
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Safe and Interactive Autonomy: Control, Learning, and Verification

Permalink
https://escholarship.org/uc/item/06g4b5xs

Author
Sadigh, Dorsa

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/06g4b5xs
https://escholarship.org
http://www.cdlib.org/

Safe and Interactive Autonomy: Control, Learning, and Verification

by

Dorsa Sadigh

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Sanjit A. Seshia, Co-chair
Professor S. Shankar Sastry, Co-chair

Professor Francesco Borrelli
Professor Anca D. Dragan

Summer 2017

Safe and Interactive Autonomy: Control, Learning, and Verification

Copyright 2017
by

Dorsa Sadigh

1

Abstract

Safe and Interactive Autonomy: Control, Learning, and Verification

by

Dorsa Sadigh

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Sanjit A. Seshia, Co-chair

Professor S. Shankar Sastry, Co-chair

The goal of my research is to enable safe and reliable integration of human-robot systems
in our society by providing a unified framework for modeling and design of these sys-
tems. Today’s society is rapidly advancing towards autonomous systems that interact
and collaborate with humans, e.g., semiautonomous vehicles interacting with drivers and
pedestrians, medical robots used in collaboration with doctors, or service robots interact-
ing with their users in smart homes. The safety-critical nature of these systems require us
to provide provably correct guarantees about their performance. In this dissertation, we
develop a formalism for the design of algorithms and mathematical models that enable
correct-by-construction control and verification of human-robot systems.

We focus on two natural instances of this agenda. In the first part, we study interaction-
aware control, where we use algorithmic HRI to be mindful of the effects of autonomous
systems on humans’ actions, and further leverage these effects for better safety, efficiency,
coordination, and estimation. We further use active learning techniques to update and
better learn human models, and study the accuracy and robustness of these models. In the
second part, we address the problem of providing correctness guarantees, while taking
into account the uncertainty arising from the environment or human models. Through
this effort, we introduce Probabilistic Signal Temporal Logic (PrSTL), an expressive
specification language that allows representing Bayesian graphical models as part of
its predicates. Further, we provide a solution for synthesizing controllers that satisfy
temporal logic specifications in probabilistic and reactive settings, and discuss a diagnosis
and repair algorithm for systematic transfer of control to the human in unrealizable
settings. While the algorithms and techniques introduced can be applied to many human-
robot systems, in this dissertation, we will mainly focus on the implications of my work
for semiautonomous driving.

i

To Maman, Baba, Gelareh, Amir, Vivian,
and Nima.

ii

Contents

Contents ii

1 Introduction 1
1.1 Thesis Approach . 2
1.2 Contributions . 3
1.3 Overview . 8

2 Preliminaries 14
2.1 Formalism for Human-Robot Systems . 14
2.2 Inverse Reinforcement Learning . 17
2.3 Synthesis from Temporal Logic . 19
2.4 Simulations . 23

I Interaction-Aware Control 26

3 Leveraging Effects on Human Actions 27
3.1 Human-Robot Interaction as a Two-Player Game 27
3.2 Approximate Solution as an Underactuated System 29
3.3 Case Studies with Offline Estimation . 32
3.4 User Study with Offline Estimation . 36
3.5 Chapter Summary . 41

4 Active Information Gathering over Human Internal State 43
4.1 Extension to Online Estimation of the Human Model 45
4.2 Case Studies with Online Estimation . 47
4.3 User Study with Online Estimation . 56
4.4 Chapter Summary . 59

5 Active Preference-Based Learning of Reward Functions 62
5.1 Preference-Based Learning Problem . 63
5.2 Learning Reward Weights from Preferences of Synthesized Queries 64
5.3 Synthesizing Queries through Active Volume Removal 65

iii

5.4 Algorithm and Performance Guarantees . 68
5.5 Simulation Experiment . 69
5.6 Usability Study . 74
5.7 Chapter Summary . 77

6 Falsification for Human-Robot Systems 79
6.1 Running Example . 80
6.2 Falsification in Interaction-Aware Control . 81
6.3 Learning the Error Bound δ . 84
6.4 Case Studies . 88
6.5 Chapter Summary . 91

II Safe Control 92

7 Reactive Synthesis for Human-Robot Systems 93
7.1 Running Example . 96
7.2 Formal Model of Human-Robot Controller 97
7.3 Human-Robot Controller Synthesis . 99
7.4 Experimental Results . 104
7.5 Chapter Summary . 105

8 Reactive Synthesis from Signal Temporal Logic 107
8.1 MILP Encoding for Controller Synthesis . 109
8.2 STL Reactive Synthesis Problem . 111
8.3 Counterexample-Guided Finite Horizon Synthesis 111
8.4 Receding Horizon Controller Synthesis in an Adversarial Environment . . 117
8.5 Autonomous Driving in Nondeterministic Environments 119
8.6 Chapter Summary . 121

9 Safe Control under Uncertainty 123
9.1 Bayesian Classification to Model Uncertainty: 125
9.2 Probabilistic Controller Synthesis Problem 126
9.3 Experimental Results . 133
9.4 Chapter Summary . 139

10 Diagnosis and Repair for Synthesis from Signal Temporal Logic 140
10.1 Mixed Integer Linear Program Formulation 142
10.2 Running Example . 144
10.3 Diagnosis and Repair Problem . 145
10.4 Monolithic Specifications . 147
10.5 Contracts . 156
10.6 Case Studies . 160

iv

10.7 Chapter Summary . 165

11 Final Words 166
11.1 Challenges in Safe and Interactive AI . 167
11.2 Closing Thoughts . 171

Bibliography 172

v

Acknowledgments

I would like to first and foremost thank my advisors Sanjit Seshia and Shankar Sastry.
Sanjit’s enthusiasm and perceptiveness was what drew me to research in the first place.
His patience and ability to see the positive in every bit of academia has motivated me
throughout the past 7 years, and I would not have been where I am today without his
help and support. I have also been fortunate to have Shankar’s invaluable guidance
throughout my Ph.D. Every word in a conversation with Shankar is a lifelong advice,
and I am grateful that he took a chance on me after my elevator pitch in the elevator of
Sutardja-Dai Hall in 2012.

Many of my recent work has been in close collaboration with Anca Dragan. Over
the short time that Anca has been at Berkeley, she has given me a unique viewpoint on
research and life. Anca has taught me how to be caring and compassionate at the same
time as being candid and constructive. I now know there is so much love in it when she
says “That was horrible!"

I would also like to thank the faculty who helped shape my research path during my
time at Berkeley. Babak Ayazifar for introducing me to the world of research. Edward
Lee, my undergraduate research advisor, for letting me hang out with his group and
learn about model-based design. Ruzena Bajcsy for teaching me how to keep myself
grounded and be my own critic. Claire Tomlin and Alberto Sangiovanni-Vincentelli for
their support, advice, and constructive discussions. Jeannette Wing, Eric Horvitz, and
Ashish Kapoor for fruitful conversations that shaped my research during the awesome
summer of 2014 in Redmond.

I would also like to thank all my co-authors and collaborators, specially people
who helped with the work of this dissertation: Shromona Ghosh and Pierluigi Nuzzo
for the awesome nights in DOP center, Nick Landolfi, Wenchao Li, Alexandre Donze,
Vasumathi Raman, and Richard Murray whose ideas have helped with various parts of
this dissertation.

Special thanks to all my mentors for letting me follow them around for a good chunk
of my graduate school: Sam Burden for his wisdom, advice, and being there for all the
younger folks in the group, Joh Kotker for slowly guiding me towards formal methods,
Lillian Ratliff, Dan Calderon, Roy Dong, Aaron Bestick, Katherine Driggs-Campbell, and
Sam Coogan for their continuing support, all the lunches, conferences, tea times, and
hikes.

I also want to thank the people of TRUST, and Learn and Verify group for the fruitful
conversations over the years: Rohit Sinha, Eric Kim, Ankush Desai, Daniel Fremont, Ben
Caulfield, Marcell Vazquez-Chanlatte, Jaime Fisac, Dexter Scobee, Oladapo Afolabi, Eric
Mazumdar, Tyler Westenbroek, Zach Wasson, Wei-Yang Tan, Markus Rabe, Tommaso
Dreossi, Robert Matthew, Victor Shia, Indranil Saha, Ruediger Ehlers, Yi-Chin Wu, Susmit
Jha, Bryan Brady, Dan Holcomb, Nikhil Naikal, Nishant Totla, and Garvit Juniwal.

I wouldn’t be able to go through the interview season this past year without the help
and unsparing advice of Ramtin Pedarsani, Yasser Shoukry, and Justine Sherry.

vi

Many thanks to special people of TRUST and DOP center, who made everything run
smoothly: Jessica Gamble, Carolyn Winter, Mary Stewart, Larry Rohrbough, Christopher
Brooks, Annie Ren, Aimee Tabor, Shirley Salanio, and Shiela Humphreys.

I have had some of the most wonderful years of my life at Berkeley, and I owe that
to my awesome and supportive friends: Zhaleh Amini, Nazanin Pajoom, Negar Mehr,
Ramtin Pedarsani, Payam Delgosha, Sana Vaziri, Hedyeh Ahmadi, Sina Akhbari, Faraz
Tavakoli, and Yasaman Bahri.

I wanted to thank my family. My parents for all their sacrifices, love, and support. My
sister, Gelareh, for listening to my ‘ghors’ almost everyday since the day I can remember,
and for constantly pushing me to go beyond my comfort zone. Special thanks to Amir
Razavi, Vivian Razavi, Babak Sadigh, and Minoo Bahadori for being an important part of
my life.

The final thanks goes to Nima Anari for making my life more enjoyable and exciting
than it has ever been. His ‘kari nadare ke!’ has made me believe in myself; his genius has
led me to look at the world differently, and his peacefulness is my endless comfort.

1

Chapter 1

Introduction

Today our society is rapidly advancing towards autonomous systems that interact and
collaborate with humans, e.g., semiautonomous vehicles interacting with drivers and
pedestrians, medical robots used in collaboration with doctors, or service robots interact-
ing with their users in smart homes. Humans play a central role in such autonomous
systems. They are either part of the environment that interacts with autonomy, part of the
control algorithm that provides the policy for the overall system, or have a supervisory
role. For instance, in autonomous driving, the autonomous vehicle inevitably interacts
with humans both inside and outside of the vehicle. The car needs to interact with
the driver inside of the vehicle, who might at times take over and steer the vehicle in
a shared autonomy setting. We see this in lane keeping systems, where the controller
decides to bring a distracted driver back into the lane. We also see it in autonomous
highway driving, when the vehicle asks the person to take over control as the highway
ends. Similarly, autonomous cars will not drive in an isolated space. They will need to
interact with everything else that lives in the environment. This includes the pedestrians
or human-driven vehicles around them. For example, the human driver in the next
lane of an autonomous car, might decide to slow down or speed up, when she sees an
autonomous vehicle. Her actions are simply based on her model of the autonomous car’s
driving and her interaction with the autonomous car. On the other hand, the actions of the
autonomous car is based on its model and interaction with the human. The autonomous
car might decide that the human is distracted, so its safest strategy is to not change lanes.
The autonomous car might also decide to nudge in a bit into the next lane to initiate an
interaction, which can potentially affect the human driver (if attentive) to slow down,
making some room for the autonomous car to merge in the front. In all these settings, it
is crucial to understand the interaction between the human and the rest of the system,
which further requires representative models of the humans’ behavior. We refer to these
systems as human-robot systems, or interchangeabily as human-cyber-physical systems
(h-CPS). These are cyber-physical systems (CPS) since they unite the physical processes
with the cyber-world, and they are h-CPS as they have a human as part of their plant,
control loop, or environment interacting with them.

CHAPTER 1. INTRODUCTION 2

As these autonomous systems enter the humans’ world, their continuing interaction
results in many safety concerns. These systems don’t live in a vacuum, and their actions
have direct consequence on the environment the humans live in. In addition, these actions
highly depend on learned models of the environment or the humans they interact with. So
robots can easily unhinge humans’ safety by relying on inaccurate models that are learned
from data. The safety-critical nature of these human-robot systems demands providing
provably correct guarantees about their actions, models, control, and performance. This
brings us to a set of fundamental problems we would like to study for human-robot
systems. How do we model humans? How do we model the interaction between the
human and the robot? How do we leverage the growing amount of data in the design of
human-CPS in a principled manner? What mathematical models are suitable for formal
analysis and design of human-robot systems? How do we address safety in reactive,
high-dimensional, probabilistic environments? How do we recover in the case of an
unsafe event?

1.1 Thesis Approach

One of the key aspects for achieving safe controllers for human-robot systems is the
design of the interaction between the human and autonomy. This is usually overlooked
by assuming humans act as external disturbances just like moving obstacles. Humans are
not simply a disturbance that needs to be avoided; they are intelligent agents with approximately
rational strategies. To model and control any human-robot systems, we are required to
develop verifiable models of humans, understand the interaction between them and the
other agents, and leverage this interaction in construction of safe and efficient controllers.
For the design of safe controllers, we further need to formally express the desirable
properties the human-robot system should satisfy, and only then we can construct a
strategy for the robot that would satisfy the formalism.

In order to address safety and interaction, we divide this dissertation into two parts
first focusing on interaction-aware control, and then discussing safe control.

Our approach in interaction-aware control is to model the interaction between the
human and the robot as an underactuated dynamical system, where the actions of the
robot can influence the actions of the human. We assume the human and the robot are
reward maximizing agents. We further study the human’s reward function by:

(i) actively updating the reward function in online manner to address the deviation
from different people’s behaviors;

(ii) actively synthesizing comparison queries to learn human’s preference reward func-
tions, and

(iii) verifying the safety of the overall system by disturbance analysis of the learned
reward function.

CHAPTER 1. INTRODUCTION 3

This disturbance analysis is a step towards addressing the safety of the overall human-
robot system while using learned models, which brings us to the discussion of safe
control.

We take a formal methods approach to address the safety question, where we formalize
the desired specifications as temporal logic properties. We then design controllers that
would either satisfy the specification, or in the case that such controllers do not exist, they
would systematically diagnose the failure, transfer control to the human (or some other
supervisor), and even provide suggested repairs for the specifications. We study different
types of specifications to address continuity and stochasticity present in human-robot
systems.

Here, we bridge ideas from formal methods, control theory, and human-robot interac-
tion to understand and design controllers that are interactive, can influence people, and
can guarantee to satisfy high level properties such as safety.

1.2 Contributions

This thesis makes the following contributions.

The goal of my thesis is to develop a safe and interactive control framework for human-
robot systems.

Planning for Robots to Coordinate with Other People:

We provide a formalism for interaction between a human and a robot as a partially
observable two-player game. The human and the robot can both act to change the state
of the world, and they have partial information because they don’t know each others’
reward functions. We model the human as an agent who is approximately optimizing
her reward function learned through demonstrations [129, 3, 188, 107], and the robot as a
rational agent optimizing its own reward function.

This formulation has two issues: intractability, especially in continuous state and
action spaces, and failing to capture human behavior, because humans tend to not follow
Nash equilibria in day to day tasks [76]. We introduce a simplification of this formulation
to an underactuated system. We assume that the robot decides on a trajectory uR, and
the human computes a best response to uR (as opposed to trying to influence uR as
would happen in a game).

In addition, we derive an approximate solution for our system based on Model
Predictive Control and a quasi-newton optimization. At every step, the robot replans
a trajectory uR by reasoning about the optimization that the human would do based
on a candidate uR. We use implicit differentiation to obtain a gradient of the human’s
trajectory with respect to the robot’s. This enables the robot to compute a plan in close to
real-time. We evaluate our algorithm through a user study in an autonomous driving

CHAPTER 1. INTRODUCTION 5

scenario, which suggests that robots are capable of affecting human’s actions and driving
them to a desired state (Chapter 3) [159, 160].

Active Information Gathering over Human’s Internal State:

Our human-robot interaction model depends on accurate estimations of human reward
function. This can be done by estimating the human reward offline from training data,
but ultimately every driver is different, and even the same driver is sometimes more
or less aggressive, more or less attentive, and so on. We thus explore estimating the
human reward function online. This turns the problem into a partially observable Markov
decision process (POMDP), with the human reward parameters as the hidden state.
Prior work that incorporates some notion of human state into planning has thus far
separated estimation and planning, always using the current estimate of the human
state to determine what the robot should do [81, 58, 18]. Although efficient, these
approximations sacrifice an important aspect of POMDPs: the ability to actively gather
information.

We take advantage of the underactuated system to gather information about the
human reward parameters. Rather than relying on passive observations, the robot actually
accounts for the fact that humans will react to their actions: it uses this knowledge to
select actions that will trigger human reactions which in turn will clarify the internal state.
We apply our algorithm to estimating a human driver’s style during the interaction with
an autonomous vehicle, and our results in simulation and a user study suggest that our
algorithm is capable of leveraging robot’s actions for estimation that leads to significantly
higher accuracy in identifying the correct human internal state (Chapter 4) [158, 160].

Active Preference-Based Learning of Reward Functions:

Reward functions play a central role in specifying how dynamical systems should act.
For many systems, human’s have a difficult time providing demonstrations of what they
want. We propose a preference-based approach to learning desired reward functions in a
dynamical system. Instead of asking for demonstrations, or for the value of the reward
function for a sample trajectory (e.g., “rate the safety of this driving maneuver from 1 to
10”), we ask people for their relative preference between two sample trajectories (e.g., “is
ξ1 more safe or less safe than ξ2?”).

We provide an algorithm for actively synthesizing such comparison queries from scratch.
Our algorithm uses continuous optimization in the query space to maximize the expected
volume removed from the hypothesis space. The human’s response assigns weights
to the hypothesis space in the form of a log-concave distribution, which provides an
approximation of the objective. We provide a bound on the number of iterations required
to converge. In addition, we show that our algorithm converges faster than non-active
and non-synthesis techniques in learning the reward function in an autonomous driving

CHAPTER 1. INTRODUCTION 6

setting. We illustrate the performance of our algorithm in terms of accuracy of the reward
function learned through an in-lab usability study (Chapter 5) [156].

Falsification for Human-Robot Systems:

Safe and interactive human-robot systems strongly depend on reliable models of human
behavior. It is crucial to be able to formally analyze such human models (e.g. learned
reward functions) to address the safety and robustness of the overall system. We provide
a new approach for rigorous analysis of human-robot systems that are based on learned
models of human behavior. We formalize this problem as a constrained optimization,
where we examine the existence of a falsifying controller for the human that lies within
a bounded region of the learned model and could possibly lead to unsafe outcomes.
For instance, in a driving scenario, we find a sequence of possible human actions that
potentially leads to a collision between the vehicles. We reduce this optimization to a
more efficiently-solvable problem with linear constraints. In addition, we provide an
efficient (almost linear time) optimization-driven approach to estimate the error bound
between the true human reward function and the controller’s estimate. We evaluate our
technique for an autonomous driving example, where we find such falsifying actions
within the learned safety bound (Chapter 6) [155].

Reactive Synthesis for Human-Robot Systems:

We formalize the problem of safe control for human-robot systems as a reactive synthesis
problem [139]. We consider a shared control setting, where either the human or the
robot can operate the system, and we provide controllers that are guaranteed to satisfy
a set of high level specifications. Our algorithm satisfies four criteria for the overall
system: i) monitoring: the robot determines if any human intervention is required based
on monitoring the environment. ii) minimal intervention: the robot asks for human
intervention only if it is necessary. iii) prescient: the robot determines if a specification
is going to be violated ahead of time to give enough takeover time to the human based
on the human’s reaction time. iv) conditional correctness: the robot satisfies the high level
specification until when the human needs to intervene.

We use a discrete state and action model of the robot to be able to guarantee satisfaction
of high level Linear Temporal Logic (LTL) specifications. We leverage counterstrategy
graphs in our algorithm to formalize the intervention problem. Based on the four desired
criteria, our algorithm finds a s-t minimum cut of the counterstrategy graph to determine
when the human needs to takeover. We only monitor the human’s reaction time as
part of the human model; however, our algorithm is able to automatically find the
environment assumptions that need to be monitored and systematically transfers control
to the human if it can’t guarantee satisfaction of the high level specifications. We showcase
our algorithm for a system motivated by driver-assistance systems (Chapter 7) [110].

CHAPTER 1. INTRODUCTION 7

Reactive Synthesis from Signal Temporal Logic

Reactive synthesis from LTL is a powerful technique that enables us to provide correctness
guarantees for autonomous systems. However, using LTL requires a discrete state and
action dynamical system. Such discretization is not very realistic for many robotics and
control applications as they are usually inherently continuous. So instead, we formalize
the problem of reactive synthesis from Signal Temporal Logic (STL), a specification
language that is defined over continuous time and real-valued signals. Synthesizing
reactive controllers under STL allows us to provide correctness guarantees even when we
are dealing with continuous state and action dynamical systems.

We provide a new algorithm using ideas from counterexample-guided inductive synthesis
(CEGIS) [166]. We solve a series of counterexample-guided optimization problems that
result in finding a controller that satisfies the given STL specifications in a receding
horizon fashion. We demonstrate the effectiveness of our algorithm in a driving example
with a simple adversarial model of other human-driven vehicles. Similar to [146], we rely
on transforming STL specifications to mixed integer linear program (MILP) encodings.
Our method is a fundamentally novel approach to reactive synthesis for hybrid systems,
different from most current methods, which often rely on model transformations, e.g.,
abstraction and discretization (Chapter 8) [149].

Safe Control under Uncertainty

As powerful as STL specifications are, they do not have the capability of encoding
stochastic properties that can arise in human-robot systems. The desired properties in
many robotics applications are based on the output of estimation and learning algorithms.
For instance, safe control of a flying quadrotor depends on how certain the estimation
algorithm is about the location of the other agents in the environment including the
human agents. This is based on the current sensor data and specific classification methods
being used.

We formally define a specification language to address the safe control of robots
under such uncertain environment or human models. Probabilistic Signal Temporal Logic
(PrSTL) is our specification language that enables expressing probabilistic properties,
which can embed Bayesian graphical models. This probabilistic logical specification
language enables reasoning about safe control strategies by embedding various predic-
tions and their associated uncertainty. Furthermore, we solve a receding horizon control
problem to satisfy PrSTL specifications using mixed integer semidefinite programs. We
showcase our algorithm for examples in autonomous driving and control of quadrotors
in uncertain environments (Chapter 9) [154].

CHAPTER 1. INTRODUCTION 8

Diagnosis and Repair for Synthesis from Signal Temporal Logic

When synthesizing safe controllers that satisfy high level specifications such as LTL,
STL, or PrSTL, we usually transform the problem to a game (in the case of LTL), or an
optimization (in the case of STL and PrSTL), and use existing techniques to solve for
a safe control strategy. However, there could be situations where there does not exist
a controller that satisfies all the given specifications. In this context, an unrealizable
STL specification leads to an infeasible optimization problem. We leverage the ability
of existing mixed integer linear programming (MILP) solvers to localize the cause of
infeasibility to so-called Irreducibly Inconsistent Systems (IIS). We propose an algorithm
that uses the IIS to localize the cause of unrealizability to the relevant parts of the STL
specification. Additionally, we give a method for generating a minimal set of repairs to the
STL specification such that, after applying those repairs, the resulting specification is
realizable. The set of repairs is drawn from a suitably defined space that ensures that we
rule out vacuous and other unreasonable adjustments to the specification. Our algorithms
are sound and complete, i. e., they provide a correct diagnosis, and always terminate with
a reasonable specification that is realizable using the chosen synthesis method, when
such a repair exists in the space of possible repairs.

1.3 Overview

Interaction-Aware Control

Effects on Human Actions. Safe and interactive human-robot systems requires modeling
the human, and taking into account the interaction that weaves the agents together. For
instance, currently autonomous cars tend to be overly defensive and obliviously opaque.
When needing to merge into another lane, they will patiently wait for another driver to
pass first. When stopped at an intersection and waiting for the driver on the right to
go, they will sit there unable to wave them by. They are very capable when it comes to
obstacle avoidance, lane keeping, localization, active steering and braking [170, 108, 56,
55, 54, 44, 106]. But when it comes to other human drivers, they tend to rely on simplistic
models: for example, assuming that other drivers will be bounded disturbances [71, 149],
they will keep moving at the same velocity [175, 118, 154], or they will approximately
follow one of a set of known trajectories [174, 77].

These models predict the trajectory of other drivers as if those drivers act in isolation.
They reduce human-robot interaction to obstacle avoidance: the autonomous car’s task is
to do its best to stay out of the other drivers’ way. It will not nudge into the lane to test if
the other driver yields, nor creep into the intersection to assert its turn for crossing.

Our insight is that the actions of an autonomous car affect the actions of other drivers,
and leveraging these effects in planning improves efficiency and coordination.

CHAPTER 1. INTRODUCTION 10

Decision Process (POMDP), where the human’s internal state denotes the unobserved
variable. We augment the robot’s reward function with an exploration term (i.e. entropy
over the belief of the human’s internal state), which results in a strategy for the robot
that actively takes actions to improve its estimate. Exploration actions emerge out
of optimizing for information gain, such as the robot nudging into the other lane and
responding safely (going back to its lane or completing the merge) if the human driver is
distracted or attentive respectively (Figure 1.2(d)) [158, 160].
Active Preference Based Learning of Reward Functions. Most of our work in interaction-
aware control depends on acquiring representative models of human behaviors such
as their reward functions. Efficiently learning reward functions that encode humans’
preferences for how a dynamical system should act results in various challenges. It is quite
difficult for people to demonstrate trajectories for robots with more than a few degrees of
freedom or even to provide labels for precisely how much reward an action or trajectory
should get, like a robot motion or a driving maneuver. Moreover, the learned reward
function strongly depends on what environments and trajectories were experienced
during the training phase. Our approach to efficiently learn human’s preference reward
functions is by actively synthesizing comparison queries that human’s can respond to,
and use ideas from volume-maximization and adaptive submodular optimization to
actively synthesize such queries, which allow us to quickly converge to human’s reward
function [156].
Measuring Human Variations. Since many human-robot systems are emerging into our
every day lives, we are required to understand and measure their performance and safe
interaction in this environment. For instance, our framework depends on the quality of
the learned human models, e.g., we would like to analyze how good of a reward function
we have learned. Under the assumption that humans are approximately rational, we can
either use the principle of maximum entropy to learn such reward functions, as we do
in [159, 158, 160], or apply our active preference-based learning technique to quickly
converge to human’s preference reward functions [156].

These data-driven human models such as human reward functions are usually con-
structed based on large datasets that give access to a single model of rationality. However,
humans vary in how they handle different situations, and we cannot fit a single model
to all humans. In safety-critical scenarios, we need to be able to quantize and measure
how humans can differ from the fitted model. As a step towards verified human modeling,
we construct an efficient (almost linear, i.e., O(n log n), where n is the number of queries)
algorithm to quantize and learn a distribution over the variations from the fitted model
by querying individual humans on actively generated scenarios.

Overall, this thesis takes a step towards robots that account for their effects on human
actions in situations that are not entirely cooperative, and leverage these effects to
coordinate with people. Natural coordination and interaction strategies are not hand-
coded, but emerge out of planning in our model. Further, we study various models of our
reward function through comparison based learning or falsification in our human-robot
systems. The material in the first part of this thesis is based on joint work with Anca D.

CHAPTER 1. INTRODUCTION 11

Dragan, S. Shankar Sastry, and Sanjit A. Seshia [159, 158, 160, 156, 155].

Safe Control

Reactive and Stochastic Controller Synthesis from Temporal Logics. The problem of
correct-by-construction controller synthesis has been addressed in the area of formal
methods. We formalize a set of desired high level specification, then the realizability
problem is to find an autonomous strategy for the robot so no matter what the envi-
ronment or the other agents, e.g., humans do, the strategy for the robot is guaranteed
to satisfy the specification. Linear Temporal Logic (LTL) is a popular formalism for
stating these specifications. However, there is a significant gap between the expressivity
of specifications in LTL and the desired requirements in robotics applications including
human-robot systems.

Most of these applications deal with inherently continuous systems, and the discrete
nature of LTL is incapable of representing properties over continuous time and space
trajectories. Signal Temporal Logic (STL) is a specification language that addresses some
of these shortcomings by providing a language over real-valued and continuous-time
signals. However, synthesizing reactive controllers that satisfy STL specifications is a
challenging problem. Previous work by Raman et al. has studied synthesizing non-reactive
controllers under STL specifications by translating the specifications to mixed-integer
linear program (MILP) constraints [146]. As part of this thesis in collaboration with
Vasumathi Raman, Alexandre Donze, Richard Murray, and Sanjit A. Seshia [149], we
study the problem of reactive synthesis under STL specifications. We use a similar
approach to encode the specifications as MILPs, and leverage a series of counterexample
guided optimizations to find a controller that would satisfy the desired property under
reactive specifications [149].

Even though STL addresses continuous time and real-valued specifications, it still
lacks the ability to express the stochasticity arising from the environment or the human
models. It would be unrealistic to assume, we deterministically know where every
agent is located. Our sensors are noisy, hence our estimation algorithms at best can
probabilistically locate every agent in the environment. To address these limitations,
we introduce a new formalism, Probabilistic Signal Temporal Logic (PrSTL), which is an
expressive language that closes this gap by including machine learning techniques, namely
Bayesian classifiers as part of its predicates. This is joint work done at Microsoft Research,
Redmond with Ashish Kapoor [154]. We further formalize a controller synthesis problem
under satisfaction of PrSTL specifications, and solve a model predictive control problem,
where the synthesized strategy would satisfy the desired PrSTL properties. We reduce
this optimization to a mixed-integer second-order cone program (MISOCP) [154].
Explaining Failures: Accountable Human Intervention. Synthesizing safe controllers
under stochastic or adversarial environments does not always result in feasible solutions.
Sometimes the extremely safe strategy for the robot does not exist.

CHAPTER 1. INTRODUCTION 13

Overall this thesis takes a step towards the design of safe and interactive autonomous
controllers for human-robot systems. It leverages computational models of human
behaviors to design an interaction model between the human and robot in order to
influence the human for better safety, efficiency, coordination, and estimation. We also
take an effort in better designing humans’ reward functions through active preference
based learning as well as finding a sequence of falsifying actions for the human within
an error bound of the reward function. Under such uncertain human models, we address
the safe control problem by defining relevant specifications and synthesizing a controller
that would satisfy such specifications using either automata-based or optimization-based
techniques. In addition, we diagnose and repair the specifications in case of infeasibilities,
which enables a systematic transfer of control to the human.

CHAPTER 2. PRELIMINARIES 15

This modeling choice addresses how the actions of the human and robot together can
drive the dynamics of the system to desirable states. This would require modeling actual
actions of humans in a computational setting rather than a high level behavioral model
of cognition. The model of the human should explain how the actions of the human
influence or gets influenced in this dynamical system.

A state x ∈ X in our system is continuous, and includes the state of the human
and robot. The robot can apply continuous controls uR, which affect state immediately
through a dynamics model fR:

x′ = fR(x, uR) (2.1)

However, the next state the system reaches also depends on the control the human
chooses, uH. This control affects the intermediate state through a dynamics model fH:

x′′ = fH(x′, uH) (2.2)

The overall dynamics of the system combines the two. We note that the ordering of the
actions of human or robot does not matter, and we assume these control inputs are taken
simultaneously:

xt+1 = fH
(

fR(xt, ut
R), ut

H
)

(2.3)

We let f denote the dynamics of such discrete-time system:

xt+1 = f (xt, ut
R, ut

H) (2.4)

Further, we assume the robot has a particular reward function at every time step. The
robot’s reward function depends on the current state, the robot’s action, as well as the
action that the human takes at that step in response, rR(xt, ut

R, ut
H). At every time step,

the robot’s actions can be explained by maximizing this reward function. We assume, this
reward function is a weighted combination of features that the robot cares about, e.g., in
the driving example such features include collision avoidance, staying on the road, or
distance to the final goal.

In Figure 2.1, imagine the orange car’s goal is to go to the left lane. So its actions
would be based on optimizing a reward function that has a term regarding distance to
the left lane, distance to the blue and white car for collision avoidance, the heading and
speed of the orange car, and its distance to the lanes or road boundaries. Ideally, the
orange car would optimize such function to take safe and interactive actions towards its
goal. It is clear that such a reward function depends on the current state of the world xt,
as well as the actions of the other vehicles on the road ut

H and its own actions ut
R.

The key aspect of this formulation is that the robot will have a model for what uH will be, and
use that in planning to optimize its reward.

Model Predictive Control (MPC):

The robot will use Model Predictive Control (MPC) [124] (also known as Receding
Horizon Control (RHC)) at every iteration. MPC is a popular framework for the design of

CHAPTER 2. PRELIMINARIES 16

autonomous controllers since generating a closed-loop policy is intractable in a complex,
nonlinear, and non-convex human-robot dynamical system. In addition, computing
controllers for a finite horizon has the benefit of computational tractability as well as
addressing the limited range of sensors.

It will compute a finite horizon sequence of actions to maximize its reward. We reduce
the computation required by planning for a shorter horizon of N time steps. We execute
the control only for the first time step, and then re-plan for the next N at the next time
step [35].

Let x = (x1, . . . , xN)⊤ denote a sequence of states over a finite horizon, N, and let
uH = (u1

H, . . . , uN
H)
⊤ and uR = (u1

R, . . . , uN
R)
⊤ denote a finite sequence of continuous

control inputs for the human and robot, respectively. We define RR as the robot’s reward
over the finite MPC time horizon:

RR(x0, uR, uH) =
N

∑
t=1

rR(xt, ut
R, ut

H), (2.5)

where x0 denotes the present physical state at the current iteration, and each state
thereafter is obtained from the previous state and the controls of the human and robot
using the given dynamics model, f .

At each iteration, we desire to find the sequence uR which maximizes the reward of
the robot, but this reward ostensibly depends on the actions of the human. The robot
might attempt to influence the human’s actions, and the human, rationally optimizing for
her own objective, might likewise attempt to influence the actions of the robot.

u∗R = arg max
uR

RR
(

x0, uR, u∗H(x0, uR)
)

(2.6)

Here, u∗H(x0, uR) is what the human would do over the next N steps if the robot were to
execute uR.

The robot does not actually know u∗H, but in the future sections we propose a model
for the human behavior that the robot can use to make this problem tractable.

Similarly the robot’s actions and dynamics can be affected by other elements in the
environment. These could be other existing agents, or simply disturbances present in the
environment. For instance, in Figure 2.1, we can consider other vehicles on the road (e.g.
blue car) that are not in close interaction with the robot as such disturbances. We can
then extend our formulation, and consider a continuous-time system Σ of the form:

ẋ = fc(x, ut
R, ut

H, w)

where w ∈ W is the external input provided by the environment that can possibly be
adversarial. We will refer to w as the environment input. Here, fc is the continuous
dynamics of the system.

Given a sampling time ∆t > 0, we assume that Σ admits a discrete-time approximation
Σd of the form:

xt+1 = f (xt, ut
R, ut

H, wt) (2.7)

CHAPTER 2. PRELIMINARIES 17

An infinite run

ξω = (x0, u0
R, u0

H, w0)(x1, u1
R, u1

H, w1)(x2, u2
R, u2

H, w2)...

of Σd is a sequence of state and actions starting from the initial state x0 that follow
the dynamical system f . Given x0 ∈ X and the finite sequence of actions uR, uH, and
w = (w1, . . . , wN)⊤, the finite run ξ = (x0, uR, uH, w) is a unique sequence generated
following equation (2.7):

ξ = (x0, uR, uH, w) = (x0, u0
R, u0

H, w0)(x1, u1
R, u1

H, w1), . . . , (xN, uN
R, uN

H, wN) (2.8)

In addition, we introduce a generic cost function J(ξ) similar to the generic reward
function introduced in (2.5) for the robot RR(ξ) that maps (infinite and finite) runs to R.

2.2 Inverse Reinforcement Learning

Modeling human behavior is a challenging task that has been addressed in various fields.
Our goal is to use computational models of human behaviors to be able to inform the
design of our control algorithms for human-robot systems. Apprenticeship learning
is a possible technique for constructing such computational models of humans; the
learner finds a reward function that explains observations from an expert providing
demonstrations [129, 3]. Similar to the robot’s reward function, we model H as an agent
who noisily optimizes her own reward function [188, 107, 165, 98]. We parametrize the
human reward function as a linear combination of a set of hand-coded features:

rH(xt, ut
R, ut

H) = w · φ(xt, ut
R, ut

H) (2.9)

Here, φ(xt, ut
R, ut

H) is a vector of such features, and w is a vector of the weights corre-
sponding to each feature. The features describe different aspects of the environment
or the robot that the human should care about. We apply the principle of maximum
entropy [188, 187] to define a probability distribution over human demonstrations uH,
with trajectories that have higher reward being more probable:

P(uH|x0, w) =
exp(RH(x0, uR, uH))

∫

exp(RH(x0, uR, ũH))dũH
(2.10)

We then do an optimization over the weights w in the reward function that make the
human demonstrations the most likely:

max
w

P(uH|x0, w) (2.11)

CHAPTER 2. PRELIMINARIES 19

• φ1 ∝ c1 · exp(−c2 · d2): distance to the boundaries of the road, where d is the distance
between the vehicle and the road boundaries and c1 and c2 are appropriate scaling
factors as shown in Figure 2.2(a).

• φ2: distance to the middle of the lane, where the function is specified similar to φ1

as shown in Figure 2.2(b).

• φ3 = (v− vmax)2: higher speed for moving forward through, where v is the velocity
of the vehicle, and vmax is the speed limit.

• φ4 = βH · n: heading; we would like the vehicle to have a heading along with the
road using a feature, where βH is the heading of H, and n is a normal vector along
the road.

• φ5 corresponds to collision avoidance, and is a non-spherical Gaussian over the
distance of H and R, whose major axis is along the robot’s heading as shown
in Figure 2.2(c).

Demonstrations

We collected demonstrations of a single human driver in an environment with multiple
autonomous cars, which followed precomputed routes.

Despite the simplicity of our features and robot actions during the demonstrations,
the learned human model is enough for the planner to produce behavior that is human-
interpretable, and that can affect human action in the desired way as discussed in the
future chapters.

2.3 Synthesis from Temporal Logic

In the Safe Control part of this dissertation, we focus on the idea of correct-by-construction
control, which enables the design of controllers that are guaranteed to satisfy various
specifications such as safety of the human-robot system. Our work is based on the reactive
synthesis approach introduced in the area of formal methods. The idea of temporal logic
synthesis is to automatically construct an implementation that is guaranteed to satisfy a
behavioral description of the system expressed in temporal logic [142]. In this section, we
give an overview on synthesizing reactive modules from a specification given in Temporal
Logic. This problem originates from Church’s problem formulated in 1965 and can be
viewed as a two-player game between the system and the environment.

Problem 1 (Alonzo Church’s Synthesis Problem). Given a requirement which a circuit is to
satisfy, we may suppose the requirement expressed in some suitable logistic system which is an
extension of restricted recursive arithmetic.

The synthesis problem is the to find recursion equivalences representing a circuit that satis-
fies the given requirement (or alternatively, to determine that there is no such circuit) [34].

CHAPTER 2. PRELIMINARIES 20

Linear Temporal Logic

Specifications are detailed descriptions of the desired properties of a system (e.g. au-
tonomous agent, robot) along with its environment. We use Linear Temporal Logic
(LTL) [141] to formally define such desired specifications. A LTL formula is built of
atomic propositions ω ∈ Π that are over states of the system that evaluate to True or False,
propositional formulas φ that are composed of atomic propositions and Boolean operators
such as ∧ (and), ¬ (negation), and temporal operations on φ. Some of the common temporal
operators are defined as:

G φ φ is true all future moments.
F φ φ is true some future moments.
X φ φ is true the next moment.
φ1 U φ2 φ1 is true until φ2 becomes true.

Using LTL, we can define interesting liveness and safety properties. For example, GF φ
defines a surveillance property specifying that φ needs to hold true infinitely often. On
the other hand, FG φ represents a stability specification by requiring φ to stay true after
a particular point in the future. Similarly G(φ → F ψ) represents a response operator
meaning that at all times if φ becomes true then at some point in the future ψ must turn
true as well.

The goal of reactive synthesis from LTL is to automatically construct a controller that
is guaranteed to satisfy the given LTL specifications. The solution to this problem is
computed by first constructing an automaton from the given specification, which then
translates to a two-player game between the system components and the environment
components. A deterministic Rabin automaton is a formalism that enables representing
LTL specifications in the form of an automaton that can then be translated to the two-
player game.

Definition 1. A deterministic Rabin automaton is a tuple R = 〈Q, Σ, δ, q0, F〉 where Q is
the set of states; Σ is the input alphabet; δ : Q × Σ → Q is the transition function; q0 is the
initial state and F represents the acceptance condition: F = {(G1, B1), . . . , (GnF

, BnF
)} where

Gi, Bi ⊂ Q for i = 1, . . . , nF.

A run of a Rabin automaton is an infinite sequence r = q0, q1 . . . where q0 ∈ Q0 and
for all i > 0, qi+1 ∈ δ(qi, σ), for some input σ ∈ Σ. For every run r of the Rabin automaton,
inf(r) ∈ Q is the set of states that are visited infinitely often in the sequence r = q0, q1
A run r = q0, q1 . . . is accepting if there exists i ∈ {1, . . . , nF} such that:

inf(r) ∩ Gi 6= ∅ and inf(r) ∩ Bi = ∅ (2.13)

For any LTL formula φ over Π, a deterministic Rabin automaton (DRA) can be
constructed with input alphabet Σ = 2Π that accepts all and only words over Π that
satisfy φ [161]. We let Rφ denote this DRA.

CHAPTER 2. PRELIMINARIES 21

Intuitively, a run of the Rabin automaton is accepted if and only if it visits the accepting
(good) states Gi infinitely often, and visits the non-accepting (bad) states Bi only finitely
often. Acceptance of a run in DRA Rφ is equivalent to satisfaction of the LTL formula φ
by that particular run.

The solution to the reactive synthesis problem is then a winning strategy for the system
that is extracted from this two-player game created by the DRA. Such a strategy would
be winning for the system under any sequence of possible environment inputs.

There also exists situations, where a winning strategy does not exist for the environ-
ment, i.e., there exist an adversarial environment input sequence that can lead to the
violation of the given LTL property. In such scenarios, we instead extract a winning
strategy for the environment. Such a strategy is called a counterstrategy and provides
a policy for the environment that summarizes all the possible adversarial moves the
environment component can possibly take to drive the system to the violation of the
specification.

Signal Temporal Logic

LTL provides a rich and expressive specification language that enables formally specifying
high level properties of a reactive system. However, one major downside of using LTL
is the need to discretize the state space, which is quite unrealistic for many robotics
and control applications that are inherently continuous. Signal Temporal Logic (STL) is
another specification language that can address some of these limitations. We consider
STL formulas defined recursively according to the grammar

ϕ ::= πµ | ¬πµ | ϕ ∧ ψ | ϕ ∨ ψ | G[a,b] ψ | ϕ U[a,b] ψ

where πµ is an atomic predicate Rn → B whose truth value is determined by the sign of
a function µ : Rn → R and ψ is an STL formula.

