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Abstract

Current solar forecast verification processes place much attention on performance comparison of a group of complet-
ing methods. However, forecast verification ought to further answer how the best method within the group performs
relative to the best-possible performance which one can attain under that forecasting situation, which makes the quan-
tification of predictability and forecast skill immediately relevant. Unfortunately, the literature on the quantification
of relative performance of solar irradiance has hitherto been lacking, and no study has ever reported the spatial distri-
butions of predictability and forecast skill of solar irradiance. The predictability and forecast skill of an atmospheric
process depend on two concepts: (1) the growth of initial error in unresolved scale of motion, and (2) the forecast per-
formance of the standard of reference. Based upon this formalism, predictability and forecast skill of solar irradiance
in the United States are quantified and mapped. Through this study, a couple of common misconceptions in regard to
irradiance predictability are refuted, and the original formulation of skill score revived.

Highlights

• A formal discussion on predictability of solar irradiance is presented.

• A rigorous way of computing the forecast skill score is emphasized.

• Predictability of solar irradiance in the United States is estimated.

• Bounds of mean square error of ECMWF irradiance forecasts in the United States are derived.
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Nomenclature

α Smoothness parameter of the correlogram

β Shape parameter of the correlogram

θ Correlogram parameters, θ = (ν, r, α, β)⊤

κ Clear-sky index

E Expectation operator

V Variance operator

C Correlogram

P Predictability defined in this work

P∗ Predictability defined by Yang et al. (2021)

P∗∗ Predictability defined by Anthes and
Baumhefner (1984)

S The original skill score

S∗ The reduced skill score

ν Nugget effect of the correlogram

ρh Lag-h autocorrelation of clear-sky index

τ Continuous time lag

A f Accuracy of forecasts of interest

Ap Accuracy of perfect forecasts

Ar Accuracy of reference forecasts

c Clear-sky irradiance

h Discrete time lag

r Scale parameter of the correlogram

x Generic variable denoting forecast

y Generic variable denoting observation

1. Introduction

In the field of solar energy meteorology, solar resource assessment and solar forecasting are of primary interest.
Whereas the former deals with predicting the long-term (years to decades) availability of resources, which is vital for
siting, sizing and bankability of solar projects, the latter finds relevance in predicting the short-term (seconds to days)
fluctuations in irradiance, which is needed for operations management of solar power plants. It is forecasting with
which this work is concerned.

The scientific theory on weather forecasting dates back to the dawn of the twentieth century, and has gone through
a quiet revolution [1]. Whereas much more is known now than was known then, what constitutes a good forecast
still attracts heated debates among weather forecasters. With an ever-increasing grid penetration level of solar energy,
solar forecast verification has received unprecedented attention from not only weather forecasters, but also scientists
and engineers from numerous disciplines. The biggest challenges in solar forecast verification are never about metrics
and methods, instead, the ultimate question is perpetually: How to compare forecasts made for different locations
and over different time periods [2, 3]? Without a proper answer to this question, anyone can, in principle, claim
superiority of one forecasting method over another, since what is available in one forecasting study is rarely available
to others—such superiority claims may appear to be scientifically sound but are not falsifiable, which have limited
values [4].

In answering that question, two conceptions are essential, first of predictability, which suggests the extent of
which one can issue meaningful forecasts, and second of skill score, which quantifies the skillfulness of a forecaster
or a forecasting model with respect to its peers. Both conceptions carry a notion of normalization, in that, they
place emphasis on utilizing some reference forecasts, such that the quantification is in relative terms. Nonetheless,
predictability of solar irradiance is a topic which often suffers from the illusion of explanatory depth—many know
the basic notion yet few could explain with technical precision [5]. Forecast skill is a familiar concept, but its original
formulation and intention have hitherto been thrust into the background by the widespread uptake of an alternative
form of skill score [6]. Both phenomena can be attributed to the lack of consensus on what constitutes a perfect
forecast or a perfect forecasting model.

European Centre for Medium-Range Weather Forecasts; GHI, global horizontal irradiance; HRES, ECMWF’s High Resolution model; MSE, mean
square error; MSPEG, mean square predictability error growth; NWP, numerical weather prediction; NSRDB, National Solar Radiation Database;
PEG, predictability error growth; RMSE, root mean square error; RMSPEG, root mean square predictability error growth.
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One may regard a forecast as being perfect if it aligns with the materialized observation exactly. However, in such
situations, the quantity or event does not warrant forecasting, since it is entirely mechanical, e.g., there is no need to
forecast whether the Sun will rise tomorrow [7]. Uncertainty is an essential part of nature, and forecasting hence needs
to anticipate that. One may also view a forecasting model as being perfect if it apprehends wholly the data-generating
laws of nature. Notwithstanding, the limitation of induction, which suggests that no one can fully test a scientific
theory over all possible scenarios [8], prevents us from identifying the data-generating laws of nature with absolute
certainty. The last popular appeal of the notion of perfection is in economic terms, which is particularly relevant in
energy forecasting. If a forecasting strategy can lead to decision making that meets the maximum reward expected
by the forecast user, it might be called perfect. However, in a game theoretic viewpoint, where both the forecasting
strategy and user expectation constantly change with those of peers, this definition is again problematic.

Indeed, there does not seem to be any universally acceptable way of defining a perfect forecast or a perfect fore-
casting model. But the pressing needs of reconciling forecasting practices and comparing forecasts must be attended
to, insofar as the field of solar energy meteorology should advance. Combining both opinions, this work puts forward
the first attempt in quantifying predictability and forecast skill of solar irradiance over large geographical regions,
which is consistent with the needs of grid integration, that is, a continental- and country-wise unified framework for
solar forecast generation, verification, and decision making.

The remaining part of the paper is organized as follows. Section 2 formally defines predictability, and reveals
how this particular definition is related to the skill score. Data and method are presented in Section 3. In Sections 4
and 5, the predictability of solar irradiance and the forecast skill of a representative numerical weather prediction
(NWP) model over the contiguous United States (CONUS) are discussed, and various maps are drawn to provide a
visual aid to examining the spatial distribution of the measure of predictability and forecast skill. Section 6 compares
the proposed definition of predictability with two other existing definitions, and shows their inter-relationship. In the
same section, possible extensions of the proposed method are also elaborated. Conclusions follow at the end.

