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Topologically distinct Weyl fermion 
pairs
Ming‑Chien Hsu1, Hsin Lin3, M. Zahid Hasan4 & Shin‑Ming Huang1,2*

A Weyl semimetal has Weyl nodes that always come in pairs with opposite chiralities. Notably, 
different ways of connection between nodes are possible and would lead to distinct topologies. Here 
we identify their differences in many respects from two proposed models with different vorticities. 
One prominent feature is the behaviour of zeroth Landau levels (LLs) under magnetic field. We 
demonstrate that the magnetic tunneling does not always expel LLs from zero energy because the 
number of zero‑energy modes is protected by the vorticity of the Weyl nodes, instead of the chirality. 
Other respects in disorder effects for weak (anti‑)localization, surface Fermi arcs, and Weyl‑node 
annihilation, are interesting consequences that await more investigation in the future.

The prediction of Weyl semimetals (WSMs)1–6 and its realization in real  materials7–13 make the relativistic chiral 
fermions find their counterpart in three-dimensional (3D) condensed matter systems. These chiral fermions 
reside in the nodes of the electronic structure around which the energy dispersion is linear in momentum, the 
so-called Weyl nodes (WNs). The WNs always come in pairs with opposite  chiralities14,15 which act as the source 
and the sink of the Berry  curvature16. Due to topological reasons, various unusual behaviours were found in the 
WSM, such as the chiral  anomaly17–21, negative  magnetoresistance22,23, chiral magnetic  effect24, novel quantum 
 oscillation25–28, Fermi arc from the surface  states1,21,29,30, and so on.

One prominent and important phenomena of the WN is the behaviour of Landau levels (LLs) under magnetic 
field, which were mapped out by magneto-optical study recently in  NbAs31. The zeroth LL ( n = 0 ), also called 
chiral Landau band, has linear dispersion along the field direction, say ẑ , as E = χvzkz . Interestingly, the chirality 
χ = ±1 determines the sign of the band slope. In particular, the Landau chiral band induced by the magnetic field 
provides the platform of chiral anomaly in which the charge pumping breaks the chiral symmetry. This actually 
relies on the existence of the zero-energy modes at kz = 0 which are topologically protected, or otherwise the 
system becomes insulating and the charge pumping may be forbidden.

Semiclassically the LLs are formed through quantization conditions of cyclotron orbits. When cyclotron 
orbits encounter each other, go across density  discontinuities32, or are blocked by some  boundaries33, different 
quantization conditions may be formed and hence the LLs are changed. Besides, there exists tunneling between 
cyclotron orbits, generally known as magnetic  breakdown34. For example it has been discovered in adjecent quan-
tum  wells33. Particularly, inter-level tunneling between levels from separate chiralities produce new features in 
transport in  graphene35. Since level mixing is common, the question of interest now is whether the phenomenon 
happens in WSMs. As WNs are connected by bands, the magnetic tunneling between LLs is expected when the 
field is applied perpendicular to the connection of WNs, possibly gapping the zeroth LLs. If it is the case, this 
would also lead to failure of chiral anomaly, as indicated as the possible explanation for the increased magneto-
resistance36,37 or sharp sign reversal of Hall  resistivity38.

However, the reverse inference might not be true, meaning that the magneto-resistance changes are not neces-
sarily attributed to the gapping of zeroth LLs. They may also be caused by the gap opening in the system through 
multiple Weyl carrier  interaction37 or with the help of other non-Weyl  singularities39. Besides, recently there are 
also concerns about interpreting the measured negative longitudinal magnetoresistance as direct evidence of 
chiral  anomaly40–42. Therefore, not only helping identify reasons of resistance changes affirmatively but also with 
theoretical significance, it is important and interesting to see if the gapping of zeroth LLs is an inevitable result. 
Actually, the above inference of repelling zero modes only considers the simple connection between WNs, while 
symmetry constraints could make situations change. For example, the mirror symmetry is the commonly seen 
constraint connecting the  WNs7–9,13,43.

To consider consequences from different ways of connection between WNs, we studied two models with dif-
ferent symmetry constraints imposed. Magnetic tunneling was found to be different and the zero-energy modes 
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are still robust in one model against the tunneling. We attribute the findings to distinct topological invariants, 
suggesting that chirality alone is not sufficient to characterize a WN. Moreover, respective unique phenomena 
in impurity scattering, surface Fermi arcs, and WN annihilation are also studied and can differentiate the two 
topological distinct models. The mutual annihilation of WNs does not necessarily makes a gap and a nodal ring 
is possible to be formed, consistent with the newly discovered conversion  rule44. Therefore, the detailed ways of 
connection between WNs await future more investigation.

Results
Models. We consider a pair of WNs with opposite chiralities sitting on two sides of the mirror plane Mx . 
Their separation 2kW is relatively small compared to the size of the Brillouin zone (BZ) such that the magnetic 
field has a chance to couple them. Other WNs, if present, in other regions of the BZ can be ignored as they are 
much farther away. To have

we find that there are two possible choice of Mx and thus two possible models. We dub them Model A and Model 
B: Model A is for Mx = σ0 that the two bands have equal mirror parity in the mirror plane, while Model B is for 
Mx = σx that two bands have opposite mirror parities. Specifically, the Hamiltonians are written as

where k2� = k2y + k2z . In general, coefficients for ky and kz can be different, but the physics are the same. A k‖
-linear term is allowed to appear in the σx term, but it is omitted for an elegance reason. We have confirmed 
that its presence once being small does not change qualitative conclusions. The Planck constant ℏ is set as unity 
throughout the paper. We note that the origin is meaninglessly specified and might not be at a time-reversal-
invariant momentum.

Both models contain two WNs located at (±kW, 0, 0) . Expanding around the WNs, they approximate, to 
linear order, as

here χ labels the chirality and also position of the WN, and vx = kW/m and vy = vz = v� . The values of kW , m, 
vy and vz are all assumed to be positive without loss of generality. α ( > 0 ) in HB is required in order to have a 
saddle point at energy EVH = k2W/2m , above which close energy contours are assured.