An interesting property of STL is its ability to express specifications for continuous-
time, real-valued signals. However, in the rest of this dissertation, we focus only on
discrete-time, real-valued signals, which is already sufficient to avoid space discretization.
STL also has the advantage of naturally admitting a quantitative semantics which, in
addition to the binary answer to the question of satisfaction, provides a real number
indicating the quality of the satisfaction or violation. Such quantitative semantics have
been defined for timed logics e.g. Metric Temporal Logic (MTL) [52] and STL [45] to
assess the robustness of the systems to parameter or timing variations.

The validity of a formula ϕ with respect to the discrete-time signal ξ at time t, noted

CHAPTER 2. PRELIMINARIES 22

(ξ, t) |= ϕ is defined inductively as follows:

(ξ, t) |= πµ ⇔ µ(ξt) > 0
(ξ, t) |= ¬πµ ⇔ ¬((ξ, t) |= πµ)
(ξ, t) |= ϕ ∧ ψ ⇔ (ξ, t) |= ϕ ∧ (ξ, t) |= ψ
(ξ, t) |= ϕ ∨ ψ ⇔ (ξ, t) |= ϕ ∨ (ξ, t) |= ψ
(ξ, t) |= G[a,b]ϕ ⇔ ∀t′ ∈ [t+a, t+b], (ξ, t′) |= ϕ

(ξ, t) |= F[a,b]ϕ ⇔ ∃t′ ∈ [t + a, t + b], (ξ, t′) |= ϕ

(ξ, t) |= ϕ U[a,b] ψ ⇔ ∃t′ ∈ [t+a, t+b] s.t. (ξ, t′) |= ψ

∧∀t′′ ∈ [t, t′], (ξ, t′′) |= ϕ.

Here, ξt is the value of sequence ξ at time t. For instance if ξ is a sequence of state,
action pairs as in equation (2.8), ξt = (xt, ut

R, ut
H, wt). A signal ξ satisfies ϕ, denoted by

ξ |= ϕ, if (ξ, t0) |= ϕ. Informally, ξ |= G[a,b]ϕ if ϕ holds at every time step between a and

b, and ξ |= ϕ U[a,b] ψ if ϕ holds at every time step before ψ holds, and ψ holds at some

time step between a and b. Additionally, we define F[a,b]ϕ = ⊤ U[a,b] ϕ, so that ξ |= F[a,b]ϕ
if ϕ holds at some time step between a and b.

A STL formula ϕ is bounded-time if it contains no unbounded operators; the bound of ϕ
is the maximum over the sums of all nested upper bounds on the temporal operators, and
provides a conservative maximum trajectory length required to decide its satisfiability.
For example, for G[0,10]F[1,6] ϕ, a trajectory of length N ≥ 10 + 6 = 16 is sufficient to
determine whether the formula is satisfiable. This bound can be computed in time linear
in the length of the formula.

Robust Satisfaction of STL formulas

Quantitative or robust semantics define a real-valued function ρϕ of signal ξ and t such
that (ξ, t) |= ϕ ≡ ρϕ(ξ, t) > 0. In this work, we utilize a quantitative semantic for
space-robustness, which is defined as follows:

ρπµ
(ξ, t) = µ(ξt)

ρ¬πµ
(ξ, t) = −µ(ξt)

ρϕ∧ψ(ξ, t) = min(ρϕ(ξ, t), ρψ(ξ, t))
ρϕ∨ψ(ξ, t) = max(ρϕ(ξ, t), ρψ(ξ, t))

ρG[a,b]ϕ(ξ, t) = mint′∈[t+a,t+b] ρϕ(ξ, t′)
ρF[a,b]ϕ(ξ, t) = maxt′∈[t+a,t+b] ρϕ(ξ, t′)
ρϕ U[a,b] ψ(ξ, t) = maxt′∈[t+a,t+b](min(ρψ(ξ, t′), mint′′∈[t,t′] ρϕ(ξ, t′′))

To simplify notation, we denote ρπµ
by ρµ for the remainder of this work. The

robustness of satisfaction for an arbitrary STL formula is computed recursively from
the above semantics in a straightforward manner, by propagating the values of the
functions associated with each operand using min and max operators corresponding

CHAPTER 2. PRELIMINARIES 23

to the various STL operators. For example, for a signal x = x0, x1, x2 . . . , the robust
satisfaction of πµ1 where µ1(x) = x − 3 > 0 at time 0 is ρµ1(x, 0) = x0 − 3. The
robust satisfaction of µ1 ∧ µ2 is the minimum of ρµ1 and ρµ2 . Temporal operators are
treated as conjunctions and disjunctions along the time axis: since we deal with discrete
time, the robustness of satisfaction of ϕ = G[0,2]µ1 is ρϕ(x, 0) = mint∈[0,2] ρµ1(x, t) =

min{x0 − 3, x1 − 3, . . . , xK − 3} where 0 ≤ K ≤ 2 < K + 1.
Note that for continuous time, the min and max operations would be replaced by inf

and sup, respectively.
The robustness score ρϕ(x, t) should be interpreted as how much model x satisfies ϕ.

Its absolute value can be viewed as the distance of x from the set of trajectories satisfying
or violating ϕ, in the space of projections with respect to the functions µ that define the
predicates of ϕ. In addition, the robustness score over a trace or trajectory is analogous
to having a reward function over that trajectory (equation (2.5)); both are a measure of
quantitive satisfaction of the desired properties.

Remark 1. We have introduced and defined a Boolean and a quantitative semantics for STL
over discrete-time signals, which can be seen as roughly equivalent to Bounded Linear Temporal
Logic (BLTL). There are several advantages of using STL over BLTL. First, STL allows us to
explicitly use real time in our specifications instead of integer indices, which we find more elegant.
Second, our goal is to use the resulting controller for the control of the continuous system Σ so the
specifications should be independent from the sampling time ∆t. Finally, note that the relationship
between the continuous-time and discrete-time semantics of STL depending on discretization error
and sampling time is beyond the scope of this work. The interested reader can refer to [51] for
further discussion on this topic.

2.4 Simulations

In the following chapters, we mainly focus on examples in autonomous driving and
flying quadrotors. Here, we describe the simulation framework for our experiments.

Driving Simulator

We use a simple point-mass model of the car’s dynamics. We define the physical state
of the system x = [x y ψ v]⊤, where x, y are the coordinates of the vehicle, ψ is the
heading, and v is the speed. We let u = [u1 u2]

⊤ represent the control input, where u1 is
the steering input and u2 is the acceleration. We denote the friction coefficient by µ. We
can write the dynamics model:

[ẋ ẏ ψ̇ v̇] = [v · cos(ψ) v · sin(ψ) v · u1 u2 − µ · v] (2.14)

All the vehicle in our driving simulator follow the same dynamics model. The
simulator provides a top-down view of the environment, and is connected to a steering

CHAPTER 2. PRELIMINARIES 25

velocities p, q, r. Let x be:

x = [x y z ẋ ẏ ż φ θ ψ p q r]⊤. (2.15)

The system has a 4 dimensional control input u =
[

u1 u2 u3 u4

]⊤
, where u1, u2 and

u3 are the control inputs about each axis for roll, pitch and yaw respectively. u4 represents
the thrust input to the quadrotor in the vertical direction (z-axis). The nonlinear dynamics
of the system is:

f1(x, y, z) =
[

ẋ ẏ ż
]⊤

f2(ẋ, ẏ, ż) =
[

0 0 g
]⊤ − R1(ẋ, ẏ, ż)

[

0 0 0 u4

]⊤
/m

f3(φ, θ, ψ) = R2(ẋ, ẏ, ż)
[

φ̇ θ̇ ψ̇
]⊤

f4(p, q, r) = I−1
[

u1 u2 u3

]⊤ − R3(p, q, r)I
[

p q r
]⊤

,

where R1 and R2 are rotation matrices, R3 is a skew-symmetric matrix, and I is the inertial
matrix of the rigid body. Here, g and m denote gravity and mass of the quadrotor, and for
all our studies the mass and inertia matrix used are based on small sized quadrotors. Thus,

the dynamics equation is f (x, u) =
[

f1 f2 f3 f4

]⊤
. Figure 2.4 shows the simulation

environment. The implementation is available at: https://github.com/dsadigh.

26

Part I

Interaction-Aware Control

27

Chapter 3

Leveraging Effects on Human Actions

Traditionally, autonomous cars make predictions about other drivers’ future trajectories,
and plan to stay out of their way. This tends to result in defensive and opaque behaviors.
Our key insight is that an autonomous car’s actions will actually affect what other cars will
do in response, whether these other cars are aware of it or not. Our thesis is that we can
leverage these responses to plan more efficient and communicative behaviors. We model
the interaction between an autonomous car and a human driver as a dynamical system,
in which the robot’s actions have immediate consequences on the state of the car, but also
on human actions. We model these consequences by approximating the human as an
optimal planner, with a reward function that we acquire through Inverse Reinforcement
Learning. When the robot plans with this reward function in this dynamical system, it
comes up with actions that purposefully change human state: it merges in front of a
human to get them to slow down or to reach its own goal faster; it blocks two lanes to get
them to switch to a third lane; or it backs up slightly at an intersection to get them to
proceed first. Such behaviors arise from the optimization, without relying on hand-coded
signaling strategies and without ever explicitly modeling communication. Our user study
results suggest that the robot is indeed capable of eliciting desired changes in human
state by planning using this dynamical system.

3.1 Human-Robot Interaction as a Two-Player Game

Our goal is to design controllers that autonomously generate behavior for better inter-
action and coordination with the humans in the environment. We set up a formalism
that goes beyond modeling robots as agents acting in the physical world among moving
obstacles as we see in multi-agent systems. Interaction with people is quite different from
multi-agent planning; humans are not just moving obstacles that need to be avoided. In
reality, the robot’s actions has direct control over what the human is trying to do and how
she performs it. Further, the human does not know what the robot is trying to do or even
how the robot is going to do it.

CHAPTER 3. LEVERAGING EFFECTS ON HUMAN ACTIONS 28

We can think of the formalism introduced in Chapter 2.1 as a two-player game setting
to formulate the interaction between the robot and the human [46]. However, this
formulation can lead to various issues such as computational complexity in planning
and inaccurate human behavior models. We further propose approximations that help
resolve the computational complexities. Specifically, we simplify the planning problem to
planning in an underactuated system. The robot can directly control its own actions, but
also has a model of how it can influence human’s actions through its own actions.

Much of robotics research focuses on how to enable a robot to achieve physical
tasks, often times in the face of perception and movement error – of partially observable
worlds and nondeterministic dynamics [143, 82, 137]. Part of what makes human-robot
interaction difficult is that even if we assume the physical world to be fully observable
and deterministic, we are still left with a complex problem, which is modeling and
understanding the interaction between the human and the robot. Our proposed two-
player game model would include a human agent who is approximately rational, i.e., she
can take actions to maximize her own expected utility. In addition, the robot is a rational
agent optimizing its reward function. We also assume the agents do not necessarily know
each others’ reward functions, which leaves us with an incomplete information two-player
game [14].
Partially Observable Two-Player Game. We model this incomplete information two-
player game in a partially observable setting similar to Partially Observable Markov
Decision Processes (POMDP): as discussed in Chapter 2, there are two “players”, the
robot R and the human H; at every step t, they can apply control inputs ut

R ∈ UR and
ut
H ∈ UH; they each have a reward function, rR and rH; and there is a state space S with

states s consisting of both the physical state x, as well as reward parameters θR and θH.
Here, we include the reward parameters in the state: R does not observe θH, and H

does not observe θR, but both agents can technically evaluate each reward at any state,
action pair (st, ut

R, ut
H) just because s contains the needed reward parameter information:

s = (x, θR, θH) – if an agent knew the state, it could evaluate the other agent’s reward [160,
46].

Further, we assume full observability over the physical state x. Our system follows a
deterministic dynamics which is reasonable for relatively short interactions.

Robots do not know exactly what humans want, humans do not know exactly what
robots have been programmed to optimize for, and their rewards might have common
terms but will not be identical. This happens when an autonomous car interacts with other
drivers or with pedestrians, and it even happens in seemingly collaborative scenarios like
rehabilitation, in which very long horizon rewards might be aligned but not short-term
interaction ones.
Limitations of the Game Formulation. The incomplete-information two-player game
formulation is a natural way to characterize interaction from the perspective of MDP-like
models, but is limited in two fundamental ways: 1) its computational complexity is
prohibitive even in discrete state and action spaces [27, 75] and no methods are known to
handle continuous spaces, and 2) it is not a good model for how people actually work

CHAPTER 3. LEVERAGING EFFECTS ON HUMAN ACTIONS 29

– people do not solve games in everyday tasks when they are not playing chess [76].
Furthermore, solutions here are tuples of policies that are in a Nash equilibrium, and it is
not clear what equilibrium to select.

3.2 Approximate Solution as an Underactuated System

To alleviate the limitations from above, we introduce an approximate close to real-time
solution, with a model of human behavior that does not assume that people compute
equilibria of the game.

Assumptions to Simplify the Game

Our approximation makes several simplifying assumptions that turn the game into an
offline learning phase in which the robot learns the human’s reward function, followed by
an online planning phase in which the robot is solving an underactuated control problem:

Separation of Estimation & Control
We separate the process of computing actions for the robot into two stages. First, the robot
estimates the human reward function parameters θH offline. Second, the robot exploits
this estimate as a fixed approximation to the human’s true reward parameters during
planning. In the offline phase, we estimate θH from user data via Inverse Reinforcement
Learning [129, 3, 188, 107]. This method relies heavily on the approximation of all humans
to a constant set of reward parameters, but we will relax this separation of estimation
and control in Chapter 4.

Model Predictive Control (MPC)
Solving the incomplete information two-player game requires planning to the end of
the full-time horizon. We reduce the computation required by planning for a shorter
horizon of N time steps. We execute the control only for the first time step, and then
re-plan for the next N at the next time step [35]. We have described the details of MPC in
Chapter 2.1.

Despite our reduction to a finite time horizon, the game formulation still demands
computing equilibria to the problem. Our core assumption, which we discuss next, is
that this is not required for most interactions: that a simpler model of what the human
does suffices.

Simplification of the Human Model
To avoid computing these equilibria, we propose to model the human as responding
rationally to some fixed extrapolation of the robot’s actions. At every time step, t, H
computes a simple estimate of R’s plan for the remaining horizon, ũt+1:N

R , based on the
robot’s previous actions u0:t

R . Then the human computes its plan uH as a best response [62]
to this estimate. With this simplification, we reduce the general game to a Stackelberg
competition: the human computes its best outcome while holding the robots plan fixed.

CHAPTER 3. LEVERAGING EFFECTS ON HUMAN ACTIONS 30

Let RH be the human reward over the time horizon:

RH(x0, uR, uH) =
N

∑
t=1

rH(xt, ut
R, ut

H), (3.1)

then we can compute the control inputs of the human from the remainder of the horizon
by:

ut
H(x0, u0:t

R , ũt+1:N
R) = arg max

ut+1:T
H

RH(xt, ũt+1:N
R , ut+1:N

H). (3.2)

This human model would certainly not work well in adversarial scenarios, but our
hypothesis, supported by our results, is that it is useful enough in day-to-day tasks to
enable robots to be more effective and more fluent interaction partners.

In our work, we propose to make the human’s estimate ũR equal to the actual robot
control sequence uR. Our assumption that the time horizon is short enough that the
human can effectively extrapolate the robot’s course of action motivates this decision.
With this presumption, the human’s plan becomes a function of the initial state and
robot’s true plan:

u∗H(x0, uR) = arg max
uH

RH(xt, uR, uH). (3.3)

This is now an underactuated system: the robot has direct control over (can actuate) uR
and indirect control over (cannot actuate but does affect) uH. However, the dynamics
model in our setup is more sophisticated than in typical underactuated systems because
it models the response of the humans to the robot’s actions. Evaluating the dynamics
model requires solving for the optimal human response, u∗H.

The system is also a special case of an MDP, with the state as in the two-player game,
the actions being the actions of the robot, and the world dynamics being dictated by the
human’s response and the resulting change on the world from both human and robot
actions.

The robot can now plan in this system to determine which uR would lead to the best
outcome for the itself:

u∗R = arg max
uR

RR
(

x0, uR, u∗H(x0, uR)
)

. (3.4)

Planning with Quasi-Newton Optimization

Despite the reduction to a single agent complete information underactuated system,
the dynamics remain too complex to solve in real-time. We lack an analytical form for
u∗H(x0, uR) which forces us to solve equation (3.3) each time we evaluate the dynamics.

Assuming a known human reward function rH (which we can obtain through Inverse
Reinforcement Learning (IRL), see Chapter 2.2), we can solve equation (3.4) locally, using
gradient-based methods. Our main contribution is agnostic to the particular optimization

CHAPTER 3. LEVERAGING EFFECTS ON HUMAN ACTIONS 31

method, but we use L-BFGS [11], a quasi-Newton method that stores an approximate
inverse Hessian implicitly resulting in fast convergence.

To perform the local optimization, we need the gradient of equation (3.1) with respect
to uR. This gradient using chain rule would be the following:

∂RR
∂uR

=
∂RR
∂uH

∂u∗H
∂uR

+
∂RR
∂uR

(3.5)

We can compute both ∂RR
∂uH

and ∂RR
∂uR

symbolically through back-propagation because we

have a representation of RR in terms of uH and uR.

What remains,
∂u∗H
∂uR

, is difficult to compute because u∗H is technically the outcome of

a global optimization. To compute
∂u∗H
∂uR

, we use the method of implicit differentiation.

Since RH is a smooth function whose minimum can be attained, we conclude that for
the unconstrained optimization in equation (3.3), the gradient of RH with respect to uH
evaluates to 0 at its optimum u∗H:

∂RH
∂uH

(

x0, uR, u∗H(x0, uR)
)

= 0 (3.6)

Now, we differentiate the expression in equation (3.6) with respect to uR:

∂2RH
∂u2
H

∂u∗H
∂uR

+
∂2RH

∂uH∂uR

∂uR
∂uR

= 0 (3.7)

Finally, we solve for a symbolic expression of
∂u∗H
∂uR

:

∂u∗H
∂uR

=

[

∂2RH
∂u2
H

]−1
[

− ∂2RH
∂uH∂uR

]

(3.8)

and insert it into equation (3.5), providing an expression for the gradient ∂RR
∂uR

.

Offline Estimation of Human Reward Parameters

Thus far, we have assumed access to rH(xt, ut
R, ut

H). In our implementation, we learn this
reward function from human data. We collect demonstrations of a driver in a simulation
environment, and use Inverse Reinforcement Learning [129, 3, 188, 107, 165, 98] to recover
a reward function that explains the demonstrations.

To handle continuous state and actions space, and cope with noisy demonstrations
that are perhaps only locally optimal, we use continuous inverse optimal control with
locally optimal examples (Chapter 2.2).

Despite the simplicity of our features and robot actions during the demonstrations, the
learned human model proved sufficient for the planner to produce human-interpretable
behavior (case studies in Section 3.3), and actions which affected human action in the
desired way (user study in Section 3.4).

CHAPTER 3. LEVERAGING EFFECTS ON HUMAN ACTIONS 33

In this section, we introduce 3 driving scenarios, and show the result of our planner
assuming a simulated human driver, highlighting the behavior that emerges from different
robot reward functions. In the next section, we test the planner with real users and
measure the effects of the robot’s plan. Figure 3.1 illustrates our three scenarios, and
contains images from the actual user study data.

Conditions for Analysis Across Scenarios

In all three scenarios, we start from an initial position of the vehicles on the road, as
shown in Figure 3.1. In the control condition, we give the car a reward function similar
to the learned RH, i.e., a linear combination of the features discussed in Chapter 2.2.
Therefore, this reward function is to avoid collisions and have high velocity. We refer to
this as Rcontrol. In the experimental condition, we augment this reward function with a
term corresponding to a desired human action (e.g. low speed, lateral position, etc.). We
refer to this as Rcontrol + Raffect. Section 3.3 contrast the two plans for each of our three
scenarios, and then show what happens when instead of explicitly giving the robot a
reward function designed to trigger certain effects on the human, we simply task the
robot with reaching a destination as quickly as possible.

Scenario 1: Make Human Slow Down

In this highway driving setting, we demonstrate that an autonomous vehicle can plan to
cause a human driver to slow down. The vehicles start at the initial conditions depicted
on left in Figure 3.1 (a), in separate lanes. In the experimental condition, we augment the
robot’s reward with the negative of the square of the human velocity, which encourages
the robot to slow the human down.

Figure 3.1 (a) contrasts our two conditions. In the control condition, the human moves
forward uninterrupted. In the experimental condition, however, the robot plans to move in
front of the person, anticipating that this will cause the human to brake.

Scenario 2: Make Human Go Left/Right

In this scenario, we demonstrate that an autonomous vehicle can plan to affect the
human’s lateral location, making the human switch lanes. The vehicles start at the initial
conditions depicted on left in Figure 3.1 (b), in the same lane, with the robot ahead of the
human. In the experimental condition, we augment the robot’s reward with the lateral
position of the human, in two ways, to encourage the robot to make the human go either
left (orange border image) or right (blue border image). The two reward additions are
shown in Figure 3.2(a) and (b).

Figure 3.1 (b) contrasts our two conditions. In the control condition, the human moves
forward, and might decide to change lanes. In the experimental condition, however, the robot

CHAPTER 3. LEVERAGING EFFECTS ON HUMAN ACTIONS 38

timing among users and measures the desired objective directly).
Hypothesis. We hypothesize that our method enables the robot to achieve the effects it
desires not only in simulation, but also when interacting with real users:

The reward function that the robot is optimizing has a significant effect on the mea-
sured reward during interaction. Specifically, Raffect is higher, as planned, when the
robot is optimizing for it.

Subject Allocation. We recruited 10 participants (2 female, 8 male). All the participants
owned drivers license with at least 2 years of driving experience. We ran our experiments
using a 2D driving simulator, we have developed with the driver input provided through
driving simulator steering wheel and pedals (see Chapter 2.4).

Analysis

Scenario 1: A repeated measures ANOVA showed the square speed to be significantly
lower in the experimental condition than in the control condition (F(1, 160) = 228.54,
p < 0.0001). This supports our hypothesis: the human moved slower when the robot
planned to have this effect on the human.

We plot the speed and latitude profile of the human driven vehicle over time for all
trajectories in Figure 3.6. Figure 3.6(a) shows the speed profile of the control condition
trajectories in gray, and of the experimental condition trajectories in orange. Figure 3.6(b)
shows the mean and standard error for each condition. In the control condition, human
squared speed keeps increasing. In the experimental condition however, by merging
in front of the human, the robot is triggering the human to brake and reduce speed,
as planned. The purple trajectory represents a simulated user that perfectly matches
the robot’s model, showing the ideal case for the robot. The real interaction moves
significantly in the desired direction, but does not perfectly match the ideal model, since
real users do not act exactly as the model would predict.

The figure also plots the y position of the vehicles along time, showing that the human
has not travelled as far forward in the experimental condition.
Scenario 2: A repeated measures ANOVA showed a significant effect for the reward
factor (F(2, 227) = 55.58, p < 0.0001). A post-hoc analysis with Tukey HSD showed that
both experimental conditions were significantly different from the control condition, with
the user car going more to the left than in the control condition when Raffect rewards
left user positions (p < 0.0001), and more to the right in the other case (p < 0.001). This
supports our hypothesis.

We plot all the trajectories collected from the users in Figure 3.7. Figure 3.7(a) shows
the control condition trajectories in gray, while the experimental conditions trajectories
are shown in orange (for left) and blue (for right). By occupying two lanes, the robot
triggers an avoid behavior from the users in the third lane. Here again, purple curves
show a simulated user, i.e. the ideal case for the robot.

CHAPTER 3. LEVERAGING EFFECTS ON HUMAN ACTIONS 39

Figure 3.6: Speed profile and latitude of the human driven vehicle for Scenario 1. The first
column shows the speed of all trajectories with its mean and standard errors in the bottom
graph. The second column shows the latitude of the vehicle over time; similarly, with
the mean and standard errors. The gray trajectories correspond to the control condition,
and the orange trajectories correspond to the experimental condition: the robot decides
to merge in front of the users and succeeds at slowing them down. The purple plot
corresponds to a simulated user that perfectly matches the model that the robot is using.

CHAPTER 3. LEVERAGING EFFECTS ON HUMAN ACTIONS 40

Figure 3.7: Trajectories of the human driven vehicle for Scenario 2. The first column (a)
shows all the trajectories, and the second column (b) shows the mean and standard error.
Orange (blue) indicates conditions where the reward encouraged the robot to affect the
user to go left (right).

Scenario 3: An ordinal logistic regression with user as a random factor showed that
significantly more users went first in the intersection in the experimental condition than
in the baseline (χ2(1, 129) = 106.41, p < .0001). This supports our hypothesis.

Figure 3.8 plots the y position of the human driven vehicle with respect to the x
position of the autonomous vehicle. For trajectories that have a higher y position for
the human vehicle than the x position for the robot, the human car has crossed the
intersection before the autonomous vehicle. The lines corresponding to these trajectories
travel above the origin, which is shown with a blue square in this figure. The mean of
the orange lines travel above the origin, which means that the autonomous vehicle has
successfully affected the humans to cross first. The gray lines travel below the origin, i.e.
the human crossed second.
Overall, our results suggest that the robot was able to affect the human state in the

CHAPTER 3. LEVERAGING EFFECTS ON HUMAN ACTIONS 41

Figure 3.8: Plot of yH with respect to xR. The orange curves correspond to when the
autonomous vehicle affects the human to cross the intersection first. The gray curves
correspond to the nominal setting.

desired way, even though it does not have a perfect model of the human.

3.5 Chapter Summary

In this chapter, we formalized the interaction between an autonomous (robot) vehicle and
a human driver as a dynamical system, in which the actions of the robot affect those of
the human and vice-versa. We introduced an approximate solution that enables the robot
to optimize its own reward within this system. The resulting plans can purposefully
modify human behavior, and can achieve the robot’s goal more efficiently. Our user study
suggests that this is not only true in simulation, but also true when tested with real users.

Like any research, our work is limited in many ways. All this work happened in a
simple driving simulator. To put this on the road, we will need more emphasis on safety,
as well as a longer planning horizon. The former involves the use of formal methods
and safe control as well as better models of users: not all drivers act the same. Using a
probabilistic dynamics model as opposed to planning with the most probable human
actions, as well as estimating driving style, will be important next steps that we discuss

CHAPTER 3. LEVERAGING EFFECTS ON HUMAN ACTIONS 42

in the future chapters.
An even bigger limitation is that we currently focus on a single human driver. Looking

to the interaction among multiple vehicles is not just a computational challenge, but also
a modeling one – it is not immediately clear how to formulate the problem when multiple
human-driven vehicles are interacting and reacting to each other. We address some of
these limitations such as use of formal methods for safe control and estimating driving
style in the future chapters.

Despite these limitations, we are encouraged to see autonomous cars generate human-
interpretable behaviors though optimization, without relying on hand-coded heuristics.
We also look forward to applications of these ideas beyond autonomous driving, to mobile
robots, UAVs, and in general to human-robot interactive scenarios where robot actions
can influence human actions.

43

Chapter 4

Active Information Gathering over
Human Internal State

Imagine driving on the highway. Another driver is in the lane next to you, and you need
to switch lanes. Some drivers are aggressive and they will never brake to let you in.
Others are more defensive and would gladly make space for you. You don’t know what
kind of driver this is, so you decide to gently nudge in towards the other lane to test their
reaction. At an intersection, you might nudge in to test if the other driver is distracted
and they might just let you go through (Figure 6.1 bottom left). Our goal in this chapter
is to extend the optimization based approach of Chapter 3 to give robots the capability to
differentiate between human agents and plan accordingly.

In general, human behavior is affected by internal states that a robot would not
have direct access to: intentions, goals, preferences, objectives, driving style, etc. Work
in robotics and perception has focused thus far on estimating these internal states by
providing algorithms with observations of humans acting, be it intent prediction [189,
111, 47, 16, 17, 131], driver style prediction [102], affective state prediction [99], or activity
recognition [172].

Human state estimation has also been studied in the context of human-robot inter-
action tasks. Here, the robot’s reward function depends (directly or indirectly) on the
human internal state, e.g., on whether the robot is able to adapt to the human’s plan or
preferences. Work in assistive teleoperation or in human assistance has cast this problem
as a Partially Observable Markov Decision Process, in which the robot does observe the
physical state of the world but not the human internal state — that it has to estimate from
human actions. Because POMDP solvers are not computationally efficient, the solutions
proposed thus far use the current estimate of the internal state to plan (either using the
most likely estimate, or the entire current belief), and adjust this estimate at every step
[81, 58, 18]. Although efficient, these approximations sacrifice an important aspect of
POMDPs: the ability to actively gather information.

Our key insight is that robots can leverage their own actions to estimate the human

CHAPTER 4. ACTIVE INFORMATION GATHERING 45

Application to Driver Style Estimation. We apply our algorithm to estimating a human
driver’s style during the interaction of an autonomous vehicle with a human-driven
vehicle. Results in simulation as well as from a user study suggest that our algorithm’s
ability to leverage robot actions for estimation leads to significantly higher accuracy in
identifying the correct human internal state. The autonomous car plans actions like
inching forward at an intersection (Figure 6.1), nudging into another car’s lane, or
braking slightly in front of a human-driven car, all to estimate whether the human driver
is attentive.

4.1 Extension to Online Estimation of the Human Model

In Chapter 3, we described the incomplete information two-player game model of the
interaction between the human and robot, and in our approximate solution, we treated
the human’s reward function as estimated once, offline. This has worked well in our user
study on seeking specific coordination effects on the human, like slowing down or going
first through the intersection. But in general, this is bound to run into problems, because
not all people behave according to the same estimated θH.

Different drivers have different driving styles. Some are very defensive, more so than
our learned model. Others are much more aggressive, and for instance would not actually
brake when the car merges in front of them. Even for the same driver, their style might
change over time, for instance when they get distracted on their phone.

In this chapter, we relax our assumption of an offline estimation of the human’s reward
parameters θH. Instead, we explore estimating this online. We introduce an algorithm
which maintains a belief over a space of candidate reward functions, and enable the robot
to perform inference over this space throughout the interaction. We maintain tractability
by clustering possible θHs into a few options that the robot maintains a belief over.

A POMDP with Human Reward as the Hidden Variable

The human’s actions are influenced by their internal reward parameters θH that the robot
does not directly observe. So far, we estimated θH offline and solved an underactuated
system, a special case of an MDP. Now, we want to be able to adapt our estimate of θH
online, during interaction. This turns the problem into a partially observable Markov
decision process (POMDP) with θH as the hidden state. By putting θH in the state, we
now have a known dynamics model like in the underactuated system before for the robot
and the human state, and we assume θH to remain fixed regardless of the robot’s actions.

If we could solve the POMDP, the robot would estimate θH from the human’s actions,
optimally trading off between exploiting it’s current belief over θH and actively taking
information gathering actions intended to cause human reactions, which result in a better
estimate of θH.

CHAPTER 4. ACTIVE INFORMATION GATHERING 46

Because POMDPs cannot be solved tractably, several approximations have been
proposed for similar problem formulations [81, 102, 58]. These approximations are
passively estimating the human internal state, and exploiting the belief to plan robot
actions.1

In this work, we take the opposite approach: we focus explicitly on active information
gathering Our formulation enables the robot to choose to actively probe the human,
and thereby improve its estimate of θH. We leverage this method in conjunction with
exploitation methods, but the algorithm we present may also be used alone if human
internal state (reward parameters) estimation is the robot’s primary objective.

Simplification to Information Gathering

We denote a belief in the value of the hidden variable, θ, as a distribution b(θ), and update
this distribution according to the likelihood of observing a particular human action, given
the state of the world and the human internal state:

bt+1(θ) ∝ bt(θ) · P(ut
H | xt, uR, θ). (4.1)

In order to update the belief b, we require an observation model. Similar to before,
we assume that actions with lower reward are exponentially less likely, building on the
principle of maximum entropy [188]:

P(uH | x, uR, θ) ∝ exp
(

Rθ
H(x0, uR, uH)

)

. (4.2)

To make explicit our emphasis on taking actions which effectively estimate θ, we rede-
fine the robot’s reward function to include an information gain term, i.e., the difference
between entropies of the current and updated beliefs: H(bt)− H(bt+1). The entropy over
the belief H(b) evaluates to:

H(b) = −∑θ b(θ) log(b(θ))

∑θ b(θ)
. (4.3)

We now optimize our expected reward with respect to the hidden state θ, and this
optimization explicitly entails reasoning about the effects that the robot actions will have
on the observations, i.e., the actions that the human will take in response, and how useful
these observations will be in shattering ambiguity about θ.

Explore-Exploit Trade-Off

In practice, we use information gathering in conjunction with exploitation. We do not
solely optimize the information gain term H(bt)− H(bt+1), but optimize it in conjunction
with the robot’s actual reward function assuming the current estimate of θ:

1One exception is Nikolaidis et al. [132], who propose to solve the full POMDP, albeit for discrete and
not continuous state and action spaces.

CHAPTER 4. ACTIVE INFORMATION GATHERING 47

r
augmented
R (xt, uR, uH) = λ(H(bt)− H(bt+1))

+ rR(xt, uR, uH, bt) (4.4)

At the very least, we do this as a measure of safety, e.g., we want an autonomous car
to keep avoiding collisions even when it is actively probing a human driver to test their
reactions. We choose λ experimentally, though existing techniques that can better adapt
λ over time [173].

Solution via Model Predictive Control

To find the control inputs for the robot we locally solve:

u∗R = arg max
uR

Eθ

[

RR
(

x0, uR, u∗,θH (x0, uR)
)]

(4.5)

over a finite horizon N, where u∗,θH (x0, uR) corresponds to the actions the human would

take from state x0 if the robot executed actions uR. This objective generalizes equation (3.4)
with an expectation over the current belief over θ, b0.

We still assume that the human maximizes their own reward function, rθ
H(xt, ut

R, ut
H);

we add the superscript θ to indicate the dependence on the hidden state. We can write
the sum of human rewards over horizon N as:

Rθ
H(x0, uR, uH) =

N−1

∑
t=0

rθ
H(xt, ut

R, ut
H) (4.6)

Computing this over the continuous space of possible reward parameters θ is in-
tractable even with discretization. Instead, we learn clusters of θs offline via IRL, and
online use estimation to figure out which cluster best matches the human.

Despite optimizing the trade-off in equation (4.4), we do not claim that our method
as-is can better solve the general POMDP formulation: only that it can be used to get
better estimates of human internal state. Different tradeoffs λ will result in different
performance. Our results below emphasize the utility of gathering information, but also
touch on the implications for active information gathering on RR.

4.2 Case Studies with Online Estimation

In this section, we show simulation results that use the method from this chapter to
estimate human driver type in the interaction between an autonomous vehicle and a
human-driven vehicle. We consider three different autonomous driving scenarios. In these
scenarios, the human is either distracted or attentive during different driving experiments.

CHAPTER 4. ACTIVE INFORMATION GATHERING 48

The scenarios are shown in Figure 6.3, where the yellow car is the autonomous vehicle,
and the white car is the human driven vehicle. Our goal is to plan to actively estimate the
human’s driving style in each one of these scenarios, by using the robot’s actions.

Attentive vs. Distracted Human Driver Models

Our technique requires reward functions rθ
H that model the human behavior for a partic-

ular internal state θ. We obtain a generic driver model via continuous inverse optimal
control with locally optimal examples [107] from demonstrated trajectories in a driving
simulator in an environment with multiple autonomous cars, which followed precom-
puted routes, similar to the previous chapter and as described in Chapter 2.2.

We then adjust the learned weights to model attentive vs. distractive drivers. Specifi-
cally, we modify the weights of the collision avoidance features, so the distracted human
model has less weight for these features. Therefore, the distracted driver is more likely to
collide with the other cars while the attentive driver has high weights for the collision
avoidance feature. In future work, we plan to investigate ways of automatically clustering
learned θHs from data from different users, but we show promising results even with
these simple options.

Manipulated Factors

We manipulate the reward function that the robot is optimizing. In the passive condition,
the robot optimizes a simple reward function for collision avoidance based on the current
belief estimate. It then updates this belief passively, by observing the outcomes of its
actions at every time step. In the active condition, the robot trades off between this
reward function and information gain in order to explore the human’s driving style.

We also manipulate the human internal reward parameters to be attentive or distracted.
The human is simulated to follow the ideal model of reward maximization for our two
rewards.

Scenarios and Qualitative Results

Scenario 1: Nudging In to Explore on a Highway. In this scenario, we show an au-
tonomous vehicle actively exploring the human’s driving style in a highway driving
setting. We contrast the two conditions in Figure 6.3(a). In the passive condition, the
autonomous car drives on its own lane without interfering with the human throughout
the experiment, and updates its belief based on passive observations gathered from the
human car. However, in the active condition, the autonomous car actively probes the human
by nudging into her lane in order to infer her driving style. An attentive human significantly
slows down (timid driver) or speeds up (aggressive driver) to avoid the vehicle, while a distracted
driver might not realize the autonomous actions and maintain their velocity, getting closer to the

CHAPTER 4. ACTIVE INFORMATION GATHERING 50

!"#$%&'()*)#

+,--$%&'()*)#

!##&.#$%&'/01,. 2$-#3,"#&4'/01,.

(&,5'6-&3'7-)5$4'5$.&8

94&,5'6-&3':)4&5'74)##&4'5$.&8

(&,5'6-&3'7-)5$4'5$.&8

94&,5'6-&3':)4&5'74)##&4'5$.&8

(&,5'6-&3'7-)5$4'5$.&8

94&,5'6-&3':)4&5'74)##&4'5$.&8

(&,5'6-&3'7-)5$4'5$.&8

94&,5'6-&3':)4&5'74)##&4'5$.&8

Figure 4.3: Legends indicating active/passive robots, attentive/distracted humans, and
real user/ideal model used for all following figures.

Quantitative Results

Throughout the remainder of this chapter, we use a common color scheme to plot results
for our experimental conditions. We show this common scheme in Figure 4.3: darker
colors (black and red) correspond to attentive humans, and lighter colors (gray and
orange) correspond to distracted humans. Further, the shades of orange correspond
to active information gathering, while the shades of gray indicate passive information
gathering. We also use solid lines for real users, and dotted lines for scenarios with an
ideal user model learned through inverse reinforcement learning.

Figure 4.4 plots, using dotted lines, the beliefs over time for the attentive (left) and
distracted (right) conditions, comparing in each the passive (dotted black and gray
respectively) with the active method (dotted dark orange and light orange respectively).
In every situation, the active method achieves a more accurate belief (higher values for
attentive on the left, when the true θ is attentive, and lower values on the right, when the
true θ is distracted). In fact, passive estimation sometimes incorrectly classifies drivers as
attentive when they are distracted and vice-versa.

The same figure also shows (in solid lines) results from our user study of what
happens when the robot no longer interacts with an ideal model. We discuss these in the
next section.

Figure 4.5 and Figure 5.6 plot the corresponding robot and human trajectories for each
scenario. The important takeaway from these figures is that there tends to be a larger
gap between attentive and distracted human trajectories in the active condition (orange
shades) than in the passive condition (gray shades), especially in scenarios 2 and 3. It
is this difference that helps the robot better estimate θ: the robot in the active condition is
purposefully choosing actions that will lead to large differences in human reactions, in order to
more easily determine the human driving style.

CHAPTER 4. ACTIVE INFORMATION GATHERING 51

Figure 4.4: The probability that the robot assigns to attentive as a function of time, for
the attentive (left) and distracted (right). Each plot compares the active algorithm to
passive estimation, showing that active information gathering leads to more accurate
state estimation, in simulation and with real users.

CHAPTER 4. ACTIVE INFORMATION GATHERING 56

Beyond Driving Style: Active Intent Inference

Driving style is not the only type of human internal state that our method enables robots
to estimate. If the human has a goal, e.g. of merging into the next lane or not, or of exiting
the highway or not, the robot could estimate this as well using the same technique.

Each possible goal corresponds to a feature. When estimating which goal the human
has, the robot is deciding among θs which place weight on only one of the possible
goal features, and 0 on the others. Figure 4.10 shows the behavior that emerges from
estimating whether the human wants to merge into the robot’s lane. In the passive case,
the human is side by side with the robot. Depending on the driving style, they might
slow down slightly, accelerate slightly, or start nudging into the robot’s lane, but since
the observation model is noisy the robot does not get quite enough confidence in the
human’s intent early on. Depending on the robot’s reward, it might take a long time
before the person can merge. In the active case, the robot decides to probe the person by
slowing down and shifting away from the person in order to make room. It then becomes
optimal for the person wanting to merge to start shifting towards the robot’s lane, giving
the robot enough information now to update its belief. In our experiment, we see that
this is enough for the person to be able to complete the merge faster, despite the robot
not having any incentive to help the person in its reward.

4.3 User Study with Online Estimation

In the previous section, we explored planning for an autonomous vehicle that actively
probes a human’s driving style, by braking or nudging in and expecting to cause reactions
from the human driver that would be different depending on their style. We showed
that active exploration does significantly better at distinguishing between attentive and
distracted drivers using simulated (ideal) models of drivers. Here, we show the results
of a user study that evaluates this active exploration for attentive and distracted human
drivers.

Experimental Design

We use the same three scenarios discussed in the previous section.
Manipulated Factors. We manipulated the same two factors as in our simulation experi-
ments: the reward function that the robot is optimizing (whether it is optimizing its reward
through passive state estimation, or whether it is trading off with active information
gathering), and the human internal state (whether the user is attentive or distracted). We
asked our users to pay attention to the road and avoid collisions for the attentive case,
and asked our users to play a game on a mobile phone during the distracted driving
experiments.
Dependent Measure. We measured the probability that the robot assigned along the way
to the human internal state.

CHAPTER 4. ACTIVE INFORMATION GATHERING 58

Hypothesis. The active condition will lead to more accurate human internal state estimation,
regardless of the true human internal state.
Subject Allocation. We recruited 8 participants (2 female, 6 male) in the age range of
21-26 years old. All participants owned a valid driver license and had at least 2 years
of driving experience. We ran the experiments using a 2D driving simulator with the
steering input and acceleration input provided through a steering wheel and a pedals as
shown in Figure 6.1 and described in Chapter 2.4. We used a within-subject experiment
design with counterbalanced ordering of the four conditions.

Analysis

We ran a factorial repeated-measures ANOVA on the probability assigned to “attentive”,
using reward (active vs passive) and human internal state (attentive vs distracted) as
factors, and time and scenario as covariates. As a manipulation check, attentive drivers
had significantly higher estimated probability of “attentive” associated than distracted
drivers (.66 vs .34, F = 3080.3, p < .0001). More importantly, there was a signifiant
interaction effect between the factors (F = 1444.8, p < .000). We ran a post-hoc analysis
with Tukey HSD corrections for multiple comparisons, which showed all four conditions
to be significantly different from each other, all contrasts with p < .0001. In particular,
the active information gathering did end up with higher probability mass on “attentive”
than the passive estimation for the attentive users, and lower probability mass for
the distracted user. This supports our hypothesis that our method works, and active
information gathering is better at identifying the correct state.

