to mimic the disordering that might be engendered through delocalization of 

the proton. However, the proton fluctuations when accounted for with good estimate of quantum 

dynamics in actuality can give rise to not only this disordering feature but also some increase in 

the strengthening of directional hydrogen bonding – the latter effect that will not be captured at 

higher temperatures since the distribution of hydrogen bonding geometries have become more bent 

and thus are weaker on average. 

 
Figure 3. Dynamical properties using either classical or quantum dynamics for revPBE0-D3 4 
(top) and B97M-rV (bottom). (A) Infrared absorption spectrum and (B) the self-diffusion 
coefficient. The error bars in the self-diffusion coefficient correspond to the standard error of the 
diffusion coefficients when splitting the independent trajectories into segments of 25 ps; the 
diffusivity values from the simulations have been corrected for finite size effects. The experimental 
IR47 and diffusion49 data is shown as gray shade for reference.  
 

To illustrate this point, Figure 4 shows a comparison of difference properties for structure 

and dynamics when trajectories are simulated using AIMD at 330K vs. the approximate but proper 

treatment using TRPMD simulations at 300K for B97M-rV, revPBE0-D3, as well as an accurate 

non-reactive model such as MB-pol model for yet an additional comparison. (The full results for 

all properties using the MB-pol model are given in Figures S2-S4). Overall the effects of 

temperature on a classical trajectory of a DFT functional or many-body model are qualitatively 

different than found from a quantum dynamical simulation. As might be expected, the effect of 

temperature on structural properties is to decrease the first shell coordination number and 

frequency [cm   ]-1

B97M-rV classical
B97M-rV quantum
Experiment

revPBE0-D3 classical
revPBE0-D3 quantum
Experiment

A B
revPBE0-D3 classical
revPBE0-D3 quantum

B97M-rV classical
B97M-rV quantum

revPBE0-D3 B97M-rV



tetrahedral signatures, and increase diffusion coefficients, seriously diminishing the agreement of 

these highly accurate ab initio models with experiment. Furthermore, increasing temperature has 

little effect on the high frequency vibrations calculated given the classical equipartition of the 

energy, whereas the quantum dynamics shows large red shifts that bring them into excellent 

alignment with the experimental IR peaks. For the non-reactive model MB-pol, properties degrade 

at low temperature when the equations of motion are simulated classically as recently shown.50 

This result is amplified in Figure 4 which shows the same qualitative trend in the degradation of 

properties using 330 K classical simulations  of MB-pol to replicate the effect of including NQEs 

at room temperature. 

 

 
Figure 4. Differences between the classical AIMD at 300 K reference state and either classical 
AIMD at 330 K or TRPMD simulations at 300K. Differences are calculated for B97Mr-V and 
revPBE0-D3 for (A) oxygen-oxygen radial distribution function; (B) probability density of the 
proton transfer coordinate; (C) water self-diffusion coefficient; (D) Shifts in the hydrogen VDOS 
peaks corresponding to bending and stretching modes; negative values correspond to red shifts 
with respect to the classical AIMD simulations at 300 K. 
 

But more is still required from theory in the quest for describing liquid water from first principles. 

We note that most AIMD studies, including this one, enforce the experimental value of the density 

of 0.997 g/cm3, although the equilibrium density of water for the functional at hand may not 

correspond to ambient water. The accurate calculation of the equilibrium density remains 

challenging however, mainly due to large thermodynamic fluctuations in pressure associated with 

the small system sizes amenable to AIMD simulations and the requirement of larger plane-wave 
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cutoffs to achieve convergence in simulations in isobaric ensembles.18, 51 The effects that NQEs 

have on the equilibrium density of the system are not well understood either, although recently 

reported AIMD results of the SCAN-rVV1042 functional that has been simulated with NQEs using 

methodology that is similar to that reported here estimate an equilibrium density that is too high43. 

 In summary, this work has established that a much less expensive meta-GGA semi-

empirical functional B97M-rV, when combined with accelerated path integral simulations, is an 

excellent performer for reproducing ambient water properties at fixed density, and requires no 

temperature adjustments to represent the ambient liquid state correctly. The salient lessons from 

this study are multi-fold in regards DFT and NQEs when applied to liquid water. The first is that 

a meta-GGA functional on a lower rung of Jacob’s ladder can exhibit equivalent quality to a hybrid 

functional.38 Second, and as demonstrated previously4, longer ~200 ps quantum trajectories are 

required to converge the range of basic water properties considered here; while water structure 

converges quite quickly (tens of picoseconds), the diffusive dynamics converge on a longer 

timescale. Finally, raising the temperature to “mimic” NQEs is an unambiguously poor 

approximation since the classical equipartition of energy among all dynamical modes of the system 

does not capture the true frequency dependence of the zero-point energy. This props the door open 

for more advanced chemical reactivity applications in water solvent that are currently too difficult 

to reach with the higher rungs of Jacobs ladder that incorporate exact exchange. 

 

METHODS 

We performed classical and path integral ab initio molecular dynamics (AIMD) simulations in the 

NVT ensemble of a system with 64 water molecules in a periodic cubic box of a 12.42 Å side (i.e. 

density of bulk water). Classical simulations were performed at two different temperatures, 300 K 

and 330 K, and path integral simulations at 300 K. The i-PI program52 was used to propagate the 

nuclei with a multi time stepping (MTS) integrator as described in previous work53 while forces 

were evaluated using the CP2K program 54. We use a TZV2P basis set to expand the Kohn-Sham 

orbitals, and a cutoff of 400 Ry to represent the electron density in an auxiliary plane-wave basis. 

The electronic gradient tolerance in the self-consistent cycle was set to 5 x 10-7. 