Without special regard to the symmetry or phase, Model A was usually adopted to study the effect of a pair 
of  nodes38,45. Applying the magnetic field along the perpendicular z direction to this system, we solve the LL 
spectrum by substituting �k in Eq. (2) by �� = �k + e�A . We choose the Landau gauge �A = Bxŷ , so we make 
kx → �x = kx , kz → �z = kz , and ky → �y = l−2

B x̄ , where the magnetic length lB =
√

1
eB  and x̄ is the coor-

dinate relative to the guiding center x0 = −l2Bky . x̄ is conjugate to kx by quantizing x̄ → i ∂
∂kx

 . The WN separation 
is used as a measure to define the dimensionless momentum scale as q = kx/kW . Since the magnetic field breaks 
the inplane translation symmetry, two WNs are expected to couple via the field. The coupling way can be revealed 
from the missing terms to Eq. (4). We use a dimensionless parameter g to describe the degree of the coupling. 
The coupling will increase with the cyclotron energy ωc =

√

2vxvyl
−1
B  and decrease with the energy barrier EVH , 

defined as g = ω2
c

4E2VH
 . g is proportional to the magnetic field B, and the appreciable coupling g ≈ 1 is achieved 

when the magnetic length lB is comparable to the scale defined by k−1
W  . [Take Weyl semimetal TaAs for example. 

The nodes separation of W1 is kW = 0.0072
(

2π
a

)

 , and the Fermi velocity in the conduction band is 
(vx , vy , vz) = (2.5, 1.2, 0.2)× 105 m/s46. The coupling g = 1 under the field strength B ≈ 11.88 T having magnetic 
length lB = 7.44 nm, which is close to the length 7.60 nm defined by k−1

W .] By defining the remaining variables 
into dimensionless quantities, qz = v�kz

(

ω2
c

4EVH

)−1
= ( 2g )(

v�
vx
)( kz

kW
) , and α̃ =

(

vx
v�

)2
α , we can study the Hamil-

tonian under magnetic field as a function of q and qz , which is written as

We numerically solve this system with raising and lowering operators a† and a (where q, ∂
∂q ∼ a± a† ). Special 

treatment is developed to solve it more efficiently and the details are shown in the “Methods”.
The LL spectrum at kz = 0 , i.e. qz = 0 , with respect to g is shown in Fig. 1a. In the limit of g → 0 , two WNs 

have independent and identical LLs, so each LL is doubly degenerate. As g is turned on, the degeneracy is lifted 
off and band splits are visible at g ≈ 0.3 (decrease with levels) in Fig. 1a. We have ascribed the band splits to the 

(1)MxH
(

kx , ky , kz
)

M
−1
x = H(−kx , ky , kz),

(2)HA = 1

2m

(

k2x − k2W − αk2�
)

σx + v�kyσy + v�kzσz ,

(3)HB = 1

2m

(

k2x − k2W − αk2�
)

σx +
v�
kW

kx
(

kyσy + kzσz
)

,

(4)HA ≈
∑

χ=±

(

χvxqxσx + vyqyσy + vzqzσz
)

,

(5)HB ≈
∑

χ=±
χ
(

vxqxσx + vyqyσy + vzqzσz
)

.

(6)H ′
A = ω2

c

4EVH

(

1

g
(q2 − 1)σx + i

∂

∂q
σy + qzσz

)
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magnetic tunneling in Ref.38 as the cyclotron wave functions in k space broaden with the B field and hybridize 
with others when overlaps occur. Notice that the chiral symmetry is present for {H , σz} = 0 at kz = 0 , so the 
spectrum is symmetric about zero energy. In order to obey the chiral symmetry, the zeroth LL has to split into 
one with positive energy and one with negative energy.

Then, we solve Model B as follows. In Model B, the Peierls substitution should be carefully treated in kxky 
and kxkz . To make the Hamiltonian Hermitian, we do the symmetrization

and kxkz → (�x�z +�z�x)/2 = kxkz . In terms of dimesionless parameters defined above, the Hamiltonian 
under magnetic field becomes

where the prime stands for a system under a magnetic field.
The LL spectrum with respect to g for Model B at kz = 0 is shown in Fig. 1b. For small g, the effect of α̃ is 

small, so we provide the results for α̃ = 0 as shown by red dots in Fig. 1b. The analytical solutions are 

En = ω2
c

2EVH

√

n
(

1
g − n

)

 with n ∈ Z≥0 and each energy has twofold degeneracy. The LL energies emerge from 

the typical LL spectrum as En = √
nωc in the limit of g → 0 and deform with finite g. However, the analytical 

solutions for α̃ = 0 are only applicable in a low-energy region. At high energies, with large g or n, the LL 

kxky →
1

2

(

�x�y +�y�x

)

= l−2
B

(

kxx̄ +
i

2

)

,

(7)H ′
B = ω2

c

4EVH
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Figure 1.  The LL spectra at kz = 0 with respect to the coupling measure g with α̃ = 0.05 for both Model A 
(a), and for Model B (b). In (b), Labels “e” and “o” denote even and odd parity of states, and the red dots are the 
analytical solutions, except zero-energy ones, when α = 0 . (c, d) Illustrations of topological numbers of Weyl 
nodes, including chirality and vorticity, for Model A (c) and Model B (d). Chirality is identified by the outward 
or inward Berry flux, while vorticity is the directional winding number around a Weyl node.
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quantization makes no sense when E > EVH due to the flat dispersion along the ky axis and thus unbounded 
equal-energy contours. Specifically, the analytical solutions are applicable when n ≤ 1

2

(

1
g − 1

2

)

.
Since the model is invariant under inversion in q, the eigenstates will be either even (e) or odd (o) in q as 

denoted in Fig. 1b. The even- and odd states appear alternatively in energy, showing that they evolve from a 
degenerate spectrum for small g. We were unable to prove whether the degeneracy for n > 0 is exact at small and 
finite g but found it seeming to be in the applicable region of α̃ = 0 . The band splitting is reasonable as seen in 
a symmetric double-well with finite tunneling probability where even and odd states have different energies. By 
contrast, Model A does not have this symmetry and therefore its eigenstates do not respect this symmetry in q.

Nevertheless, two zero-energy LL states persist for all values of g and α̃ . They can be directly verified by solv-
ing the zero-eigenvalue problem. The eigenfunctions are found to be 

(

0, e−κq2�(q)
)T

 , where �(q) can be either 
1F1

(

− 1
4�; 1

2 ; ξ 2q2
)

 or H�/2(ξq) , the former being the Kummer confluent hypergeometric function and the latter 
the Hermite polynomial, indicating a double degeneracy. Here κ = 1+

√
1−α̃

gα̃  , ξ =
√

2
√
1−α̃
gα̃  and � = 2+g

√
1−α̃

−g
√
1−α̃

 . 
The derivation of the analytical form can be found in the “Methods”.