2. Defining predictability and forecast skill

Any attempt to quantify the predictability should proceed with definition, and there are many alternatives available
in the literature [e.g., 9–11]. This work deals with the predictability of irradiance, which is an atmospheric process,
hence, without loss of generality, the classic definition of Anthes and Baumhefner [12] is followed, which has the
generic form:

P = 1 −
Ap

Ar
, (1)

where Ap and Ar are the performance (or accuracy) of perfect forecasts and that of reference forecasts, respectively.
Stated differently, predictability is quantified through the relative performance of the best-possible and worst-possible
forecasts. In this work, the accuracy measure, A, is taken to be negatively oriented, i.e., the smaller its value, the
better. When Ap = Ar, P = 0, which means that when the perfect forecasts are unable to outperform the reference
ones, there is no predictability. When Ap = 0, P = 1, which means that when the perfect forecasts are able to
predict the exact outcome consistently, the process has full predictability. Accounting for both extremes, we arrive
at the range 0 ≤ P ≤ 1. The mathematical form of Eq. (1) is, in the main, consistent with the common measures of
predictability in the fields of statistics and economics [e.g., see 9, 13, 14].1

On the other hand, forecast skill is an aspect of quality, and the generic skill score, which is used to quantify skill,
is formulated as:

S =
A f − Ar

Ap − Ar
, (2)

where, in addition to Ap and Ar defined earlier, A f is performance of some forecasts of interest, i.e., the forecasts from
a model that needs to be verified [15–17]. When A f = Ar, S = 0, which suggests that when the forecasts of interest

1If one explores the formulations of predictability defined within these works, each is distinct, see for instance the discussion of Yang et al. [4].
However, in form, that is, one minus the ratio of some statistics of some forecasts that can be deemed optimal in some sense, over that of some
reference forecasts, all aforementioned works resemble each other.

3



generated by a forecaster (or a forecasting model) have the same accuracy as the reference forecasts, that forecaster
(or that model) possesses no skill. Moreover, since perfect forecasts should represent the best-possible performance,
improvements made by the forecasts of interest over the reference forecasts can never exceed those made by the
perfect forecasts, meaning Ar − A f ≤ Ar − Ap, and thus S ≤ 1. It should be noted that the upper bound of S is 1 but its
lower bound is not 0. In practice, negative S values can occur, which correspond to the situations when the forecasts
of interest are of lower performance than the reference forecasts. These very straightforward properties constitute the
theoretical basis of P and S.

Mathematically, when Ap = 0, the skill score defined in Eq. (3) reduces to:

S∗ = 1 −
A f

Ar
, (3)

which is arguably a more common form of skill score used in the literature [6, 18, 19]. In the field of solar forecasting,
Eq. (3) is known to fame through the series of works by Marquez and Coimbra [20, 21], Coimbra et al. [22] in the early
2010s, and has been used extensively when reporting the forecast skill of solar irradiance. The implicit assumption
made in Eq. (3) is that all sources of error can be explained, such that it is theoretically possible to identify the
Nature’s model or data-generating process that leads to deterministic observations, i.e., no uncertainty. However,
insofar as model is concerned, Wheatcroft [17] among others noted that all real-world models contain some degree of
structural error, which echoes the famous aphorism of George Box that “All models are wrong, but some are useful.”
Particularly in the context of weather forecasting, even if the physical laws governing the atmospheric motion can be
known with absolute certainty, all dynamical weather models suffer from inaccurate approximations of the physical
laws and numerical approximations in solving the governing equations—perfect dynamical weather models do not
exist. Insofar as observations are concerned, Lorenz [23] noted that one cannot expect in atmospheric science that
the details of the small-scale features can be ever revealed on a global basis by a regular observational network. As
observational uncertainty propagates into initial conditions and diagnostic analyses, no matter how small these errors
may initially be, they will grow even under the perfect model. Thus, Ap can never be zero in reality, rendering this
interpretation of Eq. (3) somewhat unrealistic.

When Ap , 0, S∗ can no longer be regarded as a reduced form of S. Yet the former can be viewed as an
alternative (i.e., separate) definition of skill score.2 Under this premise, if we are to examine the relationship between
S∗, S, and P from a purely mathematical perspective, two things may be noticed. One of those, as stated by Anthes
and Baumhefner [12], is that P is the highest possible S∗, because Ap ≤ A f . Secondly, by combining Eqs. (1)–(3),
we see that S∗ = S × P. This implies that the sort of skill scores reported in the literature can be interpreted as the
product of the forecast skill as defined in Eq. (2) and predictability as defined in Eq. (1). Murphy [15] noted that a
main purpose of reporting the skill score is to allow comparison of forecasts made using different models, at different
locations, and over different time periods, but in this regard, the coupling between S∗ and P limits its functionality.
Stated differently, even if S∗ is computed and reported, it is not independent of predictability, which in itself varies in
accord with the forecasting situation, and thus defies the original intention of reporting the skill score. That said, one
should note that the skill score S∗ is still relevant as a verification tool (especially when reported as one metric among
other error metrics) if used to compare the performance of different forecast models produced for the same periods of
time and for the same locality.

To the best of our knowledge, these important caveats on the interpretation of S∗, or how to remedy them, has not
been discussed in the field of solar forecasting. Hence, this work considers a physics-based method for estimating
Ap, such that S and P can in turn be estimated. The approach for estimating Ap is based on quantifying the growth
of difference between a control and a perturbed forecast. The method was proposed by Anthes and Baumhefner [12],
who considered the same problem, but in the context of the synoptic-scale 500-mb height. In order to adapt their
approach to solar irradiance, several modifications are made.