 Within the MTS scheme for both types of treatment of the nuclear motion, we calculate the 

reference forces at the SCC-DFTB55 level of theory with Ewald summation used to evaluate long-

range electrostatic and D3 dispersion corrections added56. The full forces are calculated using 



Kohn-Sham DFT57 using the Gaussian and plane waves (GPW) approach58 implemented in the 

QUICKSTEP module59 of CP2K. In this work, we are primarily testing the B97M-rV meta-GGA 

density functional36-37; it has been parameterized including the non-local correlation functional 

rVV10 with parameters b = 6.0 and C = 0.0136-37. We use the Goedecker-Teter-Hutter (GTH) 

pseudopotentials optimized for the functional PBE to represent the core electrons. We recently 

showed that the pseudopotentials, even when they are not functional-optimized, introduce a very 

small error with respect to reference all-electron calculations. For the GPW calculations in CP2K 

we use the Goedecker-Teter-Hutter (GTH) pseudopotentials (PP) to represent the core electrons.60-

61 The self-consistent cycle was converged using the orbital transformation method62 with a direct 

inversion in the iterative space (DIIS) minimizer63 and an always-stable predictor-corrector 

extrapolation method64. The electronic gradient tolerance was set to 5 x 10-7 and a cutoff of 400 

Ry to represent the electron density in an auxiliary plane-wave basis was employed. 

 For the classical AIMD simulations, the reference forces were calculated every 0.5 fs and 

the full forces every 2 fs. We equilibrated the system for 6 ps using a Langevin thermostat with a 

time constant of 0.3 ps. We performed 200 ps production runs with a global stochastic velocity 

rescaling thermostat65 with a time constant of 1 ps. For the classical AIMD simulations at T = 330 

K, we used the same general settings outlined above, but we equilibrate the system for 12 ps and 

we perform shorter 50 ps production runs due to faster convergence at the higher temperature. At 

330 K, simulations were also performed with the revPBE0-D3 density functional using a setup 

identical to that in previous work4. The data presented for revPBE0-D3 at 300K is the same as in 

Ref. 4. In all the cases, we performed two independent equilibration and production runs for a total 

of 400 ps and 100 ps (with each functional) of production trajectory at 300 K and 330 K, 

respectively. 

 For the path integral AIMD simulations, we followed the same validated protocol 

employed in previous studies.4, 34 We performed thermostatted ring polymer molecular dynamics 

(TRPMD)66 with an MTS propagator53, 32 path integral replicas and ring polymer contraction 

(RPC)34, 67. Reference forces were evaluated every 0.25 fs on all 32 replicas, while full forces were 

evaluated every 2 fs on the centroid using RPC. The PILE thermostat (Langevin thermostats 

attached to the normal modes of atomic ring polymers) was used in these simulations, as 

appropriate for TRPMD.33 Two independent production runs of 100 ps each were performed. 



 We also performed MD simulations using the many-body water potential MB-pol.68 All 

simulations were done in the NVT ensemble with 256 water molecules in a periodic cubic box of 

a 19.731 Å side (i.e. density of bulk water). We used the implementation and the setup of MB-pol 

provided by Paesani and co-workers, together with the installation and input files for i-PI. Classical 

simulations were performed at both 300 K and 330 K with a 0.5 fs time step and a global stochastic 

velocity rescaling thermostat with a time constant of 1 ps. We performed two independent 

production runs of 200 ps each at each temperature after at least 50 ps of equilibration in each case. 

We also performed a TRPMD simulation at 300 K with a time step of 0.25 fs and a total length of 

one production run of 200 ps. The initial condition was prepared by running a previously 

equilibrated configuration from classical MD with TRPMD for 5 ps. Dipole moments along these 

trajectories required for the calculation of IR spectra were calculated using the 𝜇-pol model69 as 

obtained from the above implementation from the authors of MB-pol. 

 Trajectory analysis. Using snapshots every 10 frames, we calculated the probability 

distributions of several standard structural metrics: the proton-sharing coordinate in hydrogen 

bonds (𝛿 = 𝑑*+ − 𝑑*,+), the hydrogen bond angle (𝜃 = OHO′1 ), the covalent bond distance (𝑑*+), 

the molecular dipole moments calculated using the centers of the maximally-localized Wannier 

functions (𝜇), and the distance between the oxygen atom and Wannier centers (𝑑*2). For the 

TRPMD trajectories, these static quantities were evaluated on and averaged over all the 32 replicas. 

We also analyzed some standard dynamical properties such as the self-diffusivity (D), the 

vibrational density of states (VDOS), and the infrared (IR) spectrum.70 For the analysis of dynamic 

quantities we use the centroid of the TRPMD trajectories. The self-diffusion coefficients D were 

calculated from the mean-squared displacement (MSD) using Einstein’s diffusion equation. We 

divided each trajectory into 25 ps segments and performed a linear fit on the last third of each of 

the MSD curves. The final value of the diffusivity is calculated as the average over all the 

segments, and the error bars associated correspond to the standard errors. Further analysis of the 

size of the error bars expected in the diffusion coefficients for a given trajectory length can be 

found in our previous work.4 In order to compare with experimental measurements, the diffusivity 

values were corrected for hydrodynamic finite-size effects on periodic systems,71 i.e. extrapolated 

to the infinite bulk. We used the experimental shear viscosity of water (𝜂 = 0.8925 × 10<=	Pa ∙ s) 

for these corrections. We calculated the VDOS only for the hydrogen atoms using the velocity 

autocorrelation function. We calculated the IR absorption spectrum from the autocorrelation 



function of the total dipole moment of the simulation box72, where the molecular dipoles were 

calculated using the maximally-localized Wannier orbitals, as stated earlier. 
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