Figure 4.4 compares passive (grays and blacks) and active (light and dark oranges)
across scenarios and for attentive (left) and distracted (right) users. It plots the probability
of attentive over time, and the shaded regions correspond to standard error. From the
first column, we can see that our algorithm in all cases detects human’s attentiveness with
much higher probably than the passive information gathering technique shown in black.
From the second column, we see that our algorithm places significantly lower probability
on attentiveness, which is correct because those users were distracted users. These are
in line with the statistical analysis, with active information gathering doing a better job
estimating the true human internal state.

Figure 4.5 plots the robot trajectories for the active information gathering setting.
Similar to Figure 4.4, the solid lines are the mean of robot trajectories and the shaded
regions show the standard error. We plot a representative dimension of the robot trajectory
(like position or speed) for attentive (dark orange) or distracted (light orange) cases. The
active robot probed the user, but ended up taking different actions when the user was
attentive vs. distracted in order to maintain safety. For example, in Scenario 1, the
trajectories show the robot is nudging into the human’s lane, but the robot decides to
move back to its own lane when the human drivers are distracted (light orange) in order
to stay safe. In Scenario 2, the robot brakes in front of the human, but it brakes less when

CHAPTER 4. ACTIVE INFORMATION GATHERING 59

the human is distracted. Finally, in Scenario 3, the robot inches forward, but again it
stops when if the human is distracted, and even backs up to make space for her.

Figure 5.6 plots the user trajectories for both active information gathering (first row)
and passive information gathering (second row) conditions. We compare the reactions of
distracted (light shades) and attentive (dark shades) users. There are large differences
directly observable, with user reactions tending to indeed cluster according to their
internal state. These differences are much smaller in the passive case (second row, where
distracted is light gray and attentive is black). For example, in Scenario 1 and 2, the
attentive users (dark orange) keep a larger distance to the car that nudges in front of
them or brakes in front of them, while the distracted drivers (light orange) tend to keep a
smaller distance. In Scenario 3, the attentive drivers tend to slow down and do not cross
the intersection, when the robot actively inches forward. None of these behaviors can be
detected clearly in the passive information gathering case (second row). This is the core
advantage of active information gathering: the actions are purposefully selected by the
robot such that users would behave drastically differently depending on their internal
state, clarifying to the robot what this state actually is.
Overall, these results support our simulation findings, that our algorithm performs
better at estimating the true human internal state by leveraging purposeful information
gathering actions.

4.4 Chapter Summary

In this chapter, we took a step towards autonomously producing behavior for interaction
and coordination between autonomous cars and human-driven vehicles. We introduced
an online estimation algorithm in which the robot actively uses its actions to gather
information about the human model so that it can better plan its own actions. Our
analysis again shows coordination strategies arising out of planning in our formulation:
the robot nudges into someones’s lane to check if the human is paying attention, and
only completes the merge if they are; the robot inches forward at an intersection, again to
check if the human is paying attention, and proceeds if they are, but backs up to let them
through if they are not; the robot slows down slightly and shifts in its lane away from the
human driver to check if they want to merge into its lane or not.

Importantly, these behaviors change with the human driver style and with the initial
conditions – the robot takes different actions in different situations, emphasizing the need
to start generating such coordination behavior autonomously rather than relying on hand
coded strategies. Even more importantly, the behaviors seem to work when the robot is
planning and interacting with real users.
Limitations. While performing our experiments, we found the robot’s nominal reward
function (trading off between safety and reaching a goal) to be insufficient – in some
cases it led to getting dangerously close to the human vehicle and even collisions, going
off the road, oscillating in the lane due to minor asymmetries in the environment, etc.

CHAPTER 4. ACTIVE INFORMATION GATHERING 61

Conclusion. We are encouraged by the fact that robots can generate useful behavior for
interaction autonomously, and plan to explore information-gathering actions on human
state further, including beyond autonomous driving scenarios.

62

Chapter 5

Active Preference-Based Learning of
Reward Functions

Reward functions play a central role in specifying how dynamical systems should act: how
an end-user wants their assistive robot arm to move, or how they want their autonomous
car to drive. For many systems, end-users have difficulty providing demonstrations of
what they want. For instance, they cannot coordinate 7 degrees of freedom (DOFs) at a
time [6], and they can only show the car how they drive, not how they want the car to
drive [20]. In such cases, another option is for the system to regress a reward function
from labeled state-action pairs, but assigning precise numeric reward values to observed
robot actions is also difficult.

In this chapter, we propose a preference-based approach to learning desired reward
functions in a dynamical system. Instead of asking for demonstrations, or for the value of
the reward function for a sample trajectory (e.g., “rate the safety of this driving maneuver
from 1 to 10”), we ask people for their relative preference between two sample trajectories
(e.g., “is ξ1 more safe or less safe than ξ2?”).

Active preference-based learning has been successfully used in many domains [4, 90,
33, 32], but what makes applying it to learning reward functions difficult is the complexity
of the queries, as well as the continuous nature of the underlying hypothesis space of
possible reward functions. We focus on dynamical systems with continuous or hybrid
discrete-continuous state. In this setting, queries consist of two candidate continuous
state and action space trajectories that satisfy the system’s dynamics, in an environment
or scenario that the learning algorithm also needs to decide on, consisting of an initial
state and the trajectories of other agents in the scene. Consider again the example of
autonomous driving. In this situation, a query would consist of two trajectories for the
car from some starting state among other cars following their own trajectories.

Typically in preference-based learning, the queries are actively selected by searching
some discrete or sampled set (e.g., [78, 80, 63, 180, 167, 7]). Our first hypothesis is that in
our setting, the continuous and high-dimensional nature of the queries renders relying
on a discrete set ineffective. Preference-based work for such spaces has thus far collected

CHAPTER 5. ACTIVE PREFERENCE-BASED LEARNING 63

data passively [181, 151]. Our second hypothesis is that active generation of queries leads
to better reward functions faster.

We contribute an algorithm for actively synthesizing queries from scratch. We do
continuous optimization in query space to maximize the expected volume removed from
the hypothesis space. We use the human’s response to assign weights to the hypothesis
space in the form of a log-concave distribution, which provides an approximation of
the objective via a Metropolis algorithm that makes it differentiable w.r.t. the query
parameters. We provide a bound on the number of iterations required to converge.

We compare our algorithm to non-active and non-synthesis approaches to test our
hypotheses. We use an experimental setup motivated by autonomous driving, and show
that our approach converges faster to a desired reward function. Finally, we illustrate
the performance of our algorithm in terms of accuracy of the reward function learned
through an in-lab usability study.

5.1 Preference-Based Learning Problem

Modeling Choices

Our goal is to model the behavior and preferences of a human H for how a dynamical
system should act. Similar to the previous chapters (as discussed in Chapter 2), we model
the overall system including H, and all the other agents (robot R) as a fully-observable
dynamical system.

We define a trajectory ξ ∈ Ξ, where ξ = (x0, u0
R, u0

H), . . . , (xN, uN
R , uN

H) is a finite
horizon sequence of states and actions of all agents. Here, Ξ is a set of all feasible
continuous trajectories. A feasible trajectory is one that satisfies the dynamics of H and
R. As in IRL (see Chapter 2.2), we parameterize the preference reward function as a
linear combination of a set of features:

rH(xt, ut
R, ut

H) = w⊤φ(xt, ut
R, ut

H), (5.1)

with w being a vector of the weights for the feature function φ(xt, ut
R, ut

H) evaluated at ev-
ery state and action pair. We assume a d-dimensional feature function, so φ(xt, ut

R, ut
H) ∈

Rd.
For simpler notation, we combine the N + 1 elements of φ so Φ = ∑

N
t=0 φ(xt, ut

R, ut
H).

Therefore, Φ(ξ) evaluates over a trajectory ξ. We finally reformulate the reward function
as the following inner product:

RH(ξ) = w ·Φ(ξ). (5.2)

Our goal is to learn RH.

CHAPTER 5. ACTIVE PREFERENCE-BASED LEARNING 64

Approach Overview

Inverse Reinforcement Learning (IRL) [188, 107, 159] enables us to learn RH through
demonstrated trajectories. However, IRL requires the human to show demonstrations
of the optimal sequence of actions. Providing demonstrations can be challenging for
many human-robot tasks. Furthermore, generating interesting training data that actively
explores RH through atypical, interesting environments (which is necessary in many
cases for resolving ambiguities) works well [116, 41] but in practice can make (good)
demonstrations infeasible: the algorithm cannot physically manufacture environments,
and therefore relies on simulation, which makes demonstrations only possible through
teleoperation.

For these reasons, we assume demonstrations are not available in this chapter. Instead,
we propose to leverage preference-based learning, which queries H to provide compar-
isons between two candidate trajectories. We propose a new approach for active learning
of a reward function for human preferences through comparisons.

We split trajectories ξ into two parts: a scenario and the trajectory of the agent
H whose reward function we are learning. We formalize a scenario to be the initial
state of the environment as well as the sequence of actions for the other agent(s) R,
τ = (x0, u0

R, . . . , uN
R). Given an environment specified by scenario τ ∈ T , the human

agent will provide a finite sequence of actions uH = u0
H, . . . , uN

H in response to scenario τ.
This response, along with the scenario τ defines a trajectory ξ showing the evolution of
the two systems together in the environment.

We iteratively synthesize queries where we ask the human to compare between two
trajectories ξA and ξB defined over the same fixed scenario τ as shown in Figure 5.1
(a). Their answer provides us information about w. In what follows, we discuss how
to update our probability distribution over w given the answer to a query, and how to
actively synthesize queries in order to efficiently converge to the right w.

5.2 Learning Reward Weights from Preferences of

Synthesized Queries

In this section, we describe how we update a distribution over reward parameters (weights
w in equation (5.2)) based on the answer of one query. We first assume that we are at
iteration t of the algorithm and an already synthesized pair of trajectories ξA and ξB in a
common scenario is given (we discuss in the next section how to generate such a query).
We also assume H has provided her preference for this specific pair of trajectories at
iteration t. Let her answer be I, with It = +1 if she prefers the former, and It = −1 if
she prefers the latter. This answer gives us information about w: she is more likely to
say +1 if ξA has higher reward than ξB, and vice-versa, but she might not be exact in
determining It. We thus model the probability p(I|w) as noisily capturing the preference

CHAPTER 5. ACTIVE PREFERENCE-BASED LEARNING 65

w.r.t. RH:

p(It|w) =

exp(RH(ξA))
exp(RH(ξA))+exp(RH(ξB))

It = +1

exp(RH(ξB))
exp(RH(ξA))+exp(RH(ξB))

It = −1

(5.3)

We start with a prior over the space of all w, i.e., w is uniformly distributed on the
unit ball. Note that the scale of w does not change the preference It, so we can constrain
||w|| ≤ 1 to lie in this unit ball. After receiving the input of the human It, we propose
using a Bayesian update to find the new distribution of w:

p(w|It) ∝ p(w) · p(It|w). (5.4)

Let
ϕ = Φ(ξA)−Φ(ξB) (5.5)

Then our update function that multiplies the current distribution at every step is:

fϕ(w) = p(It|w) =
1

1 + exp(−Itw⊤ϕ)
(5.6)

Updating the distribution of w allows us to reduce the probability of the undesired
parts of the space of w, and maintain the current probability of the preferred regions.

5.3 Synthesizing Queries through Active Volume

Removal

The previous section showed how to update the distribution over w after getting the
response to a query. Here, we show how to synthesize the query in the first place: we
want to find the next query such that it will help us remove as much volume (the integral
of the unnormalized pdf over w) as possible from the space of possible rewards.

Formulating Query Selection as Constrained Optimization

We synthesize experiments by maximizing the volume removed under the feasibility
constraints of ϕ:

max
ϕ

min{E[1− fϕ(w)], E[1− f−ϕ(w)]}

subject to ϕ ∈ F
(5.7)

The constraint in this optimization requires ϕ to be in the feasible set F:

F = {ϕ : ϕ = Φ(ξA)−Φ(ξB), ξA, ξB ∈ Ξ,

τ = (x0, uA
R) = (x0, uB

R)}
(5.8)

CHAPTER 5. ACTIVE PREFERENCE-BASED LEARNING 67

p(w) by the empirical distribution composed of point masses at wi’s:

p(w) ∼ 1

M

M

∑
i=1

δ(wi). (5.10)

Then the volume removed by an update fϕ(w) can be approximated by:

E[1− fϕ(w)] ≃ 1

M

M

∑
i=1

(1− fϕ(wi)). (5.11)

Given such samples, the objective is now differentiable w.r.t. ϕ, which is differentiable
w.r.t. the starting state and controls – the ingredients of the query which are the variables
in equation (10.2). What remains is to get the actual samples. To do so, we take advantage
of the fact that p(w) is a log-concave function, and the update function fϕ(w) defined here
is also log-concave in w as shown in Figure 5.1 (c); therefore, the posterior distribution
of w stays log-concave. Note we do not need to renormalize the distribution p(w) after
a Bayesian update, i.e. divide p(w) by its integral. Instead, we use Metropolis Markov
Chain methods to sample from p(w) without normalization.

Log-concavity is useful because we can take advantage of efficient polynomial time
algorithms for sampling from the current p(w) [117]1. In practice, we use an adaptive
Metropolis algorithm, where we initialize with a warm start by computing the mode of
the distribution, and perform a Markov walk [74].

We could find the mode of fϕ from (5.6), but it requires a convex optimization. We
instead speed this up by choosing a similar log-concave function whose mode evaluates to
zero always, and which reduces the probability of undesired w by a factor of exp(Itw

⊤ϕ):

fϕ(w) = min(1, exp(Itw
⊤ϕ)) (5.12)

Figure 5.1 (c) shows this simpler choice of update function in black with respect to p(It|w)
in gray. The shape is similar, but enables us to start from zero, and a Markov walk will
efficiently sample from the space of w.

In Figure 5.1 (b), we show a simple diagram demonstrating our approach. Here,
w first uniformly lies on a unit d-dimensional ball. For simplicity, here we show a 3D
ball. The result of a query at every step is a state and trajectories that result in a feature
difference vector ϕ, normal to the hyperplane {w : w⊤ϕ = 0}, whose direction represents
the preference of the human, and its value lies in F defined in equation (5.8). We reduce
the volume of w by reducing the probability distribution of the samples of w on the
rejected side of the hyperplane through the update function fϕ(w) that takes into account
noise in the comparison.

1Note that computing the actual volume removed can be converted to the task of integrating a log-
concave function, for which efficient algorithms do exist. The purpose of using samples instead is to have
an expression suitable for maximization of volume removed, i.e. an expression differentiable w.r.t. the
query.

CHAPTER 5. ACTIVE PREFERENCE-BASED LEARNING 68

5.4 Algorithm and Performance Guarantees

Armed with a way of generating queries and a way of updating the reward distribution
based on the human’s answer to each query, we now present our method for actively
learning a reward function in Algorithm 1. The inputs to the algorithm are a set of
features φ, the desired horizon N, the dynamics of the system f , and the number of
iterations iter. The goal is to converge to the true distribution of w, which is equivalent to
finding the preference reward function RH(ξ) = w ·Φ(ξ).

We first initialize this distribution to be uniform over a unit ball in line 3. Then, for M
iterations, the algorithm repeats these steps: volume estimation, synthesizing a feasible
query, querying the human, and updating the distribution.

We sample the space of w in line 5. Using these samples, and the dynamics of the
system, SynthExps solves the optimization in equation (10.2): it synthesizes a feasible
pair of trajectory that maximizes the expected volume removed from the distribution of
p(w). The answer to the query is received in line 7. We compute fϕ(w), and update the
distribution in line 10.

Algorithm 1 Preference-Based Learning of Reward Functions

1: Input: Features φ, horizon N, dynamics f , iter
2: Output: Distribution of w: p(w)
3: Initialize p(w) ∼ Uniform(B), for a unit ball B
4: While t < iter:
5: W ← M samples from AdaptiveMetropolis(p(w))
6: (x0, uR, uA

H, uB
H)← SynthExps(W, f)

7: It ← QueryHuman(x0, uR, uA
H, uB

H)
8: ϕ = Φ(x0, uR, uA

H)−Φ(x0, uR, uB
H)

9: fϕ(w) = min(1, It exp(w⊤ϕ))
10: p(w)← p(w) · fϕ(w)
11: t← t + 1
12: End for

Regarding the convergence of Algorithm 1, one cannot generally make any strict
claims for several reasons: We replace the distribution p(w) by an empirical distribution,
which could introduce errors. The maximization in line 6 is via non-convex optimization
which does not necessarily find the optimum, and even if it was guaranteed that the
global optimum is found, it could potentially make very little progress in terms of volume
removal, since the set F can be arbitrary.

Putting aside the issues of sampling and global optimization, we can compare what
Algorithm 1 does to the best one could do with the set F. Algorithm 1 can be thought of
as a greedy volume removal.

Theorem 1. Under the following assumptions:

CHAPTER 5. ACTIVE PREFERENCE-BASED LEARNING 69

• The update function is fϕ as defined in equation (5.6),

• The human inputs are noisy similar to equation (5.3),

• The errors introduced by sampling and non-convex optimization are ignored,

Algorithm 1 removes at least 1− ǫ times as much volume as removed by the best adaptive strategy
after ln(1

ǫ) times as many iterations.

Proof. Removed volume can be seen to be an adaptive submodular function, defined in
terms of the choices ϕ and the human input It, as defined in [69]. It is also adaptive
monotone; thus, the results of [69] imply that greedy volume removal for l steps in
expectation removes at least (1− exp(−l/k))OPTk where OPTk is the best solution any
adaptive strategy can achieve after k steps. Setting l = k ln(1

ǫ) gives us the desired result.
One caveat is that in equation (5.6) the human input It is treated as worst case, i.e., in

the synthesis step, one maximizes the minimum removed volume (over the possible It).
Namely maximizing the following quantity:

min{Ew[1− Pr[It = +1|w]]), Ew[1− Pr[It = −1|w]])}. (5.13)

Normally the greedy strategy in adaptive submodular maximization should treat It as
probabilistic. In other words instead of the minimum one should typically maximize the
following quantity:

Pr[It = +1] ·Ew[1− Pr[It = +1|w]]+

Pr[It = −1] ·Ew[1− Pr[It = −1|w]].
(5.14)

However, note Ew[1− Pr[It = +1|w]] is simply Pr[It = −1] and similarly Ew[1−
Pr[It = +1|w]] is Pr[It = +1]. Therefore, Algorithm 1 is maximizing min(Pr[It =
−1], Pr[It = +1]), whereas greedy submodular maximization should be maximizing
2 Pr[It = −1]Pr[It = +1]. It is easy to see that these two maximizations are equivalent,
since the sum Pr[It = −1] + Pr[It = +1] = 1 is fixed.

5.5 Simulation Experiment

In this section, we evaluate our theory using a semiautonomous driving example. Our
goal is to learn people’s preferred reward function for driving. In this context, our
approach being preference-based is useful since it allows the users to only compare two
candidate trajectories in various scenarios instead of requiring the user to demonstrate a
full trajectory (of how they would like to drive, not how they actually drive). In addition,
our approach being active enables choosing informative test cases that are otherwise
difficult to encounter in driving scenarios. For example, we can address the preference
of drivers in moral dilemma situations (deciding between two undesirable outcomes),
which are very unlikely to arise in standard collected driving data. Finally, our approach

CHAPTER 5. ACTIVE PREFERENCE-BASED LEARNING 71

synthesizes these test cases from scratch, which should help better exploit the continuous
and high-dimensional space of queries. We put these advantages to the test in what
follows.

Experimental Setup

We assume a human driven vehicle H living in an environment with another vehicle
R, and we synthesize trajectories containing two candidate sequence of actions for the
human driven car, while for every comparison we fix the synthesized scenario (i.e., the
initial state of the environment and the sequence of actions of R). Figure 5.1 (a) shows an
example of this comparison. The white vehicle isR, and the orange vehicle corresponds to
H. The white and orange lines show the path taken by the human and robot, respectively,
in the two cases over a horizon of N = 5.

Assuming the vehicles follow the same dynamics model as in Chapter 2.4, we learn
the reward function of the human’s preferences based on queries similar to Figure 5.1 (a).
We define a set of features that allow representing this cost function. These are the same
features introduced in Chapter 2.2, i.e., φ1 ∝ c1 · exp(−c2 · d2) corresponds to penalizing
getting close to the boundaries of the road, where d is the distance between the vehicle and
these boundaries, and c1 and c2 are appropriate scaling factors. We use a similar feature
φ2 for enforcing staying within a single lane by penalizing leaving the boundaries of the
lane. We also encourage higher speed for moving forward through φ3 = (v− vmax)2,
where v is the velocity of the vehicle, and vmax is the speed limit. Also, we would like the
vehicle to have a heading along with the road using a feature φ4 = βH · n, where βH is the
heading of H, and n is a normal vector along the road. Our last feature φ5 corresponds to
collision avoidance, and is a non-spherical Gaussian over the distance of H and R, whose
major axis is along the robot’s heading. Then, we aim to learn a distribution over the
weights corresponding to these features w =

[

w1 w2 w3 w4 w5

]

so RH = w · Φ(ξ)
best represents the preference reward function.

Conditions

We compare our algorithm with two baselines: non-active and non-synthesis.
First, we compare it to a non-active version. Instead of actively generating queries that

will remove the most volume, we uniformly sample a scenario. We do not use totally
random trajectories for the cars as this would be a weak baseline, instead we sample
two candidate weight vectors wA and wB from the current distribution on w. We then
maximize the reward functions wA ·Φ(ξA) and wB ·Φ(ξB) to solve for optimal uA

H and

uB
H. That creates our query, comparing two reward functions, but no longer optimized to

efficiently learn w. The trajectories generated through this other approach are then used
to query the human, and update the distribution of p(w) similar to Algorithm 1. Second,
we compare it against a non-synthesis (discrete) version. Instead of solving a continuous

CHAPTER 5. ACTIVE PREFERENCE-BASED LEARNING 72

optimization problem to generate a query, we do a discrete search over a sampled set of
queries.

Metric

We evaluate our results using a hidden reward function Rtrue = wtrue ·Φ(ξ). We query
an ideal user who knows Rtrue and uses it to compare pairs of trajectories, and show the
w computed by our algorithm efficiently converges to wtrue.

At every step of the iteration, we compute the following measure of convergence:

m = E[
w · wtrue

|w||wtrue|
]. (5.15)

Here, m computes the average heading of the current distribution of w with respect to
wtrue – how similar the learned reward is. Since the prior distribution of w is symmetric
(uniformly distributed on a unit ball), this expectation starts at 0, and moves closer to 1 at
every step of the iteration.

Hypothesis

H1. The reward function learned through our algorithm is closer to the true reward compared to
the non-active baseline.
H2. The reward function learned through our algorithm is closer to the true reward compared to
the non-synthesis baseline.

Results

We run a paired t-test for each hypothesis. Supporting H1, we find that our algorithm sig-
nificantly outperforms the non-active version (t(1999) = 122.379, p < .0001), suggesting
that it is important to be doing active learning in these continuous and high-dimensional
query spaces. Supporting H2, we find that our algorithm significantly outperforms
the non-synthesis version (t(1999) = 35.39, p < .0001), suggesting the importance of
synthesizing queries instead of relying on a discrete set. Note these results hold even
with conservative Bonferroni corrections for multiple comparisons.

Figure 5.3 shows the distribution of w for our algorithm corresponding to the five
features after 200 iterations, showing convergence to close to the true weights (in dotted
lines). The mode of the distribution of w1 has a negative weight enforcing staying within
the roads, and w2 has a positive weight enforcing staying within your own lane. w3 also
shows a slight preference for keeping speed, and w4 shows a significant preference for
keeping heading. w5 also shows the distribution for the weight of collision avoidance.

Further, we show the initial and final two dimensional projection of the density of w4,
the weight of the heading feature, with respect to all the other w’s in Figure 5.2. This
shift and convergence of the distribution is clear from the top plot to the bottom plot.

CHAPTER 5. ACTIVE PREFERENCE-BASED LEARNING 74

of the queries (or even producing actual concrete queries), they overall perform better
than when the algorithms need to generate real queries. In this case, being active is still
important, but the ability to perform synthesis is no longer useful compared to relying
on a discrete set. Without needing to produce trajectories, a discrete set covers the much
lower dimensional space of feature differences, and discrete search is not bottlenecked
by local optima. This suggests that indeed, synthesis is important when we are dealing
with learning reward functions for dynamical systems, requiring queries in a continuous,
high-dimensional, and dynamically constrained space.

Overall, the results suggest that doing active query synthesis is important in reward
learning applications of preference-based learning, with our results supporting both of
our central hypotheses and demonstrating an improvement over prior methods which
are either non-active or non-synthesis.

5.6 Usability Study

Our experiments so far supported the value of our contribution: active preference-based
learning that synthesizes queries from scratch outperformed both non-active and non-
synthesis learning. Next, we ran a usability study with human subjects. The purpose of
this study is not to compare our algorithm once again with other methods. Instead, we
wanted to test whether a person can interact with our algorithm to recover a reasonable
reward function for dynamical systems with continuous state and action spaces.

Experimental Design

In the learning phase of the experiments, we jumpstart the weights w with a reference
starting distribution, and only update that based on the data collected for each user. We
ask for 10 query inputs to personalize the distribution of w for each user.

Unlike our simulation experiments, here we do not have access to the ground truth
reward function. Still, we need to evaluate the learned reward function. We thus evaluate
what the users think subjectively about the behavior produced on a 7 point Likert scale.

Manipulated Factors

In order to calibrate the scale, we need to compare the reward’s rating with some
baseline. We choose to perturb the learned reward for this calibration. Thus, we only
manipulate one factor: perturbation from the learned weights. We ask users to compare
trajectories obtained by optimizing for reward with three different values for the weights:
i) w∗ = E[w] providing the mode of the learned distribution from Algorithm 1, ii) w2

a large perturbation of w∗ which enables us to sanity check that the learned reward is
better than a substantially different one, and iii) w1 a slight perturbation of w∗, which is a
harder baseline to beat and enables us to test that the learned reward is a local optimum.

CHAPTER 5. ACTIVE PREFERENCE-BASED LEARNING 78

preference for the trajectory emerging from the learned weights, but it does not yet show
that people can use this to personalize for their behavior – most users end up with very
similar learned weights, and we believe this is because of the limitations of our features
and our simulator. We plan to address these in the future.

79

Chapter 6

Falsification for Human-Robot Systems

In this chapter, we discuss a new approach for a rigorous analysis of human-robot
systems that are based on learned models of human behavior. We focus on analyzing the
robustness of a learning-based controller for human-robot systems where the human
behavior deviates slightly from a learned model. As a motivating application, we consider
autonomous controllers for vehicles that are based on the common and effective model
predictive control (MPC) paradigm (see Chapter 2.1), in the receding horizon sense. In
this setting, the autonomous controller computes its control actions for a horizon of N
time units, while optimizing its reward function (which typically encodes safety and
other objectives). For this purpose, it uses a dynamical model of both the system under
control and its environment. Additionally, the environment contains human agents
who are modeled as rational agents seeking to take actions that maximize their reward
function. However, the human’s true reward function is unknown to the autonomous
controller. Therefore, the controller learns an approximation of the reward function
from collected data, and uses this learned function in computing its actions. We refer to
such a controller as an interaction-aware controller as described in the previous chapters
(Chapter 3 and Chapter 4). Our goal is to find behaviors that exhibit “bugs”, i.e., where
the controller fails to meet its objectives. We refer to this goal as falsification.

Falsification of such human-robot systems faces some unique challenges. First, since
the human model is learned from incomplete data, under specific assumptions and biases
of the learning algorithm, and the true reward function is unknown, the learned model
will be inaccurate. In such a setting, how can one bound the error in the learned model?
Second, given an error bound, how can one systematically verify whether the controller
will always achieve the desired objectives in an environment where the human agent(s)
deviate from the learned model within that error bound?

Our approach addresses both challenges using optimization-based algorithmic meth-
ods. For the first, we provide a systematic and efficient methodology for estimating
a bound between the values of the human’s true reward function and the controller’s
estimate. Our methodology generates experiments to use in human subject trials during
the learning process. For the second challenge, we present a novel encoding of the falsifi-

CHAPTER 6. FALSIFICATION FOR HUMAN-ROBOT SYSTEMS 81

slightly differ from the robot’s learned human model. For example, the orange car might
decide to choose a slightly perturbed trajectory such as trajectory B. As it is clear in Fig-
ure 6.1, such a perturbation can jeopardize satisfaction of the desired properties such as
collision avoidance.

In this chapter, we show that these perturbations in models of learned human drivers
exist, and we provide an efficient algorithm (almost linear) to learn a distribution for such
possible perturbations using a query-based method. Further, we provide a method for
finding the falsifying actions of the human agent (e.g. actions that result in trajectory B)
within the perturbation bound.

6.2 Falsification in Interaction-Aware Control

Assuming a similar formalism as in Chapter 2.1, where the human-robot system follows
the dynamics model:

xt+1 = f (xt, ut
R, ut

H) (6.1)

Let us remind you of the interaction-aware controller discussed in the previous
chapters.

Problem 2 (Interaction-Aware Planner). Given a system as in equation (6.1), an initial state
x0 ∈ X, a finite horizon N, and a robot reward function RR, compute:

u∗R = arg max
uR

RR(x0, uR, u∗H(x0, uR)) (6.2)

Remark 2. We emphasize that Problem 2 is only one method for computing the actions of the
robot that we have introduced for concreteness. Our falsification approach in this chapter may be
combined with any other technique for computing control actions over a finite horizon.

Our falsification problem is to find out whether there exists a sequence of human
actions that can lead to unsafe scenarios. Let RH, i.e., the sum of the learned reward
functions of H over horizon N represent our human model. Our ultimate goal is to
verify that the robot is resilient to model inaccuracies of RH within a specific bound.
Such inaccuracies usually exist due to two main factors: i) particular assumptions on the
learning algorithm, ii) insufficiency of collected training data.

We have assumed humans are optimizers of a particular type of reward function
RH, and such reward functions can be learned through various learning techniques (e.g.,
IRL as in Chapter 2.2). However, the human can follow a different reward function,
which we call the true reward function R†

H. R†
H can possibly have a different structure

from RH, i.e., it might not even be a linear combination of a set of hand-coded features
described in Chapter 2.2, or we (the designers) might have missed specifying a particular
feature as part of φ. So the learning methods can possibly never converge to the true
reward function R†

H. Further, we might decide to learn RH from a collection of human

CHAPTER 6. FALSIFICATION FOR HUMAN-ROBOT SYSTEMS 82

demonstrations, but in practice, the robot interacts with a specific human agent whose
true reward function is R†

H, which can be different from RH due to variations amongst
humans. So when it comes to interacting with different humans, the learned RH might
not perform as expected.

We are motivated to verify if Problem 2 can be solved in scenarios where the true
human reward function R†

H, unknown to us, deviates a bit from the learned function RH.
We let δ be the bound between the distance of these two reward functions:

∀(x0, uR, uH), |RH(x0, uR, uH)− R†
H(x0, uR, uH)| < δ. (6.3)

For brevity, we will slightly abuse notation and write this inequality as |RH − R†
H| < δ.

Problem 3 (Falsification of Interaction-Aware Controllers). For a parameter δ describing
the bound between the human’s true and learned reward functions (R†

H and RH), compute a
falsifying input ũH:

ũH = arg min
uH

RR(x0, u∗R, uH)

subject to ∃R†
H : uH = arg max

¯uH
R†
H(x0, u∗R, ūH),

|RH − R†
H| < δ.

(6.4)

Here, u∗R is computed by solving the nested optimization in Problem 2, where u∗H(x0, uR) is the
true optimizer of the learned reward function RH.

Problem 3 looks for the worst case input provided by the human that violates the
specification by minimizing the reward function of the robot RR, while still remaining
in the set of possible human models, i.e., this input can optimize an alternative reward
function R†

H that lies within δ distance of the learned reward function RH. We now show
how we optimally solve for this falsifying input.

Theorem 2. The optimization in Problem 3 is equivalent to solving the following:

ũH = arg min
uH

RR(x0, u∗R, uH)

subject to RH(x0, u∗R, uH) > R∗H − 2δ,
(6.5)

where R∗H = RH(x0, u∗R, u∗H(x0, u∗R)) is a constant evaluated at u∗R and u∗H(x0, u∗R). Here, u∗R
is computed by solving Problem 2, which depends on the function representing the optimal actions
of the human u∗H(x0, uR). Using this u∗R, we then find u∗H(x0, u∗R) = arg maxuH RH(x0, u∗R, uH).

Proof. To show the equivalence between equation (6.4) and (6.5), we need to consider the
equivalence of the constraints.

First, we show the constraint ∃R†
H : uH = arg max ¯uH R†

H(x0, u∗R, ūH) will imply the
constraint in equation (6.5).

CHAPTER 6. FALSIFICATION FOR HUMAN-ROBOT SYSTEMS 83

Since ∃R†
H : uH = arg max ¯uH R†

H(x0, u∗R, ūH), we conclude that R†
H evaluated at the

optimum uH is greater than R†
H evaluated at any other sequence of human actions such

as u∗H(x0, u∗R) (to simplify the notation, we simply let u∗H = u∗H(x0, u∗R)):

R†
H(x0, u∗R, uH) ≥ R†

H(x0, u∗R, u∗H). (6.6)

Also, because of the bound δ, we can infer the following:

RH(x0, u∗R, uH) > R†
H(x0, u∗R, uH)− δ, (6.7)

R†
H(x0, u∗R, u∗H) > RH(x0, u∗R, u∗H)− δ. (6.8)

Equations (6.6) and (6.7) together will result in:

RH(x0, u∗R, uH) > R†
H(x0, u∗R, u∗H)− δ. (6.9)

Finally, equations (6.8) and (6.9) provide:

RH(x0, u∗R, uH) > RH(x0, u∗R, u∗H)− 2δ, (6.10)

which is the same as the constraint in equation (6.5):

RH(x0, u∗R, uH) > R∗H − 2δ. (6.11)

Now, to complete the proof, we need to show that this constraint will result in the
constraint in equation (6.4), i.e., ∃R†

H : uH = arg max ¯uH R†
H(x0, u∗R, ūH). Our approach

is to construct the following reward function R†
H so that at the optimal uH (i.e. uH =

arg max ¯uH R†
H(x0, u∗R, ūH)), we will have:

R†
H(x0, u∗R, uH) = RH(x0, u∗R, uH) + δ, (6.12)

and for any other human actions such as u′H 6= uH, this function is equal to:

R†
H(x0, u∗R, u′H) = RH(x0, u∗R, u′H)− δ. (6.13)

Then, reordering the inequality in equation (6.4), and using equation (6.12) will result in:

RH(x0, u∗R, uH) + δ > R∗H − δ

=⇒ R†
H(x0, u∗R, uH) > R∗H − δ

(6.14)

Also, by optimality of R∗H and equation (6.13), we know for any u′H 6= uH:

R†
H(x0, u∗R, u′H) = RH(x0, u∗R, u′H)− δ ≤ R∗H − δ (6.15)

CHAPTER 6. FALSIFICATION FOR HUMAN-ROBOT SYSTEMS 84

Using the two results in equations (6.14) and (6.15), we conclude:

R†
H(x0, u∗R, uH) ≥ R†

H(x0, u∗R, u′H)

=⇒ uH = arg max
¯uH

R†
H(x0, u∗R, ūH).

(6.16)

So for the R†
H we have constructed, the constraint in equation (6.4) holds. Since the two

constraints in (6.4) and (6.5) are equivalent, Theorem 2 holds true.

Through Theorem 2 we have shown we can solve equation (6.5), a much simpler
optimization problem, instead of solving Problem 3 to find the falsifying actions of H for
a fixed given bound δ.

6.3 Learning the Error Bound δ

In this section, we provide an efficient algorithm for computing a reasonable error bound
δ, as defined in equation (6.3), which is used in solving Problem 3. We will first learn a
distribution for the error:

∆(ξ) = RH(ξ)− R†
H(ξ), (6.17)

and then we upperbound ∆(ξ) by a constant factor δ using the distribution’s quantiles.
In the rest of this chapter, we use ∆ instead of ∆(ξ) for brevity. So assuming that ∆ ∼ D
is a random variable derived from a distribution D, our goal is to efficiently learn D. We
propose using a query based method that efficiently (almost linear time in the number of
queries, i.e., O(n log n)) finds the maximum likelihood estimate for D.

Suppose, we query the human H whether she prefers trajectory ξA or ξB. Then, if the
user decides ξA is preferred over ξB, we can conclude that the true reward function of
trajectory ξA is higher than the true reward function of trajectory ξB, i.e.,

R†
H(ξA) > R†

H(ξB). (6.18)

Note, since the trajectory is fully determined by (x0, uH, uR), we alternatively can write
RH as a function of ξ, and using the error bound results as in:

RH(ξA) + ∆A > RH(ξB) + ∆B. (6.19)

We also assume ∆A, ∆B ∼ D are independent random variables, and so is their difference:
χ = ∆A − ∆B. We can rewrite this as:

χ = ∆A − ∆B > RH(ξB)− RH(ξA), (6.20)

where RH is the learned reward function. Here, we simply let R = RH(ξB)− RH(ξA).
Therefore, assuming humans are not noisy and always respond with a particular

preference, every query from the human for two fixed set of trajectories ξA and ξB will
results in either χ > R or χ < R. Our goal in this section is to find the maximum
likelihood distribution of χ ∼ D̄ by asking queries from the human for a number of times,
and recovering the distribution of the true bound ∆ ∼ D.

CHAPTER 6. FALSIFICATION FOR HUMAN-ROBOT SYSTEMS 85

Remark 3. Here the human responses to the queries only provides an estimate of human’s true
reward function. These comparisons allow us to learn human’s preferences, which can possibly be
different from the true reward function she would optimize in practice. However, for the purpose
of falsification in this chapter, the preference reward function is a reasonable estimate of R†

H.

Learning the Error Distribution of χ ∼ D̄
Now, we propose our algorithm to find the distribution D̄ based on any M given
comparison queries χi > Ri or χi < Ri. Suppose that χ1, . . . , χM are i.i.d. and drawn
from some unknown distribution D̄. Given R1, . . . , RM ∈ R, and the corresponding signs
s1, . . . , sM ∈ {−1,+1}, representing the observations: si(χi − Ri) > 0, i.e., χi > Ri for
si = +1, and χi < Ri for si = −1, the goal is to find the maximum likelihood estimate of
the distribution D̄.
Without loss of generality, we assume that Ri’s are sorted, i.e. R1 < R2 < · · · < RM. Now
let us define:

pi = Pχ∼D̄[χ < Ri]. (6.21)

Then, obviously since Ri’s are sorted, pi’s would be sorted as well: p1 ≤ p2 ≤ · · · ≤ pM.
The likelihood of our observations can be expressed in terms of pi’s and note that any
increasing sequence of pi’s that lie in [0, 1] is valid. Our problem of estimating the
distribution reduces to finding the increasing sequence of p1 ≤ · · · ≤ pM ∈ [0, 1] that
maximizes the log-likelihood of our observations. We now propose our method that finds
pi’s by solving the following constrained optimization:

max
p1,...,pM

log(∏
i:si=+1

(1− pi) ∏
i:si=−1

pi)

subject to 0 ≤ p1 ≤ p2 ≤ · · · ≤ pM ≤ 1.

(6.22)

Suppose p∗1 ≤ · · · ≤ p∗M are the optimizers of equation (6.22). We derive some
necessary conditions that p∗1, . . . , p∗M need to satisfy, and conclude that these uniquely
determine p∗i .
We can partition p∗i into contiguous maximal subsets of equal values. For example,
p∗a = p∗a+1 = · · · = p∗b represents such a maximal contiguous subset, i.e., p∗a−1 < p∗a and
p∗b < p∗b+1. We let q represent the common value of this contiguous subset.

Lemma 1. In the above context, the value of q must be equal to:

n
[a,b]
−

n
[a,b]
− + n

[a,b]
+

, (6.23)

where n
[a,b]
+ = |{i : si = +1 ∧ i ∈ [a, b]}| and n

[a,b]
− = |{i : si = −1 ∧ i ∈ [a, b]}|.

CHAPTER 6. FALSIFICATION FOR HUMAN-ROBOT SYSTEMS 86

!" !# !$!%

!&

!'

!(
!)

!*

!+

!#"

,#

,$

,%

,&

-

Figure 6.2: Visualization tool representing 10 queries from the human. We move right for
positive queries (si = +1), and move up for negative ones (si = −1) over Z2. The convex
hull of this plot provides our maximum likelihood estimate of the error distribution.

Proof. If we perturb q by a small amount in any direction, we would still be satisfying
the constraint of monotonicity of pi’s. Further, the derivative of the log-likelihood with
respect to q must be 0 at the optimal values q = p∗a . This means that:

− ∑
i:si=+1∧i∈[a,b]

1

1− q
+ ∑

i:si=−1∧i∈[a,b]

1

q
= 0, (6.24)

which results in q =
n
[a,b]
−

n
[a,b]
− +n

[a,b]
+

.

We visualize the values n
[a,b]
+ and n

[a,b]
− using the graph in Figure 6.2: consider a path

drawn on Z2, and let the path start from the origin v0 = (0, 0). For each i in the sorted
order of χi, if si = −1, move up one unit, and if si = +1, move to the right one unit,
and call the new point vi. Note, at the beginning runs, we would move to the right
more frequently, as the sorted data makes si = +1 results more likely. Figure 6.2 shows
an example of such a run. Then, between every two points va−1 and vb on the plot the

difference in the y-direction is ∆y = n
[a,b]
− , and similarly the difference in the x-direction

is ∆x = n
[a,b]
+ . Thus, the optimal value of the log-likelihood for each maximal contiguous

subset, e.g., [a, b] is q = ∆y
∆x+∆y , where (∆x, ∆y) = vb − va−1. We can think of

∆y
∆x+∆y as

a type of slope, which we call L-slope. Note, the L-slope is an increasing function of

the real slope (i.e.,
∆y
∆x). While the real slope lies in [0, ∞], the L-slope has a monotonic

relation to the real slope and maps it to
∆y

∆y+∆x ∈ [0, 1].

CHAPTER 6. FALSIFICATION FOR HUMAN-ROBOT SYSTEMS 87

So far, we have shown that if we know the maximal contiguous partitions of pi’s, the
optimal values p∗i ’s are uniquely determined by the L-slopes. Thus, the main remaining
question is how to find such maximal contiguous segments.

First, let’s assume there are k maximal contiguous segments, and we represent them
with a1, . . . , ak, where a1 = v0, and ak = vM, and all the other aj’s for j ∈ {1, . . . , k}
are equal to vertices vi that partition the pi’s into maximal contiguous pieces. We use
li to denote the L-slope between each ai and ai+1. Note that because of ordering of
p1 ≤ p2 ≤ · · · ≤ pM, these L-slopes are also in an increasing order l1 ≤ l2 ≤ · · · ≤ lk−1.
Therefore, these L-slopes create a convex graph, and as a result aj’s lie in a convex
position.