The zero-energy LL is topologically guaranteed once the topological charge is nonzero. Therefore it was 
regarded as legitimate that the zeroth LL gaps for two WNs of zero net chiarlity under a strong magnetic field, as 
what we see in Model A, Fig. 1a. The interpretation has to be corrected when the persistent zero-energy LLs is 
demonstrated in Model B which retains zero net chirality as Model A. Therefore, chirality will not be responsible 
for the zero-energy LLs. Still, the zero-energy modes should be dictated by topology. One can understand that 
the chirality is a high dimensional topological invariant and hence is not suitable for explaining the LL system, 
since the systems for kz = 0 is restricted to a 2D system perpendicular to the magnetic field. For a 2D space 
with a defect (a Weyl node), a 1D topological number is required. Because of the presence of chiral symmetry, 
the systems belong to the AIII symmetry class and are classified by the winding number, a Z-type topological 
 invariant47. In the paper, we dub it vorticity. In the chiral basis, the phase φ in the off-diagonal entry of the Ham-
iltonian characterizes the vorticity defined to be ν = 1

2π

∮

S1 dk� · ∇φ , where S1 is a loop enclosing a (or multiple) 
WN(s) on the kz = 0 plane. Referring to Eqs. (4) and (5), two WNs in Model A take opposite vorticities, but equal 
vorticity in Model B. (The sign of vorticity might change by changing the basis, but the relative sign between two 
is invariant.) We illustrate chiralities and vorticities of WNs for the two models as the conclusion in Fig. 1c,d. 
Therefore, the net vorticity in Model A is νA = 0 and is νB = 2 in Model B. According to the index  theorem48–51 
and generalizing it, the absolute value of vorticity can be witnessed by the number of zero-energy LLs in a 
magnetic field. We have also examined a tilted field in the y–z plane to strengthen this proof in the “Methods”.

Dispersion along kz. The chiral anomaly is a phenomenon that in parallel magnetic and electric fields electric 
charges are transmitted from one WN to the other. It should be answered whether two models show distinct 
consequences. To investigate this phenomenon, we consider two pairs of WNs separated in kz with each pair as 
studied before. We modify our models by kz → 1

2kV

(

k2z − k2V
)

 , and dub the modified models as Model Ã and B̃ , 
respectively; in this way the separation is 2kV and the absolute velocity component in z is still vz.

We show the calculation results for Landau bands along kz in Fig. 2. Since the magnetic field is along z, two 
pairs of WNs, at different kz connected in dispersion, are independent. In Model Ã , as the zeroth LLs at both 
kz = ±kV are gapped in large magnetic fields, a 3D insulating phase is present, as shown in Fig. 2a. In Model 
B̃ , by contrast, the protected zero-energy states extend into the chiral Landau bands and result in a 3D metallic 

Figure 2.  The Laudau band spectrum with respect kz/kV for two pairs of Weyl nodes separated in the kz 
direction at kz = ±kV , respectively. (a) for Model A and (b) for Model B. In both (a) and (b), g = 0.8 , α = 0.05 , 
v�/vx = 0.5 , and kVkW = 0.2 so that Az =

(

v�
vx

)(

kV
kW

)

= 2.5.
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phase, Fig. 2b. Moreover, the fact that the two chiral Landau bands crossing at either kz = kV or −kV have 
opposite slopes is the proof of two WNs taking opposite chiralities. This feature reveals that to characterize the 
zeroth Landau bands in a WSM unequivocally, two topological invariants, chirality and vorticity, are necessary.

Impurity scattering. We then discuss other phenomena that may distinguish the two models which are charac-
terized by the same chiralities but different vorticities. In weak magnetic fields, the conductivity is highly influ-
enced by disorders. Contrary to normal materials, the topological semimetals undergo weak anti-localization 
in the absence of magnetic field due to the π-Berry phase from the WN to suppress  backscattering52. The anti-
localization phenomenon will fade away when inter-valley scattering is taken into consideration for the lack 
of topological protection. In chiral anomaly, the latter determines the scale of transport time. Therefore, inter-
valley scattering will influence transport properties the most.

We emphasize that two models have inherent distinction in inter-valley scatterings. Set |vx| = |vy| = |vz | ≡ v 
in Eqs. (4) and (5) for simplicity. Since each WN looks similar itself, the intra-valley scattering makes no dif-
ference between the two models. But for inter-valley scattering, whether the Fermi velocity changes sign or not 
from one valley to the other will affect the scattering probability. We denote the inter-valley scattering potential 
by U+,−

q,q′  for a scattering from q to q′ (momentum relative to WNs). Under Born approximation, the average 
scattering rate is given by

where ξq = ℏvFq . We realize that when the impurity is anisotropic, for example p-wave, the differences in the 
two models is evident. Take a py-wave impurity for instance, where the scattering potential U+−

k,k′ ∼ (qy − q′y) 
changes sign in y. As the Fermi velocities vy have opposite signs at the two valleys in Model B, which indicates 
a π-phase difference between electrons at two valleys, inter-valley scattering will be enhanced by a py-wave 
impurity. In contrast, inter-valley scattering is weaker in Model A owing to equal sign of vy . We summarize the 
results in Table 1.

Surface states. By solving WSM slabs with semi-infinity in the z direction and a hard wall potential for 
z > 0 , we can have the surface states and the corresponding energies as a function of (kx , ky) . For Model A, the 
energy E = −v�ky , and for Model B the energy is E = v�

kW
|kx|ky . Therefore, the energy contours can be shown 

in Fig. 3, from which we found the Fermi arcs do not connect to each other in Model B, since the solved surface 
state wavefunction is not continous in kx = 0 . (See details in the “Methods”).

Weyl‑node annihilation. The two models differ in mirror parities of the two bands, so they give differ-
ent results after the pair WNs collide and annihilate [by tuning k2W in Eqs. (2) and (3) to negative values]. After 
collision, WNs in Model A will gap the system while they evolve into a gapless nodal ring on the mirror plane 
in Model B. These are simply consequences of symmetry-guaranteed anti-band crossing and band crossing. 

(8)

〈

1

τI

〉

= 2π

ℏ

∑

q,q′

〈

∣

∣

∣
U+−
qq′

∣

∣

∣

2
〉

δ
(

EF − ξq′
)

δ
(

EF − ξq
)

Table 1.  Average inter-valley scattering rates 〈 1

τI
〉 for anisotropic impurities potentials. Here p-wave ( px , py , 

and pz ) impurities potentials are considered. The px-impurity potential (second row) does not differentiate the 
two models, but the form of ∼ p� = py or pz can tell the difference (last row). NF is the density of states at the 
Fermi energy and uI characterizes the strength of the impurity potential.

