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ABSTRACT OF THE DISSERTATION 

 

A Neural Network Approach to Deformable Image Registration 

 

by 

 

Elizabeth MaryAnn McKenzie 

Doctor of Philosophy in Physics and Biology in Medicine 

University of California, Los Angeles, 2021 

Professor Ke Sheng, Chair 

 

Deformable image registration (DIR) is an important component of a patient’s radiation therapy 

treatment.  During the planning stage it combines complementary information from different 

imaging modalities and time points.  During treatment, it aligns the patient to a reproducible 

position for accurate dose delivery.  As the treatment progresses, it can inform clinicians of 

important changes in anatomy which trigger plan adjustment.  And finally, after the treatment is 

complete, registering images at subsequent time points can help to monitor the patient’s health.  

The body’s natural non-rigid motion makes DIR a complex challenge.  Recently neural networks 

have shown impressive improvements in image processing and have been leveraged for DIR tasks.  

This thesis is a compilation of neural network-based approaches addressing lingering issues in 

medical DIR, namely 1) multi-modality registration, 2) registration with different scan extents, 

and 3) modeling large motion in registration.  For the first task we employed a cycle consistent 
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generative adversarial network to translate images in the MRI domain to the CT domain, such that 

the moving and target images were in a common domain.  DIR could then proceed as a 

synthetically bridged mono-modality registration.  The second task used advances in network-

based inpainting to artificially extend images beyond their scan extent.  The third task leveraged 

axial self-attention networks’ ability to learn long range interactions to predict the deformation in 

the presence of large motion.  For all these studies we used images from the head and neck, which 

exhibit all of these challenges, although these results can be generalized to other parts of the 

anatomy. 

The results of our experiments yielded networks that showed significant improvements in multi-

modal DIR relative to traditional methods.  We also produced network which can successfully 

predict missing tissue and demonstrated a DIR workflow that is independent of scan length.  

Finally, we trained a network whose accuracy is a balance between large and small motion 

prediction, and which opens the door to non-convolution-based DIR. 

By leveraging the power of artificial intelligence, we demonstrate a new paradigm in deformable 

image registration.  Neural networks learn new patterns and connections in imaging data which go 

beyond the hand-crafted features of traditional image processing. This thesis shows how each step 

of registration, from the image pre-processing to the registration itself, can benefit from this 

exciting and cutting-edge approach. 
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CHAPTER 1: Introduction 

Image registration allows us to establish a correspondence between imaging datasets, and is a 

critical component of many medical applications.  This correspondence allows for tracking 

dynamic processes across imaging studies and combining the strengths of different imaging 

modalities.  However, since the human body experiences predominantly non-rigid motion, the 

most accurate correspondence can only be established through deformable image registration 

(DIR).  Accurately modeling the body’s non-rigid motion is not a trivial task.  The challenge of 

finding correspondence is compounded when multiple modalities are involved, as these can have 

drastically different representations of the same tissues and different scan extents.  Extensive 

research on this topic has been carried out within the classical image processing literature, 

however the recent renaissance of deep learning has completely changed the landscape of image 

registration research.  One important advantage of deep learning approaches is their ability to 

recognize complex patterns.  Previous research has sought to explore these strengths through the 

development of registration frameworks and similarity metrics; however, their abilities in the 

presence of large motion has yet to be proven.  Since patients (especially oncology patients) 

commonly experience large motion, different postures, weight changes, and even surgical 

resection across the course of their medical care, it is important to discover and develop DIR 

methods that are able to robustly account for these extreme changes. 

Research in image registration has blossomed in recent years with the advent of neural networks.  

Lingering challenges such as large non-rigid motion, changes in patient weight, surgical 

alteration, and multi-modality imaging are beginning to see rapid progress as investigators start 

to harness neural networks’ abilities to model complex and emergent phenomenon1.  

Overcoming these lingering challenges is fundamental to the progression of informed medical 
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decision-making since images taken with different geometries, modalities, or time points require 

registration in order to make them useful for evaluating and monitoring the patient’s progress2.  

This is of particular importance in the treatment of cancer.  More specifically, radiation therapy 

treatment relies heavily on imaging to develop effective and safe treatments.  Accurately 

mapping the anatomy is essential for correctly targeting the tumor with radiation.  Recently, 

adaptive radiotherapy (ART) has emerged as a powerful tool to shape the treatment to the 

patient’s daily anatomical changes, allowing the tumor to be treated with a laser-like focus.  