First and foremost, instead of using the error variance and climatology, which were used by Anthes and Baumhefner
[12] as the accuracy measure and the standard of reference, respectively, we follow the recommendations for determin-
istic solar forecast verification [2, 3, 6, 20], and use the root mean square error (RMSE) as the accuracy measure, and

2There are many other alternative definitions besides S∗ and S, see Jolliffe and Stephenson [16] for a list of skill score definitions available in
the atmospheric science literature.
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the optimal convex combination of climatology and persistence (CLIPER) as the standard of reference. The advantage
of of CLIPER over climatology is that the former can produce reference forecasts of much higher accuracy over short
horizons [see Fig. 1 of Ref. 24]. The second modification pertains to the variable of concern. Anthes and Baumhefner
[12] estimated Ap and Ar directly on the synoptic-scale 500-mb height, but for solar irradiance, these mathematical
operations must be performed in clear-sky index terms, and then back-transformed into irradiance terms. This is be-
cause solar irradiance exhibits double-seasonal variation due to yearly and diurnal cycles in the relative position of the
sun and the earth, which implies that the sizes of Ap and Ar would change with the amplitude of the double-seasonal
pattern. Solar forecasters are accustomed to working with the clear-sky index [25, 26], so this point needs no further
discussion. Thirdly, the method for estimating Ap and Ar is empirical (i.e., based on samples), which suggests that
the estimated values are functions of the discrete horizon h. To allow retrieval of values of Ap and Ar for any horizon,
two curves are fitted to the empirically computed Ap and Ar values, such that they become functions of τ, a random
variable denoting the continuous horizon. With these modifications in mind, the data and method for estimating Ap

and Ar are introduced next.

3. Data and method

The main goal of this work is to obtain predictability maps for CONUS. For that, two datasets are needed. One of
those consists of satellite-derived irradiance, which is needed to compute the mean square error (MSE) of CLIPER,
or A2

r . Here, the National Solar Radiation Database (NSRDB) [27] is utilized. The other dataset is the NWP forecast
irradiance, which is needed to compute the MSE of the perfect forecasts, or A2

p. Since perfect forecasts are unattain-
able, A2

p has to be approximated as the inherent error growth of a dynamical system starting from some initial error
distribution [28]. Here, the European Centre for Medium-Range Weather Forecasts’ (ECMWF’s) High Resolution
(HRES) model3 is selected as the dynamical system of concern. It should be noted that HRES, like all other NWP
models, is not perfect, however, its control and perturbed forecasts can be used to estimate the inherent nonlinear error
growth (see below). Both datasets are downloaded over a period of two years (2019–2020), at a 0.5◦ × 0.5◦ spatial
resolution and an hourly temporal resolution over the CONUS. It should be noted that ECMWF issues forecasts at
four different initialization times each day; in this work, only the forecasts from the 00Z runs are used. Because both
gridded datasets are already quality controlled before they are disseminated, thus, no pre-processing is required.

The main steps of obtaining the predictability and forecast skill estimates are as follows:

1. Obtain the MSE of CLIPER via Eq. (4) for a discrete set of forecast horizons h = 1, 2, . . . ,H.
2. Fit a parametric correlation function to the empirical lag-h correlations, and use Eq. (5) to estimate the RMSE

of CLIPER at any arbitrary continuous forecast horizon τ; this is the upper bound of forecast RMSE.
3. Obtain the MSE between the control and perturbed GHI forecasts via Eqs. (6) and (7) for a discrete set of

forecast horizons h = 1, 2, . . . ,H.
4. Fit a linear line to the MSE between the control and perturbed clear-sky index forecasts via Eq. (8), and use

Eq. (9) to estimate the RMSE between the control and perturbed GHI at any arbitrary continuous forecast
horizon τ; this is the lower bound of forecast RMSE.

5. Use Eqs. (1) and (2) to compute predictability and forecast skill, respectively.

While the above steps are to be elaborate shortly, it should be noted that the upper and lower bounds of RMSE are
estimated separately. Moreover, one should be aware of that the RMSE computation from NSRDB or ECMWF data
is only possible at discrete time lags, as multiples of data resolution (i.e., steps 1 and 3 above). Therefore, to acquire
the upper and lower bounds of RMSE at arbitrary forecast horizon, fitting is needed (i.e., steps 2 and 4 above).

3.1. MSE of CLIPER

Throughout this work, y, c and κ are used to denote all-sky irradiance, clear-sky irradiance, and clear-sky index,
respectively. It follows that κ = y/c. For simplicity, we do not explicitly distinguish in notation random variable

3HRES is the name of the ECMWF model that issues deterministic forecasts. However, it is also the model that enables ECMWF’s ensemble
forecasts, which are generated by the Ensemble Prediction System, which runs HRES with slightly different initial conditions.
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and particular realization, but the latter is accompanied by a subscript indexing time, so which is which is implied.
Expectation and variance operators are written as E and V, and lag-h autocorrelation of the clear-sky index time series
is expressed as ρh.4 To distinguish estimated quantities from the true ones, the former is annotated with a hat symbol.

With these notational conventions, the MSE of CLIPER, or A2
r in the present context, following the findings of

previous works [2, 3, 29], is given as:

A2
r = MSEy ≈ E

(
c2

)
·MSEκ =

(
1 − ρ2

h

)
V(κ)E

(
c2

)
. (4)

In this equation, MSEκ =
(
1 − ρ2

h

)
V(κ) which is the MSE of CLIPER forecasts of clear-sky index. Since it is irradiance

that is of our final interest, MSEκ is scaled to MSEy, which is the MSE of clear-sky CLIPER,5 in irradiance terms; this
is known as MSE scaling [29], which states that if stationarity can be assumed in clear-sky index time series, the MSE
in irradiance terms is equal to the MSE in clear-sky index terms multiply by the mean square clear-sky irradiance.
MSE scaling is an approximation of which the degree of validity is sufficient for the current purpose.
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Figure 1: State abbreviations and the 15 randomly chosen locations.