Impurity potential Model A Model B

U+−

q,q′
(+,+,+) → (−,+,+) (+,+,+) → (−,−,−)

uI
(qx−q′x )

kF
� 1

τI
� = 2π

ℏ
NF

8

9
u2I � 1

τI
� = 2π

ℏ
NF

8

9
u2I

uI
(q�−q′�)

kF
� 1

τI
� = 2π

ℏ
NF

4

9
u2I � 1

τI
� = 2π

ℏ
NF

8

9
u2I

Figure 3.  The energy contour of surface states for Model A (left panel) and Model B (right panel). The blue 
areas stand for bulk projections (enclosing WNs) and red lines are for surface states. That Fermi arcs in Model B 
do not connect is visible.
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However, we point out that these are also consistent with the topological conditions. Since the annihilation pro-
cess does not break chiral symmetry, vorticity is conserved. For k2W < 0 , the gapped phase in Model A assures 
νA = 0 , and the nodal ring in Model B piercing through the plane perpendicular to the mirror plane accounts 
for νB = 2 . We remark that the annihilation of WNs into a nodal ring or not by collisions is consistent with the 
newly discovered conversion  rule44. Based on this idea, we can predict that when the mirror symmetry is broken 
by perturbation and if chiral symmetry is preserved, two WNs in Model A can still annihilate into an insulating 
phase, while WNs in Model B can collide but not annihilate.

In summary, we have clarified that the chiral LLs need the topological protection from vorticity instead of 
chirality. With a strong magnetic field, two neighbor WNs coalesce into Landau orbits that possess finite- or 
zero-energy zeroth LLs depending on the net vorticity being 0 or 2 in the plane perpendicular to the field. The 
persistence of zero energies with vorticity 2 is robust and has conceptual appeal in searching for topologically 
protected states. This finding reveals that to characterize topology of a WN, chirality as well as vorticity are 
required in certain cases. Moreover, we also demonstrate that the net vorticity of a pair of WNs affects impurity 
scattering, surface states, and the way of WN annihilation.

Closing remarks. Our theory is focus on local Weyl fermions on two sides of a mirror plane and it is not 
subject to the type of Weyl semimetals–time-reversal or inversion symmetry breaking. The theory adopts k · p 
two-band models for describing low-energy physics, which is sufficient for discussion of magnetic field effects 
since the magnetic field in labs is not strong enough to couple far-distant Weyl fermions. The Pauli matrices 
in the models are acting to the pseudo-spin in the band space; the possible relationship between spin and the 
pseido-spin can be found in the “Methods”.

Methods
Algorithm for finding Landau spectrum. To solve the Hamiltonian with variable q and its derivative 
∂/∂q , we can use the language of raising and lowering operators. The replacement is

which guarantees the [a, a†] = 1 . By imposing a|0� = 0 , all the necessary relations are then found as 
a|n� = √

n|n− 1� , a†|n� = √
n+ 1|n+ 1� and a†a|n� = n� , where n = 0, . . . , L, . . . labels the basis with well 

defined particle numbers. The eigen-differential problem is then converted into a matrix problem, and we can 
numerically solve the Landau spectrum of the system by matrix diagonalization. Since numerically we always 
solve it with a finite matrix of size L, the truncation of the operators a and a† always break canonical commutation 
relations from the highest few levels. For operators of order k, such as a†a†a† of order 3, the levels which break 
the commutation relations happen at the highest k levels. Especially, when written in the basis of |0�, . . . , |L− 1� , 
the form of a† is of the L× L matrix as

The highest L basis breaks the [a, a†] = 1 and produces pseudo zero eigenvalues from the state of 
[0, 0, . . . , 0, 1]T . Therefore, no matter how large the matrix is used, there always would be pseudo zero or near 
zero states from the highest few particle number basis. This causes serious problems since what we concern is 
the low level states near zero energies. Some algorithm may use the regularization by adding some big numbers 
at the highest fewest levels to reduce their contribution. However, this is inconvenient for our case since we do 
not know how many zero energy states exist a priori. For two or multiple zero eigen energy solutions, linear 
combination from these eigenstates is always allowed and we do not have good rules to rule out pseudo solutions 
without ruining the true solutions.

Since what we concern is only the low-lying Landau spectrum near the Fermi level 0, we know their contribu-
tions all come from the low particle number bases. We then develop an efficient algorithm to exclude the pseudo 
solutions. For operators of order k, the pseudo states come from the highest k basis, and we can restrict the 
solutions to be in the basis of |0�, . . . , |L− k� of the Hilbert space. This can be effectively achieved by truncating 
the operator of L× L matrix into matrix of L× (L− k) . The full Hamiltonian of size of 2L× 2L then becomes 
matrix of size of 2L× 2(L− k) . Using the singular value decomposition (SVD) factorization, we can find the 
eigen-energies of system without contamination from high lying states. In our case of Hamiltonian which is at 
most of order 3, we always drop the last 4 bases, namely choosing k = 4.

For the m× n matrix M, there exists the SVD factorization to be of the form of M = U�V† , where U is an 
m×m unitary matrix whose columns are called the left-singular vectors of M, V is an n× n unitary matrix with 
columns called right-singular vectors of M, and � is a diagonal m× n matrix with non-negative real numbers on 
the diagonal. The right-singular vectors of M are a set of orthonormal eigenvectors of M†M . For our purpose, 
the right-singular matrix V serves to find the eigenstates and thus determines the eigen-energies. Below we will 
demonstrate how to find the low energy spectrum of interest.

Suppose the low energy eigenstates for the Hamiltonian H has the support at most up to Lk , namely the 
mixture components from Landau levels than Lk are zero. In the following SVD approach to get rid of pseudo 
solutions, we must guarantee that L− k > Lk . This can be always be achieved since Lk is usually not very large 
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g
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and we can choose large enough L to guarantee this requirement. The number of truncated columns k can be 
chosen to be small, say k = 4 for the system of order 3. Then we can write down the eigenstate of interests to be 
in the form of

where the (0, . . . , 0)T are located at the last k Landau levels to be truncated at the up and down spin space sepa-
rately. Both φ̃ and χ̃ are columns of size (L− k)× 1 and have support up to Lk . Therefore, the weighting compo-
nents of the {Lk + 1, . . . , L− k} levels for them are actually zero. Assume that k = 2 in the following sketch of 
proof, and then the finite size Hamiltonian H of 2L× 2L matrix can be written as 

 where the 2k columns filled with × denotes the columns to be truncated. For the eigenstate ψ , we can have 
Hψ = Eψ , in which we are interested in low energy E regime. Since components of the last {L− k + 1, . . . , L} 
levels for the eigenstates of interest are zero, The columns with × for the Hamiltonian actually have no effect. We 
can then drop them and collect the truncated Hamiltonian denoted as H̃ to be