Lemma 2. In the above context, aj’s are precisely the set of vertices of the convex hull of the
constructed graph (e.g. Figure 6.2).

Proof. We prove this by contradiction. Assume that aj’s are not the convex hull of the
graph. For example in Figure 6.2, this could happen with a1 = v0, a2 = v5, a3 = v10.

Because aj’s are not the convex hull, there exists an index i and a point on the graph c
such that c lies under the line segment between ai and ai+1 (e.g., let c = v2 in the segment
connecting a1 = v0 to a2 = v5).

Consider the probabilities corresponding to the line segment from ai to ai+1. These
would be pr, pr+1, . . . , ps, if ai = vr−1 and ai+1 = vs; note that we have already shown
all of them must be equal to the L-slope between ai and ai+1, i.e., pr = · · · = ps = li.
We partition these probabilities into two contiguous segments pr, . . . , pj and pj+1, . . . , ps,
where j is the index for which c = vj.

We perturb the first segment, pr, . . . , pj by a small amount ǫ in the negative direction,
and perturb the second segment, pj+1, . . . , ps by ǫ in the positive direction. Since we
decrease the first segment and increase the second, this does not violate our ordering
constraint p1 ≤ · · · ≤ pM. Then, by a similar argument as in the proof of Lemma 1, we
can conclude that this small perturbation increases the log-likelihood; in other words,
the derivative of the log-likelihood with respect to the first segment is negative and the
derivative with respect to the second segment is positive. We conclude that when aj’s
form the optimal partition, no such point c can be found, and therefore the aj’s form the
convex hull of the graph.

Theorem 3. The optimization problem in equation (6.22) can be solved in O(M log(M)) time.

Proof. Sorting the Ri’s takes O(M log(M)) time. As we have shown in Lemma 2, the
optimal partition is determined by the convex hull of the constructed graph. The graph
can be constructed in linear time, and the convex hull can be computed in linear time
as well. Finally, the values pi’s are determined by the L-slopes, each of which can
be computed in O(1) time. Thus the bottleneck is in the initial sort, and the whole
computation takes O(M log(M)) time.

CHAPTER 6. FALSIFICATION FOR HUMAN-ROBOT SYSTEMS 88

This method enables us to efficiently recover an estimate of the CDF of distribution D̄.

Remark 4. In practice, the CDF might be well-approximated by a Gaussian. Finding the param-
eters of the Gaussian can again be formulated as a similar optimization in equation (6.22), where
the objective is still the log-likelihood of the observed data, but the variables are replaced by the
parameters of the Gaussian.

Recovering the Error Distribution of ∆ ∼ D
To recover the distribution of the error ∆ ∼ D, we need to make a further assumption
that the distribution D̄ is symmetric. Assuming we successfully find the distribution of
χ ∼ D̄, we can use moment generating functions Mχ(t) = E[etχ] to recover D. Given

χ = ∆A − ∆B, where χ ∼ D̄ and ∆A, ∆B ∼ D : (6.25)

Mχ(t) = M∆A−∆B
(t) = M∆A

(t) ·M−∆B
(t) = M∆A

(t) ·M∆B
(−t). (6.26)

Since ∆A and ∆B are drawn from the same distribution their moment generating function
is the same. Further, ∆ is drawn from a symmetric distribution, i.e., M∆(t) = M∆(−t), so:

Mχ(t) = M∆(t)
2. (6.27)

Assuming we have computed χ ∼ D̄, we now can use this relation to find the distribution
of ∆ ∼ D.

Remark 5. If we are only interested in solving equation (6.5), we do not need to extract D from
D̄. We can simply replace the 2δ bound by a number drawn from the quantiles of the distribution
D̄. The reason for this is that even if we replace the assumption |R†

H − RH| ≤ δ by the weaker
assumption:

∀ξA, ξB : |(R†
H(ξA)− R†

H(ξB))− (RH(ξA)− RH(ξB))| ≤ 2δ, (6.28)

Theorem 2 would still hold (with essentially the same proof). Note that the above quantity is
simply: |χ| = |∆A − ∆B|, whose distribution is given by D̄.

Remark 6. We select 2δ from the quantiles of D̄ in such a way that: Prχ∼D̄(|χ| > 2δ) < ǫ,

where ǫ ∈ [0, 1] is the tolerated error (1− ǫ is the confidence level).

6.4 Case Studies

In this section, we demonstrate our falsification algorithm for two autonomous driving
scenarios. We also efficiently learn an error distribution for human’s reward function
based on the proposed query-based method. We solved the constrained optimizations

CHAPTER 6. FALSIFICATION FOR HUMAN-ROBOT SYSTEMS 90

(a) (b)

Figure 6.4: Robot Reward function of scenario 1 shown in (a), and scenario 2 in (b) with
respect to δ. The violation threshold in (a) is δ = 0.11, and in (b) is δ = 0.025.

from RH.
Scenario 2: Falsifying Collision Avoidance in an Intersection. In this scenario, our

goal is to find the falsifying actions for the human-driven car (orange car) when the
autonomous car (white car) plans to cross an intersection as shown in Figure 6.3. Similar
to the previous scenario, following RH, results in a collision-free outcome (Figure 6.3(b)).
However, with a slightly perturbed reward function of the human with δ = 0.015, the
orange car gets closer to the autonomous car, and for a slightly higher δ = 0.05 the two
cars collide as shown in Figure 6.3(c). Similar to the previous case, we have shown the
reward function RR with respect to δ in Figure 6.4, which shows the violation threshold
is δ = 0.025. We hypothesize that the bumps in the reward function (Figure 6.4(b)) in
this scenario are due to the system falling into local optima in solving the falsification
problem.

Learning Human’s Error. Using our query-based method, we learn a distribution
for ∆, and find an appropriate bound δ. As shown in Figure 6.5(a), we have done 100
queries from H asking the human to compare two provided trajectories. The blue line
in Figure 6.5(a) represents the walk over Z2 based on the sorted queries, where each
horizontal line represents a positive query (si = +1), and each vertical line represents a
negative query (si = −1) (similar to Figure 6.2). The orange line is the convex hull of
the graph, which facilitates estimation of the distribution of ∆. In Figure 6.5(b), we have
found the maximum likelihood estimate of the CDF of the distribution from the convex
hull in Figure 6.5(a). Similarly, we can fit a Gaussian instead as shown in purple. Using
the estimated CDF, we choose δ = 0.1 for confidence level of ǫ = 0.74 as discussed in
Remark 6. Note, with this confidence level and bound δ = 0.1, we would have violated
the specification for the second case study (crossing an intersection), while still satisfying
collision avoidance in the first scenario (lane change) based on the thresholds found
in Figure 6.4.

CHAPTER 6. FALSIFICATION FOR HUMAN-ROBOT SYSTEMS 91

(a) (b)

Figure 6.5: Learning Human’s Error Distribution. In (a) we visualize the comparison
queries from H, and find the convex hull of the graph allowing us to find the CDF of the
error distribution as shown in orange in (b). Using different quantiles of the CDF, we set
an appropriate bound for δ.

6.5 Chapter Summary

As human-robot systems make their ways into our every day life, safety has become
a core concern of the learning algorithms used by such systems. The correctness of
controllers for human-robot systems rely on the accuracy of models of human behavior.
In this chapter, we described a systematic methodology for analyzing the robustness of
learning-based control of human-robot systems. We focus on the setting where human
models are learned from data, with humans modeled as approximately rational agents
optimizing their reward functions. We provide a novel optimization-driven approach
to find small deviations in learned human behavior that lead to violation of desired
(safety) objectives. Our approach is experimentally validated via simulation for the
application of autonomous driving. For future work, we plan to expand the application
of this methodology to a broader class of human behavior models and human-robot
systems. We also note that our high-level approach might be more broadly applicable
to algorithmically analyzing the behavior of other kinds of systems involving models
learned from data.

Falsification and verification play an important role in safety of human-robot systems.
However, falsification is not enough for the design of safe controllers for our human-robot
systems. In the next part of this dissertation, we address the problem of synthesizing safe
controllers from formal specifications by bringing ideas from the area of formal methods
to address problems that arise in safe control of human-robot systems.

92

Part II

Safe Control

93

Chapter 7

Reactive Synthesis for Human-Robot
Systems

The cost of incorrect operation in many human-robot systems can be very severe. Human
factors are often the reason for failures or “near failures”, as noted by several studies
(e.g., [50, 101]). One alternative to control human-robot systems is to synthesize a fully
autonomous controller from a high-level mathematical specification. The specification
typically captures both assumptions about the environment and correctness guarantees
that the controller must provide, and can be specified in a formal language such as Linear
Temporal Logic (LTL) as introduced in Chapter 2.3. While this correct-by-construction
approach looks very attractive, the existence of a fully autonomous controller that can
satisfy the specification is not always guaranteed. For example, in the absence of ade-
quate assumptions constraining its behavior, the environment can be modeled as being
overly adversarial, causing the synthesis algorithm to conclude that no controller exists.
Additionally, the high-level specification might abstract away from inherent physical
limitations of the system, such as insufficient range of sensors, which must be taken into
account in any real implementation. Thus, while full manual control puts too high a
burden on the human operator, some element of human control is desirable. However,
at present, there is no systematic methodology to synthesize a combination of human
and autonomous control from high-level specifications. In this chapter, we address this
limitation of the state of the art. Specifically, we consider the following question: Can
we devise a controller that is mostly automatic and requires only occasional human
interaction for correct operation? We formalize this problem of synthesis for human-robot
systems and establish formal criteria for solving it.

A particularly interesting domain is that of autonomous or semiautonomous vehicles.
Such systems, already capable of automating tasks such as lane keeping, navigating in
stop-and-go traffic, and parallel parking, are being integrated into high-end automobiles.
However, these emerging technologies also give rise to concerns over the safety of an
ultimately driverless car. Recognizing the safety issues and the potential benefits of vehicle
automation, the National Highway Traffic Safety Administration (NHTSA) has published

CHAPTER 7. REACTIVE SYNTHESIS 94

a statement that provides descriptions and guidelines for the continual development of
these technologies [127]. Particularly, the statement defines five levels of automation
ranging from vehicles without any control systems automated (Level 0) to vehicles with
full automation (Level 4). In this chapter, we focus on Level 3 which describes a mode of
automation that requires only limited driver control:

“Level 3 - Limited Self-Driving Automation: Vehicles at this level of automation
enable the driver to cede full control of all safety-critical functions under certain traffic
or environmental conditions and in those conditions to rely heavily on the vehicle to
monitor for changes in those conditions requiring transition back to driver control.
The driver is expected to be available for occasional control, but with sufficiently
comfortable transition time. The vehicle is designed to ensure safe operation during
the automated driving mode.” [127]

Essentially, this mode of automation stipulates that the human driver can act as a
fail-safe mechanism and requires the driver to take over control should something go
wrong. The challenge, however, lies in identifying the complete set of conditions under
which the human driver has to be notified ahead of time. Based on the NHTSA statement,
we identify four important criteria required for a human-robot controller to achieve this
level of automation. 1

• Efficient Monitoring. The controller should be able to determine if human interven-
tion is needed based on monitoring past and current information about the system
and its environment.

• Minimally Intervening. The controller should only invoke the human operator when
it is necessary, and does so in a minimally intervening manner.

• Prescient. The controller can determine if a specification may be violated ahead of
time, and issues an advisory to the human operator in such a way that she has
sufficient time to respond.

• Safe Autonomy. The controller should operate correctly until the point when human
intervention is deemed necessary.

We further elaborate and formally define these concepts later in Section 10.3. In
general, a human-robot controller, as shown in Figure 7.1 is a controller consists of
three components: an automatic controller, a human operator, and an advisory control
mechanism that orchestrates the switching between the auto-controller and the human
operator.2 In this setting, the auto-controller and the human operator can be viewed as

1The original terms used in [110] were slightly different.
2In this chapter, we do not consider explicit dynamics of the plant. Therefore it can also be considered

as part of the environment.

CHAPTER 7. REACTIVE SYNTHESIS 95

two separate controllers, each capable of producing outputs based on inputs from the
environment, while the advisory controller is responsible for determining precisely when
the human operator should assume control while giving her enough time to respond.

Figure 7.1: Human-Robot Controller: Component Overview

In this chapter, we study the construction of such controller in the context of reactive
synthesis from LTL specifications. Reactive synthesis is the process of automatically synthe-
sizing a discrete system (e.g., a finite-state Mealy transducer) that reacts to environment
changes in such a way that the given specification (e.g., a LTL formula) is satisfied as
briefly discussed in Chapter 2.3. There has been growing interest recently in the control
and robotics communities (e.g., [185, 97]) to apply this approach to automatically generate
embedded control software. This chapter has been in close collaboration with Wenchao
Li, whose insights on using counterstrategy graphs for debugging enabled us to design
the main technical algorithms of this work. In summary, the main contributions of this
chapter are:

• A formalization of control of human-robot systems and the problem of synthesizing
such controllers from high-level specifications, including four key criteria these
controllers must satisfy.

• An algorithm for synthesizing controllers for human-robot systems that satisfy the
afore-mentioned criteria.

• An application of the proposed technique to examples motivated by driver-assistance
systems for automobiles.

CHAPTER 7. REACTIVE SYNTHESIS 97

In general, it is not always possible to come up with a fully automatic controller that
satisfies all requirements. Figure 7.2b illustrates such a scenario where car C blocks the
view as well as the movement path of car A after two time steps. The arrow indicate the
movements of the vehicles at time steps 1 and 2. Positions of a car X at time t is indicated
by Xt. In this failure scenario, the autonomous vehicle needs to notify the human driver
since it has lost track of car B.

Therefore, a human-robot control synthesis problem is tasked with producing an
autonomous controller along with advisories for the human driver in situations where her
attention is required. Our challenge, however, is to identify the conditions that we need to
monitor and notify the driver when they may fail. In the next section, we discuss how human
constraints such as response time can be simultaneously considered in the solution, and
mechanisms for switching control between the auto-controller and the human driver.

7.2 Formal Model of Human-Robot Controller

Consider a Booleanized space over the input and output alphabet X = 2X and Y =
2Y, where X and Y are two disjoint sets of variables representing inputs and outputs
respectively, we model a discrete controller as a finite-state transducer. A finite-state
(Mealy) transducer (FST) is a tuple M = (Q, q0,X ,Y , ρ, δ), where Q is the set of states,
q0 ∈ Q is the initial state, ρ : Q×X → Q is the transition function, and δ : Q×X → Y is
the output function. Given an input sequence x = x0, x1, . . ., a run of M is the infinite
sequence q = q0, q1, . . . of states such that qk+1 = ρ(qk, ik) for all k ≥ 0. The run q on x
produces the word M(x) = δ(q0, x0)δ(q1, x1) The language of M is then denoted by
the set L(M) = {(x, y)ω |M(x) = y}.

To characterize correctness of M, we assume that we can label if a state is unsafe or not,
by using a function F : Q→ {true, false}, i.e. a state q is failure-prone if F (q) = true.
We elaborate on F later in Section 7.3.

Agents as Automata

We model two of the three agents in the human-robot controller shown in Figure ??,
the automatic controller Auto and the advisory controller VC, as finite-state transducers
(FSTs). The human operator can be viewed as another FST H that uses the same input
and output interface as the auto-controller. The overall controller is then a composition of
the models of H, Auto and VC.

We use a binary variable auto to denote the internal advisory signal that VC sends
to both Auto and H. Hence, XH = X Auto = X ∪ {auto}, and YVC = {auto}. When
auto = false, it means the advisory controller is requiring the human operator to take
over control, and the auto-controller can have control otherwise.

We assume that the human operator (e.g., driver behind the wheel) can take control at
any time by transitioning from a “non-active” state to an “active” state, e.g., by hitting

CHAPTER 7. REACTIVE SYNTHESIS 98

a button on the dashboard or simply pressing down the gas pedal or the brake. When
H is in the “active” state, the human operator essentially acts as the automaton that
produces outputs to the plant (e.g., a car) based on environment inputs. We use a binary
variable active to denote if H is in the “active” state. When active = true, the output of
H overwrites the output of Auto. The “overwrite” action happens when a sensor senses
the human operator is in control, e.g., putting her hands on the wheel. Similarly, when
active = false, the output of the human-robot controller is the output of Auto. Note that
even though the human operator is modeled as a FST here, since we do not have direct
control of the human operator, it can in fact be any arbitrary relation mapping X to Y .

Criteria for Human-Robot Controllers

One key distinguishing factor of a human-robot controller from traditional controller
is the involvement of a human operator. Hence, human factors such as response time
cannot be disregarded. In addition, we would like to minimize the need to engage the
human operator. Based on the NHTSA statement, we derive four criteria for any effective
human-robot controller, as stated below.

• Monitoring. An advisory auto is issued to the human operator under specific
conditions. These conditions in turn need to be determined unambiguously at
runtime, potentially based on history information but not predictions. In a reactive
setting, this means we can use trace information only up to the point when the
environment provides a next input from the current state.

• Minimally intervening. Our mode of interaction requires only selective human
intervention. An intervention occurs when H transitions from the “non-active”
state to the “active” state (we discuss mechanisms for suggesting a transition from
“active” to “non-active” in Section 7.3, after prompted by the advisory signal auto
being false). However, frequent transfer of control would mean constant attention
is required from the human operator, thus nullifying the benefits of having the
auto-controller. In order to reduce the overhead of human participation, we want to
minimize a joint objective function C that combines two elements: (i) the probability
that when auto is set to false, the environment will eventually force Auto into a
failure scenario, and (ii) the cost of having the human operator taking control. We
formalize this objective function in Section 7.3.

• Prescient. It may be too late to seek the human operator’s attention when failure is
imminent. We also need to allow extra time for the human to respond and study the
situation. Thus, we require an advisory to be issued ahead of any failure scenario.
In the discrete setting, we assume we are given a positive integer T representing
human response time (which can be driver-specific), and require that auto is set to
false at least T number of transitions ahead of a state (in Auto) that is unsafe.

CHAPTER 7. REACTIVE SYNTHESIS 99

• Conditionally-Correct. The auto-controller is responsible for correct operation as long
as auto is set to true. Formally, if auto = true when Auto is at a state q, then
F (q) = false. Additionally, when auto is set to false, the auto-controller should
still maintain correct operation in the next T − 1 time steps, during or after which
we assume the human operator take over control. Formally, if auto changes from
true to false when Auto is at a state q, let RT(q) be the set of states reachable from
q within T − 1 transitions, then F (q′) = false, ∀q′ ∈ RT(q).

Problem 4 (Human-Robot Controller Synthesis Problem). Given a model of the system and
its specification expressed in a formal language, synthesize a human-robot controller that is, by
construction, monitoring, minimally intervening, prescient, and conditionally correct.

In this chapter, we study the synthesis of a human-robot controller in the setting of
synthesis of reactive systems from Linear Temporal Logic (LTL) specifications. We give
background on this setting in Chapter 2.3, and propose an algorithm for solving the
Human-Robot Controller Synthesis problem in Section 7.3.

7.3 Human-Robot Controller Synthesis

Given an unrealizable specification, a counterstrategy S env exists for env which describes
moves by env such that it can force a violation of the system guarantees. The key insight
of our approach for synthesizing a human-robot controller is that we can synthesize
an advisory controller that monitors these moves and prompts the human operator
with sufficient time ahead of any danger. These moves are essentially assumptions
on the environment under which the system guarantees can be ensured. When these
assumptions are not violated (the environment may behave in a benign way in reality),
the auto-controller fulfills the objective of the controller. On the other hand, if any of the
assumptions is violated, as flagged by the advisory controller, then the control is safely
switched to the human operator in a way that she can have sufficient time to respond.
The challenge, however, is to decide when an advisory should be sent to the human
operator, in a way that it is also minimally intervening to the human operator. We use the
following example to illustrate our algorithm.

Example 1. Consider X = {x}, Y = {y} and the following LTL sub-formulas which together
form ψ = ψenv → ψsys.

• ψenv
f = G (F ¬x)

• ψ
sys
t = G (¬x → ¬y)

• ψ
sys
f = G (F y)

CHAPTER 7. REACTIVE SYNTHESIS 100

!"#$

!#$

!#

!"#$

!"% #$

!"% #$

!"% #$

!"% #$

&'

&(

&(

&(

(a) Counterstrategy graph Gc for unre-
alizable specification ψ.

$

!"#$

!#$

!#

!"% #$

!"% #$

!"% #$

!"#$

&'

&(

&(

&(

failure-prone

(b) Condensed graph Ĝc for Gc after
contracting the strongly connected com-
ponents.

Specification ψ is not realizable. Figure 7.3a shows the computed counterstrategy graph Gc.
The literal x̄ (ȳ) denotes the negation of the propositional variable x (y). The memory content
is denoted by γi with γ0 being the initial memory content. The three states on the left are the
initial states. The literals on the edges indicate that the environment first chooses x̄ and then
the system chooses ȳ. (the system is forced to pick ȳ due to ψ

sys
t). Observe that, according the

counterstrategy, the system will be forced to pick ȳ perpetually. Hence, the other system guarantee
ψ

sys
f cannot be satisfied.

Weighted Counterstrategy Graph

Recall that a counterstrategy can be viewed as a discrete transition system or a directed
graph Gc. We consider two types of imminent failures (violation of some system guarantee
specification) described by Gc.

• Safety violation. For a node (state) q1
c ∈ Qc, if there does not exist a node q2

c such
that (q1

c , q2
c) ∈ ρc, then we say q1

c is failure-imminent. In this scenario, after env picks
a next input according to the counterstrategy, sys cannot find a next output such
that all of the (safety) guarantees are satisfied (some ψ

sys
i or ψ

sys
t is violated).

• Fairness violation. If a node qc is part of a strongly connected component (SCC) in
Qc, then we say qc is failure-doomed. For example, the node (x̄, ȳ, γ1) in Figure 7.3a
is a failure-doomed node. Starting from qc, env can always pick inputs in such a
way that the play is forced to get stuck in SCC. Clearly, all other states in SCC are
also failure-doomed.

Now we make the connection of the labeling function F for a controller M to the
counterstrategy graph Gc which describes behaviors that M should not exhibit. Consider

CHAPTER 7. REACTIVE SYNTHESIS 101

an auto-controller M and a state q (represented by the assignment xy) in M. F (q) = true

if and only if there exist some qc ∈ Qc such that θc(qc) = xy and qc is either failure-
imminent or failure-doomed. In practice, it is not always the case that the environment
will behave in the most adversarial way. For example, a car in front may yield if it
is blocking our path. Hence, even though the specification is not realizable, it is still
important to assess, at any given state, whether it will actually lead to a violation. For
simplicity, we assume that the environment will adhere to the counterstrategy once it
enters a failure-doomed state.

We can convert Gc to its directed acyclic graph (DAG) embedding Ĝc = (Q̂c, Q̂0
c , ρ̂c)

by contracting each SCC in Gc to a single node. Figure 7.3b shows the condensed graph

Ĝc of Gc shown in Figure 7.3a. We use a surjective function f̂ : Qc → Q̂c to describe the
mapping of nodes from Gc to Ĝc. We say a node q̂ ∈ Q̂c is failure-prone if a node qc ∈ Qc

is either failure-imminent or failure-doomed and f̂ (qc) = q̂.
Recall from Section 7.2 that the notion of minimally-intervening requires the minimiza-

tion of a cost function C, which involves the probability that auto is set to false, Thus far,
we have not associated any probabilities with transitions taken by the environment or the
system. While our approach can be adapted to work with any assignment of probabilities,
for ease of presentation, we make a particular choice in this chapter. Specifically, we
assume that at each step, the environment picks a next-input uniformly at random from
the set of possible legal actions (next-inputs) obtained from ηenv given the current state.
In Example 1 and correspondingly Figure 7.3a, this means that it is equally likely for env
to choose x̄ or x from any of the states. We use c(q) to denote the total number of legal
actions that the environment can take from a state q.

In addition, we take into account of the cost of having the human operator perform
the maneuver instead of the auto-controller. In general, this cost increases with longer
human engagement. Based on these two notions, we define ̟, which assigns a weight to
an edge e ∈ Q̂c × Q̂c in Ĝc, recursively as follows. For an edge between q̂i and q̂j,

̟(q̂i, q̂j) =

{

1 if q̂j is failure-prone
pen(q̂i)×len(q̂i)

c(q̂i)
Otherwise

where pen : Q̂c → Q+ is a user-defined penalty parameter3, and len : Q̂c → Z+ is the
length (number of edges) of the shortest path from a node q̂i to any failure-prone node
in Ĝc. Intuitively, a state far away from any failure-prone state is less likely to cause a
failure since the environment would need to make multiple consecutive moves all in an
adversarial way. However, if we transfer control at this state, the human operator will
have to spend more time in control, which is not desirable for a human-robot system
controller. Next, we describe how to use this edge-weighted DAG representation of a
counterstrategy graph to derive a controller that satisfies the criteria established earlier.

3 pen(q̂i) should be chosen such that ̟(q̂i, q̂j) < 1.

CHAPTER 7. REACTIVE SYNTHESIS 102

Counterstrategy-Guided Synthesis

Suppose we have a counterstrategy graph Gc that summarizes all possible ways for the
environment to force a violation of the system guarantees. Consider an outgoing edge
from a non-failure-prone node q̂ in Ĝc (condensed graph of Gc), this edge encodes a
particular condition where the environment makes a next-move given some last move
made by the environment and the system. If some of these next-moves by the environment
are disallowed, such that none of the failure-prone nodes are reachable from any initial
state, then we have effectively eliminated the counterstrategy. This means that if we assert
the negation of the corresponding conditions as additional ψenv

t (environment transition
assumptions), then we can obtain a realizable specification.

Formally, we mine assumptions of the form φ =
∧

i(G (ai → ¬X bi)), where ai is
a Boolean formula describing a set of assignments over variables in X ∪ Y, and bi is a
Boolean formula describing a set of assignments over variables in X.

Under the assumption φ, if (φ ∧ ψenv)→ ψsys is realizable, then we can automatically
synthesize an auto-controller that satisfies ψ. In addition, the key observation here is that
mining φ is equivalent to finding a set of edges in Ĝc such that, if these edges are removed
from Ĝc, then none of the failure-prone nodes is reachable from any initial state. We
denote such set of edges as Eφ, where each edge e ∈ Eφ corresponds to a conjunct in φ.
For example, if we remove the three outgoing edges from the source nodes in Figure 7.3b,
then the failure-prone node is not reachable. Removing these three edges correspond to
adding the following environment assumption, which can be monitored at runtime.

G ((x ∧ y)→ ¬X x̄) ∧G ((x̄ ∧ ȳ)→ ¬X x̄) ∧G ((x ∧ ȳ)→ ¬X x̄)

Human factors play an important role in the design of a controller for human-robot
systems. The criteria established for a controller in Section 7.2 also require it to be prescient
and minimally intervening. Hence, we want to mine assumptions that reflect these criteria
as well. The notion of prescient essentially requires that none of the failure-prone nodes
is reachable from a non-failure-prone node with less than T steps (edges). The weight
function ̟ introduced earlier can be used to characterize the cost of a failing assumption
resulting in the advisory controller prompting the human operator to take over control
(by setting auto to false). Formally, we seek Eφ such that the total cost of switching
control ∑e∈Eφ ̟(e) is minimized.

We can formulate this problem as a s-t min-cut problem for directed acyclic graphs.
Given Ĝc, we first compute the subset of nodes Q̂T

c ⊆ Q̂c that are backward reachable
within T − 1 steps from the set of failure-prone nodes (when T = 1, Q̂T

c is the set of
failure-prone node). We assume that Q̂0

c ∩ Q̂T
c = ∅. Next, we remove the set of nodes Q̂T

c

from Ĝc and obtain a new graph ĜT
c . Since ĜT

c is again a DAG, we have a set of source
nodes and a set of terminal nodes. Thus, we can formulate a s-t min-cut problem by
adding a new source node that has an outgoing edge (with a sufficiently large weight)
to each of the source nodes and a new terminal node that has an incoming edge (with
a sufficiently large weight) from each of the terminal nodes. This s-t min-cut problem

CHAPTER 7. REACTIVE SYNTHESIS 103

Algorithm 2 Counterstrategy-Guided Human-Robot Controller Synthesis

Input: GR(1) specification ψ = ψenv → ψsys.
Input: T : parameter for minimum human response time.
Output: Auto and VC. Our controller is then a composition of Auto, VC and H.

if ψ is realizable then
Synthesize transducer M |= ψ (using standard LTL synthesis);
Controller := M (fully autonomous).

else
Generate Gc from ψ (assume a single Gc; otherwise the algorithm is performed
iteratively);
Generate the DAG embedded Ĝc from Gc.
Reduce Ĝc to ĜT

c ;
Assign weights to Ĝc using ϕ; by removing Q̂T

c – nodes that are within T− 1 steps of
any failure-prone node;
Formulate a s-t min-cut problem with ĜT

c ;
Solve the s-t min-cut problem to obtain Eφ;
Add assumptions φ to ψ to obtain the new specification ψnew := (φ ∧ ψenv)→ ψsys;
Synthesize Auto so that M |= ψnew;
Synthesize VC as a (stateless) monitor that outputs auto = false if φ is violated.

end if

can be easily solved by standard techniques [40]. The overall approach is summarized in
Algorithm 2.

Theorem 4. Given a LTL specification ψ and a response time parameter T, Algorithm 2 is guar-
anteed to either produce a fully autonomous controller satisfying ψ, or a human-robot controller,
modeled as a composition of an auto-controller Auto, a human operator and an advisory con-
troller VC, that is monitoring, prescient with parameter T, minimally intervening4 with
respect to the cost function fC = ∑e∈Eφ ̟(e), and conditionally correct5.

Proof. (Sketch) When ψ is realizable, a fully autonomous controller is synthesized and
unconditionally satisfies ψ. Now consider that case when ψ is not realizable.

The HuIL controller is monitoring as φ only comprises a set of environment transitions
up to the next environment input.

It is prescient by construction. The auto flag advising the human operator to take over
control is set to false precisely when φ is violated. When φ is violated, it corresponds to
the environment making a next-move from the current state q according to some edge

e = (q̂i, q̂j) ∈ Eφ. Consider any qc ∈ Qc such that f̂ (qc) = q̂i, θc(qc) = q. Since q̂i 6∈ Q̂T
c by

4We assume the counterstrategy we use to mine the assumptions is an optimal one – it forces a violation
of the system guarantees as quickly as possible.

5We assume that all failure-prone nodes are at least T steps away from any initial node.

CHAPTER 7. REACTIVE SYNTHESIS 104

the construction of ĜT
c , q̂i is at least T transitions away from any failure-prone state in Ĝc.

This means qc must also be at least T transitions away from any failure-imminent state or
failure-doomed state in Qc. Hence, by the definition of F with respect to a failure-doomed
or failure-doomed state in Section 7.3, q is (and auto is set) at least T transitions ahead of
any state that is unsafe.

The controller is also conditionally correct. By the same reasoning as above, for any
state q′ ∈ RT(q), F (q′) = false, i.e. q′ is safe.

Finally, since auto is set to false precisely when φ is violated, and φ in turn is
constructed based on the set of edges Eφ, which minimizes the cost function fC =
∑e∈Eφ ̟(e), the controller is minimally-intervening with respect to the cost function fC.

Switching from Human Operator to Auto-Controller

Once control has been transferred to the human operator, when should the human yield
control to the autonomous controller again? One idea is for the controller to continually
monitor the environment after the human operator has taken control, checking if a state
is reached from which the auto-controller can ensure that it satisfies the specification
(under assumption φ), and then the advisory controller can signal a driver telling her that
the auto-controller is ready to take back control. We note that alternative approaches may
exist and we plan to investigate this further in future work.

7.4 Experimental Results

Our algorithm is implemented as an extension to the GR(1) synthesis tool RATSY [30]. We
now discuss the car-following example (as shown in Section 7.1) here. The implementation
can be found here: http://verifun.eecs.berkeley.edu/tacas14/

Recall the car-following example shown in Section 7.1. We describe some of the more
interesting specifications below and their corresponding LTL formulas. pA, pB, pC are
used to denote the positions of car A, B and C respectively.

• Any position can be occupied by at most one car at a time (no crashing):

G
(

pA = x → (pB 6= x ∧ pC 6= x)
)

where x denotes a position on the discretized space. The cases for B and C are
similar, but they are part of ψenv.

• Car A is required to follow car B:

G
(

(vAB = true ∧ pA = x)→ X (vAB = true)
)

where vAB = true if and only if car A can see car B.

CHAPTER 7. REACTIVE SYNTHESIS 105

• Two cars cannot cross each other if they are right next to each other. For example,
when pC = 5, pA = 6 and p′C = 8 (in the next cycle), p′A 6= 7. In LTL,

G
(

((pC = 5) ∧ (pA = 6) ∧ (X pC = 8))→ (X (pA 6= 7))
)

The other specifications can be found in the link at the beginning of this section.
Observe that car C can in fact force a violation of the system guarantees in one step under
two situations – when pC = 5, pB = 8 and pA = 4, or pC = 5, pB = 8 and pA = 6. Both
are situations where car C is blocking the view of car A, causing it to lose track of car B.
The second failure scenario is illustrated in Figure 7.2b.

Applying our algorithm to this (unrealizable) specification with T = 1, we obtain the
following assumption φ.

φ = G
(

((pA = 4) ∧ (pB = 6) ∧ (pC = 1))→ ¬X ((pB = 8) ∧ (pC = 5))
)
∧

G
(

((pA = 4) ∧ (pB = 6) ∧ (pC = 1))→ ¬X ((pB = 6) ∧ (pC = 3))
)
∧

G
(

((pA = 4) ∧ (pB = 6) ∧ (pC = 1))→ ¬X ((pB = 6) ∧ (pC = 5))
)

In fact, φ corresponds to three possible evolutions of the environment from the initial
state. In general, φ can be a conjunction of conditions at different time steps as env and
sys progress. The advantage of our approach is that it can produce φ such that we can
synthesize an auto-controller that is guaranteed to satisfy the specification if φ is not
violated, together with an advisory controller that prompts the driver (at least) T (T = 1
in this case) time steps ahead of a potential failure when φ is violated.

7.5 Chapter Summary

ln this chapter, we’ve discussed the problem of reactive synthesis from temporal logic
specifications [141, 138]. Similar to [97], we have synthesized a discrete controller from
temporal logic specifications.

Wongpiromsarn et al. [183] consider a receding horizon framework to reduce the
synthesis problem to a set of simpler problems for a short horizon. We further discuss a
receding horizon variant of our problem in the future chapters. Livingston et al. [112, 113]
exploit the notion of locality that allows “patching" a nominal solution. They update the
local parts of the strategy as new data accumulates allowing incremental synthesis. The
patching algorithm considers changes in the game graph, and identifies the affected nodes
for each system goal and modifies the graph locally. In our approach, we do not start with
a synthesized game graph, and we mine assumptions from counterstrategies. Also, we
consider environment assumptions that are not only limited to the topological changes.
The key innovation in this chapter is that our work is the first to consider synthesizing
interventions that combine an autonomous controller with a human operator.

CHAPTER 7. REACTIVE SYNTHESIS 106

Our work is inspired by the recent works on assumption mining. Chatterjee et al. [37]
construct a minimal environment assumption by removing edges from the game graph
to ensure safety assumptions, then compute liveness assumptions to put additional
fairness constraints on the remaining edges. Finding this minimal set is NP-Hard.
Our approach is based on removing edges from the counter-strategy; therefore, the
environment assumptions are easier to mine, and more practical as they can be mapped
to monitoring real sensors. The flexibility of choosing which edge to remove gives us a
measure of conservativeness in our control. Removing edges closer to the source node
prevents any violations in the future moves and removing edges towards the sink node
is less conservative. Li et al. [109] and later Alur et al. [8] use a counterstrategy-guided
approach to mine environment assumptions for GR(1) specifications. We adapt this
approach to the synthesis of controllers for human-robot systems.

Finally, human’s reaction time while driving is an important consideration in this
chapter. This time is based on human’s reaction time while driving, which is driver-
specific. The value of reaction time can range from 1 to 2.5 seconds for different tasks
and drivers [169].

One limitation of the current approach is the use of an explicit counterstrategy graph
(due to weight assignment). We plan to explore symbolic algorithms in the future. Further,
we plan to synthesize a systematic intervention scheme that closely combines models of
operators, and provides formal correctness guarantees about it.

107

Chapter 8

Reactive Synthesis from Signal
Temporal Logic

In this chapter, our goal is to design controllers that satisfy desired temporal logic
specifications despite a potentially adversarial environment or human models. These
synthesized controllers are robust to uncertain environment or human actions.

As we have seen in the previous chapter, temporal logics is a valuable tool for
controller synthesis. Approaches using temporal logic can be broadly categorized based
on if they use a discrete abstraction of the system, and if the environment is assumed to
be deterministic.

Using discrete abstraction enables the construction of a discrete supervisory controller,
which can then construct a hybrid controller. These discrete abstraction techniques
address both deterministic [94, 133] and adversarial environments [53, 186]. In contrast,
techniques that avoid discrete abstraction include sampling-based methods [88], and
mixed-integer linear programming encodings of temporal logic specifications [86, 89, 100,
182, 147].

In this chapter, we plan to close the gap between these two techniques by addressing
controller synthesis under reactive environments through mixed-integer linear program-
ming encodings. The ideas and results of this chapter was done in close collaboration
with Vasumathi Raman, Alexandre Donze, Richard Murray, and Sanjit Seshia. Specifically,
Vasumathi Raman’s ideas for the mixed integer encoding of signal temporal logic, and
her previous work [146] has provided us with an insight that led to the algorithms and
results of this chapter.

We adopt a counterexample-guided inductive synthesis [166] approach to synthesize a
controller satisfying reactive specifications. Inductive synthesis refers to the automated
generation of a system from input-output examples, using each new example to iteratively
refine the hypothesis about the system until convergence. In Counterexample-Guided
Inductive Synthesis (CEGIS), the examples are mostly counterexamples discovered while
trying to verify correctness of the current guess. CEGIS thus relies primarily on a
validation engine to validate candidates produced at intermediate iterations, which can

CHAPTER 8. REACTIVE SYNTHESIS FROM STL 108

produce counterexamples for use in the next iteration. Automated synthesis of systems
using CEGIS and the closely related Counterexample-Guided Abstraction Refinement
(CEGAR) paradigm has been widely studied in various contexts [38, 8, 84].

The specification language adopted here is STL [119], which allows the specification
of temporal properties of real-valued signals, and has been applied to the analysis of
hybrid dynamical systems from various application domains such as analog and mixed
signal circuits, systems biology or Cyber-Physical Systems (CPS) (see Chapter 2.3). We
exploit the quantitative semantics of STL to compute the robustness of satisfaction in the
validation engine for our CEGIS approach to reactive synthesis.

A key advantage of temporal logic over, e.g., domain-specific languages based on
propositional logic, is that it enables the expression of properties of infinite traces. We
would therefore like to synthesize controllers that can run indefinitely, and satisfy infinite-
horizon properties. However, in this chapter we use a Receding Horizon Control approach
introduced in Chapter 2.1. This not only reduces computational complexity, but also
improves robustness with respect to exogenous disturbances and modeling uncertainties
by allowing new information to be incorporated as it becomes available [126].

The connection between Receding Horizon Control (RHC) and control synthesis from
STL specifications are discussed in previous work [147], where the authors specify desired
properties of the system using a STL formula, and synthesize control strategies such that
the system satisfies that specification, while using a receding horizon approach. Raman et
al. present automatically-generated Mixed Integer Linear Program (MILP) encodings for
STL specifications, extending the Bounded Model Checking (BMC) paradigm for finite
discrete systems [28] to STL. These encodings can be used not only to generate open-loop
control signals that satisfy finite and infinite horizon STL properties, but also to generate
signals that maximize quantitative (robust) satisfaction. In this chapter, we show how the
robustness-based encoding can be used to produce a validation engine that synthesizes
counterexamples to guide a CEGIS approach to reactive synthesis.

Abbas et al. [1] exploit the quantitative semantics of Metric Temporal Logic (MTL) to
design a framework for specification-guided testing of stochastic cyber-physical systems.
Leveraging results from stochastic optimization, they frame the verification of properties
on such systems as a global optimization problem of minimizing the expected robustness
of satisfaction. While we work with nondeterministic systems rather than stochastic
systems, our CEGIS approach leverages a similar idea when finding an adversarial
environment input that minimizes the robustness of satisfaction.

Receding horizon control that satisfies temporal logic specifications in adversarial
settings has been considered before in the context of Linear Temporal Logic (LTL) [186],
where the authors propose a framework utilizing discrete abstractions to synthesize su-
pervisory controllers for specifications in the GR(1) subset of LTL. In this work, feasibility
of the global specification is determined via symbolic checks on a series of pre-defined
smaller problems, and strategies extracted as needed. In contrast, we do not require an a
priori defined finite set of sub-problems. Our approach also extends synthesis capabilities
to a wider class of temporal logic specifications and environments than [68, 23], and

CHAPTER 8. REACTIVE SYNTHESIS FROM STL 109

avoids potentially expensive computations of a finite state abstraction of the system as in
[43] and [186].

The key contribution of this chapter is a CEGIS approach to controller synthesis for
cyber-physical systems subject to signal temporal logic (STL) specifications, operating in
and interacting with potentially adversarial nondeterministic environments or human
agents. Specific features of our approach include:

• We leverage the previously-proposed encoding of STL specifications as mixed
integer-linear constraints [147], and solve a counterexample-guided series of opti-
mization problems to yield a satisfying control sequence.

• Our framework can be used in a receding horizon fashion to fulfill properties over
unbounded horizons.

• We present experimental results using a case study of controller synthesis for an
autonomous driving scenario in the presence of adversarial agents; simulation
results in this domain illustrate the effectiveness of our methodology.

8.1 MILP Encoding for Controller Synthesis

In order to synthesize a run that satisfies a STL formula ϕ, we add STL constraints to
a MILP formulation of the control synthesis problem as in [147]. We first represent the
system trajectory as a finite sequence of states satisfying the model dynamics in equation
(2.7). Then, we encode the formula ϕ with a set of MILP constraints; our encoding
produces a MILP as long as the functions µ that define the predicates πµ in ϕ are linear
or affine.

Constraints on system evolution

The system constraints encode valid finite (horizon-N) trajectories for a dynamical system–
these constraints hold if and only if the trajectory ξ(x0, uN, wN) satisfies (2.7). A typical
situation is when the discrete dynamics fd is linear. In that case, the constraints on system
evolution are of the form

x1 = Ax0 + Buu0 + Bww0

x2 = Ax1 + Buu1 + Bww1

. . .

xN = AxN−1 + BuuN−1 + BwwN−1

CHAPTER 8. REACTIVE SYNTHESIS FROM STL 110

STL constraints

The robustness of satisfaction of the STL specification, as defined in Chapter 2.3, provides
a natural objective for the MILP defined above, either in the absence of, or as a complement
to domain-specific objectives on runs of the system.