Examining Eq. (4) reveals that the dependency of Ar on horizon is solely up to the autocorrelation ρh, which can be
computed empirically from data. Notwithstanding, time series data with a certain resolution are only able to support
discrete ρh, whereas it is more convenient if Ar can be expressed as a function of a continuous horizon τ. In this regard,
a popular concept in spatial statistics called the correlation function (also known as correlogram) [30] can facilitate
the estimation of Ar(τ). A correlogram is herein denoted as C(τ; θ), where θ is the unknown vector of parameters
that describes the shape of the function. Fitting a parametric correlogram is a mature procedure, but requires some
foundation in spatial statistics; the detailed procedure used in this work has been outlined by Yang [24] and reiterated
in Appendix A.

To give perspective of the result, the empirical and fitted autocorrelations, over horizons up to 102 h, at 15 ran-
domly chosen locations (as marked on the map in Fig. 1) are depicted in Fig. 2. The black dots and orange curves in
Fig. 2 represent the empirically calculated lag-h autocorrelation ρ̂h and fitted correlogram C

(
τ; θ̂

)
, for each location.

Here, the Cauchy correlogram with a nugget effect is used. Stated simply, the nugget effect is where the correlogram
(almost) cuts the ordinate.6 With the estimated correlogram, Ar as a function of τ can be obtained by replacing ρh in

4All programming language offers standard computations of these statistics. However, it should be noted that variances and expectations are
calculated only with the data corresponding to solar zenith angles Z > 85◦, whereas autocorrelation should be computed with care—after the
nighttime data are removed, the “holes” (or data gaps) should be replaced with NAs, as to preserve the original temporal spacing of observations.

5In view of the well-known terminology of “clear-sky persistence” in the field of solar forecasting, this method should be called “clear-sky
CLIPER.”

6As τ decreases, the value of correlogram approaches the size of the nugget effect, but when τ reaches 0, the value of correlogram jumps to 1,
because the autocorrelation with no lag is always 1.
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Figure 2: Empirical autocorrelations ρ̂h (black dots) and fitted Cauchy correlograms C
(
τ; θ̂

)
(orange lines) at 15 randomly chosen locations, using

hourly NSRDB GHI data from 2019 to 2020. The REST2 model is used to derive the clear-sky index from GHI.

Eq. (4) by C
(
τ; θ̂

)
, which yields:

Âr(τ) =
{[

1 − C2
(
τ; θ̂

)]
V(κ)E

(
c2

)} 1
2 . (5)

Figure 3 shows the Âr(τ) estimated at the 15 locations of Fig. 2. Additionally, sample RMSEs of clear-sky CLIPER are
marked as dots—they are computed by substituting ρ̂h into Eq. (4). The number near the y-intercept in each subplot
denotes the size of nugget effect in RMSE terms. The estimated Âr(τ) shown in Fig. 3 represents the upper bound of
RMSE at each location—if some forecasts of interest receive an RMSE that exceeds the upper bound, the forecaster
is better off by using just the clear-sky CLIPER forecasts.
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3.2. Predictability error growth
In weather forecasting, the error growth of a dynamical system is called the predictability error growth (PEG)—

not to be confused with predictability P itself. PEG describes how the initial error in the analysis, which is due to both
the limited observations entering assimilation and the deficiencies in assimilation method itself, evolves with time.
Conceptually, PEG is similar to forecast error. More specifically, for a forecast xt and its corresponding observation
yt at time t, the forecast error et = xt − yt is defined as the difference between the forecast and the observation. But for
PEG, it is defined as the difference between the control forecast x(c)

t and a perturbed forecast x(p)
t , i.e., pegt = x(c)

t − x(p)
t .

On this point, the usual aggregation statistics that are applicable to et would also function for pegt. For instance, given
n samples of forecast error, the MSE is calculated as n−1 ∑n

t=1 e2
t , in that, given n samples of PEG, the mean square

PEG (MSPEG) can be defined and calculated analogously as n−1 ∑n
t=1 peg2

t . The original formulation of PEG of
Baumhefner [28] considers only one perturbed forecast, however, most modern NWP systems, such as the ECMWF
Ensemble Prediction System, issue multiple perturbed forecasts. Therefore, the formula for MSPEG can be modified
naturally as:

1
n

n∑
t=1

 1
m

m∑
i=1

peg2
t,i

 = 1
n

n∑
t=1

 1
m

m∑
i=1

(
x(c)

t − x(p)
t,i

)2
 , (6)

where m denotes the number of ensemble members, and an additional subscript i is used to index these members.
The rule-of-thumb of solar forecasting [see 5, 31]—performing model training in clear-sky index terms, and

back-transforming the clear-sky index forecasts to irradiance for verification—is also applicable to the estimation of
MSPEG of irradiance. In this regard, denoting the MSPEG of clear-sky index as MSPEGκ, and that of irradiance as
MSPEGy, the MSE scaling is again useful:

A2
p = MSPEGy ≈ E

(
c2

)
·MSPEGκ, (7)

the idea of which is identical in form to the first part of Eq. (4).
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Figure 4: Sample RMSPEGs (dots) and linearly fitted RMSPEGs (lines) at 20 randomly chosen locations, using hourly ECMWF control and
perturbed forecasts from 2019 to 2020.

Similar to the process used for estimating Ar, we wish to express Ap as a function of τ, such thatP can be estimated
for arbitrary forecast horizons. Based on the empirical evidence (see below), it is concluded that a linear fit of sample
MSPEG against h seems adequate. In other words, the data suggests that the MSPEG of irradiance increases linearly
as forecast horizon increases. A linear regression of sample MSPEG on h is parameterized by a slope and an intercept,
which could be estimated simultaneously, e.g., via least squares. However, as MSPEG at τ = 0 should represent the
initial error size, which is preferred to be consistent with the size of the nugget effect acquired from the procedure for
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estimating Ar, it can be used as the intercept of the linear regression. Then, one just needs to find the slope, which is
the approach used by Yang [24] as well as in this work.7 Denoting the nugget of the correlogram as ν, the size of the
estimated nugget effect, written in the terms of MSE of clear-sky index, is

[
1 − (1 − ν̂)2

]
V(κ), and suppose the fitted

slope is â, the fitted line has the equation:

MSPEGκ(τ; â, ν̂) = âτ +
[
1 − (1 − ν̂)2

]
V(κ), (8)

where â is the fitted slope. Consequently, Ap can be estimated as:

Âp(τ) =
{
âτE

(
c2

)
+

[
1 − (1 − ν̂)2

]
V(κ)E

(
c2

)} 1
2 . (9)

To give perspective, the sample and fitted root mean square PEGs (RMSPEGs) for the same 20 locations are shown in
Fig. 4. The numbers near the y-intercept again denote where the linear fits cut the ordinate, which, following the above
discussion, are identical to those in Fig. 3. It should be clarified that the linearly fitted line exhibit some (concave)
curvature, which is because MSPEG is linear to τ, and when it takes square root, its relationship with τ is no longer
linear. The estimated Âp(τ) shown in Fig. 4 represents the lower bound of RMSE at each location—theoretically, no
forecasts are able to receive an RMSE that falls below the lower bound.