which is 2L× 2(L− k) matrix. We then do the SVD factorization to have H̃ = U�V† , with each column vector 
of V denoted as

which is a column of size 2(L− k)× 1 . Padding with zeros in the form of Eq. (9) for ψ̃ to become ψ , we can have 
ψ as the eigenstate of H2 with eigenvalue of E2 . Doing some linear combination of eigenstates with the same eigen-
value � = E2 , we obtain the eigenstate ψ ′ satisfying the eigenequation Hψ ′ = Eψ ′ . If such eigenstate cannot be 
found, it means that the eigenstate with eigenvalue E for the system has components mixing from Landau levels 
no smaller than L such that the form of Eq. (9) with the chosen size L cannot the eigensolutions of H. In such 
case, we increase the numerical system size L until the eigensolutions can be found for the low energy regime.

The reason that the ψ constructed from ψ̃ from the SVD can be eigenstate of H2 is simple. The Hermitian 
conjugate of the Hamiltonian H is 

 such that 

(9)ψ =
(

φ̃, 0, . . . , 0, χ̃ , 0, . . . , 0
)T

,

H̃ =
(

H̃11 H̃12

H̃21 H̃22

)

,

ψ̃ =
(

φ̃
χ̃

)
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 where

The ψ̃ obtained from SVD of H̃ is just the eigenstates of H̃†H̃ . As long as the eigenstate ψ satisfying Hψ = Eψ 
has the support Lk < L− k , namely components from highest k levels are zero, the form of Eq. (9) constructed 
from ψ̃ would fall into eigen-solutions of H2ψ = H†Hψ = E2ψ.

Analytical solutions for Model B with α̃ = 0. The spectrum of Model B with α̃ = 0 for small g can also 
be found. These solutions are also plotted as red dots in Fig. 1b in the main text for comparison. Model B under 
field defined in the main text and is rewritten here

where the prime stands for a system under a magnetic field.
In the following we present the derivations for the solutions when α̃ = 0 and kz = 0 for Model B. The Ham-

iltonian to solve is H ′
B in Eq. (10) with α̃ = 0 and qz = 0 , and we assume the eigenstate to be (χ(q),�(q))T . By 

squaring H ′
B , we can decouple χ and � as

where the energy is rescaled to a dimensionless quantity defined as ε = E/
ω2
c

4EVH
 . Owing to

we firstly take χ(q) = 1√
q e

− q2

2g χ̃(q) and �(q) = 1√
q e

− q2

2g �̃(q) into the differential equations and obtain

where �2 = 1
g2

− ε2 . Note that the exponential factor e−
q2

2g  is to eliminate the quartic term q4 . Assuming � > 0 , 
we continue to take χ̃(q) = q�f1(q) and �̃(q) = q�f2(q) and have

Then we rescale the length by q̄ = q√
g  , and obtain

The final step is to change the variable from q̄ to ρ = q̄2 , which results in

B ≡ H̃†H̃ =
(

B11 B12
B21 B22

)

.
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In the above, we already used

Reformulating the last two equations, we have the so called associated (generalized) Laguerre equations

where n = 1
2g − �

2 = 0, 1, 2, . . . . The solutions f1 and f2 will be the associated Laguerre polynomials: 
f1(ρ) = L�n−1(ρ) and f2(ρ) = L�n(ρ) with n = 0, 1, 2, . . . . For n = 0 , we have to take f1 = 0 . As 
n = 1

2g − 1
2

√

1
g2

− ε2 ≥ 0 is a non-negative integer, the energy eigenvalues are

here En ≤ 1
g as �2 = 1

g2
− ε2 > 0 . The relevant state is the lowest Landau level n = 0 which gives the zero-energy 

state En=0 = 0 . It’s eigenstate are thus (0,�)T with

where L�n is a polynomial function of q2 to degree n. Therefore, the normalizability demands � ≥ 1
2 , that is, 

0 ≤ n ≤ 1
2

(

1
g − 1

2

)

 . The missing states for large n not satisfying the constraint become extended states whose 
spectra are continuous. This is an artefact of this model with α = 0 which omit the ky and kz dependence in the 
σx term, since it produces an open equienergy contour for E ≥ EVH and hence the cyclotron orbit is not 
confined.

Analytical form of zero energy solutions for Model H
B

. Here we demonstrate the analytical form of 
the zero energy solutions for Model B with kz = 0 . The zero-eigenvalue problem is H ′

B� = 0 , where H ′
B is an 

2× 2 off-diagonal matrix with elements

The prime means the system in a magnetic field. We could try solutions either as � = (0,ψ)T or � = (ψ , 0)T , 
but it turns out that the second choice is not normalizable. Then we are going to solve the differential equation

Its large-q limit can be conquered by setting ψ(q) = e−κq2�(q) and taking it into Eq. (22) to obtain κ . As 
κ > 0 for normalizability, we have κ = 1+

√
1−α̃

gα̃  . The other choice is κ = 1−
√
1−α̃

gα̃  , but this would lead to addi-
tional exponential term from modified Hermite differential equation later. After absorbing the additional expo-
nential term, this results in the same result from κ = 1+

√
1−α̃

gα̃  and therefore we focus on the plus sign choice. It 
follows the differential equation for �(q) , which is

By defining ξ =
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−g
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 and θ = ξq , the equation is then transformed into the Hermite 
differential equation

The solution for � is 1F1
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− 1
4�; 1

2 ; θ2
)

 and H�/2(θ)) , where 1F1(a; b; x) and Hµ(x) are the Kummer confluent 
hypergeometric function and the Hermite polynomial, respectively.

It is known that H�/2(ξq) is not purely even or odd with respect to q. As one can find that the even part of 
H�/2(ξq) is actually 1F1
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− 1
4�; 1

2 ; ξ 2q2
)

 , it is consistent that after reconstruction the zero-energy eigenfunctions 
are either of even or odd parity in q.

(16)
4ρ2 ∂

2f1
∂ρ2

+ 4(1+ �− ρ)ρ
∂f1
∂ρ

+ 2
g (1− 2g − g�)ρf1 = 0

4ρ2 ∂
2f2
∂ρ2

+ 4(1+ �− ρ)ρ
∂f2
∂ρ

+ 2
g (1− g�)ρf2 = 0

(17)
q̄
df
dq̄ = 2ρ

df
dρ ,

q̄2
d2f

dq̄2
= 4ρ2 d2f

dρ2
+ 2ρ

df
dρ .