As described in Chapter 2.3, the robustness of a STL specification ϕ can be computed
recursively on the structure of the formula. Moreover, since max and min operations
can be expressed in a MILP formulation using additional binary variables, this does
not add complexity to the encoding (although the additional variables make it more
computationally expensive in practice). For a given formula ϕ, we introduce a variable ρ

ϕ
k ,

and an associated set of MILP constraints such that ρ
ϕ
k > 0 if and only if ϕ holds at time tk.

Given ϕ, we recursively generate MILP constraints for every subformula of ϕ, such that
ρ

ϕ
0 determines whether ϕ holds in the initial state. For example, enforcing ρ

ϕ
k = ρϕ(x, tk)

gives us this property. The reader is referred to [147] for details of this encoding. The
advantage of this robustness-based encoding is that it allows us to maximize or minimize
the value of ρ

ϕ
0 , obtaining a trajectory that maximizes or minimizes the robustness of

satisfaction.
The union of the STL constraints and system constraints yields a MILP, enabling us

to check feasibility and find a solution when possible using a MILP solver; for further
details and examples see [147]. Given an objective function on runs of the system, we
can also find an optimal trajectory that satisfies the STL specification. The robustness
provides a natural objective for this MILP, either in the absence of, or as a complement to
domain-specific objectives on runs of the system.

Mixed integer-linear programs are NP-hard, and hence impractical when the dimen-
sions of the problem grow. We present the computational costs of the above encoding in
terms of the number of variables and constraints in the resulting MILP. If P is the set of
predicates used in the formula and |ϕ| is the length (i.e. the number of operators), then
O(N · |P|) + O(N · |ϕ|) continuous variables are introduced. In addition, O(N) binary
variables are introduced for every instance of a Boolean operator, i.e., O(N · |ϕ|) Boolean
variables.

The dimensionality of the discrete-time dynamical system affects the size of the
constructed MILP linearly via the constraints encoding system evolution (more precisely,
through the size of the set of predicates P). However, given the efficiency of modern
MILP solvers, there is no evidence that a linear increase in the problem size would in
practice lead to more than a linear increase in computational time for a solution. Methods
based on abstraction or discretization of the state space, on the other hand, are much
more likely to have exponential complexity with respect to system dimensionality. We
note, however, that our approach is more sensitive to the size of the specifications, and in
particular to the nesting degree of temporal operators. We report on the scalability of our
approach in Section 8.5.

CHAPTER 8. REACTIVE SYNTHESIS FROM STL 111

8.2 STL Reactive Synthesis Problem

We address the problem of synthesizing control inputs for a system operating in the
presence of potentially adversarial, a priori uncertain external inputs or disturbances. The
controllers we produce will provide guarantees for specifications of the form ϕ

.
= ϕe ⇒ ϕs,

where ϕe places assumptions on the external environment, and ϕs specifies desired
guarantees on the plant behavior. In this chapter, ϕe refers exclusively to properties of
signals w ∈Wω, whereas ϕs refers to properties of x ∈ X ω and u ∈ Uω.

We now formally state the synthesis problem for reactive controllers subject to STL
specifications of the form above, and its receding horizon formulation.

Problem 5 (STL Reactive Synthesis). Given a discrete dynamical system:

xt+1 = f (xt, ut, wt), (8.1)

initial state x0, trajectory length N, STL formula ϕ and cost function J, compute:

argmin
uN

max
wN∈{w∈WN |w|=ϕe}

J(ξ(x0, uN, wN))

s.t. ∀wN ∈WN, ξ(x0, uN, wN) |= ϕ

Problem 6 (Receding Horizon Reactive Synthesis). Given a system of the form in equation
(8.1), initial state x0, STL formula ϕ and cost function J, at each time step k, compute:

argmin
uH,k

max
wH,k∈{w∈WH |w|=ϕe}

J(ξ(xk, uH,k, wH,k))

s.t. ∀w ∈Wω, ξ(x0, u, w) |= ϕ,

where H is a finite horizon provided as a user input or selected in some other fashion, uH,k is the

horizon-H control input computed at each time step and u = uH,0
0 uH,1

0 uH,2
0

In Sections 8.3 and 8.4, we present both a finite-trajectory solution to Problem 5,
and a solution to Problem 6 for a large class of STL formulas. A key component of
our solution is to use the previously presented encoding of STL specifications as MILP
constraints [147] in combination with MILP constraints representing the system dynamics
to efficiently solve the resulting constrained optimization problem.

8.3 Counterexample-Guided Finite Horizon Synthesis

We propose a solution to Problem 5 using a counterexample guided inductive synthesis
(CEGIS) procedure. We first consider bounded STL properties ϕ, bounded by N ∈ N.

CHAPTER 8. REACTIVE SYNTHESIS FROM STL 112

Algorithm 3 CEGIS Algorithm for Problem 5

1: Input: ξ, x0, N, ϕ, J
2: Let w0 = (w0

1, w0
2, ...w0

N−1), s.t. wN |= ϕe

3: Wcand = {w0}
4: while True do
5:

u0 ← argmin
u∈UN

maxw0∈Wcand
J(ξ(x0, u, w0))

s.t. ∀w0 ∈Wcand, ξ(x0, u, w0) |= ϕs,

6: if u0 == null then
7: Return INFEASIBLE

8: end if
9:

w1 ← argminw∈WN ρϕ(ξ(x0, u0, w), 0)
s.t. w1 |= ϕe

10: if ρϕ(ξ(x0, u0, w1)) > 0 then
11: Return u0

12: else
13: Wcand ←Wcand ∪ {w1}
14: end if
15: end while

Once we have this scheme for synthesizing control for finite trajectories satisfying bounded
specifications, we will use a receding horizon scheme for infinite trajectories.

We now describe the steps of Algorithm 3 in detail. In Step 2, we choose an initial
instance w0 of an environment that satisfies the specification ϕe. We do so using the
open-loop synthesis algorithm for bounded-time STL described in [147]. Our initial set
of candidate environment inputs is a singleton, Wcand = {w0} (Step 3). Then, in Step 5,
we compute the optimal control input u0 with respect to this environment, such that the
system specification ϕs is satisfied; this step also uses the solution in [147]. If the problem
in Step 5 is infeasible, we know that there is a control input w0 ∈Wcand against which no
control input can satisfy ϕ, so we can stop and return (Step 7). Otherwise, in Step 9, we
find an environment w1 that satisfies ϕe, but also minimizes the robustness of satisfaction
of ϕ for the control input u0. Essentially, this step tries to find an environment that
falsifies the specification ϕ when the control input u0 is used. If the minimum robustness
ρϕ(ξ(x0, u0, w1)) thus computed is positive, this implies ∀w ∈WN ξ(x0, u0, w) |= ϕ, so
we can return the control input u0 as our result in Step 11. Otherwise, we have generated
a counterexample to u0 being the desired control input, i.e. an environment w1 that
falsifies ϕ when u0 is used. We use this counterexample to guide our inductive synthesis
in Step 13, by adding it to the set of environments to be considered in the next iteration.

CHAPTER 8. REACTIVE SYNTHESIS FROM STL 113

We then resume execution of the while loop from Step 4.

Theorem 5. If Algorithm 3 returns uN ∈ UN, then ∀wN ∈ WN, ξ(x0, uN, wN) |= ϕ. If
Algorithm 3 returns INFEASIBLE, then Problem 5 is infeasible.

Note that Algorithm 3 does not fully solve Problem 5, because it does not always
ensure cost-optimality of uN with respect to all disturbances wN ∈WN — the returned
uN is optimal with respect to a specific set of disturbances Wcand ⊆ WN.

Since |Wcand| grows by 1 at every iteration of the while loop, the MILP in Step 5
grows linearly with the number of iterations, as we duplicate constraints for each new
counterexample. If W is finite, Wcand will converge, and Algorithm 3 is sound and
complete.

If W is infinite, Algorithm 3 may never terminate. We can choose to execute a
maximum number of iterations of the while loop before declaring the problem infeasible.
However, there is actually more information available to us. In fact, we can solve the
robust control problem (i.e. Problem 5) to within an arbitrary tolerance by sampling
a finite number of independent and identically distributed (i.i.d.) wN. Esfahani et al.
show the feasibility and performance bound of this approach for a class of non-convex
MILP problems [49]. They prove that for this specific class of programs, the quality of
the solution after drawing M i.i.d. samples can be lower-bounded. Here, we first show
that we can have a similar bound by i.i.d. sampling, and then prove that Algorithm 3
performs strictly better than i.i.d. sampling. We first formulate Problem 5 as a feasibility
problem by moving the objective to the set of constraints. This transformation facilitates
defining a relaxed variant of Problem 5.

Problem 7. Given a system of the form in equation (8.1), initial state x0, trajectory length N,
STL formula ϕ, cost function J, and threshold t compute:

argmin
uN

0

s.t. ∀wN ∈WN, ξ(x0, uN, wN) |= ϕ,
∀wN ∈ {w ∈WN |w |= ϕe} J(ξ(x0, uN, wN)) ≤ t.

Now, we define an ǫ-relaxation of Problem 7, where each constraint is satisfied within
an ǫ threshold.

Problem 8 (Relaxed STL Reactive Synthesis). Given a system of the form in equation (8.1),
initial state x0, trajectory length N, STL formula ϕ, cost function J, and threshold t, compute:

argmin
uN

0

subject to ∀wN ∈WN, ξ(x0, uN, wN) |=ǫ ϕ,

∀wN ∈ {w ∈WN |w |= ϕe} J(ξ(x0, uN, wN)) ≤ t + ǫ,

(8.2)

where the relaxed constraint ξ(x0, uN , wN) |=ǫ ϕ represents the ǫ-satisfaction of the STL formula
ϕ, which is equivalent to ρϕ(ξ(x0, uN, wN)) > −ǫ.

CHAPTER 8. REACTIVE SYNTHESIS FROM STL 114

We define a new robustness function that takes into account both the objective J and
the constraints ϕ:

ρ
ϕ
t,J(ξ(x0, uN, wN)) = min(ρϕ(ξ(x0, uN, wN)), t− J(ξ(x0, uN, wN)). (8.3)

The solution to Problem 8 can be found by slightly modifying Algorithm 3, where
satisfaction of formulas are replaced by ǫ-satisfaction for the feasibility problem. We call
this modified algorithm the Relaxed CEGIS Algorithm.

Algorithm 4 Relaxed CEGIS Algorithm for Problem 8

1: Input: ξ, x0, N, ϕ, J, t
2: Let w0 = (w0

1, w0
2, ...w0

N−1), s.t. wN |= ϕe

3: Wcand = {w0}
4: while True do
5:

u0 ← argmin
u∈UN

0

subject to ∀w0 ∈Wcand, ξ(x0, u, w0) |= ϕs,

∀w0 ∈Wcand, J(ξ(x0, u, w0)) ≤ t,

(8.4)

6: if u0 == null then
7: return INFEASIBLE

8: end if
9:

w1 ← argmin
w∈WN

ρ
ϕ
t,J(ξ(x0, u0, w), 0)

subject to w1 |= ϕe

(8.5)

10: if ρ
ϕ
t,J(ξ(x0, u0, w1)) > −ǫ then

11: return u0

12: else
13: Wcand ←Wcand ∪ {w1}
14: end if
15: end while

Remark 7. The robustness function of an STL formula ρϕ is Lipschitz continuous, and its
Lipschitz constant Lϕ can be computed from the Lipschitz constant of the atomic propositions of
ϕ by simply noting that minimum and maximum do not increase the Lipschitz constant. For
example, let ϕ = G[0,∞)(s(t) > 5) ∧ F[0,∞)(2s(t) > 20), then the Lipschitz constant Lϕ is the

maximum of the Lipschitz constants of the atomic predicates, i.e., Lϕ = max(1, 2) = 2.

CHAPTER 8. REACTIVE SYNTHESIS FROM STL 115

Remark 8. Under the assumption that the objective function J is Lipschitz continuous, with
Lipschitz constant LJ , we define the Lipschitz constant of ρ

ϕ
t,J to be the maximum of Lϕ and LJ ,

i.e., L = max(LJ , Lϕ).

Lemma 3. After running the Relaxed CEGIS Algorithm for k time steps, the pairwise distance
between wi and wj ∈ {w1, . . . , wk} is at least ǫ

L , where L is the Lipschitz constant of the

robustness function ρ
ϕ
t,J .

Proof. We use a proof by contradiction method for Lemma 3. Without loss of generality,
we assume that i < j. Let uj be the control input selected at iteration j, and wi be the
disturbance input selected at iteration i. Then, we have ρ

ϕ
t,J(ξ(x0, uj, wi)) > 0. Further, we

assume the distance between wi and wj is less than ǫ
L , i.e., |wi −wj| < ǫ

L . Therefore, by

Lipschitz continuity of ρ
ϕ
t,J , we conclude:

ρ
ϕ
t,J(ξ(x0, uj, wi)) >

−ǫ

L
× L = −ǫ (8.6)

This contradicts our assumption, since if ρ
ϕ
t,J(ξ(x0, uj, wi)) > −ǫ, Step 10 of the Relaxed

CEGIS Algorithm 4 would have returned uj.

Theorem 6. If Wcand is an ǫ
L cover of WN, then solving Problem 7 (or equivalently Problem 5),

where WN is replaced by Wcand provides a solution to the Relaxed STL Reactive Synthesis problem
(Problem 8).

Proof. Suppose solving Problem 7 with a finite number of w ∈ Wcand returns u∗. Since
Wcand is an ǫ

L cover of WN, for every w ∈WN, there exists w′ ∈Wcand and |w−w′| < ǫ
L .

Since u∗ is a solution of Problem 7, we have ρ
ϕ
t,J(ξ(x0, u∗, w′)) > 0. By Lipschitz continuity:

|w−w′| < ǫ

L
→ |ρϕ

t,J(ξ(x0, u∗, w))− ρ
ϕ
t,J(ξ(x0, u∗, w′))| < ǫ. (8.7)

Therefore, ρ
ϕ
t,J(ξ(x0, u∗, w)) > −ǫ for any w ∈ WN, which provides a solution to the

Relaxed STL Reactive Synthesis problem (Problem 8).

Theorem 7. Let WN = [0, 1]N. Then, an ǫ
L cover of WN is obtained with Θ((L

ǫ)
N log(L

ǫ)) i.i.d.
samples.

Proof. We first prove that we can lower bound the number of i.i.d. samples by Ω((L
ǫ)

N log(L
ǫ)).

We divide the cube [0, 1]N into (L
2ǫ)

N subcubes of side length 2ǫ
L , where the center of

each subcube is ǫ
L far from the side of the subcube. To cover the centers of the subcubes,

we need to have selected at least one point from each subcube. Therefore, the problem
reduces to the coupon collector’s problem [125], where the number of coupons is the number
of subcubes, i.e., Θ((L

ǫ)
N) (for a constant N). Then, the expected number of samples

required to cover the centers of the subcubes is Ω((L
ǫ)

N log(L
ǫ)) with i.i.d. sampling. So

this implies that to find an ǫ
L cover of WN we need Ω((L

ǫ)
N log(L

ǫ)).

CHAPTER 8. REACTIVE SYNTHESIS FROM STL 116

Now, we show that this bound is also an upper bound. We now choose the subcubes
with side length ǫ√

N·L . The diameter of such a subcube is ǫ
L . Therefore, if we pick one

point from each subcube, these points form an ǫ
L cover. Then, using the coupon collector’s

problem, we only need O((L
ǫ)

N log(L
ǫ)) samples.

As we have shown both the upper and lower bounds, we only need Θ((L
ǫ)

N log(L
ǫ))

samples to cover the cube [0, 1]N.

Remark 9. If WN = [0, 1]N and Wcand is selected by i.i.d. sampling , then O((L
ǫ)

N log(L
ǫ))

samples are enough to ensure that the solution to Problem 5 with WN replaced with Wcand is a
solution of Problem 8.

Theorem 8. The Relaxed CEGIS Algorithm 4 requires at most O((L
ǫ)

N) samples (under the

assumption that WN = [0, 1]N) to terminate.

Proof. We can divide the cube WN = [0, 1]N to subcubes of side length ǫ√
N·L . By Lemma 3,

we only select one wi ∈ Wcand for each subcube during the CEGIS loop. Therefore, the
number of samples is at most the number of subcubes, i.e., O((L

ǫ)
N).

Theorem 9. Any solution returned by Algorithm 4 is a feasible solution for Problem 8. Further,
if Problem 7 has a feasible solution, Algorithm 4 will never return infeasible.

Proof. Step 10 of Algorithm 4 enforces that ρ
ϕ
t,J(ξ(x0, u0, w1)) > −ǫ; therefore, any solu-

tion returned satisfies the feasibility of Problem 8. In addition, if Problem 7 is feasible,
Step 5 of Algorithm 4 can never return infeasible.

Remark 10. If WN is bounded, then Algorithm 4 terminates in a finite number of steps. This is
because a bounded WN can be covered by balls of diameter ǫ

L , and Wcand cannot take more than
one point in each of these balls.

Remark 11. One might be discouraged by the seemingly modest improvement of the Relaxed
CEGIS Algorithm 4 over i.i.d. sampling. In fact, one might think that this improvement is
offset by the more complicated and time-consuming way of choosing w. However, we solve the
optimization problem of choosing u by reducing the problem to a MILP whose size scales linearly
in the size of Wcand. Therefore, keeping this length of Wcand as small as possible is beneficial.

In practice, solving the problem in Step 5 becomes expensive as Wcand grows, in
particular because the objective is now non-linear. While state-of-the-art MILP solvers e.g.
Gurobi1 handle nonlinear objective functions efficiently, we can preserve the difficulty of
the problem at each iteration by setting Wcand = {w1} in Step 13 instead of growing the
set of candidates. This breaks completeness even for finite sets W, since we may oscillate
between two disturbances, but preserves soundness with respect to the satisfaction of ϕ,
while allowing faster solutions at each iteration of the loop.

1http://www.gurobi.com/

CHAPTER 8. REACTIVE SYNTHESIS FROM STL 117

In the case study described in Section 8.5, we find that a few number of iterations
through the while loop suffices to either find a satisfying control input or render the
problem infeasible.

8.4 Receding Horizon Controller Synthesis in an

Adversarial Environment

In this section, we will describe a solution to Problem 6 by adding STL constraints to a
receding horizon control framework. At each step t of the computation, we will employ
the CEGIS approach in Section 8.3 to find a finite trajectory of fixed horizon length H,
such that the trajectory accumulated over time satisfies ϕ.

Note that this problem is relatively simple for bounded-time STL formulas ϕ, as
described in [147]. Here the length of the horizon H is chosen to be at least the bound
of formula ϕ. Then, at time step 0, we synthesize control uH,0 using the formulation

in Section 8.3, and execute only the first time step uH,0
0 ; we then observe wH,0

0 and x1. Then

at the next step, we solve for uH,1, while constraining the values of uH,1
0 = uH,0

0 , wH,1
0 =

wH,0
0 in the MILP, and retaining the STL constraints on the trajectory up to time H.

Keeping track of the history in this manner ensures that the formula is satisfied over the
length-H prefix of the trajectory, while solving for uH,t at every time step t.

Suppose that we have a specification ψ = Gϕ, where ϕ is a bounded-time formula
with bound H. In this case, we can stitch together trajectories of length H using a receding
horizon approach to produce an infinite computation that satisfies the STL formula. At
each step of the receding horizon computation, we search for a finite trajectory of horizon
length 2H, keeping track of the past values and robustness constraints necessary to
determine satisfaction of ψ at every time step in the trajectory.

First we define a procedure:

CEGIS∗(ξ, x0, N, ψ = Gϕ, J, PH, uk
old) (8.8)

that takes additional inputs P = {P0, P1, ..., PH−1} and uk
old = uk

old0
uk

old1
...uk

oldk−1
, and is

identical to Algorithm 3, except that the optimization problem in Step 5 is solved with
the added constraints:

ρϕ(ξ(x0, u, w0), i) > Pi ∀i ∈ [0, H − 1]

ui = uk
oldi

∀i < k
(8.9)

Algorithm 3 (CEGIS) solves reactive synthesis for bounded horizon formulas. We
are designing Algorithm 5 to deal with unbounded formulas, by invoking bounded-
horizon synthesis at each time step. To ensure soundness of this infinite-horizon synthesis
algorithm, some history needs to be carried forth from one horizon to another to ensure
consistency between the newly synthesized inputs and those produced in previous steps.

CHAPTER 8. REACTIVE SYNTHESIS FROM STL 118

This is achieved by the two additional arguments of CEGIS∗ and the corresponding added
constraints. The first constraint enforces satisfaction of ϕ at all time steps i ∈ [0, H − 1].
The second constraint fixes the first k values of the newly computed input to values
computed in the previous time step.

Given CEGIS∗, we define a receding horizon control procedure as in Algorithm 5. At
each time step, we compute control inputs over a horizon of 2H.

Algorithm 5 RHC Algorithm for Problem 6

1: Input: ξ, x0, ψ = Gϕ, J
2: Let M be a large positive constant.
3: Let H be the bound of ϕ.
4: Set P0 = 0 and Pi = −M ∀ 0 < i ≤ H.
5: Compute u0 = u0

0u0
1....u0

2H−1 as:

u0 ← CEGIS∗(ξ, x0, 2H, G[0,H]ϕ, J, PH, ∅)

6: for k = 1; k < H; k = k + 1 do
7: Set uk

old = u0
0u1

1u2
2...uk−1

k−1.

8: Set Pi = 0 for 0 ≤ i ≤ k, Pi = −M ∀k < i ≤ H.
9: Compute uk = uk

0uk
1....uk

2H−1 as:

uk ← CEGIS∗(ξ, xk, 2H, G[0,H]ϕ, J, PH, uk
old)

10: end for
11: while True do
12: Set uk

old = uk−1
1 uk−1

2 uk−1
3 ...uH−1

H .

13: Set Pi = 0 for 0 ≤ i ≤ H.

uk ← CEGIS∗(ξ, xk, 2H, G[0,H]ϕ, J, PH, uk
old)

14: k = k + 1
15: end while

Algorithm 5 has two phases, a transient phase (Lines 4-10) and a stationary phase
(Lines 11-14). The transient phase applies until an initial control sequence of length
H has been computed, and the stationary phase follows. In the transient phase, the
number of stored previous inputs (uk

old) as well as the number of time steps at which
formula ϕ is enforced (i.e. time steps for which Pi = 0) grows by one at each iteration,
until they both attain a maximum of H at iteration H. Every following iteration uses a
window of size H for stored previous inputs, and sets all Pi = 0. The size-H window of

CHAPTER 8. REACTIVE SYNTHESIS FROM STL 119

previously-computed inputs advances forward one step in time at each iteration after
step H. In this manner, we keep a record of the previously computed inputs required to
ensure satisfaction of ϕ up to H time steps in the past.

Theorem 10. Let u∗ be the infinite sequence of control inputs generated by setting u∗k = uk
H,

where uk = uk
0uk

1...uk
2H−1 is the control input sequence of length 2H generated by Algorithm 5

at time tk. Then ∀w ∈Wω, ξ(x0, u∗, w) |= ψ.

Proof. Since H is the bound of ϕ, the satisfaction of ϕ at time k is established by the
control inputs u∗k . . . u∗k+H−1.

At time k + H,

uk+H
old = uk+H

0 uk+H
1 uk+H

2 ...uk+H
H−1

= uk+H−1
1 uk+H−1

2 uk+H−1
3 ...uk+H−1

H−1 uk+H−1
H

= uk+H−2
2 uk+H−2

3 uk+H−2
4 ...uk+H−2

H uk+H−1
H

= · · ·
= uk

Huk+1
H uk+2

H ...uk+H−1
H

= u∗k u∗k+1u∗k+2...u∗k+H−1

and so all the inputs required to determine satisfaction of ϕ at time k have been fixed.

Moreover, if uk+H is successfully computed, then by the correctness of Algorithm 3, uk+H
old

has the property that ∀wH ∈ WH, ξ(xt, uk+H
old , wH) |= ϕ. Since uk

Huk+1
H uk+2

H ...uk+H−1
H =

uk+H
old , we see that ∀wH ∈WH, ξ(xk, u∗k . . . u∗k+H−1, wH) |= ϕ.

It follows that ∀wω ∈Wω, ξ(x0, u∗, w) |= ϕ.

We have therefore shown how a control input can be synthesized for infinite sequences
satisfying ψ, by repeatedly synthesizing control for sequences of length 2H. A similar
approach applies for formulas Fϕ and ϕ U ψ, where ϕ, ψ are bounded-time.

8.5 Autonomous Driving in Nondeterministic

Environments

We now consider the problem of controlling an autonomous vehicle operating in the
presence of other, potentially adversarial vehicles.

In this example, two moving vehicles approach an intersection, which they must cross.
We let the red car in Figure 8.1 be the ego vehicle (the vehicle we control), and the black
car be part of the environment. We define the state space using a simplified 6-dimensional
model, with the position of the two vehicles ((xego, yego), (xadv, yadv)) and the velocity
of the two (vego = ẏego, vadv = ẋadv) in ms−1 as state variables, and the acceleration
(aego = v̇ego) of the ego vehicle as a single input. The disturbance is the acceleration of the

CHAPTER 8. REACTIVE SYNTHESIS FROM STL 121

The formula ϕs specifies that whenever y
ego
k is close to xadv

k , i.e. within the range

of 2m, the ego vehicle should come to a stop (|vego
k | < 0.1) for a short period of time

(2s). Figure 8.1, shows that the two vehicles will be close only when they are in the
vicinity of the intersection. We expect the ego vehicle to stop at the intersection in order
to allow the adversary to cross. In addition, we optimize the following cost function,
which encourages the ego vehicle’s speed to be close to 1ms−1.

J(ξ(xk, uH, wH)) =
H−1

∑
l=0

||vego
k+l − 1|| (8.14)

Figure 8.2 illustrates the result of applying Algorithm 5 to synthesize control inputs
for the ego vehicle. The first plot shows the position of the two vehicles, xadv

k and y
ego
k (in

m). The ego vehicle starts with a negative value on its y-axis y
ego
0 < 0, and the adversary

starts with a positive x-value xadv
0 > 0. Here the origin represents the middle of the

intersection: at any time k if y
ego
k = xadv

k = 0, the two cars have collided. The synthesized
control input should therefore avoid such a collision, and the two vehicles should not be
at location 0 or its vicinity (|yego

k − xadv
k | < 2) at the same time.

As seen in the first and second subplots in Figure 8.2, at time t = 8s, the ego vehicle
stops at its current position in order to avoid collision with the adversary car. The vehicle
proceeds after a short stop to let the adversary pass. The third subplot shows the velocity
of the two vehicles, and the fourth plot represents the acceleration. Notice that the velocity
of the ego vehicle stabilizes at 1ms−1 at most times as long as it avoids any collisions.
The accelerations shown in the fourth plot include the control input synthesized using
Algorithm 5, and the disturbance, i.e., the acceleration of the adversary.

8.6 Chapter Summary

The main contribution of this chapter is a CEGIS procedure for synthesis of reactive
controllers for systems satisfying STL specifications. We further showed our CEGIS
technique can be used in a receding horizon control framework, and we synthesized
strategies for systems that must satisfy a set of desired STL specifications. Our approach
uses an optimization framework with a given domain-specific cost function in the presence
of adversarial environments. We have also presented experimental results for synthesizing
controllers in a simplified driving scenario, where the controller satisfies the desired
properties despite nondeterministic adversarial environments.

123

Chapter 9

Safe Control under Uncertainty

Achieving safe control under uncertain models for human-robot systems is challenging.
For example, any safe control strategy for quadcopters need to incorporate predictive in-
formation about wind gusts and any associated uncertainty in such predictions. Similarly,
in the case of autonomous driving, the controller needs a probabilistic predictive model
about the other vehicles on the road to avoid collisions. Without a model of uncertainty
that characterizes all possible outcomes, there is no hope in giving guarantees about the
safety of the synthesized controller.

The field of machine learning (ML) has a rich set of tools that can characterize
uncertainties. Specifically, Bayesian graphical models [85] have been popular in modeling
uncertainties arising in scenarios common to robotics. For example, one of the common
strategies is to build classifiers or predictors based on acquired sensor data. It is appealing
to consider such predictors in achieving safe control of dynamical systems. However, it
is almost impossible to guarantee a prediction system that works perfectly at all times.
Consequently, we need to devise control methodologies aware of such limitations imposed
by the ML systems. Specifically, we need to build a framework that is capable of achieving
safe control by being aware of when the prediction system would work or fail.

In this chapter, we propose a framework for achieving safe control, when machine
learning models are employed to make predictions based on sensed signals. The heart
of our framework is the novel Probabilistic Signal Temporal Logic (PrSTL) that allows us
to express safety constraints by considering the predictive models and their associated
uncertainties. This logic allows specifications that embed Bayesian classification methods
via probabilistic predicates that take random variables as parameters, thereby resulting in
a powerful framework that can reason about safety under uncertainty. One of the main
advantages of using Bayesian classification models is the fact that the predictions provided
are full distributions associated with the quantity of interest as opposed to a point
estimate. For example, a classical machine learning method might just provide a value
for wind speed; however, under the Bayesian paradigm we would be recovering an entire
probability distribution over all possible wind profiles. Finally, another distinguishing
aspect of our framework is that these probabilistic predicates are adaptive: as the system

CHAPTER 9. SAFE CONTROL UNDER UNCERTAINTY 124

sees more and more data, the inferred distribution over the latent variables of interest can
change leading to change in the predicates themselves.

Previous efforts for achieving safe control either operate under deterministic envi-
ronments or model uncertainty only as part of the dynamics of the system [72]. These
approaches lack clear connections to various sources of uncertainty present in the envi-
ronment. Specifically, there is no clear understanding of how uncertainty arising due to
sensing and classification could be incorporated while reasoning about safe controllers.

Over the years researchers have proposed different approaches for safe control of
dynamical systems. Designing controllers under reachability analysis and safe learning
are well-studied methods that allow specifying safety and reachability properties, while
learning the optimal strategy online [122, 121, 67, 13, 5]. However, finding the reachable
set is computationally expensive, which makes these approaches impractical for most
interesting tasks. Controller synthesis under temporal specifications such as Linear
Temporal Logic (LTL) allows expressing interesting properties of the system and envi-
ronment, e. g., safety, liveness, response, stability, and has shown promising results [139,
97, 87, 184, 88, 140]. However, synthesis for LTL requires time and space discretization,
which suffers from the curse of dimensionality. Also, while such approaches are effective
at high level planning, they are unsuitable for lower level control of dynamical systems.
Recently, synthesis for Signal Temporal Logic (STL), which allows real-valued, dense-time
properties have been studied in receding horizon settings [148, 89, 65]. One downside of
specifying properties in STL or LTL is that the properties of the system and environment
have to be expressed deterministically. Full knowledge of the exact parameters and
bounds of the specification is an unrealistic assumption for most robotics applications,
where the system interacts with uncertain environments. Related to our work is the
paradigm of Markov Logic Networks [150] that aim to induce probability distributions
over possible worlds by considering weighted logical formulae. However, it is not clear
how such networks can be used for controller synthesis. The proposed framework instead
considers formulae parameterized by random variables, thereby inducing probability
distribution over the set of possible formulae. Further, we show how such formalism
can be embedded in a receding horizon MPC for controller synthesis. In robust control,
uncertainty is modeled as part of the dynamics, and the optimal strategy is found for the
worst case disturbance, which can be a conservative assumption [96, 178]. More recently,
the uncertainty is modeled in a chance constrained framework showing promising re-
sults for urban autonomous driving [105, 176, 29, 36]. Considering uncertainties while
satisfying temporal logic requirements has recently been explored for controller synthesis
and verification [157, 168, 60, 61, 144, 83]. Leahy et al. maximize information gain in
a distributed setting to reduce the uncertainty over belief of every state; however, the
uncertainty is not considered as part of the specification [103]. To best of our knowledge,
none of the previous studies consider scenarios, where the uncertainty and confidence in
properties are originated from sensors, predictors and classifiers, and are formalized as
part of the property.

In this chapter, we aim to alleviate these issues by defining a probabilistic logical

CHAPTER 9. SAFE CONTROL UNDER UNCERTAINTY 125

specification framework that has the capacity to reason about safe control strategies
by embedding various predictions and their associated uncertainty. Specifically, our
contributions in this chapter are:

• Framework for safe control under uncertainty.

• Formally define PrSTL, a logic for expressing probabilistic properties that can embed
Bayesian graphical models.

• Solve a receding horizon control problem to satisfy PrSTL specifications using
Mixed Integer SDPs.

• A toolbox implementing the framework and experiments in autonomous driving
and control of quadrotors.

9.1 Bayesian Classification to Model Uncertainty:

Probability theory provides a natural way to represent uncertainty in the environment
and recent advances in machine learning have relied on Bayesian methods to infer
distributions over latent phenomenon of interest [64, 85]. We focus on Bayesian classifiers,
which unlike other optimization based methods, provide entire distributions over the
predictions. Such predictive distributions characterize the uncertainty present in the
system and are crucial for achieving safe control. Formally, given a set of training
points XL = {x1, . . . , xn}, with observations tL = {t1, . . . , tn}, where ti ∈ {+1,−1}, we
are interested in finding a hyperplane w that separates the points belonging to the two
classes according to sgn(wTx). Under the Bayesian paradigm, we look for the distribution:

p(w|XL, tL) = p(w) · p(tL|XL, w) =

p(w)∏
i

p(ti|w, xi) = p(w)∏
i

I [sgn(wTxi) = ti].
(9.1)

The first line in the above equation stems from the Bayes rule, and the second line simply
exploits the fact that given the classifier w the labels for each of the points in the dataset
are independent. The expression I[·] is an indicator function, which evaluates to 1, when
the condition inside the brackets holds. Thus, equation (9.1) starts from a prior p(w) over
the classifiers and eventually by incorporating the training data points, infers a posterior
distribution over the set of all the classifiers that respect the observed labels and the points.
Given these statistical dependencies among the various variables, Bayesian inference
techniques [120, 21, 12] aim to infer p(w|XL, tL) as a Gaussian distribution N (w; w̄, Σ).
Linear classification of a test data point wTx results in a Gaussian distribution of the
prediction with the mean wTx and the variance xTΣx. Similarly, for the case of Bayesian
linear regression the same procedure can be followed, albeit with continuous target
variables t ∈ R. These Bayesian linear classifiers and regressors are a fairly rich class of

CHAPTER 9. SAFE CONTROL UNDER UNCERTAINTY 126

models, and have similar or better representation capabilities as kernel machines [179]. In
this chapter, we specifically aim to incorporate such rich family of classification models
for safe control.

9.2 Probabilistic Controller Synthesis Problem

We propose Probabilistic Signal Temporal Logic (PrSTL) that enables expression of un-
certainty over the latent variables via probabilistic specifications. The key idea is to
incorporate random variables in predicates, and then express temporal and Boolean
operations on such predicates. The proposed logic provides an expressive framework for
defining safety conditions under a wide variety of uncertainties, including ones that arise
from application of machine learning classifiers.

The core ingredient in this chapter is the insight that when the uncertainty over
the random variable is reasoned out in a Bayesian framework, we can use the inferred
probability distributions to efficiently derive constraints from the PrSTL specifications. We
provide a novel solution for synthesizing controllers for dynamical systems given different
PrSTL properties. An interesting aspect of this framework is that the PrSTL formulae can
evolve at every step. For example, a classifier associated with the dynamical system can
continue to learn with time, thereby changing the inferred probability distributions on
the latent random variables.

Probabilistic Signal Temporal Logic

PrSTL supports probabilistic temporal properties on real-valued, dense-time signals.
Specifically, (ξ, t) |= ϕ denotes the signal ξ satisfies the PrSTL formula ϕ at time t. We
introduce the notion of a probabilistic atomic predicate λǫt

αt
of a PrSTL formula that is

parameterized with a time-varying random variable αt drawn from a distribution p(αt):

(ξ, t) |= λǫt
αt
⇐⇒ P(λαt(ξ(t)) < 0) > 1− ǫt. (9.2)

Similar to STL (see Chapter 2.3), with a slight abuse of notation, we let λǫt
αt

denote
the probabilistic atomic predicate, and λαt be a function of the signal ξ(t). Here, P(·)
represents the probability of the event, and 1− ǫt defines the tolerance level in satisfaction
of the probabilistic properties. The parameter ǫt ∈ [0, 0.5] is a small time-varying positive
number and represents the threshold on satisfaction probability of λαt(ξ(t)) < 0. Small
values of ǫt favors high tolerance satisfaction of formulas, which also facilitates solving
the controller synthesis problem as discussed later in this section. A signal ξ(t) satisfies
the PrSTL predicate λǫt

αt
with confidence 1− ǫt if and only if:

∫

αt

I[λαt(ξ(t)) < 0] p(αt) dαt > 1− ǫt. (9.3)

CHAPTER 9. SAFE CONTROL UNDER UNCERTAINTY 127

Here, I[·] is an indicator function, and the equation marginalizes out the random variable
αt with the probability density p(αt). The truth value of the PrSTL predicate λǫt

αt
is

equivalent to satisfaction of the probabilistic constraint in equation (9.2). Computing
such integrals as in equation (9.3) for general distributions is computationally difficult;
however, there are many parameterized distributions (e.g., Gaussian and other members
of the exponential family) for which there exists either a closed form solution or efficient
numerical procedures.

Note that λαt(ξ(t)) is a stochastic function of the signal ξ at time t and expresses a
model of the uncertainty in environment based on the observed signals. As the system
evolves and observes more data about the environment, the distribution over the random
variable αt changes over time, thereby leading to an adaptive PrSTL predicate. The
PrSTL formula consists of Boolean and temporal operations over their predicates. We
recursively define the syntax of PrSTL as:

ϕ ::= λǫt
αt
| ¬̃λǫt

αt
| ϕ ∧ ψ | ϕ ∨ ψ |G[a,b]ψ | ϕ U[a,b]ψ | F[a,b]ψ.

Here, ϕ is a PrSTL formula, which is built upon predicates λǫt
αt

defined in equation (9.2),
propositional formulae ϕ composed of the predicates and Boolean operators such as ∧
(and), ¬̃ (negation), and temporal operators on ϕ such as G (globally), F (eventually) and U
(until). Note, that in these operations the PrSTL predicates can have different probabilistic
parameters, i. e., αt and ǫt. In addition, satisfaction of the PrSTL formulae for each of the
Boolean and temporal operations based on the predicates is defined as:

(ξ, t) |= λǫt
αt

⇔ P(λαt(ξ(t)) < 0) > 1− ǫt

(ξ, t) |= ¬̃λǫt
αt

⇔ P(−λαt(ξ(t)) < 0) > 1− ǫt

(ξ, t) |= ϕ ∧ ψ ⇔ (ξ, t) |= ϕ ∧ (ξ, t) |= ψ
(ξ, t) |= ϕ ∨ ψ ⇔ (ξ, t) |= ϕ ∨ (ξ, t) |= ψ
(ξ, t) |= G[a,b]ϕ ⇔ ∀t′ ∈ [t + a, t + b], (ξ, t′) |= ϕ

(ξ, t) |= F[a,b]ϕ ⇔ ∃t′ ∈ [t + a, t + b], (ξ, t′) |= ϕ

(ξ, t) |= ϕ U[a,b] ψ ⇔ ∃t′ ∈ [t + a, t + b] s.t. (ξ, t′) |= ψ

∧∀t′′ ∈ [t, t′], (ξ, t′′) |= ϕ.

Remark 12. PrSTL does not follow the law of excluded middle, while it follows the law of
noncontradiction. This means it will never be the case for a formula and its negation ¬̃, as
defined above, to both satisfy a specification at the same time. However, there exists situations,
where they both can violate a specification.

Remark 13. The PrSTL framework reduces to STL, when the distribution p(αt) is a Dirac
distribution. A Dirac or a point distribution over αt enforces λαt(ξ(t)) < 0 to be deterministic
and equivalent to an STL predicate µ defined in Chapter 2.3.

CHAPTER 9. SAFE CONTROL UNDER UNCERTAINTY 128

Controller Synthesis for Probabilistic STL

We now formally define the controller synthesis problem in the MPC framework with
PrSTL specifications.

Problem 9. Given a hybrid dynamical system as in equation (2.3), initial state x0, PrSTL for-
mula ϕ, and cost function J(ξH) defined over a finite horizon trajectory ξH, find:

argmin
uH

J(ξH(x0, uH)) subject to ξH(x0, uH) |= ϕ. (9.4)

Problem (9) formulates a framework for finding a control strategy uH that optimizes
a given cost function, and satisfies a PrSTL formula. Finding the best strategy for this
optimization given only deterministic PrSTL formulae, where αt is drawn from a Dirac
distribution is the same as solving a set of mixed integer linear constraints. We now show
how the optimization is solved for the general case of PrSTL. Specifically, we provide
full solution for Gaussian distributions, where the optimization reduces to mixed integer
semi-definite programs.

Mixed Integer Constraints

We first discuss how every PrSTL formula generates a set of integer constraints. Given
a PrSTL formula, we introduce two integer variables for every time step t, p

ϕ
t and

q
ϕ
t ∈ {0, 1}, which correspond to the truth value of the PrSTL formula and its negation

respectively. These variables enforce satisfaction of the formula ϕ as:

(p
ϕ
t = 1)→ (ξ, t) |= ϕ and (q

ϕ
t = 1)→ (ξ, t) |= ¬̃ϕ (9.5)

The formula ϕ holds true if p
ϕ
t = 1, and its negation ¬̃ϕ (defined in Section 9.2) holds true

if q
ϕ
t = 1. Due to the definition of negation, and Remark 12, these implications are only

one-way, i. e., there always exist a satisfiable solution when p
ϕ
t and q

ϕ
t are zero. Using both

integer variables, we define the constraints required for logical and temporal operations
of PrSTL on p

ϕ
t and q

ϕ
t . It is important to note that p

ϕ
t and q

ϕ
t are not functions of the

truth value of the formula ϕ, so their values are not meant to be uniquely determined.
Instead, the integer variables enforce the truth value of the formula ϕ. We refer to them
as truth value enforcers:

• Negation (ϕ = ¬̃ψ) : p
ϕ
t ≤ q

ψ
t and q

ϕ
t ≤ p

ψ
t

• Conjunction (ϕ = ∧N
i=1ψi) : p

ϕ
t ≤ p

ψi
t and q

ϕ
t ≤ ∑

N
i=1 q

ψi
t

• Disjunction (ϕ = ∨N
i=1ψi) : ϕ = ¬̃ ∧N

i=1 ¬̃ψi

• Globally (ϕ = G[a,b]ψ) : p
ϕ
t ≤ p

ψ
t′ ∀t′ ∈ [t + a, min(t + b, H−1)],

q
ϕ
t ≤ ∑

t+b
t′=t+a q

ψ
t′ (Only for t < H − b).