4. Predictability of solar irradiance in the United States

Using hourly NSRDB data and the method outlined in Section 3.1, six maps of Âr(τ) are shown in Fig. 5, which
correspond to forecast horizons τ = 1, 3, 6, 24, 48, 72 h. The results are highly consistent with what have long been
known by solar forecasters. For instance, the first conspicuous feature of the maps is that the western United States,
particularly California (CA), Arizona (AZ), and Nevada (NV), sees much lower RMSE than the eastern United States.
This is because the cloudiness of western United States is much lower than that of the eastern half—if one compares
Fig. 5 with Fig. 2 of Yang et al. [32], which depicts the annual mean cloud cover over the CONUS in 2019, the
correspondence between the RMSE of clear-sky CLIPER and cloudiness would be obvious at once. The second
generalization which one can induce with high certainty is that the RMSE of clear-sky CLIPER, regardless of location,
increases with forecast horizon, but generally becomes saturated within 24 h—comparing the maps for τ = 24, 48, 72,
the color differences are barely noticeable by the naked eye. The saturation is also clearly visible from Fig. 3, in that
the “elbows” of the RMSE curves take place before τ = 24, beyond which the growth of Âr(τ) saturates.

Using the control and the 50-member perturbed ECMWF forecasts, as well as the method outlined in Section 3.2,
six maps of Âp(τ) are shown in Fig. 6, which correspond to the same horizons used in Fig. 5. Several observations
made from these map need to be discussed. Foremost, the maps for τ = 1, 3, 6 are highly similar in terms of spatial
features, but more importantly, only marginal increase in RMSPEG over the first six hours is seen. This forms a clear
contrast to the case of CLIPER, of which the RMSE increases substantially during the first six hours. This indicates the
fact that the error growth over short horizons is small as compared to the size of error in analysis, which has long been
noted by Lorenz [23]. Immediately, one has reason to believe that using additional observations that are not assimilated
in global models, as in the case of dynamical downscaling with regional NWP models, has beneficial effects for
short-range NWP forecasts, because better analysis reduces the initial error. The second observation which one can
make is that PEG is location-dependent, e.g., PEGs in California, west Arizona, and south Nevada, are significantly
lower than the other parts of the CONUS. This means that the NWP model of interest is able to discern forecasting
situations. That said, there does not seem to be a strong correspondence between the spatial distribution of PEG and
that of Köppen–Geiger climate classification (KGC), of which a map is shown in Fig. 7. The reason is that KGC is
mostly separated by using temperature (afterwards, by precipitation) which has little to do with (cloud modulated)
solar irradiance. This opens up a new issue: Whether climate-based solar forecast verification is justified? Verifying
forecasts and reporting forecast performance based on climates has been a very well-estimated practice in the field of

7Here, the procedure of estimating the predictability proceeds from estimating Ar , which results in a nugget value that can be subsequently used
during the estimation of Ap. Alternatively, if Ap is estimated first, which implies that the intercept of the linear fit needs to be first determined, and
the determined value can be taken as the size of nugget effect during Ar estimation. The difference in results of these two alternative approaches is
not discussed here for brevity, and should be minor anyway.
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Figure 5: Maps of Âr(τ), i.e., estimated RMSE of clear-sky CLIPER from NSRDB irradiance, over six forecast horizons, τ = 1, 3, 6, 24, 48, 72.
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Figure 6: Maps of Âp(τ), i.e., RMSPEG estimated from ECMWF control and perturbed irradiance forecasts, over six forecast horizons, τ =
1, 3, 6, 24, 48, 72.

solar forecasting. The field seems to have believed since quite an early date that forecast performance is a function of
climate class. However, besides irradiance forecasts produced for arid climates, which have lower RMSE in general,
the accuracies of forecasts for all other climates are rather indistinguishable [e.g., see 33–35]. Therefore, the present
results suggest, to a large extent, the divorce between climate class and solar forecast performance. (Coincidentally, it
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is thought that climatology of cloud occurrence should be a dominant factor determining PEG distribution.)
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Figure 7: Köppen–Geiger climate classification over the CONUS and its surrounding regions.
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Figure 8: Maps of the estimated predictability over the CONUS for six forecast horizons, τ = 1, 3, 6, 24, 48, 72.

Having obtained the maps for Âr(τ) and Âp(τ), the maps of predictability can be readily obtained by applying
Eq. (1) for each location and for each forecast horizon. Figure 8 displays these maps, and the results should appear
rather surprising to those who hold traditional suppositions. One of the traditional suppositions is that predictability
should reduce as forecast horizon increases; the rationale is that longer horizons are harder to forecast, and thus have
lower predictability. This supposition is refuted by the maps shown in Fig. 8, since the predictability for τ = 6 is
evidently higher than that for shorter and longer horizons. On this point, P, if it is regarded as a function of τ, is
clearly not monotone. More specifically, predictability neither just increase nor just decrease, but depends on the
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relative rate of growth of Ar(τ) and Ap(τ). From Figs. 3 and 5, it can be concluded that the rate of growth of MSE of
clear-sky CLIPER is fast over the short horizon but saturates after several hours. Therefore, if Ap(τ) grows linearly, as
suggested by the present model, one should expect an increasing predictability before the saturation of MSE of clear-
sky CLIPER. On the other hand, after the saturation, Ar(τ) no longer changes much—its value approaches the RMSE
of climatology asymptotically—one should expect an decreasing predictability, for Ap(τ) continues to grow with
respect to a saturated Ar(τ) value. Another traditional supposition which has often been made is that predictability
is related to the sky condition; the logic is that clear skies are easier to forecast than cloudy ones, and thus have
higher predictability. The maps shown in Fig. 8 again reject this supposition, since sunnier regions like California
do not always have a higher predictability than other regions. The reason can again be understood from the relativity
between Ar(τ) and Ap(τ). Sunnier regions receive smaller Ar(τ), which is certain, but at the same time, Ap(τ) may also
be small, causing the ratio Ap(τ)/Ar(τ) to be big and predictability to be low. Analogously, cloudier regions receive
higher Ar(τ), which is certain, but Ap(τ) is not necessarily high, which may result in good predictability.