(18)
ρ
∂2f1
∂ρ2

+ (�+ 1− ρ)
∂f1
∂ρ

+ (n− 1)f1 = 0,

ρ
∂2f2
∂ρ2

+ (�+ 1− ρ)
∂f2
∂ρ

+ nf2 = 0,

(19)En = 2
ω2
c

4EVH

[

n

(

1

g
− n

)]
1
2

.

(20)�(q) = 1
√
q
e
− q2

2g q�L�n

(

q2

g

)

= q�−
1
2 L�n

(

q2

g

)

e
− q2

2g ,

(21)
1

g

(

q2 − 1
)

+ g
α̃

4

∂2

∂q2
±

(

q
∂

∂q
+ 1

2

)

.

(22)
[

g
α̃

4

∂2

∂q2
+

(

q
∂

∂q
+ 1

2

)

+ 1

g
(q2 − 1)

]

ψ(q) = 0.

(23)+ g α̃

4

∂2�

∂q2
−

√

1− α̃q
∂�

∂q
−

[

1

g
+

√
1− α̃

2

]

� = 0.

(24)∂2�

∂θ2
− 2θ

∂�

∂θ
+ �� = 0.



10

Vol:.(1234567890)

Scientific Reports |          (2021) 11:416  | https://doi.org/10.1038/s41598-020-79977-6

www.nature.com/scientificreports/

The zero-energy eigen-functions are plotted in Fig. 4. The g value proportional to the field strength controls 
the coupling between the two nodes. In small g, the Landau orbits are well separated and have each center around 
the Weyl nodes. The orbits start to overlap for larger g so that they tend to move toward the mirror plane. The 
trend of tuning g for both q-even and q-odd solutions are the same.

Models including pairs of Weyl nodes separated in k
z
. To study chiral anomaly of pairs of close Weyl 

nodes (here separated in kx direction) under the effect of magnetic field along z direction, we must include the 
other pair of nodes separated in z direction. By shifting the Weyl nodes in HA and HB to kz = kV and include the 
other pair of Weyl nodes at kz = −kV , we can have the modified models, denoted as HÃ and HB̃ , in the form of

The Weyl nodes of the first pair are then located at (±kW, 0, kV) , while the other pair is located at 
(±kW, 0,−kV) . Since we are looking at physics near the Weyl nodes and their low energy spectrum, the αk2‖ 
term does not play much role. In most of the time they can be even dropped. The value of α under discussion is 
therefore small, and the αk2‖ term affects mainly the dispersion in higher energy and does not influence the low 
energy of interest much.

Here Model Ã and Model B̃ still have the mirror plane kx = 0 , and we do not put in additional symmetry rela-
tion between the first pair of WNs and the second pair for simplicity. In this way, the effect of different choices of 
Mx = σ0 or σx can be clearly seen. Besides, usually in real materials, additional WNs are far away from the pair 
of interest such that their effect can be discarded since they are far from reach of the magnetic length scale under 
reasonable field strength. Therefore, for simplicity we only compare one mirror plane with different operator 
choices in order to elucidate the symmetry impacts.

In the usual Weyl semimetal, the separation of WNs in the kz direction is larger than the kW , i.e. kV > kW . 
Due to the other pair of nodes, the term of qzσz in Model A Hamiltonian under magnetic field H ′

A is replaced by 
1
g Az(q

2
z − 1) in H ′

Ã
 under field while the term qzqσz in H ′

B is replaced by 1g Azq(q
2
z − 1) in H ′

B̃
 , where 

Az = g
v�kV
2

(

ω2
c

4EVH

)−1
= (

v�
vx
)( kVkW

) with the new definition of the dimensionless qz = kz/kV . The − α
2mk2� term 

in both models H ′
A and H ′

B would correspondingly become ω2
c

4EVH

[

g
α̃y
4
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∂q2
− 1

g α̃zq
2
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]

 , where α̃y = α

(
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v�

)2
 , 

α̃z = α

(

kV
kW

)2
 . Since q and qz are independent to each other, qz as a good quantum number can be treated as a 

parameter and the Hamiltonian is solved at fixed qz each time.
Explicitly, the Hamiltonian under field to solve for Model Ã is then

while the Hamiltonian for Model B̃ is then

Solutions for rotated magnetic field in the yz plane. Here we consider the magnetic field rotated in 
the yz plane which is still perpendicular to the two nodes separated in the kx direction. Since we mainly concern 
about whether the chiral Landau levels and the zero energy levels can maintain, we focus on the case following 

(25)
HÃ = 1

2m (k2x − k2W − αk2�)σx + v�kyσy + v�
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(k2z − k2V)σz ,
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σz .
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Figure 4.  The zero energy eigen-functions in the (a) q-even solutions and (b) q-odd solutions. The parameters 
of g = 0.2 and g = 0.8 both for α̃ = 0.2 are chosen for comparison.
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discussions of model HB and HB̃ . The coefficients for ky and kz in the Hamiltonian can be different but the phys-
ics is the same. For general purpose, we can always rescale ky and kz such that αk2‖ have the same coefficients for 
ky and kz while linear terms ∼ vykxkyσy and ∼ vzkxkzσz have different parallel velocities vy and vz for ky and kz , 
respectively. Note that the kx = 0 plane still need to be dispersional for all (ky , kz) to ensure close energy contours 
such that the magnetic orbits can be formed under all rotated field directions. In the Hamiltonian, this means 
that α can be small but cannot be zero. For single pair of Weyl nodes, the Hamiltonian is

which is already defined in the main text. The coefficient α mainly influence dispersion in higher energies. Usu-
ally α is small, and therefore does not change the low energy spectrum much, including the zero energy levels 
of concern. The simpler way to deal with rotated field is to define new momentum coordinates k′y and k′z where 
the new ẑ direction is along the field. Suppose the field B = B(sin θ ŷ + cos θ ẑ) , then the new momentum coor-
dinates are defined as k′y = cos θky − sin θkz and k′z = sin θky + cos θkz , and still k2� = k2y + k2z = k′y

2 + k′z
2 . 