CHAPTER 9. SAFE CONTROL UNDER UNCERTAINTY 129

• Eventually (ϕ = F[a,b]ψ) : ϕ = ¬̃G[a,b]¬̃ψ.

• Unbounded Until (ϕ = ψ1 Ũ[0,∞)ψ2) :
∨H−1

t=0

(

(G[0,t]ψ1) ∧ (G[t,t]ψ2)
)

∨G[0,H−1]ψ1

• Bounded Until (ϕ = ψ1 U[a,b]ψ2) : ϕ = G[0,a]ψ1 ∧ F[a,b]ψ2 ∧G[a,a](ψ1Ũ[0,∞)ψ2)

Here, we have shown how p
ϕ
t and q

ϕ
t are defined for every logical property such

as negation, conjunction, and disjunction, and every temporal property such as globally,
eventually, and until. We use Ũ to refer to unbounded until with infinite time interval,
and U for bounded until.

While synthesizing controllers for PrSTL formulae in an MPC scheme, we sometimes
are required to evaluate satisfaction of the formula outside of the horizon range. For
instance, a property G[a,b]ϕ might need to be evaluated beyond H for some t′ ∈ [t + a, t +

b]. In such cases, our proposal is to act optimistically, i. e., we assume the formula holds
true for the time steps outside the horizon of globally operator, and similarly assume the
formula does not hold true for the negation of the globally operator. This optimism is
evident in formulating the truth value enforcers of the globally operator, and based on
that, it is specified for other temporal properties. With the recursive definition of PrSTL,
and the above encoding, the truth value enforcers of every PrSTL formula is defined
using a set of integer inequalities involving a composition of the truth value enforcers of
the inner predicates.

Satisfaction of PrSTL predicates

We have defined the PrSTL predicate λǫt
αt

for a general function, λαt(ξ(t)) of the signal
ξ at time t. This function allows a random variable αt ∼ p(αt) to be drawn from any
distribution at every time step. The general problem of controller synthesis satisfying the
PrSTL predicates is computationally difficult since the evaluation of the predicates boils
down to computing the integration in equation (9.3). Consequently, to solve the problem
in equation (9.4), we need to enforce a structure on the predicates of ϕ. In this section, we
explore the linear-Gaussian structure of the predicates that appears in many real-world
scenarios, and show how it translates to Mixed Integer SDPs. Formally, if ϕ = λǫt

αt
is only

a single predicate, the optimization in equation (9.4) will reduce to:

argmin
uH

J(ξH(x0, uH))

subject to (ξ, t) |= λǫt
αt

∀t ∈ {0, . . . , H−1}.
(9.6)

This optimization translates to a chance constrained problem [25, 31, 175, 105, 29] at every
time step of the horizon, based on the definition of PrSTL predicates in equation (9.2):

argmin
uH

J(ξH(x0, uH))

subject to P(λαt(ξ(t)) < 0) > 1− ǫt

∀t ∈ {0, . . . , H−1}.
(9.7)

CHAPTER 9. SAFE CONTROL UNDER UNCERTAINTY 130

An important challenge with such chance constrained optimization is there are no
guarantees that equation (9.7) is convex. The convexity of the problem depends on the
structure of the function λαt , and the distribution p(αt). It turns out that the problem
takes a simple convex form when λαt is linear-Gaussian, i. e., the random variable αt

comes from a Gaussian distribution and the function itself is linear in αt:

λαt(ξ(t)) = αt
⊤ξx(t) = αt

⊤xt, αt ∼ N (µt, Σt). (9.8)

It is easy to show that for this structure of λαt , i.e., a weighted sum of the states with
Gaussian weights αt, the chance constrained optimization in equation (9.7) is convex [171,
91]. Specifically, the optimization problem can be transformed to a second-order cone
program (SOCP). First, consider a normally distributed random variable ν ∼ N (0, 1),

and its cumulative distribution function (CDF) Φ =
∫ z
−∞

1√
2π

e
−t2

2 dt. Then, the chance

constrained optimization reduces to SOCP:

P(λαt(ξ(t)) < 0) > 1− ǫt ⇔ P(α⊤t xt
< 0) > 1− ǫt ⇔

P(ν <
−µ⊤t xt

(xt)⊤Σtxt
) > 1− ǫt ⇔

∫

−µ⊤t xt

(xt)⊤Σtxt

−∞

1√
2π

e
−t2

2 dt > 1− ǫt

⇔ Φ(
µ⊤t xt

(xt)⊤Σtxt
) < ǫt ⇔ µ⊤t xt −Φ−1(ǫt)||Σ1/2

t xt||2 < 0.

In this formulation, µ⊤t xt is the linear term, where µt is the mean of the random variable

αt at every time step, and ||Σ1/2
t xt||2 is the l2-norm representing a quadratic term, where

Σt is the variance of αt. This quadratic term is scaled by Φ−1(ǫt), the inverse of the
Normal CDF function, which is negative for small values of ǫt ≤ 0.5. Thus, every chance
constraint can be reformulated as a SOCP, and as a result with a convex cost function
J(ξH), we can efficiently solve the following convex optimization for every predicate of
PrSTL:

minimize
uH

J(ξH(x0, uH))

subject to µ⊤t xt −Φ−1(ǫt)||Σ1/2
t xt||2 < 0

∀t ∈ {0, . . . , H − 1}.
(9.9)

Assuming a linear-Gaussian form of the function, we generate the SOCP above, and
translate it to a semi-definite program (SDP) by introducing auxiliary variables [31]. We
use this SDP that solves the problem in equation (9.6) with a single constraint ϕ = λǫt

αt
as a

building block, and use it multiple times to handle complex PrSTL formulae. Specifically,
any PrSTL formula can be decomposed to its predicates by recursively introducing integer
variables that correspond to the truth value enforcers of the formula at every step as
discussed in Section 9.2.

We would like to point out that assuming linear-Gaussian form of λαt is not too
restrictive. The linear-Gaussian form subsumes the case of Bayesian linear classifiers,

CHAPTER 9. SAFE CONTROL UNDER UNCERTAINTY 131

and consequently the framework can be applied to a wide variety of scenarios where
a classification or regression function needs to estimate quantities of interest that are
critical for safety. Furthermore, the framework is applicable to all random variables whose
distributions exhibit unimodal behavior and aligned with the large law of numbers. For
non-Gaussian random variables, there are many approximate inference procedures that
effectively estimate the distributions as Gaussian.

Convex Subset of PrSTL

As discussed in Section 9.2, at the predicate level of ϕ, we create a chance constrained
problem for predicates λǫt

αt
. These predicates of the PrSTL formulae can be reformulated

as a semi-definite program, where the predicates are over intersections of cone of positive
definite matrices with affine spaces. Semi-definite programs are special cases of convex
optimization; consequently, solving Problem 9, only for PrSTL predicates is a convex
optimization problem. Note that in Section 9.2 we introduced integer variables for
temporal and Boolean operators of the PrSTL formula. Construction of such integer
variables increases the complexity of Problem 9, and results in a mixed integer semi-
definite program (MISDP). However, we are not always required to create integer variables.
Therefore, we define Convex PrSTL as a subset of PrSTL formulae that can be solved
without constructing integer variables.

Definition 2. Convex PrSTL is a subset of PrSTL such that it is recursively defined over the
predicates by applying Boolean conjunctions, and the globally temporal operator. Satisfaction of
a convex PrSTL formulae is defined as:

(ξ, t) |= λǫt
αt

⇔ P(λαt(ξ(t)) < 0) > 1− ǫt

(ξ, t) |= ϕ ∧ ψ ⇔ (ξ, t) |= ϕ ∧ (ξ, t) |= ψ
(ξ, t) |= G[a,b]ϕ ⇔ ∀t′ ∈ [t + a, t + b], (ξ, t′) |= ϕ

Theorem 11. Given a convex PrSTL formula ϕ, a hybrid dynamical system as defined in equa-
tion (2.3), and an initial state x0; the controller synthesis problem (Problem 9) is convex under a
convex cost function J.

Proof. We have shown that the predicates of ϕ, i. e., λǫt
αt

create a set of convex constraints.
The Boolean conjunction of convex programs are also convex; therefore, ϕ ∧ ψ result
in convex constraints. In addition, the globally operator is defined as a set of finite

conjunctions over its time interval: G[a,b]ϕ =
∧b

t=a ϕt. Thus, the globally operator retains
the convexity property of the constraints. Consequently, Problem 9, with a convex PrSTL
constraint ϕ is a convex program.

Theorem 11 allows us to efficiently reduce the number of integer variables required for
solving Problem 9. We only introduce integer variables when disjunctions, eventually, or
until operators appear in the PrSTL constraints. Even when a formula is not completely

CHAPTER 9. SAFE CONTROL UNDER UNCERTAINTY 132

Algorithm 6 Controller Synthesis with PrSTL Formulae

1: Inputs: f , x0, H, τ, J, ϕ
2: Let τ = [t1, t2] is the time interval of interest.
3: past← Initialize(t1)
4: for t = t1: dt: t2 do
5: flin = linearize(f , ξ(t))
6: αt ← Update Distributions(αt−dt, sense(ξx(t)))
7: ϕ← ϕ(αt, ǫt)
8: CPrSTL = MISDP(ϕ)
9: C = CPrSTL ∧ flin ∧ [ξ(max(t1, t− H) · · · t− dt) = past]

10: uH = optimize
(

J(ξH), C
)

11: xt+1 = f (xt, ut)
12: past← [past ξ(t)]
13: Drop the first element of past if len(past) >

H
dt

14: end for

part of the Convex PrSTL, integer variables are introduced only for the non-convex
segments.

We show our complete method of controlling dynamical systems in uncertain envi-
ronments in Algorithm 6. At the first time step t1, we run an open-loop control algorithm
to populate past in line 2. We then run the closed-loop algorithm, finding the optimal
strategy at every time step of the time interval τ = [t1, t2]. In the closed-loop algorithm,
we linearize the dynamics at the current local state and time in line 4, and then update
the distributions over the random variables in the PrSTL formula based on new sensor
data in line 5. Then, we update the PrSTL formulae, based on the updated distributions.
If there are any other dynamic parameters that change at every time step, they can also
be updated in line 6. In line 7, we generate the mixed integer constraints in CPrSTL, and
populate C with all the constraints including the PrSTL constraints, linearized dynamics,
and enforcing to keep the past horizon’s trajectory. Note that we do not construct integer
variables if the formula is Convex PrSTL. Then, we call the finite horizon optimization
algorithm under the cost function J(ξH), and the constraints C in line 9, which provides a
length H strategy uH. We advance the state with the first element of uH, and update the
previous horizon’s history in past. The size of this problem does not grow, and keeping
the past horizon history is crucial in satisfaction of fairness properties, e. g., enforcing
a signal to oscillate. We continue running this loop and synthesizing controllers for all
times in interval τ. Algorithm 6 solves MISDP problems, which is NP-hard. However,
the actual runtime depends on the size of the MISDP, which is linear in the number of
predicates and operators in the PrSTL specification. For convex PrSTL, the complexity is
the same as an SDP, which is cubic in the number of constraints [104].

CHAPTER 9. SAFE CONTROL UNDER UNCERTAINTY 134

Here, we penalize the l2-norm of the Euler angles, which enforces a resulting smooth
trajectory. Besides initializing the state and control input at zero, we bound the control
inputs via the following deterministic PrSTL formulae (here only shown for roll, similar
form follows for pitch and thrust):

ϕroll = G[0,∞)(||u1|| ≤ 0.3) Bound on Roll Input

In Figure 9.1, the gray surface is a ceiling that the quadrotor should not collide with as it
is taking off and landing at the final position. However, the quadrotor does not have a
full knowledge of where the ceiling is exactly located. We define a sensing mechanism for
the quadrotor, which consists of a meshgrid of points around the body of the quadrotor.
As the system moves in the space, a Bayesian binary classifier is updated by providing a
single label −1 (no obstacles present) or 1 (obstacle present) for each of the sensed points.

The Bayesian classifier is the same as the Gaussian Process based method described
in Section 9.1 and has the linear-Gaussian form. Applying this classifier results in a
Gaussian distribution for every point in the 3D-space. We define our classifier with
confidence 1− ǫt = 0.95, as the stochastic function λ0.05

αt
(ξ(t)) = α⊤t [x

t yt zt]. Here, xt,

yt, zt are the coordinates of the sensing points, and αt ∼ N (µt, Σt) is the Gaussian weight
inferred over time using the sensed data. We define a time-varying probabilistic constraint
that needs to be held at every step as its value changes over time. Our constraint specifies
that given a classifier based on the sensing points parameterized by αt, we would enforce
the quadrotor to stay within a safe region (defined by the classifier) with probability
1− ǫt at all times. Thus the probabilistic formula is:

ϕclassifier = G[0.1,∞)

(

P(α⊤t [x
t yt zt] < 0) > 0.95

)

.

We enforce this probabilistic predicate at t ∈ [0.1, ∞), which verifies the property starting
from a small time after the initial state, so the quadrotor has gathered some sensor data.
In Figure 9.1, the pink surface represents the second order cone created based on ϕclassifier,
at every step characterized by:

µ⊤t
[

xt yt zt
]

−Φ−1(0.05)||Σ1/2
t

[

xt yt zt
]

||2 < 0.

Note that the surface shown in Figure 9.1, at the initial time step is not an accurate
estimate of where the ceiling is, and it is based on a distribution learned from the initial
values of the sensors. Thus, if the quadrotor was supposed to follow this estimate without
updating, it would have collided with the ceiling. In Figure 9.2, the blue path represents
the trajectory the quadrotor has already taken, and the dotted green line is the future
planned trajectory based on the current state of the classifier. The dotted green trajectory
at the initial state goes through the ceiling since the belief of the location of the ceiling
is incorrect; however, the trajectory is modified at every step as the Bayesian inference
updates the distribution over the classifier. As shown in Figure 9.2, the pink surface
changes at every time step, and the learned parameters µt, and Σt are updated, so the

CHAPTER 9. SAFE CONTROL UNDER UNCERTAINTY 135

quadrotor safely reaches the final position. We solve the optimization using our toolbox,
with dt = 0.03, and horizon of H = 20. These choices describe a common setting for
solving MPC problems. We emphasize that some of the constraints are time-varying,
and we need to update them at every step of the optimization. We similarly update
the dynamics at every step, since we locally linearize the dynamics around the current
position of the quadrotor.

Control under Battery Constraints

Next we demonstrate a scenario that addresses safety, when there is uncertainty around
the battery level. The battery level is a stochastic variable due to uncertain environment
and usage factors, such as radio communications, etc. Our goal is to derive a safe
strategy that considers such stochasticity. We start by augmenting the logarithm of battery
level (bt) to the state space of the system discussed above. Thus, the quadrotor is a 13
dimensional system, where the first 12 states follow the same order and system dynamics
as before and xt(13) = log(bt). In our model, the state of log(bt) evolves with the negative

thrust value:
d log(bt)

dt = −|u4|. We enforce the same constraints to bound the control as
earlier, and the objective of the quadrotor is to start from the origin and reach the top
diagonal corner of the space with coordinates (1, 1,−0.9) smoothly.

We then consider adding a safety invariant that would limit high altitude flights if the
battery level is low. The following formulae describe these constraints:

• φ := F[0,0.3](z
t ≤ −0.1) encodes that eventually in the next 0.3 s, the quadrotor will

fly above a threshold level of −0.1 m.

• ψ := P(log(bt) + N (0, tσ2) ≥ bmin) ≥ 1 − ǫt represents the constraint that the
quadrotor has to be confident that the logarithm of its battery state perturbed by a
time-varying variance is above bmin.

Now, we can combine the two formulae to specify the condition that the quadrotor needs
to fly low if the battery state is low:

ϕbattery := G[0,∞)

(

φ→ ψ
)

. (9.10)

The → in the formula ϕbattery is the implication relation, and intuitively states that
anytime the quadrotor flies above the threshold then it means that there is sufficient
battery reserve.

We synthesize a controller for the specifications with ǫt = 0.2. The trajectory of the
quadrotor is shown in Figure 9.3. Figure 9.3a corresponds to σ = 0, i. e., the battery state
changes deterministically, and Figure 9.3b, corresponds to σ = 10, when the quadrotor is
more cautious about the state of the battery. Note the safe trajectory does not pass the
−0.1 m height level whenever the confidence in the battery level is low.

CHAPTER 9. SAFE CONTROL UNDER UNCERTAINTY 139

9.4 Chapter Summary

We presented a framework to achieve safe control under uncertainty. The key contri-
butions include defining PrSTL, a logic for expressing probabilistic properties that can
embed Bayesian graphical models. We also show how to synthesize receding horizon
controllers under PrSTL specifications that express Bayesian linear classifiers. Further,
the resulting logic adapts as more data is observed with the evolution of the system.
We demonstrate the approach by synthesizing safe strategies for a quadrotor and an
autonomous vehicle traveling in uncertain environments.

The approach extends easily to distributions other than Gaussians via Bayesian
approximate inference techniques [120, 21] that can project distributions to the Gaussian
densities. Future work includes extending controller synthesis for arbitrary distributions
via sampling based approaches; we are also exploring using the proposed framework for
complex robotic tasks that need to invoke higher level planning algorithms. We further
plan to combine controller synthesis from PrSTL with sampling based task planners that
can be guaranteed to be safe under probabilistic specifications.

140

Chapter 10

Diagnosis and Repair for Synthesis from
Signal Temporal Logic

A major challenge to the adoption of synthesis from temporal logic in practice is the
difficulty of writing formal specifications – writing temporal logic specifications is not
easy and is error-prone, even for experts. Specifications that are poorly stated, incomplete,
or inconsistent can produce synthesis problems that are unrealizable (no controller exists
for the provided specification), intractable (synthesis is computationally too hard), or
lead to solutions that fail to capture the designer’s intent. In this chapter, we present an
algorithmic approach to reduce the specification burden for controller synthesis from
temporal logic specifications, focusing on the case where the original specification is
unrealizable.

Logical specifications can be provided in multiple ways. One approach is to provide
monolithic specifications, combining within a single formula constraints on the environ-
ment with desired properties of the system under control. In many cases, a system
specification can be conveniently provided as a contract, to distinguish the responsibilities
of the system under control (guarantees) from the assumptions on the external, possibly
adversarial environment [135, 136]. In such a scenario, an unrealizable specification can
be made realizable by either “weakening” the guarantees or “tightening” the assumptions. In
fact, when a specification is unrealizable, it could be either because the environment
assumptions are too weak, or the requirements are too strong, or a combination of
both. Finding the “problem” with the specification manually can be a tedious and time-
consuming process, nullifying the benefits of automatic synthesis. Further, in the reactive
setting, when the environment is adversarial, finding the right assumptions a priori can
be difficult. Thus, given an unrealizable logical specification, there is a need for tools that
localize the cause of unrealizability to (hopefully small) parts of the formula, and provide
suggestions for repairing the formula in an “optimal” manner.

The problem of diagnosing and repairing formal requirements has received its share
of attention in the formal methods community. Ferrère et al. perform diagnosis on faulty
executions of systems with specifications expressed in Linear Temporal Logic (LTL) and

CHAPTER 10. DIAGNOSIS AND REPAIR 141

Metric Temporal Logic (MTL) [59]. They identify the cause of unsatisfiability of these
properties in the form of prime implicants, which are conjunctions of literals, and map
the failure of a specification to the failure of these prime implicants. Similar syntax-
tree based definitions of unsatisfiable cores for LTL were presented by Schuppan [162].
In the context of synthesis from LTL specifications, Raman et al. [145] address the
problem of categorizing the causes of unrealizability, and how to detect them in high-level
robot control specifications. The use of counter-strategies to debug unrealizable cores
in a set of specifications or derive new environment assumptions for synthesis has also
been explored [109, 95, 9, 110]. Our approach, based on exploiting information already
available from off-the-shelf optimization solvers, is similar to the one adopted by Nuzzo et
al. [134] to extract unsatisfiable cores for Satisfiability Modulo Theories (SMT) solving.

In this chapter, we address the problem of diagnosing and repairing specifications for-
malized in Signal Temporal Logic (STL). Our work is conducted in the setting of automated
synthesis from STL using optimization methods in a Model Predictive Control (MPC)
framework similar to the previous chapters [147, 148]. In this approach to synthesis, both
the system dynamics and the STL requirements encoded as mixed integer constraints
on variables modeling the dynamics of the system and its environment. Controller
synthesis is then formulated as an optimization problem to be solved subject to these
constraints [147]. In the reactive setting, this approach proceeds by iteratively solving a
combination of optimization problems using a Counterexample-Guided Inductive Synthesis
(CEGIS) scheme (see Chapter 8) [148]. In this context, an unrealizable STL specifica-
tion leads to an infeasible optimization problem. We leverage the ability of existing
Mixed Integer Linear Programming (MILP) solvers to localize the cause of infeasibility to
so-called Irreducibly Inconsistent Systems (IIS). Our algorithms use the IIS to localize the
cause of unrealizability to the relevant parts of the STL specification. Additionally, we
give a method for generating a minimal set of repairs to the STL specification such that,
after applying those repairs, the resulting specification is realizable. The set of repairs
is drawn from a suitably defined space that ensures that we rule out vacuous and other
unreasonable adjustments to the specification. Specifically, in this chapter, we focus on
the numerical parameters in a formula, since their specification is often the most tedious
and error-prone part. Our algorithms are sound and complete, i. e., they provide a correct
diagnosis, and always terminate with a reasonable specification that is realizable using
the chosen synthesis method, when such a repair exists in the space of possible repairs.
Recall that Chapter 7 discussed the design of an intervention framework to systematically
transfer control to the human while synthesizing control strategies from LTL. In a similar
manner, in this chapter our diagnosis and repair algorithms provide a way of detecting
the source of unrealizability in the reactive synthesis problem from STL (discussed in
Chapter 8). Likewise, this can then be used to design interventions in a shared control
framework for a human-robot system.

The problem of infeasibility in constrained predictive control schemes has also been
widely addressed in the literature, e.g., by adopting robust MPC approaches, soft con-
straints, and penalty functions [92, 163, 24]. Rather than tackling general infeasibility

CHAPTER 10. DIAGNOSIS AND REPAIR 142

issues in MPC, our focus is on providing tools to help debug the controller specification
at design time. However, the deployment of robust or soft-constrained MPC approaches
can also benefit from our techniques. Our use of MILP does not restrict our method to
linear dynamical systems; indeed, we can handle constrained linear and piecewise affine
systems, Mixed Logical Dynamical (MLD) systems [23], and certain differentially flat
systems.

10.1 Mixed Integer Linear Program Formulation

We described the approach of using Model Predictive Control in Chapter 2.1. When f ,
the dynamics of the system, as defined in (2.3), is nonlinear, we assume optimization is
performed at each MPC step after locally linearizing the system dynamics. For example, at
time t = k, the linearized dynamics around the current state and time are used to compute
an optimal strategy uH

∗ over the time interval [k, k + H − 1]. Only the first component of
uH
∗ is, however, applied to the system, while a similar optimization problem is solved at

time k + 1 to compute a new optimal control sequence along the interval [k + 1, k + H]
for the model linearized around t = k + 1. While the global optimality of MPC is not
guaranteed, the technique is frequently used and performs well in practice.

In this chapter, we use STL to express temporal constraints on the environment and
system runs for MPC. We then translate a STL specification into a set of mixed integer
linear constraints, as further detailed below [147, 148]. Given a formula ϕ to be satisfied
over a finite horizon H, the associated optimization problem has the form:

minimize
uH

J(ξ(x0, uH))

subject to ξ(x0, uH) |= ϕ,
(10.1)

which extracts a control strategy uH that minimizes the cost function J(ξ) over the
finite-horizon trajectory ξ, while satisfying the STL formula ϕ at time step 0. In a closed-
loop setting, we compute a fresh uH at every time step i ∈ N, replacing x0 with xi

in (10.1) [147, 148].
While equation (10.1) applies to systems without uncontrolled inputs, a more general

formulation can be provided to account for an uncontrolled disturbance input wH that
can act, in general, adversarially as discussed in Chapter 8. To provide this formulation,
we assume that the specification is given in the form of a STL assume-guarantee (A/G)
contract [135, 136] C = (V, ϕe, ϕ ≡ ϕe → ϕs), where V is the set of variables, ϕe captures
the assumptions (admitted behaviors) over the (uncontrolled) environment inputs w,
and ϕs describes the guarantees (promised behaviors) over all the system variables. A
game-theoretic formulation of the controller synthesis problem can then be represented

CHAPTER 10. DIAGNOSIS AND REPAIR 143

as a minimax optimization problem:

minimize
uH

maximize
wH∈W e

J(ξ(x0, uH, wH))

subject to ∀wH ∈ W e ξ(x0, uH, wH) |= ϕ,
(10.2)

where we aim to find a strategy uH that minimizes the worst case cost J(ξ) over
the finite horizon trajectory, under the assumption that the disturbance signal wH acts
adversarially. We use W e in (10.2) to denote the set of disturbances that satisfy the
environment specification ϕe, i.e.,W e = {w ∈ WH|w |= ϕe}.

To solve the control problems in (10.1) and (10.2) the STL formula ϕ can be translated
into a set of mixed integer constraints, thus reducing the optimization problem to a Mixed
Integer Program (MIP), as long as the system dynamics can also be translated into mixed
integer constraints. Specifically, in this chapter similar to Chapter 8, we consider control
problems that can be encoded as Mixed Integer Linear Programs (MILP).

The MILP constraints are constructed recursively on the structure of the STL specifica-
tion as in [147, 148], and express the robust satisfaction value of the formula. A first set
of variables and constraints capture the robust satisfaction of the atomic predicates of
the formula. To generate the remaining constraints, we traverse the parse tree of ϕ from
the leaves (associated with the atomic predicates) to the root node (corresponding to the
robustness satisfaction value of the overall formula ρϕ), adding variables and constraints
that obey the quantitative semantics discussed in Chapter 2.3.

Recall from Chapter 2.3 that the robustness value of subformulae with temporal and
Boolean operators is expressed as the min or max of the robustness values of the operands
over time. We discuss here the encoding of the min operator as an example. To encode
p = min(ρϕ1 , . . . , ρϕn), we introduce Boolean variables zϕi for i ∈ {1, . . . , n} and MILP
constraints:

p ≤ ρϕi , ∑
i=1...n

zϕi ≥ 1

ρϕi − (1− zϕi)M ≤ p ≤ ρϕi + (1− zϕi)M
(10.3)

where M is a constant selected to be much larger than |ρϕi | for all i, and i ∈ {1, . . . , n}.
The above constraints ensure that zϕi = 1 and p = ρϕi only if ρϕi is the minimum over all
i. For max, we replace ≤ by ≥ in the first constraint of (10.3). Finally, we choose ρϕ as
the cost function of the resulting MILP, meaning that our controllers aim at maximizing
the robustness of satisfaction of the specification. Note that the robustness function is
analogous to the robot reward function RR discussed in Part I; both encode a quantitative
measure for satisfaction of the desired properties, and both are optimized to find the
desirable controllers for the robot.

We solve the resulting MILP with an off-the-shelf solver. If the receding horizon
scheme is feasible, then the controller synthesis problem is realizable, i.e., the algorithm
returns a controller that satisfies the specification and optimizes the objective. However,
if the MILP is infeasible, the synthesis problem is unrealizable. In this case, the failure to

CHAPTER 10. DIAGNOSIS AND REPAIR 145

using the formula ϕ := ϕ1 ∧ ϕ2, where ϕ1 and ϕ2 are defined as follows:

ϕ1 = G[0,∞)¬
(

(−0.5 ≤ y
ego
t ≤ 0.5) ∧ (−0.5 ≤ xadv

t ≤ 0.5)
)

,

ϕ2 = G[0,∞)

(

1.5 ≤ a
ego
t ≤ 2.5

)

.
(10.4)

We prescribe bounds on the system acceleration, and state that both cars should never be confined
together within a box of width 1 around the intersection (0, 0) to avoid a collision.

Example 3 (Non-adversarial Race). We discuss a race scenario, in which the ego vehicle must
increase its velocity to exceed 0.5 whenever the adversary’s initial velocity exceeds 0.5. We then
formalize our requirement as a contract (ψe, ψe → ψs), where ψe are the assumptions made on
the environment and ψs are the guarantees of the system provided the environment satisfies the
assumptions. Specifically:

ψe = (vadv
0 ≥ 0.5),

ψs = G[0,∞)(−1 ≤ a
ego
t ≤ 1) ∧G[0.2,∞)(v

ego
t ≥ 0.5).

(10.5)

The initial velocities are vadv
0 = 0.55 and v

ego
0 = 0, while the environment vehicle’s acceleration

is aadv
t = 1 at all times. We also require the acceleration to be bounded by 1.

Example 4 (Adversarial Race). We discuss another race scenario, in which the environment
vehicle acceleration aadv

t is no longer fixed, but can vary up to a maximum value of 2. Initially,

vadv
0 = 0 and v

ego
0 = 0 hold. Under these assumptions, we would like to guarantee that the

velocity of the ego vehicle exceeds 0.5 if the speed of the adversary vehicle exceeds 0.5, while
maintaining an acceleration in the [−1, 1] range. Altogether, we capture the requirements above
via a contract (φw, φw → φs), where:

φw = G[0,∞)

(

0 ≤ aadv
t ≤ 2

)

,

φs = G[0,∞)

(

(vadv
t > 0.5)→ (v

ego
t > 0.5)

)

∧
(

|aego
t | ≤ 1

)

.
(10.6)

10.3 Diagnosis and Repair Problem

In this section, we define the problems of specification diagnosis and repair in the context
of controller synthesis from STL. We assume that the discrete-time system dynamics fd,
the initial state x0, the STL specification ϕ, and a cost function J are given. The controller
synthesis problem, denoted P = (fd, x0, ϕ, J), is to solve (10.1) (when ϕ is a monolithic
specification of the desired system behavior) or (10.2) (when ϕ represents a contract
between the system and the environment).

If synthesis fails, the diagnosis problem is, intuitively, to return an explanation in the
form of a subset of the original problem constraints that are already infeasible when taken
alone. The repair problem is to return a “minimal” set of changes to the specification

CHAPTER 10. DIAGNOSIS AND REPAIR 146

that would render the resulting controller synthesis problem feasible. To diagnose and
repair a STL formula, we focus on its sets of atomic predicates and time intervals of the
temporal operators. We then start by providing a definition of the support of its atomic
predicates, i.e., the set of times at which the value of a predicate affects satisfiability of
the formula, and define the set of allowed repairs.

Definition 3 (Support). The support of a predicate µ in a STL formula ϕ is the set of times t
such that µ(ξ(t)) appears in ϕ.

For example, given ϕ = G[6,10](xt
> 0.2), the support of predicate µ = (xt

> 0.2) is

the time interval [6, 10]. We can compute the support of each predicate in ϕ by traversing
the parse tree of the formula from the root node to the leaves, which are associated with
the atomic predicates. The support of the root of the formula is {0} by definition. While
parsing ϕ, new nodes are created and associated with the Boolean and temporal operators
in the formula. Let κ and δ be the subsets of nodes associated with the Boolean and
bounded temporal operators, respectively, where δ = δG ∪ δF ∪ δU. The support of the
predicates can then be computed by recursively applying the following rule for each node
i in the parse tree:

σi =

σr if r ∈ κ

σr + Ir if r ∈ δG ∪ δF

[σlb
r , σub

r + Iub
r] if r ∈ δU,

(10.7)

where r is the parent of i, σr is the support of r, and Ii is the interval associated with i
when i corresponds to a temporal operator. We denote as I1 + I2 the Minkowski sum of
the sets I1 and I2, and as I lb and Iub, respectively, the lower and upped bounds of interval
I.

Definition 4 (Allowed Repairs). Let Φ denote the set of all possible STL formulae. A repair
action is a relation γ : Φ→ Φ consisting of the union of the following:

• A predicate repair returns the original formula after modifying one of its atomic predicates
µ to µ∗. We denote this sort of repair by ϕ[µ 7→ µ∗] ∈ γ(ϕ);

• A time interval repair returns the original formula after replacing the interval of a tem-
poral operator. This is denoted ϕ[∆[a,b] 7→ ∆[a∗,b∗]] ∈ γ(ϕ) where ∆ ∈ {G, F, U}.

Repair actions can be composed to get a sequence of repairs Γ = γn(γn−1(. . . (γ1(ϕ)) . . .)).
Given a STL formula ϕ, we denote as REPAIR(ϕ) the set of all possible formulae obtained
through compositions of allowed repair actions on ϕ. Moreover, given a set of atomic
predicates D and a set of time intervals T , we use REPAIRT ,D(ϕ) ⊆ REPAIR(ϕ) to denote
the set of repair actions that act only on predicates in D or time intervals in T . We are
now ready to provide the formulation of the problems addressed in the chapter, both in
terms of diagnosis and repair of a monolithic specification ϕ (general diagnosis and repair)
and an A/G contract (ϕe, ϕe → ϕs) (contract diagnosis and repair).

CHAPTER 10. DIAGNOSIS AND REPAIR 147

Problem 10 (General Diagnosis and Repair). Given a controller synthesis problem P =
(fd, x0, ϕ, J) such that (10.1) is infeasible, find:

• A set of atomic predicates D = {µ1, . . . , µd} or time intervals T = {τ1, . . . , τd} of the
original formula ϕ,

• ϕ′ ∈ REPAIRT ,D(ϕ),

such that P ′ = (fd, x0, ϕ′, J) is feasible, and the following minimality conditions hold:

• (predicate minimality) if ϕ′ is obtained by predicate repair1, si = µ∗i − µi for i ∈
{1, . . . , d}, sD = (s1, . . . , sd), and || · || is a norm on Rd, then

∄ (D′, sD′) s.t. ||sD′ || ≤ ||sD|| (10.8)

and P ′′ = (fd, x0, ϕ′′, J) is feasible, with ϕ′′ ∈ REPAIRD′(ϕ).

• (time interval minimality) if ϕ′ is obtained by time interval repair, T ∗ = {τ∗1 , . . . , τ∗l }
are the non-empty repaired intervals, and ||τ|| is the length of interval τ:

∄ T ′ = {τ′1, . . . , τ′l }, s.t. ∃i ∈ {1, . . . , l}, ||τ∗i || ≤ ||τ′i || (10.9)

and P ′′ = (fd, x0, ϕ′′, J) is feasible, with ϕ′′ ∈ REPAIRT ′(ϕ).

Problem 11 (Contract Diagnosis and Repair). Given a controller synthesis problem P =
(fd, x0, ϕ ≡ ϕe → ϕs, J) such that (10.2) is infeasible, find:

• Sets of atomic predicates De = {µe
1, . . . , µe

d}, Ds = {µs
1, . . . , µs

d̄
} or sets of time intervals

Te = {τe
1 , . . . , τe

l },Ts = {τs
1 , . . . , τs

l̄
}, respectively, of the original formulas ϕe and ϕs,

• ϕ′e ∈ REPAIRTe,De
(ϕe), ϕ′s ∈ REPAIRTs,Ds

(ϕs),

such that P ′ = (fd, x0, ϕ′, J) is feasible, D = De ∪ Ds, T = Te ∪ Ts, and ϕ′ ≡ ϕ′e → ϕ′s
satisfies the minimality conditions of Problem (10).

In the following sections, we discuss our solution to the above problems.

10.4 Monolithic Specifications

The scheme adopted to diagnose inconsistencies in the specification and provide
constructive feedback to the designer is pictorially represented in Figure 10.2. In this
section we find a solution for Problem 10, as summarized in Algorithm 7. Given a problem

1For technical reasons, our minimality conditions are predicated on a single type of repair being applied
to obtain ϕ′.

CHAPTER 10. DIAGNOSIS AND REPAIR 149

Algorithm 7 Diagnosis Repair

1: Input: P
2: Output: uH, D, repaired, ϕ′

3: (J, C)← GenMILP(P), repaired← 0
4: uH ← Solve(J, C)
5: if uH = ∅ then
6: D ← ∅, S ← ∅, I ← ∅,M← (0, C)
7: while repaired = 0 do
8: (D′,S ′, I′)← Diagnosis(M, P)
9: D ← D ∪D′, S ← S ∪ S ′, I ← I ∪ I′

10: options← UserInput(D′)
11: λ ← ModifyConstraints(I′, options)
12: (repaired,M, ϕ′)← Repair(M, I′, λ,S , ϕ)
13: end while
14: uH ← Solve(J, M.C)
15: end if

Algorithm 8 Diagnosis

1: Input: M, P
2: Output: D, S , I′

3: IC ← IIS(M)

4: (D,S)← ExtractPredicates(IC,P)
5: I′ ← ExtractConstraints(M,D)

Diagnosis

Our diagnosis procedure is summarized in Algorithm 8. Diagnosis receives as inputs
the controller synthesis problem P and an associated MILP formulationM. M can either
be the feasibility problem corresponding to the original problem (10.10), or a relaxation
of it. This feasibility problem has the same constraints as (10.10) (possibly relaxed) but
constant cost. Formally, we provide the following definition of relaxed constraint and
relaxed optimization problem.

Definition 5 (Relaxed Problem). We say that a constraint f ′ ≤ 0 is a relaxed version of
f ≤ 0 if f ′ = (f − s) for some slack variable s ∈ R+. In this case, we also say that f ≤ 0 “is
relaxed to” f ′ ≤ 0. An optimization problem O′ is a relaxation of another optimization problem
O if it is obtained from O by relaxing at least one of its constraints.

When M is infeasible, we rely on the capability of state-of-the-art MILP solvers to
provide an Irreducibly Inconsistent System (IIS) [73, 39] of constraints IC, defined as follows.

CHAPTER 10. DIAGNOSIS AND REPAIR 150

Definition 6 (Irreducibly Inconsistent System). Given a feasibility problemM with constraint
set C, an Irreducibly Inconsistent System IC is a subset of constraints IC ⊆ C such that: (i)
the optimization problem (0, IC) is infeasible; (ii) ∀ c ∈ IC, problem (0, IC \ {c}) is feasible.

In other words, an IIS is an infeasible subset of constraints that becomes feasible if any
single constraint is removed. For each constraint in IC, ExtractPredicates traces back the
STL predicate(s) originating it, which will be used to construct the set D = {µ1, . . . , µd}
of STL atomic predicates in Problem 10, and the corresponding set of support intervals
S = {σ1, . . . , σd} (adequately truncated to the current horizon H) as obtained from the
STL syntax tree. D will be used to produce a relaxed version ofM as further detailed
in Section 10.4. For this purpose, the procedure also returns the subset I of all the
constraints inM that are associated with the predicates in D.

Repair

The diagnosis procedure isolates a set of STL atomic predicates that jointly produce a
reason of infeasibility for the synthesis problem. For repair, we are instead interested in
how to modify the original formula to make the problem feasible. The repair procedure
is summarized in Algorithm 9. We formulate relaxations of the feasibility problemM
associated with problem (10.10) by using slack variables.

Let fi, i ∈ {1, . . . , m} denote both of the categories of constraints f dyn and f ϕ in the
feasibility problemM. We reformulateM into the following slack feasibility problem:

minimize
s∈R|I|

||s||

subject to fi − si ≤ 0 i ∈ {1, . . . , |I|}
fi ≤ 0 i ∈ {|I|+ 1, . . . , m}
si ≥ 0 i ∈ {1, . . . , |I|},

(10.11)

where s = s1...s|I| is a vector of slack variables corresponding to the subset of optimiza-
tion constraints I, as obtained after the latest call of Diagnosis. Not all the constraints in
the original optimization problem (10.10) can be modified. For instance, the designer will
not be able to arbitrarily modify constraints that can directly affect the dynamics of the
system, i. e., constraints encoded in f dyn. Solving problem (10.11) is equivalent to looking
for a set of slacks that make the original control problem feasible while minimizing a
suitable norm || · || of the slack vector. In most of our application examples, we choose the
l1-norm, which tends to provide sparser solutions for s, i.e., nonzero slacks for a smaller
number of constraints. However, other norms can also be used, including weighted
norms based on the set of weights λ. If problem (10.11) is feasible, ExtractFeedback uses
the solution s∗ to repair the original infeasible specification ϕ. Otherwise, the infeasible
problem is subjected to another round of diagnosis to retrieve further constraints to relax.
In what follows, we provide details on the implementation of ExtractFeedback.

CHAPTER 10. DIAGNOSIS AND REPAIR 151

Algorithm 9 Repair

1: Input: M, I, λ, S , ϕ
2: Output: repaired,M, ϕ
3: M.J ←M.J + λ⊤sI

4: for c in I do
5: if λ(c) > 0 then
6: M.C(c)←M.C(c) + sc

7: end if
8: end for
9: (repaired, s∗)← Solve(M.J, M.C)

10: if repaired = 1 then
11: ϕ← ExtractFeedback(s∗,S ,ϕ)
12: end if

Based on the encoding discussed in Section 2.1, the constraints in M capture, in
a recursive fashion, the robust satisfaction of the STL specification as a function of
its subformulae, from ϕ itself to the atomic predicates µi. To guarantee satisfaction
of a Boolean operation in ϕ at time t, we must be able to perturb, in general, all the
constraints associated with its operands, i.e., the children nodes of the corresponding
Boolean operator in the parse tree of ϕ, at time t. Similarly, to guarantee satisfaction of a
temporal construct at time t, we must be able to perturb the constraints associated with
the operands of the corresponding operator at all times in their support.

By recursively applying this line of reasoning, we can then conclude that, to guarantee
satisfaction of ϕ, it is sufficient to introduce slacks to all the constraints associated with all
the diagnosed predicates in D over their entire support. For each µi ∈ D, i ∈ {1, . . . , d},
let σi = [σlb

i , σub
i] be its support interval.

The set of slack variables {s1, . . . , s|I|} in (10.11) can then be seen as the set of variables
sµi,t used to relax the constraints corresponding to each diagnosed predicate µi ∈ D at

time t, for all t ∈ {max{0, σlb
i }, . . . , min{H − 1, σub

i }} and i ∈ {1, . . . , d}.
If a minimum norm solution s∗ is found for (10.11), then the slack variables s∗ can

be mapped to a set of predicate repairs sD, as defined in Problem 10, as follows. The slack
vector s∗ in Algorithm 9 consists of the set of slack variables {s∗µi,t

}, where s∗µi,t
is the

variable added to the optimization constraint associated with an atomic predicate µi ∈ D
at time t, i ∈ {1, . . . , d}. We set

∀ i ∈ {1, . . . , d} si = µ∗i − µi = max
t∈{σi,l ,··· ,σi,u}

s∗µi,t
, (10.12)

where H is the time horizon for (10.10), sD = {s1, . . . , sd}, σi,l = max{0, σlb
i }, and

σi,u = min{H − 1, σub
i }.

To find a set of time-interval repairs, we proceed, instead, as follows:

CHAPTER 10. DIAGNOSIS AND REPAIR 152

1. The slack vector s∗ in Algorithm 9 consists of the set of slack variables {s∗µi,t
}, where

s∗µi,t
is the variable added to the optimization constraint associated with an atomic

predicate µi ∈ D at time t. For each µi ∈ D, with support interval σi, we search for
the largest time interval σ′i ⊆ σi such that the slack variables s∗µi,t

for t ∈ σ′i are 0. If

µi /∈ D, then we set σ′i = σi.