In conclusion, both suppositions mentioned above can be attributed to the same confusion, that is, one often
associates predictability with forecast error, which is incorrect, and has been pointed out by Yang et al. [4] but through
another means. Note also that the solar forecasting skill score (Eq. 3) proposed by Marquez and Coimbra [20] does
not aggregate value to the score during clear sky or fully overcast periods since the RMSEs of even excellent forecasts
are not smaller than the near-zero RMSEs of reference persistence forecasts in these predictable situations. In those
cases, the skill score in Eq. (3) is either zero or slightly negative because S is near zero even if P may approach unity.

5. Forecast skill of ECMWF HRES solar irradiance in the United States

Having obtained Âr(τ) and Âp(τ), one is able to computed forecast skill according to Eq. (2), if the accuracy of
some forecasts of interest A f (τ) is also known. Hence, in this section, we should wish to analyze the skill score of
ECMWF HRES forecasts over the CONUS. There is however a practical difficulty: ECMWF issues forecasts four
times a day, which implies that each time stamp can only receive forecasts over a few but not all horizons. For this
reason, NWP-based solar forecasts, or weather forecasts in general, are often verified over daily horizons, i.e., all
forecasts within a day are verified jointly [35].

Using the 1–72-h-ahead forecasts from the 00Z runs of ECMWF HRES, the forecasts are separated into three daily
blocks, namely, the 1–24-h block, the 25–48-h block, and the 49–72-h block. For each of these blocks of horizons,
forecasts from consecutive days can be appended into a complete time series, with which the RMSE can be calculated
with respect to the observation time series, namely, the NSRDB irradiance. This block-based verification leads to
three RMSE values for each location, which are denoted as A f (Day 1), A f (Day 2), and A f (Day 3). Echoing this
aggregation approach, the Âr(τ) and Âp(τ) values are aggregated in the same fashion, e.g., Âr(Day 1) =

∑24
h=1 Âr(h)/24

or Âp(Day 3) =
∑72

h=49 Âp(h)/24.
Figure 9 shows the maps of forecast skill of ECMWF HRES solar irradiance, for three daily horizons. The skill

scores are computed in two ways. The ones shown in the upper row of Fig. 9 follows Eq. (2), in that, the estimated
Ap values are used. The second approach follows Eq. (3), which is what the current practice in the field of solar
forecasting, and the results are displayed in the second row of Fig. 9. The contrast between S and S∗ is strong, for all
locations and for all horizons. More particularly, the relationship S∗ = S×P has been made clear in the introduction,
and since 0 ≤ P ≤ 1, the inequality S∗ ≤ S follows. In words, the skill scores reported in the current literature are
lower than the actual skill scores. This shortfall of skill score is undesirable, since it could exaggerate the perceived
room for improvement. Forecasts with a small S∗ may appear to be less attractive to forecast users, but the same
forecasts may be quite good in fact if they are presented in terms of S. Figure 10 shows what we call skill score
deficit, which is simply defined as the difference between S∗ and S. Spatial inhomogeneity is evident, which implies
that the skill scores reported in the literature cannot be converted to the actual skill score by any easy means.

6. Discussion

Although predictability is a natural conception, its quantification must be carried out with human conventions. In
that, all predictability studies proceed with definitions, which set the extent to which the analysis is valid. Since no
two forecasters would agree completely on what is a perfect forecast or what is a perfect forecasting model, we should
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Figure 9: Maps of the forecast skill of ECMWF HRES solar irradiance, for horizons up to 3 days ahead. Two different formulas for skill score are
used: (upper row) assuming Ap , 0, or S = (A f − Ar)(Ap − Ar); and (lower row) assuming Ap = 0, or S∗ = 1 − A f /Ar .
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Figure 10: Maps of skill score deficit computed based on ECMWF HRES solar irradiance, for horizons up to 3 days ahead. The deficit is quantified
as S∗ −S. One can note the similarities in spatial features here and those in Fig. 9, which can be attributed to the interaction between that S and P.

wish to first examine some alternative definitions of predictability in the literature, and how they are related to the
present one. The next point of discussion is on the choice of fitting function, which could also affects the quantification
of predictability. Last but not least, this section also imagines several possible extensions of the method, and set the
tone for future works.

6.1. On alternative predictability definitions

Predictability, as noted by Anthes and Baumhefner [12], can be viewed as the upper limit of the forecast skill.
Insofar as the mathematical expression is concerned, predictability is exactly the reduced skill score S∗ of the perfect
forecast, and as such, it is a measure of the relative performance of two forecasting methods. This notion of relative
performance of two methods, first of a high-performing one and second of a baseline, gives rises to other alterna-
tive formulations of predictability, which can lead to vastly different numerical results. Yang et al. [4] calculated
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predictability by taking CLIPER as the high-performing method, and climatology as the baseline, i.e.,

P∗ = 1 −
RMSECLIPER

RMSECLIM
, (10)

and their results suggested that predictability is the highest at the shortest time horizon, and diminishes to almost zero
in less than 24 hours, which clearly represents the added value of persistence over the climatology. In contrast, in
the present work the error of the high-performing method is approximated by RMSPEG, a metric derived from NWP
control and perturbed forecasts, and CLIPER is used as the reference, and therefore, the predictability:

P = 1 −
RMSPEGNWP

RMSECLIPER
(11)

reflects the added value of the NWP, which is the highest on the 3–24-h time horizon.
The fundamental contradiction between the results of these two predictability quantification is evident, which must

be resolved in order to make this work answer more questions than it raises. Anthes and Baumhefner [12] separated
the contribution of the observations and the models to the forecast skill. The contribution of the observations can be
calculated by the error reduction of the persistence compared to the climatology, which resembles the predictability
formulation of Yang et al. [4]. The contribution of the model is the error reduction of the perfect forecast compared to
the CLIPER, as presented in this work. To that end, both formulations of predictability are valid, but they have different
meanings: the one presented by Yang et al. [4] is the predictability that can be owed to the integration of the new
observations, while the one presented here is the predictability of the NWP model. The changes of these predictability
scores over the time horizon are also in line with Fig. 1 of Anthes and Baumhefner [12], that depicts the contribution of
the observations and models to the forecast accuracy. Finally, it is also possible to quantify predictability by combining
these two approaches, i.e., using PEG as a measure of the perfect forecasts, and climatology as the reference,

P∗∗ = 1 −
RMSPEGNWP

RMSECLIM
, (12)

which would show a slowly monotonic decreasing predictability with the highest value at the time of analysis. And it
is easy to show:

P∗∗ = P + P∗ − PP∗. (13)

Updating the forecasts with new observations is clearly important in practice, however, in the academia, the main
purpose of research is to develop more advanced models to get as close to the perfect forecasts as possible—this
is why the model-related predictability is the one presented in detail in this work. Furthermore, since P∗ is solely
dependent upon the observations, the predictability P advocated in this work can be converted to that of Anthes and
Baumhefner [12] with ease via Eq. (13), or vice versa.

6.2. On choice of fitting functions
As noted by Dalcher and Kalnay [36], owing to the implicit assumption of a perfect model, the estimated MSPEG

is only a lower bound. Correspondingly, the estimated predictability P is only an upper bound of the real predictabil-
ity. Since this implicit assumption must be made, and all quantifications of predictability of this sort proceed from
postulates by a model of perfection, one cannot but suppose this “take it or leave it” approach admissible. For more
conservative forecasters, it is possible retreat to an even lower estimate of MSPEG. This can be done by fitting the
infimum of the empirical MSPEG sequence. Mathematically, for a sequence xn, the infimum of xn is infm≥n xm, and
graphically, using the data of Fig. 4, the infimum fitting is demonstrated in Fig. 11. Analogously, for a forecaster
optimistic about predictability, the supremum of the empirical MSPEG sequence may be used instead.

Besides using the infimum or supremum, other options of fitting are possible. For example, Lorenz [23] observed
that the rate of change of RMSPEG for 500-mb height from ECMWF is quadratic to RMSPEG itself, which, after
some algebraic derivation, suggests that RMSPEG is a hyperbolic tangent function of the forecast horizon, which is
also concave for h > 0. Indeed, the shape of the RMSPEG curves shown in Fig. 4 have some resemblance with the
curves shown in Fig. 1 of Lorenz [23]. Regardless, the choice of fitting curve should follow the empirical evidence,
which necessitates exploratory analysis on data, and this rule also applies to the selection of correlogram.
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Figure 11: The infimum of the empirical RMSPEG sequence, using data of Fig. 4. This bound may be used as a more conservative estimate of the
MSPEG.

6.3. Extensions of the method

The method introduced in this work is general, and thus applies to other contexts. First of all, since both NSRDB
and ECMWF are available for worldwide locations (between ±60◦ latitudes), the exercises depicted in this work can
be repeated for other regions of the world. What should be further investigated, however, is how instrumentation
could affect the data quality of the retrieved irradiance and thus the estimates of Ar. Note that the low- to mid-latitude
regions of the world is jointly covered by several geostationary satellites, but each uses a different radiometer/imager
[37]. For instance, the Geostationary Operational Environmental Satellites (GOES) satellites, positioned to cover most
of the Americas, carry the Advanced Baseline Imager (ABI), which has different spectral bands, spatial resolution,
scan rate, among other specifications, from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard
Meteosat Second Generation (MSG) satellites over Europe, Africa and Indian Ocean—see https://space.oscar.
wmo.int/instruments for a detailed comparison of these and other radiometers/imagers. When the Physical Solar
Model [27, 38], which is the retrieval algorithm for producing NSRDB, is applied to the raw data acquired by different
instruments, there must be some effects due to instrumentation, which are currently still largely unknown.

As for Ap estimation, the current method relies on dynamical ensemble NWP forecasts, which are less common
as compared to deterministic (or control) NWP forecasts. In fact ECMWF only started to issue ensemble irradiance
forecasts in hourly resolution since Cycle 43r1, which commenced on November 22, 2016. This explains, at least
in part, why predictability study has hitherto been lacking in the field of solar forecasting. Whereas one may expect
dynamical ensemble NWP forecasts to become more and more popular moving into the future, it is still desirable if
PEG can be estimated solely from deterministic forecasts, such that the Ap estimates from several alternative NWP
models can be compared. The method outlined by Lorenz [23] offers such a possibility. Instead of computing PEG
from control and perturbed forecasts, Lorenz [23] proposed to estimate PEG from pairs of consecutive forecasts
from the same run, for the error growth tends to amplify as the forecast horizon gets far. Since this work is not
concerned with that alternative, the reader is referred to the original paper of Lorenz [23] if the detailed method is to
be understood.

Lastly, the content of this work is readily transferable to other analyses of a like nature with other atmospheric
variables, in particular, wind speed and temperature, which are essential in wind and load forecasting. What needs
to be taken care of before applying the procedure of estimating predictability and compute skill score is however the
salient features of the atmospheric variable under scrutiny. For instance, wind speed is well known to possess diurnal
and seasonal nonstationarity, conditional heteroscedasticity, among other properties, which call for the identification
of those nonstationary components, square root transform, and other possible treatments. Similarly, aerosol optical
depth is log-normal distributed and subject to frequent retrieval failures due to clouds and high-albedo surfaces, in
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that, log transform and gap fill seem almost always necessary. That said, we should leave these as exercises for the
future, and to those who are more qualified and more relevant to study the predictability and forecast skill of those
aforementioned atmospheric variables.