In such definition, we take the advantage of k′z still being a good quantum number and kxk′y → l−2
B (kxx̄ + i

2 ) 
similar to model HB with modified guiding center x0 = l2Bk

′
y . With definition of σ ′

y = cos θσy − sin θσz and 
σ ′
z = sin θσz + cos θσz , the Hamiltonian in new coordinates can be written as

The dimensionless momentum in the field direction is defined as q′z = vzk
′
z

(

ω2
c

4EVH

)−1
= ( 2g )(

vz
vx
)(

k′z
kW

) . The 
dimensionless quantities now are α̃y = α( vxvy

)2 and α̃z = α( vxvz
)2 . Therefore, the Hamiltonian under field in rotated 

coordinate is then

where the prime on the left side refers to the Hamiltonian under magnetic field. The independent parameters 
are α̃ , g, and rotated angle θ . Among them, α̃ and g are related to materials properties, i.e. Weyl nodes quanti-
ties, and g and θ are related to field amplitude and direction respectively. As an example, we present the case of 
α̃ = 0.05 and with fixed value of g = 0.8 , we rotate the angle θ of field with respect to ẑ axis from 0◦ to 180◦ and 
present the result in Fig. 5a. It can be found that the zero energies persist in all angles θ in the plane of k′z = 0 
perpendicular to the rotated field.

To see if the chiral anomaly can remain for rotated field when two pairs of Weyl nodes are located at kz = ±kV , 
the Hamiltonian for Model A and Model B are Eq. (25), and we focus on discussing Model B.

Similarly, when written in the new coordinate (kx , k′y , k′z) of the rotated frame, Model B Hamiltonian is then

(28)HB = 1

2m
[k2x − k2W − αk2�]σx +

vy

kW
kxkyσy +

vz

kW
kxkzσz ,

(29)HB = 1
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z .
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Figure 5.  (a) The case of α = 0.05 , vy/vx = 0.5 , and vz/vx = 0.4 so that α̃y = 0.2 and α̃z = 0.3125 for the 
model Hamiltonian H ′

B
 is presented. With fixed value of g = 0.8 and k′z = 0 , the zero Landau energies persist in 

all rotated angles θ . (b) The kz/kV dispersion along the field direction is presented for the Hamiltonian H ′
B̃
 with 

parameters to be α = 0.05 , vy/vx = vz/vx = 0.5 , kW/kV = 0.2 . The field strength and direction are chosen to 
have g = 0.8 and rotated angle θ = 30

◦.
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Different to HB , the dimensionless momentum along the field direction is defined as qz = k′z/kV . Therefore, 
the dimensionless parameters involving k′z would change the dependence from vx/v‖ to kV/kW . Explicitly, the 
dimensionless parameters are defined as follows. α̃y = α

(

vx
vy

)2
 , α̃z = α

(

kV
kW

)2
 , Az =

(

vz
vx

)(

kV
kW

)

 , 

Ay =
(

vxvz
4v2y

)

(

kW
kV

)

 and Ayz = vz
2vy

 , where the definition of Az is the same as that in single pair of Wely nodes. 

Not all the defined dimensionless parameters are independent. Among them, the independent parameters are 
chosen to be α , kW/kV , and vxvy  . The Hamiltonian under magnetic field to solve is then

With the reasonable choice of α = 0.05 , vy/vx = vz/vx = 0.5 , and kW/kV = 0.2 , we present the case of g = 0.8 
and θ = 30◦ in Fig. 5b. The corresponding values are α̃y = 0.2 , α̃z = 1.25 , Ay = 0.1 , Az = 2.5 , and Ayz = 0.5 . It 
is found that the chiral anomaly still remains since the chiral Landau levels near each pair of nodes are robust.

Surface states. We are going to solve Weyl semimetal slabs for Model A and Model B. In the x and y direc-
tions, the sizes are infinity, while it is semi-infinity in the z direction. Assume that the Weyl semimetal systems 
are built for z < 0 adjacent to vacuum for z > 0 . We will analyze Model B first and then Model A since the 
former model is new to us.

Model B. To model a vacuum-semimetal interface, we introduce a mass term in the Hamiltonian as

where M(z) = 0 for z < 0 and M(z) = M → ∞ for z > 0 . Here we simplify the model by dropping some con-
stants which will be restored later.

For the localized surface states, we take the ansatz:

where Re�< and Re�> are positive. For z > 0 , in the limit of M → ∞ , we have, by taking the ansatz into HBψ = 0 
and neglecting small numbers,

leading to

Since �> > 0 , we have u = v for kx > 0 and u = −v for kx < 0 . As a result, we have boundaries conditions as

With these boundary conditions, we take the ansatz for z < 0 into HBψ = Eψ and we have, for kx > 0,

Equating the real parts and the imaginary parts separately, we have E = kxky and

In order to have Re�< > 0 , kx is limited by kx <
√

k2W + αk2y  . Similarly, for kx < 0 , we have E = −kxky when 
−
√

k2W + αk2y < kx . In conclusion, when putting back omitted constants, the surface states (the Fermi arcs) 
survive in |kx| <

√

k2W + αk2y  and take energy
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sin2 θk′y
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2 − 2 cos θ sin θk′yk
′
z − k2V

)
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]
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[
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(
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)
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2
z cos
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(

q
∂
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2

)
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]

σz

}

.

(33)HB =
(

k2x − k2W − αk2y + α∂2z +M(z)
)

σx + kxkyσy − ikx∂zσz ,

(34)ψ(z) ∝















�

u
iv

�

e�<z , z < 0
�

u
iv

�

e−�>z , z > 0
,

(35)
(

M + α�2>
)

u− kx�>v = 0,

(36)kx�>v = ±
(

M + α�2>
)

.

(37)ψ(z = 0) ∝
(

1
±i

)

for kx > 0 (kx < 0).

(38)i
(

k2x − k2W − αk2y + α�2<

)

+ kxky + i�<kx = E.

(39)�< = 1

2α

{

−kx +
√
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(
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)

}

.
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The corresponding wave functions are

where

Model A. With the same trick one can also solve the surface states for Model A. We skip the deviations and only 
show the result below: for |kx| <

√

k2W + αk2y

where

with energy E = −v�ky.
We point out main difference between the two models. Model A shows typical understanding of a Fermi arc 

connecting two Weyl nodes with linear dispersion E ∝ ky . However, in Model B the surface-state wave function 
is not continuous at kx = 0 , which is proportional to (1, i)T on one side and (1,−i)T on the other. So it indicates 
that there are two Fermi arcs that do not connect these Weyl nodes (but to other pairs), presenting a hyperbola 
dispersion E ∝ |kx |ky.