2. We convert every temporal operator in ϕ into a combination of G (timed or untimed)
and untimed U by using the following transformations:

F[a,b]ψ = ¬G[a,b]¬ψ,

ψ1U[a,b]ψ2 = G[0,a](ψ1U ψ2) ∧ F[a,b]ψ2,

where U is the untimed (unbounded) until operator. Let ϕ̂ be the new formula
obtained from ϕ after applying these transformations2.

3. The nodes of the parse tree of ϕ̂ can then be partitioned into three subsets, ν, κ, and
δ, respectively associated with the atomic predicates, Boolean operators, and temporal
operators (G, U) in ϕ̂. We traverse this parse tree from the leaves (atomic predicates)
to the root and recursively define for each node i a new support interval σ∗i as
follows:

σ∗i =

σ′i if i ∈ ν
⋂

j∈C(i)
σ∗j if i ∈ κ ∪ δU

σ∗
C(i) if i ∈ δG

(10.13)

where C(i) denotes the set of children of node i, while δG and δU are, respectively,
the subsets of nodes associated with the G and U operators. We observe that the
set of children for a G operator node is a singleton. Therefore, with some abuse of
notation, we also use C(i) in (10.13) to denote a single node in the parse tree.

4. We define the interval repair τ̂j for each (timed) temporal operator node j in the
parse tree of ϕ̂ as τ̂j = σ∗j . If τ̂j is empty for some j, no time-interval repair is

possible. Otherwise, we map back the set of intervals {τ̂j} into a set of interval
repairs T ∗ for the original formula ϕ according to the transformations in step 2 and
return T ∗.

We provide an example of predicate repair below, while time interval repair is exemplified
in Section 10.5.

2While the second transformation introduces a new interval [0, a], its parameters are directly linked to
the ones of the original interval [a, b] (now inherited by the F operator) and will be accordingly processed
by the repair routine.

CHAPTER 10. DIAGNOSIS AND REPAIR 153

time 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
sl1 0 0 0 0 0 -0.26 0 0 0 0
su2 0 0 0 0 0 0 -0.07 0 0 0

Table 10.1: Slack values over a single horizon, for ∆t = 0.2 and H = 10.

Example 5 (Collision Avoidance). We diagnose the specifications introduced in Example 2. To
formulate the synthesis problem, we assume a horizon H = 10 and a discretization step ∆t = 0.2.
The system is found infeasible at the first MPC run, and Diagnosis detects the infeasibility of
ϕ1 ∧ ϕ2 at time t = 6. Intuitively, given the allowed range of accelerations for the ego vehicle,
both cars end up entering the forbidden box at the same time.

Algorithm 7 chooses to repair ϕ1 by adding slacks to all of its predicates, such that ϕ′1 =

(−0.5− sl1 ≤ y
ego
t ≤ 0.5 + su1) ∧ (−0.5− sl2 ≤ xadv

t ≤ 0.5 + su2). Table 10.1 shows the
optimal slack values at each t, while su1 and sl2 are set to zero at all t.

We can then conclude that the specification replacing ϕ1 with ϕ′1

ϕ′1 = G[0,∞)¬
(

(−0.24 ≤ y
ego
t ≤ 0.5) ∧ (−0.5 ≤ xadv

t ≤ 0.43)
)

(10.14)

is feasible, i.e., the cars will not collide, but the original requirement was overly demanding.
Alternatively, the user can choose to run the repair procedure on ϕ2 and change its predicate

as (1.5− sl ≤ a
ego
t ≤ 2.5 + su). In this case, we decide to stick with the original requirement on

collision avoidance, and tune, instead, the control “effort” to satisfy it. Under the assumption of
constant acceleration (and bounds), the slacks will be the same at all t. We then obtain [sl, su] =
[0.82, 0], which ultimately turns into ϕ′2 = G[0,∞)

(

0.68 ≤ a
ego
t ≤ 2.5

)

. The ego vehicle should
then slow down to prevent entering the forbidden box at the same time as the other car. This latter
solution is, however, suboptimal with respect to the l1-norm selected in this example when both
repairs are allowed.

Our algorithm offers the following guarantees, for which a proof is reported below.

Theorem 12 (Soundness). Given a controller synthesis problem P = (fd, x0, ϕ, J), such
that (10.1) is infeasible at time t, let ϕ′ ∈ REPAIRD,T (ϕ) be the repaired formula returned
from Algorithm 7 without human intervention, for a given set of predicates D or time interval T .
Then, P ′ = (fd, x0, ϕ′, J) is feasible at time t and (ϕ′, D, T) satisfy the minimality conditions
in Problem 10.

Proof (Theorem 12). SupposeM is the MILP encoding of P as defined in (10.10), ϕ′ is the
repaired formula, and D the set of diagnosed predicates, as returned by Algorithm 7. We
start by discussing the case of predicate repair.

We letM′ be the MILP encoding of P ′ and D∗ ⊆ D be the set of predicates that are
fixed to provide ϕ′, i.e., such that s = (µ∗ − µ) 6= 0, with µ ∈ D. Algorithm 7 modifies
M by introducing a slack variable sµ,t into each constraint associated with an atomic

CHAPTER 10. DIAGNOSIS AND REPAIR 154

predicate µ in D at time t. Such a transformation leads to a feasible MILPM′′ and an
optimal slack set {s∗µ,t|µ ∈ D, t ∈ {0, . . . , H − 1}}.

We now observe thatM′ andM′′ are both relaxations ofM. In fact, we can viewM′

as a version ofM in which only the constraints associated with the atomic predicates in
D∗ are relaxed. Therefore, each constraint having a nonzero slack variable inM′′ is also
relaxed inM′. Moreover, by (10.12), the relaxed constraints inM′ are offset by the largest
slack value over the horizon H. Then, becauseM′′ is feasible,M′, and subsequently P ′,
are feasible.

We now prove that (ϕ′,D) satisfy the predicate minimality condition of Problem 10.
Let ϕ̃ be any formula obtained from ϕ after repairing a set of predicates D̃ such that the
resulting problem P̃ is feasible. We recall that, by Definition 6, at least one predicate
in D generates a conflicting constraint and must be repaired forM to become feasible.
Then, D̃ ∩ D 6= ∅ holds. Furthermore, since Algorithm 7 iterates by diagnosing and
relaxing constraints until feasibility is achieved, D contains all the predicates that can be
responsible for the infeasibility of ϕ. In other words, Algorithm 7 finds all the IISs in
the original optimization problem and allows relaxing any constraint in the union of the
IISs. Therefore, repairing any predicate outside of D is redundant: a predicate repair set
that only relaxes the constraints associated with predicates in D̄ = D̃ ∩ D, by the same
amount as in ϕ̃, and sets to zero the slack variables associated with predicates in D \ D̄ is
also effective and exhibits a smaller slack norm. Let sD̄ be such a repair set and ϕ̄ the
corresponding repaired formula. sD̄ and sD can then be seen as two repair sets on the
same predicate set. However, by the solution of Problem (10.11), we are guaranteed that
sD has minimum norm; then, ||sD|| ≤ ||sD̄|| will hold for any such formulas ϕ̄, and hence
ϕ̃.

We now consider the MILP formulation M′ associated with P ′ and ϕ′ in the case
of time-interval repairs. For each atomic predicate µi ∈ D, for i ∈ {1, . . . , |D|}, M′

includes only the associated constraints evaluated over time intervals σ′i for which the
slack variables {sµi,t} are zero. Such a subset of constraints is trivially feasible. All the
other constraints enforcing the satisfaction of Boolean and temporal combinations of the
atomic predicates in ϕ′ cannot cause infeasibility with these atomic predicate constraints,
or the associated slack variables {sµi,t} would be non-zero. So,M′ is feasible.

To show that (ϕ′,T) satisfy the minimality condition in Problem 10, we observe that, by
the transformations in step 2 of the time-interval repair procedure, ϕ is logically equivalent
to a formula ϕ̂ which only contains untimed U and timed G operators. Moreover, ϕ̂ and ϕ
have the same interval parameters. Therefore, if the proposed repair set is minimal for ϕ̂,
this will also be the case for ϕ.

We now observe that Algorithm 7 selects, for each atomic predicate µi ∈ D the largest
interval σ′i such that the associated constraints are feasible, i.e., their slack variables

are zero after norm minimization3. Because feasible intervals for Boolean combinations

3Because we are not directly maximizing the sparsity of the slack vector, time-interval minimality is to
be interpreted with respect to slack norm minimization. Directly maximizing the number of zero slacks is

CHAPTER 10. DIAGNOSIS AND REPAIR 155

of atomic predicates are obtained by intersecting these maximal intervals, and then
propagated to the temporal operators, the length of the intervals of each G operator in ϕ̂,
hence of the temporal operators in ϕ, will also be maximal.

Theorem 13 (Completeness). Assume the controller synthesis problem P = (fd, x0, ϕ, J) re-
sults in (10.1) being infeasible at time t. If there exist a set of predicates D or time-intervals T
such that there exists Φ ⊆ REPAIRD,T (ϕ) for which ∀ φ ∈ Φ, P ′ = (fd, x0, φ, J) is feasible at
time t and (φ, D, T) are minimal in the sense of Problem 10, then Algorithm 7 returns a repaired
formula ϕ′ in Φ.

Proof (Theorem 13). We first observe that Algorithm 7 always terminates with a feasible
solution ϕ′ since the set of MILP constraints to diagnose and repair is finite. We first
consider the case of predicate repairs. Let D be the set of predicates modified to obtain
φ ∈ Φ and D′ the set of diagnosed predicates returned by Algorithm 7. Then, by
Definition 6 and the iterative approach of Algorithm 7, we are guaranteed that D′
includes all the predicates responsible for inconsistencies, as also argued in the proof
of Theorem 12. Therefore, we conclude D ⊆ D′. sD and sD′ can then be seen as two
repair sets on the same predicate set. However, by the solution of Problem (10.11), we are
guaranteed that sD′ has minimum norm; then, ||sD′ || ≤ ||sD|| will hold, hence ϕ′ ∈ Φ.

We now consider the case of time-interval repair. If a formula φ ∈ Φ repairs a set of
intervals T = {τ1, . . . , τl}, then there exists a set of constraints associated with atomic
predicates in ϕ which are consistent in M, the MILP encoding associated with φ, and
make the overall problem feasible. Then, the relaxed MILP encodingM′ associated with
ϕ after slack norm minimization will also include a set of predicate constraints admitting
zero slacks over the same set of time intervals as inM, as determined by T . Since these
constraints are enough to make the entire problemM feasible, this will also be the case
forM′. Therefore, our procedure for time-interval repair terminates and produces a set
of non-empty intervals T ′ = {τ′1, . . . , τ′l }. Finally, because Algorithm 7 finds the longest
intervals for which the slack variables associated with each atomic predicate are zero, we
are also guaranteed that ||τ′i || ≥ ||τi|| for all i ∈ {1, . . . , l}, as also argued in the proof of
Theorem 12. We can then conclude that ϕ′ ∈ Φ holds.

In the worst case, Algorithm 7 solves a number of MILP problem instances equal to
the number of atomic predicates in the STL formula. While the complexity of solving a
MILP is NP-hard, the actual runtime depends on the size of the MILP, which is O(H · |ϕ|),
where H is the length of the horizon and |ϕ| is the number of predicates and operators in
the STL specification.

also possible but computationally more intensive.

CHAPTER 10. DIAGNOSIS AND REPAIR 156

10.5 Contracts

In this section, we consider specifications provided in the form of a contract (ϕe, ϕe → ϕs),
where ϕe is a STL formula expressing the assumptions, i.e., the set of behaviors assumed
from the environment, while ϕs captures the guarantees, i.e., the behaviors promised
by the system in the context of the environment. To repair contracts, we can capture
tradeoffs between assumptions and guarantees in terms of minimization of a weighted
norm of slacks. We describe below our results for both non-adversarial and adversarial
environments.

Non-Adversarial Environment

For a contract, we make a distinction between controlled inputs ut and uncontrolled
(environment) inputs wt of the dynamical system. In this section we assume that the
environment signal wH can be predicted over a finite horizon and set to a known value
for which the controller must be synthesized. With ϕ ≡ ϕe → ϕs, equation (10.2) reduces
to:

minimize
uH

J(ξ(x0, uH, wH))

subject to ξ(x0, uH, wH) |= ϕ.
(10.15)

Because of the similarity of Problem (10.15) and Problem (10.1), we can then diagnose
and repair a contract using the methodology illustrated in Section 10.4. However, to
reflect the different structure of the specification, i.e., its partition into assumption and
guarantees, we adopt a weighted sum of the slack variables in Algorithm 7, allocating
different weights to predicates in the assumption and guarantee formulae. We can then
provide the same guarantees as in Theorems 12 and 13, where ϕ ≡ ϕe → ϕs and the
minimality conditions are stated with respect to the weighted norm.

Example 6 (Non-adversarial Race). We consider Example 3 with the same discretization
step ∆t = 0.2 and horizon H = 10 as in Example 2. The MPC scheme results infeasible at
time 1. In fact, we observe that ψe is true as vadv

0 ≥ 0.5. Since v
ego
1 = 0.2, the predicate

ψs2 = G[0.2,∞)(v
ego
t ≥ 0.5) in ψs is found to be failing. As in Section 10.4, we can modify the

conflicting predicates in the specification by using slack variables as follows: vadv
t + se(t) ≥ 0.5

(assumptions) and v
ego
t + ss(t) ≥ 0.5 (guarantees). However, we also assign a set of weights to

the assumption (λe) and guarantee (λs) predicates, our objective being λe|se|+ λs|ss|. By setting
λs > λe, we encourage modifications in the assumption predicate, thus obtaining se = 0.06 at
time 0 and zero otherwise, and ss = 0 at all times. We can then set ψ′e = (vadv

0 ≥ 0.56), which
falsifies ψ′e so that ψ′e → ψs is satisfied. Alternatively, by setting λs < λe, we obtain the slack
values in Table 10.2, which lead to the following predicate repair: ψ′s2 = G[0.2,∞)(v

ego
t ≥ 0.2).

We can also modify the time interval of the temporal operator associated with ψs2 to repair
the overall specification. To do so, Algorithm 7 uses the parse tree of ψe → ψs in Figure 10.3.
For any of the leaf node predicates µi, i ∈ {1, 2, 3}, we get a support σi = [0, 9], which is only

CHAPTER 10. DIAGNOSIS AND REPAIR 158

Algorithm 10 Diagnose Repair Adversarial

1: Input: P
2: Output: uH, P ′
3: (J, C)← GenMILP(P)
4: (uH

0 , wH
0 , sat)← CheckSAT(J, C)

5: if sat then
6: W∗cand ← SolveCEGIS(uH

0 ,P)
7: Wcand ←W∗cand
8: whileWcand 6= ∅ do
9: Pw ← RepairAdversarial(Wcand,P)

10: Wcand ← SolveCEGIS(uH
0 ,Pw)

11: end while
12: Wcand ←W∗cand, Pψ ← P
13: whileWcand 6= ∅ do
14: Pψ ← DiagnoseRepair(Pψ)

15: Wcand ← SolveCEGIS(uH
0 ,Pψ)

16: end while
17: P ′ ← FindMin(Pw,Pψ)

18: end if

there exists a pair of uH and wH for which problem (10.2) is feasible (CheckSAT routine):

minimize
uH ,wH

J(ξ(x0, uH, wH))

subject to ξ(x0, uH, wH) |= ϕ

wH |= ϕw ∧ ϕe.

(10.16)

If problem (10.16) is unsatisfiable, we can use the techniques introduced in Section 10.4
and 10.5 to diagnose and repair the infeasibility. Therefore, in the following, we assume
that (10.16) is satisfiable, hence there exist uH

0 and wH
0 that solve (10.16).

To check realizability, we use the following CEGIS loop (SolveCEGIS routine) [148].
By first fixing the control trajectory to uH

0 , we find the worst case disturbance trajectory
wH

1 that minimizes the robustness value of ϕ by solving the following problem:

minimize
wH

ρϕ(ξ(x0, uH, wH), 0)

subject to wH |= ϕe ∧ ϕw

(10.17)

with uH = uH
0 . The optimal wH

1 from (10.17) will falsify the specification if the resulting

robustness value is below zero4. If this is the case, we look for a uH
1 which solves (10.15)

4A tolerance ρmin can be selected to accommodate approximation errors, i.e., ρϕ(ξ(x0, uH
0 , wH

1), 0) <
ρmin.

CHAPTER 10. DIAGNOSIS AND REPAIR 159

with the additional restriction of wH ∈ Wcand = {wH
1 }. If this step is feasible, we once

again attempt to find a worst-case disturbance sequence wH
2 that solves (10.17) with

uH = uH
1 : this is the counterexample-guided inductive step. At each iteration i of this

CEGIS loop, the set of candidate disturbance sequences Wcand expands to include wH
i .

If the loop terminates at iteration i with a successful uH
i (one for which the worst case

disturbance wH
i in (10.17) has positive robustness), we conclude that the formula ϕ is

realizable.
The CEGIS loop may not terminate if the set Wcand is infinite. We, therefore, run it

for a maximum number of iterations. If SolveCEGIS fails to find a controller sequence
prior to the timeout, then (10.15) is infeasible for the current Wcand, i.e., there is no
control input that can satisfy ϕ for all disturbances in Wcand. We conclude that the
specification is not realizable (or, equivalently, the contract is inconsistent). While this
infeasibility can be repaired by modifying ψ based on the techniques in Section 10.4
and Section 10.5, an alternative solution is to repair ϕw by minimally pruning the bounds
on wt (RepairAdversarial routine).

To do so, given a small tolerance ǫ ∈ R+, we find

wu = max
wH

i ∈Wcand

t∈{0,...,H−1}

wi,t wl = min
wH

i ∈Wcand

t∈{0,...,H−1}

wi,t (10.18)

and define su = wmax−wu and sl = wl −wmin. We then use su and sl to update the range
for wt in ϕw to a maximal interval [w′min, w′max] ⊆ [wmin, wmax] and such that at least one
wH

i ∈ Wcand is excluded. Specifically, if su ≤ sl, we set [w′min, w′max] = [wmin, wu − ǫ];
otherwise we set [w′min, w′max] = [wl + ǫ, wmax]. The smaller the value of ǫ, the larger the
resulting interval.

Finally, we use the updated formula ϕ′w to run SolveCEGIS again until a realizable
control sequence uH is found. For improved efficiency, the linear search proposed above
to find the updated bounds w′min and w′max can be replaced by a binary search. Moreover,
in Algorithm 10, assuming a predicate repair procedure, FindMin provides the solution
with minimum slack norm between the ones repairing ψ and ϕw.

Example 7 (Adversarial Race). We consider the specification in Example 4. For the same
horizon as in the previous examples, after solving the satisfiability problem, for the fixed uH

0 , the

CEGIS loop returns aadv
t = 2 for all t ∈ {0, . . . , H− 1} as the single element inWcand for which

no controller sequence can be found. We then choose to tighten the environment assumptions
to make the controller realizable, by shrinking the bounds on aadv

t by using Algorithm 10 with
ǫ = 0.01. After a few iterations, we finally obtain w′min = 0 and w′max = 1.24, and therefore

φ′w = G[0,∞)

(

0 ≤ aadv
t ≤ 1.24

)

.

To account for the error introduced by ǫ, given ϕ′ ∈ REPAIRD,T (ϕ), we say that (ϕ′,
D, T) are ǫ-minimal if the magnitudes of the predicate repairs (predicate slacks) or
time-interval repairs differ by at most ǫ from a minimal repair in the sense of Problem

CHAPTER 10. DIAGNOSIS AND REPAIR 160

11. Assuming that SolveCEGIS terminates before reaching the maximum number of
iterations5, the following theorems state the properties of Algorithm 10.

Theorem 14 (Soundness). Given a controller synthesis problem P = (fd, x0, ϕ, J), such
that (10.2) is infeasible at time t, let ϕ′ ∈ REPAIRD,T (ϕ) be the repaired formula returned
from Algorithm 10 for a given set of predicates D or time interval T . Then, P ′ = (fd, x0, ϕ′, J)
is feasible at time t and (ϕ′, D, T) is ǫ-minimal.

Proof (Theorem 14). We recall that ϕ ≡ ϕw → ψ. Moreover, Algorithm 10 provides the
solution with minimum slack norm between the ones repairing ψ and φw in the case of
predicate repair. Then, when ψ = ϕe → ϕs is modified using Algorithm 7, soundness is
guaranteed by Theorem 12 and the termination of the CEGIS loop. On the other hand,
assume Algorithm 10 modifies the atomic predicates in φw. Then, the RepairArdversarial
routine and (10.18), together with the termination of the CEGIS loop, assure that ϕw is
also repaired in such a way that the controller is realizable, and ǫ-optimal (i.e., the length
of the bounding box around wt differs from the maximal interval length by at most ǫ),
which concludes our proof.

Theorem 15 (Completeness). Assume the controller synthesis problem P = (fd, x0, ϕ, J) re-
sults in (10.2) being infeasible at time t. If there exist a set of predicates D and time-intervals T
such that there exists Φ ⊆ REPAIRD,T (ϕ) for which ∀ φ ∈ Φ, P ′ = (fd, x0, φ, J) is feasible at
time t and (φ, D, T) is ǫ-minimal, then Algorithm 10 returns a repaired formula ϕ′ in Φ.

Proof (Theorem 15). As discussed in the proof of Theorem 14, if Algorithm 10 modifies
ψ = ϕe → ϕs using Algorithm 7, completeness is guaranteed by Theorem 13 and
the termination of the CEGIS loop. On the other hand, let us assume there exists a
minimum norm repair for the atomic predicates of ϕw, which returns a maximal interval
[w′min, w′max] ⊆ [wmin, wmax]. Then, given the termination of the CEGIS loop, by repeatedly
applying (10.18) and RepairAdversarial, we produce a predicate repair such that the
corresponding interval [w′′min, w′′max] makes the control synthesis realizable and is maximal
within an error bounded by ǫ (i.e., its length differs by at most ǫ from the one of the
maximal interval [w′min, w′max]). Hence, ϕ′ ∈ Φ holds.

10.6 Case Studies

We developed the toolbox DiaRY (Diagnosis and Repair for sYnthesis)6 implementing
our algorithms. DiaRY uses Yalmip [114] to formulate the optimization problems and

5Under failing assumptions, Algorithm 10 terminates with UNKNOWN.
6https://github.com/shromonag/DiaRY

CHAPTER 10. DIAGNOSIS AND REPAIR 161

Gurobi [73] to solve them. It interfaces to different synthesis tools, e.g., BluSTL7 and
CrSPrSTL8. Here, we summarize some of the results of DiaRY for diagnosis and repair.

Autonomous Driving

We consider the problem of synthesizing a controller for an autonomous vehicle in a
city driving scenario. We analyze the following two tasks: (i) changing lanes on a busy
road; (ii) performing an unprotected left turn at a signalized intersection. We use the
dynamics model introduced in Chapter 2.4. To determine the control strategy, we linearize
the overall system dynamics around the initial state at each run of the MPC, which is
completed in less than 2 s on a 2.3-GHz Intel Core i7 processor with 16-GB memory. We
further impose the following constraints on the ego vehicle (i.e., the vehicle under control):
(i) a minimum distance must be established between the ego vehicle and other cars on the
road to avoid collisions; (ii) the ego vehicle must obey the traffic lights; (iii) the ego vehicle
must stay within its road boundaries.

Lane Change

We consider a lane change scenario on a busy road as shown in Figure 10.4a. The ego
vehicle is in red. Car 1 is at the back of the left lane, Car 2 is in the front of the left
lane, while Car 3 is on the right lane. The states of the vehicles are initialized as follows:
xCar 1

0 = [−0.2 − 1.5 π
2 0.5]⊤, xCar 2

0 = [−0.2 1.5 π
2 0.5]⊤, xCar 3

0 = [0.2 1.5 π
2 0]⊤, and

x
ego
0 = [0.2 − 0.7 π

2 0]⊤. The control inputs for ego and Car 3 are initialized at [0 0]⊤;

the ones for Car 1 and Car 2 are set to uCar 1
0 = [0 1]⊤ and uCar 2

0 = [0 − 0.25]⊤. The
objective of ego is to safely change lane, while satisfying the following requirements:

ϕstr = G[0,∞)(|u1| ≤ 2) Steering Bounds

ϕacc = G[0,∞)(|u2| ≤ 1) Acceleration Bounds

ϕvel = G[0,∞)(|v| ≤ 1) Velocity Bounds

(10.19)

The solid blue line in Figure 10.4 is the trajectory of ego as obtained from our MPC scheme,
while the dotted green line is the future trajectory pre-computed for a given horizon at a
given time. MPC becomes infeasible at time t = 1.2 s when the no-collision requirement
is violated, and a possible collision is detected between the ego vehicle and Car 1 before
the lane change is completed (Fig. 10.4a). Our solver takes 2 s, out of which 1.4 s are
needed to generate all the IISs, consisting of 39 constraints. To make the system feasible,
the proposed repair increases both the acceleration bounds and the velocity bounds on

7https://github.com/BluSTL/BluSTL
8https://github.com/dsadigh/CrSPrSTL

CHAPTER 10. DIAGNOSIS AND REPAIR 162

(a) (b)

Figure 10.4: Changing lane is infeasible at t = 1.2 s in (a) and is repaired in (b).

the ego vehicle as follows:

ϕnew
acc = G[0,∞)(|u2| ≤ 3.5)

ϕnew
vel = G[0,∞)(|v| ≤ 1.54).

(10.20)

When replacing the initial requirements ϕacc and ϕvel with the modified ones, the revised
MPC scheme allows the vehicle to travel faster and safely complete a lane change
maneuver, without risks of collision, as shown in Figure 10.4b.

Unprotected Left Turn

In the second scenario, we would like the ego vehicle to perform an unprotected left
turn at a signalized intersection, where the ego vehicle has a green light and is supposed
to yield to oncoming traffic, represented by the yellow cars crossing the intersection
in Figure 10.5. The environment vehicles are initialized at the states xCar 1

0 = [−0.2 0.7 −
π
2 0.5]⊤ and xCar 2

0 = [−0.2 1.5 − π
2 0.5]⊤, while the ego vehicle is initialized at x

ego
0 =

[0.2 − 0.7 π
2 0]⊤. The control input for each vehicle is initialized at [0 0]⊤. Moreover,

we use the same bounds as in (10.19).
The MPC scheme becomes infeasible at t = 2.1 s. The solver takes 5 s, out of which

2.2 s are used to generate the IISs, including 56 constraints. As shown in Figure 10.5a, the
ego vehicle yields in the middle of intersection for the oncoming traffic to pass. However,
the traffic signal turns red in the meanwhile, and there is no feasible control input for the
ego vehicle without breaking the traffic light rules. Since we do not allow modifications to
the traffic light rules, the original specification is repaired again by increasing the bounds

CHAPTER 10. DIAGNOSIS AND REPAIR 163

(a) (b)

Figure 10.5: Left turn becomes infeasible at time t = 2.1 s in (a) and is repaired in (b).

on acceleration and velocity, thus obtaining:

ϕnew
acc = G[0,∞)

(

|u2| ≤ 11.903
)

ϕnew
vel = G[0,∞)

(

|v| ≤ 2.42
)

.
(10.21)

As shown by the trajectory in Figure 10.5b, under the assumptions and initial condi-
tions of our scenario, higher allowed velocity and acceleration make the ego vehicle turn
before the oncoming cars get close or cross the intersection.

Quadrotor Control

We assume a quadrotor dynamical model similar to the one discussed in Chapter 2.4.
Our goal is to synthesize a strategy for the quadrotor to travel from a starting position

[x0, y0, z0] = [0, 0,−0.4] with zero roll, pitch, and yaw angles, i.e., [φ0, θ0, ψ0] = [0, 0, 0], to
a destination [xd, yd, zd] = [1, 1,−0.1], still with zero roll, pitch, and yaw. All the other
elements in the state vector and the control input are initialized at zero. We define the
following constraints on the quadrotor:

ϕh = G[0,∞)(−1.1 ≤ z ≤ 0) Height of Flight Bounds

ϕroll = G[0,∞)(|u1| ≤ 0.3) Roll Bounds

ϕpitch = G[0,∞)(|u2| ≤ 0.3) Pitch Bounds

ϕthr = G[0,∞)(0 ≤ u4 ≤ 6.5) Thrust Bounds.

(10.22)

Our MPC scheme becomes infeasible at time t = 0.675 s because ϕh and ϕroll are both
violated. Given the bounds on the control inputs, the trajectory is not guaranteed to lie in

CHAPTER 10. DIAGNOSIS AND REPAIR 165

the desired region. This is visualized in Figure 10.6 (a) and (c), respectively showing a
two-dimensional and three-dimensional projection of the quadrotor trajectory. The solid
blue line shows the path computed by the MPC framework and taken by the quadrotor,
aiming at traveling from the origin, marked by a black square, to the target, marked by
a red square. Because of the bounds on the control inputs, the quadrotor touches the
boundary of the allowed region (along the z axis) at t = 0.675 s.

The solver takes less than 0.1 s to generate the IIS, including 32 constraints, out of
which 11 constraints are associated with the predicates in ϕh and ϕroll. Our algorithm
adds a slack of 1.58 to the upper bound on z in ϕh. We then modify ϕh to:

ϕnew
h = G[0,∞)(−1.1 ≤ z ≤ 1.58), (10.23)

thus allowing the quadrotor to violate the upper bound on the vertical position during
the maneuver. The new specification makes the problem realizable, and the resulting
trajectory is shown in blue in Figure 10.6 (b) and (d). We can view the above slack
as the estimated margin from the boundary needed for the quadrotor to complete the
maneuver based on the linearized model of the dynamics. As apparent from Figure 10.6b,
such a margin is much larger than the space actually used by the quadrotor to complete
its maneuver. A better estimate can be achieved by using a finer time interval for
linearizing the dynamics and executing the controller. While the solution above provides
the minimum slack norm for the given linearization, it is still possible to notify DiaRY
that ϕh must be regarded as a hard constraint, e.g., used to mark a rigid obstacle. In this
case, DiaRY tries to relax the bounds on the control inputs to achieve feasibility.

10.7 Chapter Summary

We presented a set of algorithms for diagnosis and repair of STL specifications in the
setting of controller synthesis for hybrid systems using a model predictive control scheme.
Given an unrealizable specification, our algorithms can detect possible reasons for in-
feasibility and suggest repairs to make it realizable. We showed the effectiveness of our
approach on the synthesis of controllers for several applications. As future work, we
plan to investigate techniques that better leverage the structure of the STL formulae and
extend to a broader range of environment assumptions in the adversarial setting.

166

Chapter 11

Final Words

We envision a world where autonomous systems are interacting with us seamlessly.
Robots are integrated into our society, and are cognizant of their interaction with each
other, with the humans, and the environment they live in. They are also capable of
reasoning about their actions, and they plan safe strategies that humans can trust and
rely on.

This thesis has been a key step towards the goal of understanding and designing
a framework for modeling the interaction between humans and other agents, which is
crucial for correct-by-construction design and analysis of human-robot systems. In this
chapter, we would like to conclude this dissertation by reflecting on our approach and
discussing some of the limitations and future directions.

We have focused on two main control approaches in this work: interaction-aware control,
and safe control.

Our work in interaction-aware control requires models of humans and the interaction
between the human and autonomy as we have discussed in Chapter 3, Chapter 4,
and Chapter 5. In Chapter 6, we have addressed the initial steps in increasing trust in
human models by studying individual variations from learned human models. However,
there are still many avenues to explore in designing better and more accurate models
of humans in safety-critical human-robot systems such as approaches in behavioral
economics to model human’s bounded rationality [66]. Similarly, we have used active
methods in learning human’s reward functions for both information gathering and
comparison-based learning (Chapter 4, Chapter 5). Such active learning techniques
enable us to only extract informative data and quickly converge to the desired outcome.
In the future, we plan to utilize such methods in automatic testing and validation of
human-robot systems.

Our work in safe control, addresses correct-by-construction control from temporal
logic specifications in reactive, continuous, and probabilistic settings (Chapter 7,Chap-
ter 8, and Chapter 9). However, as more learning components are used in control and
estimation of robotics systems, our formal techniques need to be modified to address
safety guarantees in such settings. Chapter 9 is only a first step towards this direction, and

CHAPTER 11. CHAPTER:FINAL WORDS 167

future work in control and verification needs to address the challenges in safe and verified
AI. We discuss some of these challenges in the next section. Further, in Chapter 10, we
studied the problem of diagnosing and repairing infeasible specifications. Similarly, as
more data-driven and learned components appear in our systems, we are required to
design algorithms that are capable of diagnosis and repair with such learned components,
which is in the direction of addressing various challenges in explainable and accountable
AI.

11.1 Challenges in Safe and Interactive AI

Systems that heavily use AI, henceforth referred to as AI-based systems, have had a
significant impact in society in domains that include healthcare, transportation, social
networking, e-commerce, education, etc. This growing societal-scale impact has brought
with it a set of risks and concerns including errors in AI software, cyber-attacks, and
safety of AI-based systems [153, 42, 10]. As we have seen in this dissertation, the AI-based
systems have had an incredible impact on the design and control of human-robot systems.
We address some of the challenges that need to be addressed in safe and interactive AI
for human-robot systems. Some of the material in this section appeared in [164], and we
refer the reader to that paper for further details.

Environment Modeling

In the traditional success stories for formal verification, such as verifying cache coherence
protocols or device drivers, the interface between the system and its environment is
well defined. Moreover, while the environment itself may not be known, it is usually
acceptable to model it as a non-deterministic process subject to constraints specified in a
suitable logic or automata-based formalism. Typically such an environment model is
“over-approximate”, meaning that it may include more environment behaviors than are
possible.

We see systems based on AI or machine learning (ML) as being quite different.
Consider an autonomous vehicle operating in rush-hour traffic in an urban environment.
It may be impossible even to precisely define the interface between the system and
environment (i.e., to identify the variables/features of the environment that must be
modeled), let alone to model all possible behaviors of the environment. Even if the
interface is known, non-deterministic or over-approximate modeling is likely to produce
too many spurious bug reports, rendering the verification process useless in practice.

Similarly, for human-robot systems, human agents are a key part of the environment
and/or system. Researchers have attempted modeling humans as non-deterministic or
stochastic processes with the goal of verifying the correctness of the overall system [152,
157]. Given the variability and uncertainty in human behavior, a data-driven approach
based on machine learning is usually necessary. Such an approach, in turn, is sensitive to

CHAPTER 11. CHAPTER:FINAL WORDS 168

the quality of data. For example, the technique of inverse reinforcement learning [128]
can be used for learning the reward function of human agents [2, 188]. However, accuracy
of the learned reward function depends on the expressivity of the hand-coded features by
the designer and the amount and variety of the data collected. In order to achieve verified
AI for such human-in-the-loop systems, we need to address the limitations of the current
human modeling techniques and provide guarantees about their prediction accuracy and
convergence. When learned models are used, one must represent any uncertainty in
the learned parameters as a first-class entity in the model, and take that into account in
verification and control. The challenge, then, is to come up with a method of environment
modeling that allows one to provide provable guarantees on the system’s behavior even
when there is considerable uncertainty about the environment.

Formal Specification

Formal verification critically relies on having a formal specification – a precise, mathemat-
ical statement of what the system is supposed to do. However, the challenge of coming
up with a high-quality formal specification is well known, even in application domains in
which formal verification has found considerable success (see, e.g., [22]).

This challenge is only exacerbated in AI-based systems. Consider a module in an
autonomous vehicles that performs object recognition, distinguishing humans from other
objects. What is the specification for such a module? How might it differ from the
specifications used in traditional applications of formal methods? What should the
specification language be, and what tools can one use to construct a specification?

Thus, we need to find an effective method to specify desired and undesired properties
of systems that use AI- or ML-based components.

Modeling Systems that Learn

In most traditional applications of formal verification, the system is precisely known: it
is a C program, or a circuit described in a hardware description language. The system
modeling problem is primarily concerned with reducing the size of the system to a more
tractable representation by abstracting away irrelevant details.

AI-based systems lead to a very different challenge for system modeling. A major
challenge is the use of machine learning, where the system evolves as it encounters new
data and new situations. Modeling a deep neural network that has been trained on
millions of data points can be challenging enough even if one “freezes” the training
process: new abstraction techniques will be necessary. Additionally, the verification
procedure must account for future changes in the learner as new data arrives. New
techniques must be devised to formally model components based on machine learning.

CHAPTER 11. CHAPTER:FINAL WORDS 169

Generating Training Data

Formal methods has proved effective for the systematic generation of test data in various
settings including simulation-based verification of circuits (e.g., [93]) and finding security
exploits in commodity software (e.g., [15]). In these cases, even though the end result is
not a proof of correctness of the system, the generated tests raise the level of assurance in
the system’s correctness. Can the testing of AI-based systems leverage formal methods in
a similar manner?

We have seen that various machine learning algorithms can fail under small adversarial
perturbations [130, 57, 123, 70]. Learning algorithms promise to generalize from data,
but such simple perturbations that fool the algorithms create concerns regarding their
use in safety-critical applications such as autonomous driving. Such small perturbations
might be even unrecognizable to humans, but drive the algorithm to misclassify the
perturbed data. Recent efforts have started to combine ideas from formal methods and
machine learning to address problems such as compositional falsification of machine
learning components [48]. There are still many challenges left to devise techniques based
on formal methods to systematically generate training and testing data for ML-based
components.

Active Test Scenario Generation

Efficiently and actively generating test scenarios is also a key factor in verification of
human-robot systems. For example, in the context of autonomous driving, today’s
automated cars measure the reliability of autonomy by the number of miles driven.
However, the quality of driven miles is more important than its quantity. Using the
power of formal methods through model checking and counterexample-based techniques,
one challenge is to automatically generate representative test scenarios for human-robot
systems in order to detect the interesting corner cases that potentially result in accidents.

Scalability of Verification and Optimization Engines

A constant question asked of formal verification is whether it can scale up to handle
industrial designs. Much progress has been made in this regard, especially in the area of
hardware verification, where formal methods are a standard part of the design flow.

However, in systems that use AI or ML, the scalability challenge is even greater.
In addition to the scale of systems as measured by traditional metrics (dimension of
state space, number of components, etc.), the types of components can be much more
complex. For instance, in (semi-)autonomous driving, autonomous vehicles and their
controllers need to be modeled as hybrid systems combining both discrete and continuous
dynamics. Moreover, agents in the environment (humans, other vehicles) may need
to be modeled as probabilistic processes. Finally, the requirements may involve not only

CHAPTER 11. CHAPTER:FINAL WORDS 170

traditional Boolean specifications on safety and liveness, but also quantitative requirements
on system robustness and performance.

On a similar note, many of the performance measures or reward functions discussed
in this dissertation are nonlinear and non-convex. Another challenge is to design scalable
nonlinear optimization techniques that enable real-time computation for synthesizing
safe and interaction-aware controllers.

Human’s Bounded Rationality

Designing a framework for interaction between humans and autonomy requires illus-
trative learned human models. Under the assumption that humans are approximately
rational, we have used the principle of maximum entropy to learn their reward func-
tions [159, 158, 160]. However, in many extreme events (e.g., car accidents), human actions
cannot be explained as agents who optimize a rational reward function. Understanding
and modeling such extreme cases is an essential component in providing guarantees
about human-robot systems. We believe exploring ideas from behavioral economics
can facilitate designing systems that are aware of humans’ bounded rationality [66].
This potentially further enables inference of probability of loss in such events and pro-
vides a systematic design of insurance mechanisms for semiautonomous systems (e.g.,
autonomous vehicles driving on roads shared with humans).

Human Variations

Data-driven human models such as human reward functions are usually constructed
based on large datasets that give access to a single model of rationality. However, humans
vary in how they handle different situations, and we cannot fit a single model to all
humans. In safety-critical scenarios, we need to be able to quantize and measure how
humans can differ from the fitted model. As a step towards verified human modeling, we
have constructed an efficient (almost linear) algorithm to quantize and learn a distribution
over the variations from the fitted model by querying individual humans on actively
generated scenarios (see Chapter 6). However, more work is required in robustness
analysis of human models in order to be able to use these results in control. Our work
in Chapter 6 finds a sequence of falsifying actions for humans; however, one challenge is
to utilize this falsifying sequence in an online manner to close the loop by synthesizing
resilient controllers to human variations.

Shared Transportation Networks for Human-Robot Systems

Going beyond single agent systems, another challenging problem is to address human-
robot systems at the system level, and explore its fundamental limits. Imagine a trans-
portation network with fleets of autonomous and human-driven vehicles. If there are

CHAPTER 11. CHAPTER:FINAL WORDS 171

no human-driven vehicles, a central authority can plan routes for vehicles so as to min-
imize the total cost. Moreover, if there are no autonomous vehicles, vehicles follow an
equilibrium, which might have a suboptimal total cost. The cost of an equilibrium can
be worse than the optimum by a factor known as the price of anarchy. As systems move
towards semiautonomy, it is important to study scenarios that fall in between the two
extremes. Scenarios in which some vehicles (autonomous) can be routed by a central
authority and the rest follow an equilibrium (that depends on the choices of the central
authority). The study of these scenarios requires combining optimization techniques (for
the central authority) with game theoretic ideas (for human-driven vehicles).

11.2 Closing Thoughts

Our work presented in this dissertation is only a step that attempts to bring ideas from
robotics, control theory, and formal methods to address the problems in the design,
control, learning, and verification of human-robot systems. As discussed in this chapter,
there are still many existing challenges that need to be addressed for safe and interactive
autonomy. We envision a strong collaboration between learning and control, human-robot
interaction, and formal methods communities to take advantage of both data-driven and
model-based techniques in an effort to seamlessly integrate safe and reliable human-robot
systems in our society.

172

Bibliography

[1] H. Abbas et al. “Robustness-Guided Temporal Logic Testing and Verification
for Stochastic Cyber-Physical Systems”. In: Proc. of IEEE International Conference
on CYBER Technology in Automation, Control, and Intelligent Systems. 2014 (cit. on
p. 108).

[2] P. Abbeel and A. Y. Ng. “Apprenticeship learning via inverse reinforcement learn-
ing”. In: Proceedings of the twenty-first international conference on Machine learning.
ACM. 2004, p. 1 (cit. on p. 168).

[3] P. Abbeel and A. Y. Ng. “Exploration and apprenticeship learning in reinforcement
learning”. In: Proceedings of the 22nd international conference on Machine learning.
ACM. 2005, pp. 1–8 (cit. on pp. 3, 17, 29, 31).

[4] N. Ailon and M. Mohri. “Preference-based learning to rank”. In: Machine Learning
80.2-3 (2010), pp. 189–211 (cit. on p. 62).

[5] A. K. Akametalu et al. “Reachability-based safe learning with gaussian processes”.
In: 2014 IEEE 53rd Annual Conference on Decision and Control, pp. 1424–1431 (cit. on
p. 124).