7. Conclusion

This paper studies, for the first time, the predictability of solar irradiance over the contiguous United States.
Based upon the well-known meteorology theory of estimating predictability, several modifications have been made to
adapt the theory to the salient features of irradiance. The current proposal takes predictability as one minus the ratio
of the root mean square predictability error growth (RMSPEG) and root mean square error (RMSE) of the optimal
combination of climatology and persistence (CLIPER), of which the former quantifies how fast the initial errors in the
analysis grow, and the latter provides a reference on how naïve forecasts performance varies with the forecast situation
of concern. The quantification of RMSPEG has a universal appeal, for one just needs to have a set of control and a
set of perturbed forecasts. On the other hand, the RMSE of CLIPER can be computed with several statistics (mean,
variance, autocorrelation) from satellite-derived irradiance. Additional to these, two curves are fitted to empirical
RMSPEG and RMSE of CLIPER, in that, if this experiment is to be repeated using ECMWF and the other satellite-
derived irradiance databases, predictability can be estimated for any location on earth and for any (non-discrete)
forecast horizon.

The estimated predictability maps provide new insights to solar forecast verification. Firstly, the results concretely
refute two common suppositions in the literature: (1) longer horizons are with lower predictability, and (2) clearer
skies correspond to higher predictability. Both suppositions confuse the notion of predictability with forecast error.
In reality, predictability should be quantified in relation to the performance of a set of perfect forecasts and that of a
reference set, see Eq. (1). The present results show that predictability, as a function of horizon, is not monotone, and
as a function of geographical location, has little to do with the climate and sky conditions.

Secondly, the estimated RMSPEG and RMSE of CLIPER can revive the skill score to its original formulation,
which requires not only the accuracy of forecasts of interest and that of reference forecasts, but also the accuracy
of perfect forecasts, which is commonly approximated by RMSPEG in the weather community, see Eq. (2). In
solar forecasting, the reduced skill score, i.e., one minus the ratio of the accuracy of forecasts of interest and that of
reference forecasts, has survived and flourished, owing to the hardship of materializing the perfect forecasts. But the
reduced skill score is herein shown to be less valuable as a tool to compare forecasts made for different periods and
regions. This is because the forecast skill computed that way is not independent of predictability, which defies the
intention of reporting the forecast skill if not when comparing forecasting models for the same conditions (time and
place). Of course, reporting additional error metrics (e.g., RMSE, MAE, MBE) for both reference and model forecasts
in addition to the reduced skill score help alleviate some of these deficiencies when attempting to use such metrics
for comparisons of forecasts obtained across different periods and/or locations. Nonetheless, the limitations of these
metrics should be clearly understood for those using them.

The limitation of the present work resides in the fact that only predictability of irradiance is studied, which does
not necessarily translate to predictability of solar power. Irradiance-to-power conversion must not be regarded as a
trivial task, for the procedure requires not only meteorological knowledge, but also system specification and design.
Particularly relevant are systems with a “memory” (i.e., systems containing storage elements), in that the accuracy
of the accumulated forecast errors over consecutive time steps gains importance. On the other hand, the present
discussion has only been focusing on the predictability of individual forecast horizons, which is unable to cater for
optimizing systems that do not response instantly in time. Consequently, this calls for further studies on the temporal
correlation of the forecast errors spanning over several time steps.
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Appendix A. Correlogram fitting procedure

For given time series {xt : t = 1, . . . , n} and {ct : t = 1, . . . , n}, both V(κ) and E
(
c2

)
in Eq. (4) are constant, and

thus MSEy is solely a function of ρh, which can be computed empirically from {κt : t = 1, . . . , n}; the empirical lag-h
autocorrelation is denoted as ρ̂h. As mentioned in the introduction, we wish Ar to be attainable for any continuous
horizon τ, a correlation function (also known as correlogram) is fitted using ρ̂h and discrete h. There are many
parametric correlograms available, but the Cauchy correlogram has been previously shown to be effective and flexible
enough to capture the temporal correlation in irradiance-related quantities [39, 40]. For this reason, the Cauchy
correlogram with a nugget effect is herein used, which has the form:

C(τ; θ) = (1 − ν) ·
[
1 +

(
τ

r

)α]−β
+ νIτ=0, (A.1)

where r is the scale parameter, α is the smoothness parameter, β constitutes the shape parameter, ν represents the size
of the nugget effect, and Iτ=0 is an indicator function which takes the value of 1 when τ = 0, 0 otherwise. The statistics
preliminary in regard to correlation functions can be found in abundance, but reading Gneiting [41, 42] is sufficient
for the present content.

Unknown vector of parameters θ = {ν, r, α, β} is estimated in two stages, as to acknowledge that some parameters
may be deemed more important than others with respect to the features of the phenomenon being modeled [43].
Considering the current application, the nugget effect ν is evidently more important than the other parameters, for
it can be regarded, in a statistical sense, as the irreducible initial error in the temporal process due to measurement
uncertainty, or in a physical sense, effects on analysis due to unresolved microscale atmospheric processes (e.g., local
flows and turbulent eddies) and insufficient observations. Therefore, following the suggestion of Montero et al. [43],
the nugget effect is first estimated by extrapolating the first few empirical autocorrelations until they cut the ordinate.
With the estimated nugget effect, the remaining parameters are estimated via a weighted least squares (WLS) estimator
that is similar to the one proposed by Cressie and Huang [44]:

argmin
r,α,β

∑
h

nh

( ρ̂h − C(h; r, α, β)
1 − C(h; r, α, β)

)2 , (A.2)

where nh is the number of data points used to compute ρ̂h. This two-stage parameter estimation procedure is fairly
well known in the field of spatial statistics, but unfamiliar readers are referred to Montero et al. [43], Cressie and
Huang [44] for its theoretical basis.
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