Annihilation of Weyl nodes. The pair of Weyl nodes move toward each other if we tune the parameter k2W 
smaller and eventually will collide with each other and annihilate. Before collision, the two Weyl nodes remain 
intact and the system is still gapless for both Model A and Model B. However, the outcomes are different for the 
two models after the collision, i.e. k2W < 0 . For Model A, the system will be gapped out with minimum energy 
formed by a ring. On the contrary, model B still remain gapless, while the two nodes annihilate into a nodal ring 
with zero energies. To demonstrate this more clearly, we rescale the parameters to simplify the Hamiltonian for 
the two models as

Before collision where kW > 0 , the Weyl nodes are located at (±kW, 0, 0) . By tuning k2W to become negative, 

Model A has gap Eg = 2|kW| at k = (0, 0, 0) or gap of Eg = 4α|k2W|−1
α

 at ring of 
√

k2y + k2z =
√

2αk2W−1

2α2
 for kx = 0 

and other positions are also gapped. Model A is fully gapped unless accidental cases like |k2W| = 1
4α . However, 

Model B remains gapless in which the WNs annihilate into a nodal ring which has zero energies. The nodal ring 

has the radius k =
√

|k2W|
α

 in the kx = 0 mirror plane.

The introduction of mirror symmetry breaking effect. We can further see the effect of mirror symmetry breaking 
terms induced by some perturbations to the Weyl nodes before and after the collision. Such perturbation can be 
realized several way, such as applying magnetic field to the system. Depending on specific material system Ham-
iltonian, the spin operators can in different combination of Pauli matrices, determined by system symmetries. 
Since the mirror operators Mx for Model A and Model B are known, in conjunction with combined symmetry 
C2T  , the allowed forms of spin operators can be determined. Further restriction of allowed forms is possible 
if we have more symmetry constraints, but this definitely depends on details of the systems. The procedure to 
determine forms of spin operators that can be concordant with symmetry requirement is shown in the next 
section.

Here we demonstrate effects of some possible mirror symmetry breaking terms induced by applying magnetic 
field to the system. In Model A, the allowed spin operator y component can be combination of 
sy = {kxσ0, kxσx , kxσy} , which can break mirror symmetry if we apply magnetic field in y direction. For simplic-
ity, we restrict the discussion to the form of kxσy . The mirror symmetry breaking perturbation is therefore �kxσy 
where the � is small perturbation determined by the strength of magnetic field. As usual in the k2W > 0 , the 
locations of WNs are determined by each component of Pauli matrices to be zeros. The Weyl nodes are still topo-

logically protected to exist but shifted to position of 
(

±
√

k2W
1−α�2 ,∓�

√

k2W
1−α�2 , 0

)

 . As for the annihilation results 

(40)E = v�
kW

|kx|ky .

(41)ψ(z < 0) = �Be
ikxxeikyye�Bz

1√
2

(

1
sgn(kx)i

)

,

(42)�B = m

α
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�

�
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kx

�2

− α

m2

�
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.

(43)ψ(z < 0) = �Ae
ikxxeikyye�Az

1√
2

(

1
−i

)

,

(44)�A = m

α

{

−v� +
√

v2� −
α

m2

(

k2x − k2W − αk2y

)

}

.

(45)HA =[k2x − k2W − α(k2y + k2z )]σx + kyσy + kzσz ,

(46)HB =[k2x − k2W − α(k2y + k2z )]σx + kxkyσy + kxkzσz .



14

Vol:.(1234567890)

Scientific Reports |          (2021) 11:416  | https://doi.org/10.1038/s41598-020-79977-6

www.nature.com/scientificreports/

by tuning k2W < 0 to make Weyl nodes to collide, the system is still fully gapped where the gap Eg = 2|kW| at the 

origin and Eg =
√

4α|k2W|−1
α

 at k =
(

0, 0,±
√

2αk2W−1

2α2

)

.

For Model B, the mirror symmetry breaking perturbation can be �σy induced by the magnetic field if the 
spin y component sy = σy  fulfilling the symmetry requirement. The WNs are shifted to 

k =
(

±
√

k2W+
√

k4W+4α�2

2 ,∓
√

−k2W+
√

k4W+4α�2

2α , 0

)

 , where the relative sign of kx and ky are determined by the 

sign of � . After WNs annihilation when tuning k2W < 0 , the system remains gapless but no longer existing a 

nodal ring. The zero gapless positions are located at k =
(

±
√

−|k2W|+
√

k4W+4α�2

2 ,∓
√

|k2W|+
√

k4W+4α�2

2α , 0

)

.

Here we demonstrate the differences between Model A and Model B in their behaviour of WNs annihilation 
when the parameter k2W are tuned from positive to negative. Although both of them describe the pair of WNs 
when k2W > 0 , Model A generally will be gapped out when k2W < 0 while Model B remains gapless located at 
a nodal ring. Even if we apply the magnetic field to break mirror symmetry, the feature of gapful Model A and 
gapless Model B remains the same.

Allowed forms of spin operators. First of all, we have to point out that the Pauli matrices in the Ham-
iltonians HA and HB stand for the pseudo-spin describing two bands’ degrees of freedom not real spin. With 
spin-orbit interaction, spin, orbital and momentum are strongly coupled in bands, so that there is no simple or 
universal relation between the pseudo-spin and spin. Here we will try to extract spin degrees of freedom from 
the pseudo-spin based on symmetry point of view and give readers an idea how spin is included in the pseudo-
spin for our models. The relation will no doubt depend much on details of systems.

We start with Model B, in which the mirror operator chosen is Mx = σx . Under the mirror reflection, 
momentum and spin change as k = (kx , ky , kz) �→ (−kx , ky , kz) and s = (sx , sy , sz) �→ (sx , − sy , − sz) . At the 
same time, the pseudo-spin changes as (σx , σy , σz)  → (σx , − σy , − σz) . We find that the pseudo-spin and spin 
have the same transformation and might conclude that they are identical. However, we cannot have such conclu-
sion because we have not compare their transformations under all possible symmetry operations. As a results, 
with only the mirror symmetry, we can claim that the spin components might contain contributions as follows:

where linear combinations of elements in the curly brackets are possible with proper normalization.
To reduce the complexity, we consider that there also exists the combined symmetry of twofold rotation 

about z and time-reversal symmetry, denoted by M2T . Suppose that the kz is relative to kz = 0 or π , C2T  makes 
(kx , ky , kz)  → (kx , ky , − kz) , (sx , sy , sz)  → (sx , sy , − sz) . Many antiunitary operators could be used for C2T  
with the restriction that

either for spin-0 or spin-1/2 systems. However, when we refer to the transformation

we find that it has to be C2T = σxK  , where K is the complex conjugation operation. With C2T  , the spin will 
reduce its compositions as follows:

With the spirit, we can obtain spin from the pseudo-spin for Model A too. Here Mx = σ0 and C2T = σxK , 
we show them as
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