[6] B. Akgun et al. “Keyframe-based learning from demonstration”. In: International
Journal of Social Robotics 4.4 (2012), pp. 343–355 (cit. on p. 62).

[7] R. Akrour, M. Schoenauer, and M. Sebag. “April: Active preference learning-
based reinforcement learning”. In: Joint European Conference on Machine Learning
and Knowledge Discovery in Databases. Springer. 2012, pp. 116–131 (cit. on p. 62).

[8] R. Alur, S. Moarref, and U. Topcu. “Counter-strategy guided refinement of GR(1)
temporal logic specifications”. In: Proceedings of the 13th Conference on Formal Meth-
ods in Computer-Aided Design (FMCAD’13). 2013, pp. 26–33 (cit. on pp. 106, 108).

[9] R. Alur, S. Moarref, and U. Topcu. “Counter-strategy guided refinement of GR(1)
temporal logic specifications”. In: Formal Methods in Computer-Aided Design. 2013
(cit. on p. 141).

[10] D. Amodei et al. “Concrete Problems in AI Safety”. In: arXiv preprint
arXiv:1606.06565 (2016) (cit. on p. 167).

BIBLIOGRAPHY 173

[11] G. Andrew and J. Gao. “Scalable training of L1-regularized log-linear models”.
In: Proceedings of the 24th international conference on Machine learning. ACM. 2007,
pp. 33–40 (cit. on pp. 31, 66).

[12] C. Andrieu et al. “An introduction to MCMC for machine learning”. In: Machine
learning 50.1-2 (2003), pp. 5–43 (cit. on p. 125).

[13] A. Aswani et al. “Provably safe and robust learning-based model predictive
control”. In: Automatica 49.5 (2013), pp. 1216–1226 (cit. on p. 124).

[14] R. J. Aumann, M. Maschler, and R. E. Stearns. Repeated games with incomplete
information. MIT press, 1995 (cit. on p. 28).

[15] T. Avgerinos et al. “Automatic exploit generation”. In: Commun. ACM 57.2 (2014),
pp. 74–84 (cit. on p. 169).

[16] M. Awais and D. Henrich. “Human-robot collaboration by intention recognition us-
ing probabilistic state machines”. In: Robotics in Alpe-Adria-Danube Region (RAAD),
2010 IEEE 19th International Workshop on. IEEE. 2010, pp. 75–80 (cit. on p. 43).

[17] C. L. Baker, R. Saxe, and J. B. Tenenbaum. “Action understanding as inverse
planning”. In: Cognition 113.3 (2009), pp. 329–349 (cit. on p. 43).

[18] T. Bandyopadhyay et al. “Intention-aware motion planning”. In: Algorithmic Foun-
dations of Robotics X. Springer, 2013, pp. 475–491 (cit. on pp. 5, 43).

[19] F. Bastien et al. Theano: new features and speed improvements. Deep Learning and
Unsupervised Feature Learning NIPS 2012 Workshop. 2012 (cit. on p. 32).

[20] C. Basu et al. “Do you want your autonomous car to drive like you?” In: 2017 12th
ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE. 2017
(cit. on p. 62).

[21] M. J. Beal. Variational algorithms for approximate Bayesian inference. University of
London, 2003 (cit. on pp. 125, 139).

[22] I. Beer et al. “Efficient Detection of Vacuity in ACTL Formulas”. In: Formal Methods
in System Design 18.2 (2001), pp. 141–162 (cit. on p. 168).

[23] A. Bemporad and M. Morari. “Control of systems integrating logic, dynamics,
and constraints”. In: Automatica 35.3 (1999), pp. 407–427. doi: 10.1016/S0005-
1098(98)00178-2. url: http://dx.doi.org/10.1016/S0005-1098(98)00178-2
(cit. on pp. 108, 142).

[24] A. Bemporad and M. Morari. “Robust model predictive control: A survey”. In:
Robustness in identification and control. Springer, 1999, pp. 207–226 (cit. on p. 141).

[25] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust optimization. Princeton Uni-
versity Press, 2009 (cit. on p. 129).

[26] J. Bergstra et al. “Theano: a CPU and GPU Math Expression Compiler”. In: Pro-
ceedings of the Python for Scientific Computing Conference (SciPy). Oral Presentation.
Austin, TX, June 2010 (cit. on p. 32).

BIBLIOGRAPHY 174

[27] D. S. Bernstein et al. “The complexity of decentralized control of Markov decision
processes”. In: Mathematics of operations research 27.4 (2002), pp. 819–840 (cit. on
p. 28).

[28] A. Biere et al. “Symbolic Model Checking without BDDs”. In: Tools and Algo-
rithms for Construction and Analysis of Systems, 5th International Conference, TACAS
’99, Held as Part of the European Joint Conferences on the Theory and Practice of Soft-
ware, ETAPS’99, Amsterdam, The Netherlands, March 22-28, 1999, Proceedings. 1999,
pp. 193–207. doi: 10.1007/3-540-49059-0_14. url: http://dx.doi.org/10.1007/
3-540-49059-0_14 (cit. on p. 108).

[29] L. Blackmore, M. Ono, and B. C. Williams. “Chance-constrained optimal path
planning with obstacles”. In: 2011 IEEE Transactions on Robotics 27.6 (), pp. 1080–
1094 (cit. on pp. 124, 129).

[30] R. Bloem et al. “RATSY - A New Requirements Analysis Tool with Synthesis.” In:
CAV’10. 2010, pp. 425–429 (cit. on p. 104).

[31] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press,
2004 (cit. on pp. 129, 130).

[32] D. Braziunas. “Computational approaches to preference elicitation”. In: Department
of Computer Science, University of Toronto, Tech. Rep (2006) (cit. on p. 62).

[33] K. Brinker, J. Fürnkranz, and E. Hüllermeier. Label ranking by learning pairwise
preferences. Tech. rep. Technical Report TUD-KE-2007-01, Knowledge Engineering
Group, TU Darmstadt, 2007 (cit. on p. 62).

[34] J. R. Büchi. “Symposium on decision problems: On a decision method in restricted
second order arithmetic”. In: Studies in Logic and the Foundations of Mathematics 44
(1966), pp. 1–11 (cit. on p. 19).

[35] E. F. Camacho and C. B. Alba. Model predictive control. Springer Science & Business
Media, 2013 (cit. on pp. 16, 29).

[36] A. Carvalho et al. “Stochastic Predictive Control of Autonomous Vehicles in
Uncertain Environments”. In: 12th International Symposium on Advanced Vehicle
Control. 2014 (cit. on p. 124).

[37] K. Chatterjee, T. A. Henzinger, and B. Jobstmann. “Environment Assumptions
for Synthesis”. In: Proceedings of the 19th international conference on Concurrency
Theory. CONCUR ’08. Toronto, Canada: Springer-Verlag, 2008, pp. 147–161. doi:
http://dx.doi.org/10.1007/978-3-540-85361-9_14. url: http://dx.doi.org/
10.1007/978-3-540-85361-9_14 (cit. on p. 106).

[38] K. Chatterjee et al. “Counterexample-guided Planning”. In: UAI ’05, Proceed-
ings of the 21st Conference in Uncertainty in Artificial Intelligence, Edinburgh, Scot-
land, July 26-29, 2005. 2005, pp. 104–111. url: http : / / uai . sis . pitt . edu /

displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1214&proceeding_

id=21 (cit. on p. 108).

BIBLIOGRAPHY 175

[39] J. W. Chinneck and E. W. Dravnieks. “Locating minimal infeasible constraint sets
in linear programs”. In: ORSA Journal on Computing 3.2 (1991), pp. 157–168 (cit. on
p. 149).

[40] M.-C. Costa, L. Léocart, and F. Roupin. “Minimal multicut and maximal integer
multiflow: A survey”. In: European Journal of Operational Research 162.1 (2005),
pp. 55–69 (cit. on p. 103).

[41] C. Daniel et al. “Active Reward Learning.” In: Robotics: Science and Systems. 2014
(cit. on p. 64).

[42] T. G. Dietterich and E. J. Horvitz. “Rise of concerns about AI: reflections and
directions”. In: Communications of the ACM 58.10 (2015), pp. 38–40 (cit. on p. 167).

[43] X. C. Ding, M. Lazar, and C. Belta. “LTL receding horizon control for finite
deterministic systems”. In: Automatica 50.2 (2014), pp. 399–408. doi: 10.1016/j.
automatica.2013.11.030. url: http://dx.doi.org/10.1016/j.automatica.
2013.11.030 (cit. on p. 109).

[44] M. Dissanayake et al. “A solution to the simultaneous localization and map
building (SLAM) problem”. In: Robotics and Automation, IEEE Transactions on 17.3
(2001), pp. 229–241 (cit. on p. 8).

[45] A. Donzé and O. Maler. “Robust Satisfaction of Temporal Logic over Real-Valued
Signals”. In: Formal Modeling and Analysis of Timed Systems - 8th International Con-
ference, FORMATS 2010, Klosterneuburg, Austria, September 8-10, 2010. Proceedings.
2010, pp. 92–106. doi: 10.1007/978-3-642-15297-9_9. url: http://dx.doi.org/
10.1007/978-3-642-15297-9_9 (cit. on p. 21).

[46] A. D. Dragan. “Robot Planning with Mathematical Models of Human State and
Action”. In: arXiv preprint arXiv:1705.04226 (2017) (cit. on p. 28).

[47] A. D. Dragan and S. S. Srinivasa. Formalizing assistive teleoperation. MIT Press, July,
2012 (cit. on p. 43).

[48] T. Dreossi, A. Donzé, and S. A. Seshia. “Compositional Falsification of Cyber-
Physical Systems with Machine Learning Components”. In: NASA Formal Methods
Symposium. Springer. 2017, pp. 357–372 (cit. on p. 169).

[49] P. M. Esfahani, T. Sutter, and J. Lygeros. “Performance bounds for the scenario ap-
proach and an extension to a class of non-convex programs”. In: IEEE Transactions
on Automatic Control 60.1 (2015), pp. 46–58 (cit. on p. 113).

[50] F. A. A. (FAA). The Interfaces between Flight Crews and Modern Flight Systems. http:
//www.faa.gov/avr/afs/interfac.pdf. 1995 (cit. on p. 93).

BIBLIOGRAPHY 176

[51] G. E. Fainekos and G. J. Pappas. “Robust Sampling for MITL Specifications”. In:
Formal Modeling and Analysis of Timed Systems, 5th International Conference, FOR-
MATS 2007, Salzburg, Austria, October 3-5, 2007, Proceedings. 2007, pp. 147–162.
doi: 10.1007/978-3-540-75454-1_12. url: http://dx.doi.org/10.1007/978-3-
540-75454-1_12 (cit. on p. 23).

[52] G. E. Fainekos and G. J. Pappas. “Robustness of temporal logic specifications for
continuous-time signals”. In: Theor. Comput. Sci. 410.42 (2009), pp. 4262–4291. doi:
10.1016/j.tcs.2009.06.021. url: http://dx.doi.org/10.1016/j.tcs.2009.06.
021 (cit. on p. 21).

[53] G. E. Fainekos et al. “Temporal logic motion planning for dynamic robots”. In:
Automatica 45.2 (2009), pp. 343–352. doi: 10.1016/j.automatica.2008.08.008.
url: http://dx.doi.org/10.1016/j.automatica.2008.08.008 (cit. on p. 107).

[54] P. Falcone et al. “Integrated braking and steering model predictive control approach
in autonomous vehicles”. In: Advances in Automotive Control. Vol. 5. 1. 2007, pp. 273–
278 (cit. on p. 8).

[55] P. Falcone et al. “MPC-based yaw and lateral stabilisation via active front steering
and braking”. en. In: Vehicle System Dynamics 46.sup1 (Sept. 2008), pp. 611–628
(cit. on p. 8).

[56] P. Falcone et al. “Predictive Active Steering Control for Autonomous Vehicle
Systems”. In: IEEE Transactions on Control Systems Technology 15.3 (May 2007),
pp. 566–580 (cit. on p. 8).

[57] A. Fawzi, O. Fawzi, and P. Frossard. “Analysis of classifiers’ robustness to adver-
sarial perturbations”. In: arXiv preprint arXiv:1502.02590 (2015) (cit. on p. 169).

[58] A. Fern et al. “A Decision-Theoretic Model of Assistance.” In: IJCAI. 2007, pp. 1879–
1884 (cit. on pp. 5, 43, 46).

[59] T. Ferrère, O. Maler, and D. Nickovic. “Trace Diagnostics Using Temporal Impli-
cants”. In: Proc. Int. Symp. Automated Technology for Verification and Analysis. 2015
(cit. on p. 141).

[60] J. Fu and U. Topcu. “Computational methods for stochastic control with metric
interval temporal logic specifications”. In: arXiv:1503.07193 (2015) (cit. on p. 124).

[61] J. Fu and U. Topcu. “Integrating active sensing into reactive synthesis with tempo-
ral logic constraints under partial observations”. In: arXiv:1410.0083 (2014) (cit. on
p. 124).

[62] D. Fudenberg and J. Tirole. “Game theory, 1991”. In: Cambridge, Massachusetts 393
(1991) (cit. on p. 29).

[63] J. Fürnkranz et al. “Preference-based reinforcement learning: a formal framework
and a policy iteration algorithm”. In: Machine learning 89.1-2 (2012), pp. 123–156
(cit. on p. 62).

BIBLIOGRAPHY 177

[64] A. Gelman et al. Bayesian data analysis. Vol. 2. Taylor & Francis, 2014 (cit. on p. 125).

[65] S. Ghosh et al. “Diagnosis and repair for synthesis from signal temporal logic
specifications”. In: Proceedings of the 19th International Conference on Hybrid Systems:
Computation and Control. ACM. 2016, pp. 31–40 (cit. on pp. 12, 124).

[66] G. Gigerenzer and R. Selten. Bounded rationality: The adaptive toolbox. MIT press,
2002 (cit. on pp. 166, 170).

[67] J. H. Gillula and C. J. Tomlin. “Guaranteed safe online learning via reachability:
tracking a ground target using a quadrotor”. In: 2012 IEEE International Conference
on Robotics and Automation, pp. 2723–2730 (cit. on p. 124).

[68] E. A. Gol and M. Lazar. “Temporal logic model predictive control for discrete-
time systems”. In: Proceedings of the 16th international conference on Hybrid systems:
computation and control, HSCC 2013, April 8-11, 2013, Philadelphia, PA, USA. 2013,
pp. 343–352. doi: 10.1145/2461328.2461379. url: http://doi.acm.org/10.1145/
2461328.2461379 (cit. on p. 108).

[69] D. Golovin and A. Krause. “Adaptive submodularity: Theory and applications
in active learning and stochastic optimization”. In: Journal of Artificial Intelligence
Research 42 (2011), pp. 427–486 (cit. on p. 69).

[70] I. J. Goodfellow, J. Shlens, and C. Szegedy. “Explaining and harnessing adversarial
examples”. In: arXiv preprint arXiv:1412.6572 (2014) (cit. on p. 169).

[71] A. Gray et al. “Robust predictive control for semi-autonomous vehicles with an
uncertain driver model”. In: Intelligent Vehicles Symposium (IV), 2013 IEEE. IEEE.
2013, pp. 208–213 (cit. on p. 8).

[72] M. Green and D. J. Limebeer. Linear robust control. Courier Corporation, 2012
(cit. on p. 124).

[73] Gurobi Optimizer. [Online]: http://www.gurobi.com/ (cit. on pp. 133, 149, 161).

[74] H. Haario, E. Saksman, and J. Tamminen. “An adaptive Metropolis algorithm”. In:
Bernoulli (2001), pp. 223–242 (cit. on p. 67).

[75] E. A. Hansen, D. S. Bernstein, and S. Zilberstein. “Dynamic programming for
partially observable stochastic games”. In: AAAI. Vol. 4. 2004, pp. 709–715 (cit. on
p. 28).

[76] T. Hedden and J. Zhang. “What do you think I think you think?: Strategic reasoning
in matrix games”. In: Cognition 85.1 (2002), pp. 1–36 (cit. on pp. 3, 29).

[77] C. Hermes et al. “Long-term vehicle motion prediction”. In: 2009 IEEE Intelligent
Vehicles Symposium. 2009, pp. 652–657 (cit. on p. 8).

[78] R. Holladay et al. “Active Comparison Based Learning Incorporating User Uncer-
tainty and Noise”. In: () (cit. on p. 62).

BIBLIOGRAPHY 178

[79] H. Huang et al. “Aerodynamics and control of autonomous quadrotor helicopters
in aggressive maneuvering”. In: 2009 IEEE International Conference on Robotics and
Automation. IEEE. 2009, pp. 3277–3282 (cit. on p. 24).

[80] A. Jain et al. “Learning preferences for manipulation tasks from online coactive
feedback”. In: The International Journal of Robotics Research (2015) (cit. on p. 62).

[81] S. Javdani, J. A. Bagnell, and S. Srinivasa. “Shared Autonomy via Hindsight
Optimization”. In: arXiv preprint arXiv:1503.07619 (2015) (cit. on pp. 5, 43, 46).

[82] S. Javdani et al. “Efficient touch based localization through submodularity”. In:
Robotics and Automation (ICRA), 2013 IEEE International Conference on. IEEE. 2013,
pp. 1828–1835 (cit. on p. 28).

[83] S. Jha and V. Raman. “Automated synthesis of safe autonomous vehicle control
under perception uncertainty”. In: NASA Formal Methods Symposium. Springer.
2016, pp. 117–132 (cit. on p. 124).

[84] X. Jin et al. “Mining requirements from closed-loop control models”. In: Proceed-
ings of the 16th international conference on Hybrid systems: computation and control,
HSCC 2013, April 8-11, 2013, Philadelphia, PA, USA. 2013, pp. 43–52. doi: 10.1145/
2461328.2461337. url: http://doi.acm.org/10.1145/2461328.2461337 (cit. on
p. 108).

[85] M. Jordan. “Learning in graphical models (adaptive computation and machine
learning)”. In: (1998) (cit. on pp. 123, 125).

[86] S. Karaman and E. Frazzoli. “Linear temporal logic vehicle routing with appli-
cations to multi-UAV mission planning”. In: International Journal of Robust and
Nonlinear Control 21.12 (2011), pp. 1372–1395. doi: 10.1002/rnc.1715. url: http:
//dx.doi.org/10.1002/rnc.1715 (cit. on p. 107).

[87] S. Karaman and E. Frazzoli. “Linear temporal logic vehicle routing with appli-
cations to multi-UAV mission planning”. In: International Journal of Robust and
Nonlinear Control 21.12 (2011), pp. 1372–1395 (cit. on p. 124).

[88] S. Karaman and E. Frazzoli. “Sampling-based motion planning with deterministic
¯-calculus specifications”. In: Proceedings of the 48th IEEE Conference on Decision
and Control, CDC 2009, combined withe the 28th Chinese Control Conference, December
16-18, 2009, Shanghai, China. 2009, pp. 2222–2229. doi: 10.1109/CDC.2009.5400278.
url: http://dx.doi.org/10.1109/CDC.2009.5400278 (cit. on pp. 107, 124).

[89] S. Karaman and E. Frazzoli. “Vehicle Routing Problem with Metric Temporal Logic
Specifications”. In: Proceedings of the 47th IEEE Conference on Decision and Control,
CDC 2008, December 9-11, 2008, Cancún, México. 2008, pp. 3953–3958. doi: 10.1109/
CDC.2008.4739366. url: http://dx.doi.org/10.1109/CDC.2008.4739366 (cit. on
pp. 107, 124).

[90] A. Karbasi, S. Ioannidis, et al. “Comparison-based learning with rank nets”. In:
arXiv preprint arXiv:1206.4674 (2012) (cit. on p. 62).

BIBLIOGRAPHY 179

[91] S. Kataoka. “A stochastic programming model”. In: Econometrica: Journal of the
Econometric Society (1963), pp. 181–196 (cit. on p. 130).

[92] E. C. Kerrigan and J. M. Maciejowski. “Soft constraints and exact penalty functions
in model predictive control”. In: Control Conference, Cambridge. 2000 (cit. on p. 141).

[93] N. Kitchen and A. Kuehlmann. “Stimulus generation for constrained random simu-
lation”. In: Proceedings of the 2007 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE Press. 2007, pp. 258–265 (cit. on p. 169).

[94] M. Kloetzer and C. Belta. “A Fully Automated Framework for Control of Linear
Systems from Temporal Logic Specifications”. In: IEEE Trans. Automat. Contr. 53.1
(2008), pp. 287–297. doi: 10.1109/TAC.2007.914952. url: http://dx.doi.org/10.
1109/TAC.2007.914952 (cit. on p. 107).

[95] R. Könighofer, G. Hofferek, and R. Bloem. “Debugging formal specifications: a
practical approach using model-based diagnosis and counterstrategies”. In: STTT
15.5-6 (2013), pp. 563–583 (cit. on p. 141).

[96] M. V. Kothare, V. Balakrishnan, and M. Morari. “Robust constrained model predic-
tive control using linear matrix inequalities”. In: Automatica 32.10 (1996), pp. 1361–
1379 (cit. on p. 124).

[97] H. Kress-Gazit, G. Fainekos, and G. Pappas. “Temporal-Logic-Based Reactive
Mission and Motion Planning”. In: IEEE Transactions on Robotics 25.6 (Dec. 2009),
pp. 1370–1381. doi: 10.1109/TRO.2009.2030225 (cit. on pp. 95, 105, 124).

[98] M. Kuderer, S. Gulati, and W. Burgard. “Learning driving styles for autonomous
vehicles from demonstration”. In: Proceedings of the IEEE International Conference
on Robotics & Automation (ICRA), Seattle, USA. Vol. 134. 2015 (cit. on pp. 17, 31).

[99] D. Kulic and E. A. Croft. “Affective state estimation for human–robot interaction”.
In: Robotics, IEEE Transactions on 23.5 (2007), pp. 991–1000 (cit. on p. 43).

[100] Y. Kwon and G. Agha. “LTLC: Linear Temporal Logic for Control”. In: Hybrid
Systems: Computation and Control, 11th International Workshop, HSCC 2008, St. Louis,
MO, USA, April 22-24, 2008. Proceedings. 2008, pp. 316–329. doi: 10.1007/978-3-
540-78929-1_23. url: http://dx.doi.org/10.1007/978-3-540-78929-1_23
(cit. on p. 107).

[101] L. T. Kohn and J. M. Corrigan and M. S. Donaldson, editors. To Err is Human:
Building a Safer Health System. Tech. rep. National Academy Press. Washington,
DC: A report of the Committee on Quality of Health Care in America, Institute of
Medicine, 2000 (cit. on p. 93).

[102] C.-P. Lam, A. Y. Yang, and S. S. Sastry. “An efficient algorithm for discrete-
time hidden mode stochastic hybrid systems”. In: Control Conference (ECC), 2015
European. IEEE. 2015, pp. 1212–1218 (cit. on pp. 43, 46).

BIBLIOGRAPHY 180

[103] K. Leahy et al. “Distributed information gathering policies under temporal logic
constraints”. In: 2015 IEEE 54th Annual Conference on Decision and Control (CDC),
pp. 6803–6808 (cit. on p. 124).

[104] Y. T. Lee, A. Sidford, and S. C.-w. Wong. “A faster cutting plane method and
its implications for combinatorial and convex optimization”. In: arXiv preprint
arXiv:1508.04874 (2015) (cit. on p. 132).

[105] D. Lenz, T. Kessler, and A. Knoll. “Stochastic model predictive controller with
chance constraints for comfortable and safe driving behavior of autonomous
vehicles”. In: 2015 IEEE Intelligent Vehicles Symposium, pp. 292–297 (cit. on pp. 124,
129).

[106] J. Leonard et al. “A perception-driven autonomous urban vehicle”. In: Journal of
Field Robotics 25.10 (2008), pp. 727–774 (cit. on p. 8).

[107] S. Levine and V. Koltun. “Continuous inverse optimal control with locally optimal
examples”. In: arXiv preprint arXiv:1206.4617 (2012) (cit. on pp. 3, 17, 18, 29, 31, 48,
64).

[108] J. Levinson et al. “Towards fully autonomous driving: Systems and algorithms”.
In: 2011 IEEE Intelligent Vehicles Symposium (IV), pp. 163–168 (cit. on p. 8).

[109] W. Li, L. Dworkin, and S. A. Seshia. “Mining Assumptions for Synthesis”. In:
Proceedings of the Ninth ACM/IEEE International Conference on Formal Methods and
Models for Codesign (MEMOCODE). July 2011, pp. 43–50 (cit. on pp. 106, 141).

[110] W. Li et al. “Synthesis for Human-in-the-Loop Control Systems”. In: Proceedings
of the 20th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). Apr. 2014, pp. 470–484 (cit. on pp. 6, 12, 94, 141).

[111] M. Liebner et al. “Driver intent inference at urban intersections using the intelli-
gent driver model”. In: Intelligent Vehicles Symposium (IV), 2012 IEEE. IEEE. 2012,
pp. 1162–1167 (cit. on p. 43).

[112] S. C. Livingston, R. M. Murray, and J. W. Burdick. “Backtracking temporal logic
synthesis for uncertain environments”. In: IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2012, pp. 5163–5170 (cit. on p. 105).

[113] S. C. Livingston et al. “Patching task-level robot controllers based on a local
µ-calculus formula”. In: (2012) (cit. on p. 105).

[114] J. Löfberg. “YALMIP: A Toolbox for Modeling and Optimization in MATLAB”. In:
Proceedings of the CACSD Conference. Taipei, Taiwan, 2004. url: http://users.isy.
liu.se/johanl/yalmip (cit. on p. 160).

[115] J. Löfberg. “YALMIP: A toolbox for modeling and optimization in MATLAB”. In:
2004 IEEE International Symposium on Computer Aided Control Systems Design. IEEE.
2004, pp. 284–289 (cit. on p. 133).

BIBLIOGRAPHY 181

[116] M. Lopes, F. Melo, and L. Montesano. “Active learning for reward estimation in
inverse reinforcement learning”. In: Joint European Conference on Machine Learning
and Knowledge Discovery in Databases. Springer. 2009, pp. 31–46 (cit. on p. 64).

[117] L. Lovász and S. Vempala. “Fast algorithms for logconcave functions: Sampling,
rounding, integration and optimization”. In: 2006 47th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’06). IEEE. 2006, pp. 57–68 (cit. on p. 67).

[118] B. Luders, M. Kothari, and J. P. How. “Chance constrained RRT for probabilistic
robustness to environmental uncertainty”. In: AIAA guidance, navigation, and control
conference (GNC), Toronto, Canada. 2010 (cit. on p. 8).

[119] O. Maler and D. Nickovic. “Monitoring Temporal Properties of Continuous Sig-
nals”. In: Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Sys-
tems, Joint International Conferences on Formal Modelling and Analysis of Timed Sys-
tems, FORMATS 2004 and Formal Techniques in Real-Time and Fault-Tolerant Systems,
FTRTFT 2004, Grenoble, France, September 22-24, 2004, Proceedings. 2004, pp. 152–
166. doi: 10.1007/978-3-540-30206-3_12. url: http://dx.doi.org/10.1007/
978-3-540-30206-3_12 (cit. on p. 108).

[120] T. P. Minka. “A family of algorithms for approximate Bayesian inference”. PhD
thesis. Massachusetts Institute of Technology, 2001 (cit. on pp. 125, 139).

[121] I. Mitchell, A. Bayen, and C. J. Tomlin. “A time-dependent Hamilton-Jacobi formu-
lation of reachable sets for continuous dynamic games”. In: 2005 IEEE Transactions
on Automatic Control 50.7 (), pp. 947–957 (cit. on p. 124).

[122] I. Mitchell and C. J. Tomlin. “Level set methods for computation in hybrid systems”.
In: Hybrid Systems: Computation and Control. Springer, 2000, pp. 310–323 (cit. on
p. 124).

[123] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. “DeepFool: a simple and
accurate method to fool deep neural networks”. In: arXiv preprint arXiv:1511.04599
(2015) (cit. on p. 169).

[124] M. Morari et al. Model predictive control. Prentice Hall Englewood Cliffs, NJ, 1993
(cit. on p. 15).

[125] R. Motwani and P. Raghavan. Randomized algorithms. Chapman & Hall/CRC, 2010
(cit. on p. 115).

[126] R. M. Murray et al. “Online Control Customization via Optimization-Based Con-
trol”. In: Software-Enabled Control. John Wiley & Sons, Inc., 2005, pp. 149–174. doi:
10.1002/047172288X.ch9. url: http://dx.doi.org/10.1002/047172288X.ch9
(cit. on p. 108).

[127] National Highway Traffic Safety Administration. Preliminary Statement of Policy
Concerning Automated Vehicles. May 2013 (cit. on p. 94).

BIBLIOGRAPHY 182

[128] A. Y. Ng and S. J. Russell. “Algorithms for Inverse Reinforcement Learning”. In:
Proceedings of the Seventeenth International Conference on Machine Learning (ICML).
2000, pp. 663–670 (cit. on p. 168).

[129] A. Y. Ng, S. J. Russell, et al. “Algorithms for inverse reinforcement learning.” In:
Proceedings of the 17th international conference on Machine learning. 2000, pp. 663–670
(cit. on pp. 3, 17, 29, 31).

[130] A. Nguyen, J. Yosinski, and J. Clune. “Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images”. In: 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE. 2015, pp. 427–436 (cit. on
p. 169).

[131] T.-H. D. Nguyen et al. “Capir: Collaborative action planning with intention recog-
nition”. In: arXiv preprint arXiv:1206.5928 (2012) (cit. on p. 43).

[132] S. Nikolaidis et al. “Formalizing Human-Robot Mutual Adaptation via a Bounded
Memory Based Model”. In: Human-Robot Interaction. Mar. 2016 (cit. on p. 46).

[133] P. Nuzzo et al. “A Contract-Based Methodology for Aircraft Electric Power System
Design”. In: IEEE Access 2 (2014), pp. 1–25. doi: 10.1109/ACCESS.2013.2295764.
url: http://dx.doi.org/10.1109/ACCESS.2013.2295764 (cit. on p. 107).

[134] P. Nuzzo et al. “CalCS: SMT Solving for Non-linear Convex Constraints”. In: IEEE
Int. Conf. Formal Methods in Computer-Aided Design. 2010 (cit. on p. 141).

[135] P. Nuzzo et al. “A Contract-Based Methodology for Aircraft Electric Power System
Design”. In: IEEE Access 2 (2014), pp. 1–25. doi: 10.1109/ACCESS.2013.2295764
(cit. on pp. 140, 142).

[136] P. Nuzzo et al. “A Platform-Based Design Methodology with Contracts and Related
Tools for the Design of Cyber-Physical Systems”. In: Proc. IEEE 103.11 (Nov. 2015)
(cit. on pp. 140, 142).

[137] S. Patil et al. “Scaling up gaussian belief space planning through covariance-free
trajectory optimization and automatic differentiation”. In: Algorithmic Foundations
of Robotics XI. Springer, 2015, pp. 515–533 (cit. on p. 28).

[138] N. Piterman and A. Pnueli. “Synthesis of reactive(1) designs”. In: In Proc. Verifica-
tion, Model Checking, and Abstract Interpretation (VMCAI’06. Springer, 2006, pp. 364–
380 (cit. on p. 105).

[139] N. Piterman, A. Pnueli, and Y. Sa′ar. “Synthesis of reactive (1) designs”. In: Verifi-
cation, Model Checking, and Abstract Interpretation, 2006. Springer. 2006, pp. 364–380
(cit. on pp. 6, 124).

[140] E. Plaku and S. Karaman. “Motion planning with temporal-logic specifications:
Progress and challenges”. In: AI Communications Preprint (), pp. 1–12 (cit. on
p. 124).

BIBLIOGRAPHY 183

[141] A. Pnueli and R. Rosner. “On the synthesis of a reactive module”. In: Proceedings of
the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming languages.
POPL ’89. Austin, Texas, United States: ACM, 1989, pp. 179–190. doi: http :

//doi.acm.org/10.1145/75277.75293. url: http://doi.acm.org/10.1145/
75277.75293 (cit. on pp. 20, 105).

[142] A. Pnueli. “The Temporal Logic of Programs”. In: 18th Annual Symposium on
Foundations of Computer Science (FOCS). 1977, pp. 46–57 (cit. on p. 19).

[143] S. Prentice and N. Roy. “The belief roadmap: Efficient planning in belief space
by factoring the covariance”. In: The International Journal of Robotics Research (2009)
(cit. on p. 28).

[144] A. Puggelli et al. “Polynomial-Time Verification of PCTL Properties of MDPs
with Convex Uncertainties”. In: Proceedings of the 25th International Conference on
Computer-Aided Verification (CAV). July 2013 (cit. on p. 124).

[145] V. Raman and H. Kress-Gazit. “Explaining Impossible High-Level Robot Behav-
iors”. In: IEEE Trans. Robotics 29 (2013) (cit. on p. 141).

[146] V. Raman et al. “Model predictive control with signal temporal logic specifications”.
In: 2014 IEEE 53rd Annual Conference on Decision and Control, pp. 81–87 (cit. on pp. 7,
11, 107).

[147] V. Raman et al. “Model predictive control with signal temporal logic specifications”.
In: 53rd IEEE Conference on Decision and Control, CDC 2014, Los Angeles, CA, USA,
December 15-17, 2014. 2014, pp. 81–87. doi: 10.1109/CDC.2014.7039363. url:
http://dx.doi.org/10.1109/CDC.2014.7039363 (cit. on pp. 107–112, 117, 141–
143).

[148] V. Raman et al. “Reactive Synthesis from Signal Temporal Logic Specifications”.
In: 18th International Conference on Hybrid Systems: Computation and Control. 2015
(cit. on pp. 124, 141–143, 158).

[149] V. Raman et al. “Reactive synthesis from signal temporal logic specifications”. In:
Proceedings of the 18th International Conference on Hybrid Systems: Computation and
Control. ACM. 2015, pp. 239–248 (cit. on pp. 7, 8, 11).

[150] M. Richardson and P. Domingos. “Markov logic networks”. In: Machine learning
62.1-2 (2006), pp. 107–136 (cit. on p. 124).

[151] C. Rothkopf and C. Dimitrakakis. “Preference elicitation and inverse reinforcement
learning”. In: Machine Learning and Knowledge Discovery in Databases (2011), pp. 34–
48 (cit. on p. 63).

[152] J. Rushby. “Using Model Checking to Detect Automation Surprises”. In: Reliability
Engineering and System Safety 75.2 (2002), pp. 167–177 (cit. on p. 167).

[153] S. Russell et al. “Letter to the Editor: Research Priorities for Robust and Beneficial
Artificial Intelligence: An Open Letter”. In: AI Magazine 36.4 (2015) (cit. on p. 167).

BIBLIOGRAPHY 184

[154] D. Sadigh and A. Kapoor. “Safe control under uncertainty with probabilistic signal
temporal logic”. In: Proceedings of Robotics: Science and Systems, AnnArbor, Michigan
(2016) (cit. on pp. 7, 8, 11).

[155] D. Sadigh, S. S. Sastry, and S. A. Seshia. “Falsification for Human-Robot Systems”.
In: Advances in Neural Information Processing Systems (NIPS) (under review). 2017
(cit. on pp. 6, 11).

[156] D. Sadigh et al. “Active Preference-Based Learning of Reward Functions”. In:
Proceedings of the Robotics: Science and Systems Conference (RSS). 2017 (cit. on pp. 6,
10, 11).

[157] D. Sadigh et al. “Data-driven probabilistic modeling and verification of human
driver behavior”. In: Formal Verification and Modeling in Human-Machine Systems
(2014) (cit. on pp. 124, 167).

[158] D. Sadigh et al. “Information gathering actions over human internal state”. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE.
2016, pp. 66–73 (cit. on pp. 5, 10, 11, 170).

[159] D. Sadigh et al. “Planning for autonomous cars that leverages effects on human
actions”. In: Proceedings of the Robotics: Science and Systems Conference (RSS). 2016
(cit. on pp. 5, 9–11, 44, 64, 170).

[160] D. Sadigh et al. “Planning for Cars that Coordinate with People: Leveraging Effects
on Human Actions for Planning and Active Information Gathering over Human
Internal State”. In: Autonomous Robots (AURO) (under review). 2016 (cit. on pp. 5,
9–11, 28, 170).

[161] S. Safra. “On the Complexity of ω-automata”. In: Proceedings of the 29th Annual
Symposium on Foundations of Computer Science. SFCS ’88. 1988, pp. 319–327 (cit. on
p. 20).

[162] V. Schuppan. “Towards a Notion of Unsatisfiable Cores for LTL”. In: Fundamentals
of Software Engineering. 2009 (cit. on p. 141).

[163] P. O. Scokaert and J. B. Rawlings. “Feasibility issues in linear model predictive
control”. In: AIChE Journal 45.8 (1999), pp. 1649–1659 (cit. on p. 141).

[164] S. A. Seshia, D. Sadigh, and S. S. Sastry. “Towards verified artificial intelligence”.
In: arXiv preprint arXiv:1606.08514 (2016) (cit. on p. 167).

[165] M. Shimosaka, T. Kaneko, and K. Nishi. “Modeling risk anticipation and defensive
driving on residential roads with inverse reinforcement learning”. In: 2014 IEEE
17th International Conference on Intelligent Transportation Systems (ITSC). IEEE. 2014,
pp. 1694–1700 (cit. on pp. 17, 31).

BIBLIOGRAPHY 185

[166] A. Solar-Lezama et al. “Combinatorial sketching for finite programs”. In: Pro-
ceedings of the 12th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2006, San Jose, CA, USA, October 21-25,
2006. 2006, pp. 404–415. doi: 10.1145/1168857.1168907. url: http://doi.acm.
org/10.1145/1168857.1168907 (cit. on pp. 7, 107).

[167] H. Sugiyama, T. Meguro, and Y. Minami. “Preference-learning based Inverse
Reinforcement Learning for Dialog Control.” In: INTERSPEECH. 2012, pp. 222–
225 (cit. on p. 62).

[168] M. Svoreňová et al. “Temporal logic control for stochastic linear systems using
abstraction refinement of probabilistic games”. In: 18th International Conference on
Hybrid Systems: Computation and Control. ACM. 2015, pp. 259–268 (cit. on p. 124).

[169] T. J. Triggs, W. G. Harris, et al. “Reaction time of drivers to road stimuli”. In: (1982)
(cit. on p. 106).

[170] C. Urmson et al. “Autonomous driving in urban environments: Boss and the urban
challenge”. In: Journal of Field Robotics 25.8 (2008), pp. 425–466 (cit. on p. 8).

[171] C. Van de Panne and W. Popp. “Minimum-cost cattle feed under probabilistic
protein constraints”. In: Management Science 9.3 (1963), pp. 405–430 (cit. on p. 130).

[172] T. Van Kasteren et al. “Accurate activity recognition in a home setting”. In: Proceed-
ings of the 10th international conference on Ubiquitous computing. ACM. 2008, pp. 1–9
(cit. on p. 43).

[173] H. P. Vanchinathan et al. “Explore-exploit in top-n recommender systems via
gaussian processes”. In: Proceedings of the 8th ACM Conference on Recommender
systems. ACM. 2014, pp. 225–232 (cit. on p. 47).

[174] R. Vasudevan et al. “Safe semi-autonomous control with enhanced driver model-
ing”. In: American Control Conference (ACC), 2012. IEEE. 2012, pp. 2896–2903 (cit. on
p. 8).

[175] M. P. Vitus and C. J. Tomlin. “A probabilistic approach to planning and control in
autonomous urban driving”. In: 2013 IEEE 52nd Annual Conference on Decision and
Control (CDC), pp. 2459–2464 (cit. on pp. 8, 129).

[176] M. P. Vitus. “Stochastic Control Via Chance Constrained Optimization and its
Application to Unmanned Aerial Vehicles”. PhD thesis. Stanford University, 2012
(cit. on p. 124).

[177] A. Wächter and L. T. Biegler. “On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming”. In: Mathematical
programming 106.1 (2006), pp. 25–57 (cit. on p. 89).

[178] Y. Wang, L. Xie, and C. E. de Souza. “Robust control of a class of uncertain
nonlinear systems”. In: Systems & Control Letters 19.2 (1992), pp. 139–149 (cit. on
p. 124).

BIBLIOGRAPHY 186

[179] C. K. Williams and C. E. Rasmussen. “Gaussian processes for machine learning”.
In: the MIT Press 2.3 (2006), p. 4 (cit. on p. 126).

[180] A. Wilson, A. Fern, and P. Tadepalli. “A bayesian approach for policy learning
from trajectory preference queries”. In: Advances in neural information processing
systems. 2012, pp. 1133–1141 (cit. on p. 62).

[181] C. Wirth, J. Fürnkranz, and G. Neumann. “Model-Free Preference-Based Reinforce-
ment Learning”. In: Thirtieth AAAI Conference on Artificial Intelligence. 2016 (cit. on
p. 63).

[182] E. M. Wolff, U. Topcu, and R. M. Murray. “Optimization-based trajectory gener-
ation with linear temporal logic specifications”. In: 2014 IEEE International Con-
ference on Robotics and Automation, ICRA 2014, Hong Kong, China, May 31 - June
7, 2014. 2014, pp. 5319–5325. doi: 10 . 1109 / ICRA . 2014 . 6907641. url: http :

//dx.doi.org/10.1109/ICRA.2014.6907641 (cit. on p. 107).

[183] T. Wongpiromsarn, U. Topcu, and R. Murray. “Receding Horizon Temporal Logic
Planning”. In: IEEE Transactions on Automatic Control 57.11 (2012), pp. 2817–2830
(cit. on pp. 96, 105).

[184] T. Wongpiromsarn, U. Topcu, and R. Murray. “Receding Horizon Temporal Logic
Planning”. In: IEEE Transactions on Automatic Control 57.11 (2012), pp. 2817–2830.
doi: 10.1109/TAC.2012.2195811 (cit. on p. 124).

[185] T. Wongpiromsarn, U. Topcu, and R. Murray. “Receding horizon temporal logic
planning for dynamical systems”. In: Decision and Control, 2009 held jointly with the
2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE
Conference on. Dec. 2009, pp. 5997–6004 (cit. on p. 95).

[186] T. Wongpiromsarn, U. Topcu, and R. M. Murray. “Receding Horizon Temporal
Logic Planning”. In: IEEE Trans. Automat. Contr. 57.11 (2012), pp. 2817–2830. doi:
10.1109/TAC.2012.2195811. url: http://dx.doi.org/10.1109/TAC.2012.
2195811 (cit. on pp. 107–109).

[187] B. D. Ziebart. “Modeling purposeful adaptive behavior with the principle of
maximum causal entropy”. In: (2010) (cit. on p. 17).

[188] B. D. Ziebart et al. “Maximum Entropy Inverse Reinforcement Learning.” In: AAAI.
2008, pp. 1433–1438 (cit. on pp. 3, 17, 29, 31, 46, 64, 168).

[189] B. D. Ziebart et al. “Planning-based prediction for pedestrians”. In: 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE. 2009, pp. 3931–3936
(cit. on p. 43).