Recent studies have shown that ART has the power to provide significant dosimetric benefits to 

both the tumor and the surrounding normal tissues3–6.  However, to institute an ART program 

safely and effectively, the daily imaged anatomy must be registered accurately to the initial 

planning image7.  Given the current inadequacies of clinical image registration in terms of large 

motion, mass change, different scan extent, and multi-modal imaging, the registration 

requirement is a significant hurdle to the implementation of potentially life-saving and novel 

ART.  Thus, finding a solution to the current shortcomings of DIR is highly motivated.   

 

Recent research has shown that it’s possible to use networks to translate MRI images into CT 

images to a high degree of detail in a process called domain transfer8–11.  Translating one 

imaging modality into another helps to bridge the difficulties traditionally found in multi-modal 

DIR12–17.  This augments the applicability of traditional iterative, intensity-based registration.   

In this thesis we improve multi-modal deformable image registration in the head and neck 

through a style transfer bridge.   For this we apply a generative adversarial network (GAN) 

with cycle consistency18 to a training dataset of CT and MR images.  The result is an MR-
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derived synthetic CT which can be registered to a CT image using well-understood traditional 

metrics and B-spline registration. 

 

Registering images taken at different times and with different modalities is additionally 

challenging due to often differing scan lengths.  Imaging can be taken with different scan extents 

capture differing amounts of anatomy.  It is challenging for a registration algorithm to rectify 

anatomy that lies within one image and not the other19.  This often results in unrealistic 

deformation of the anatomy at the scan borders.  Given that most deformable image registration 

algorithms are regularized for smooth deformation, the erroneous extreme contraction or 

expansion near the border can propagate into non-border portions of the image20.  Networks have 

been used to artificially extend natural images by predicting what lies beyond their borders21.  In 

this thesis, we develop a network-based image extension technique to rectify images of 

differing scan extents prior to registration, and demonstrate its capability to improve 

registration outcomes. 

 

Neural networks can also be trained to directly model a DIR algorithm1.  These networks replace 

the conventional iterative process of registration with a one-step transformation estimation.  

Initial work trained these registration networks using ground truth deformation vector fields 

(DVF)22–25.  Such a supervised approach showed great promise but is limited by the availability 

of true ground truth DVFs, and is trained to replicate, not surpass, current registration 

algorithms’ accuracy.  Some have overcome the limitation of procuring ground truth DVFs by 

simulating known deformations26–30.  While this has the potential to provide nearly limitless 

training data, one is limited by the realism of the deformation models.  These difficulties 
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motivated research in unsupervised training, where no ground truth DVF is needed for the loss 

function.  Foundational work in this realm used a neural network such as a U-net architecture to 

output an estimated DVF31,32.  These previous advances have relied on convolutional neural 

networks, which, while powerful, are an inherently local approach.  This makes it more 

challenging to model long range dependencies in anatomical motion.  Self-attention networks 

recently emerged as a powerful way to model global relationships in an image33.  This thesis 

develops a novel DIR network constructed using a self-attention backbone.  This results in a 

network which can use information from the entire image in its prediction of a DVF for head and 

neck deformable registration. 

 

Due to the prevalence of large motion, mass change, and differing scan extents in 

longitudinal medical imaging of cancer patients and the complementary information that 

multi-modality imaging brings, we believe that focusing on solving the challenges of multi-

modal, large motion DIR is of essential importance to the treatment and evaluation of 

cancer patients.  This research focuses on using neural networks to improve the accuracy and 

efficiency of deformable registration in the head and neck.  We select head and neck patients to 

prove our developed techniques work in a highly challenging arena, with 1) large motion, 2) a 

large number of small, poorly visualized organs, 3) significant changes in weight/surgical 

resection, and 4) differing scan extents.  The clinical significance of our researched techniques 

can extend to other anatomical sites and modality pairings, as our results pave the way for 

research to a more generalized DIR approach. 

By developing a methodology using neural networks, we take advantage of their ability to 

represent complex, learned functions to automatically register images in a single forward pass, 
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while incorporating empirical constraints.  We therefore offer an approach which can be used to 

not only combine the complimentary information of multiple imaging modalities (e.g. CT, PET, 

and MR) for oncological treatment planning and response assessment, but also for guidance and 

treatment adaptation during a patient’s treatment course.  This thesis focuses on a sequential 

approach, replacing steps in the traditional image registration pipeline with optimized neural 

network steps, thus carefully improving DIR part by part.  We visualize this thesis’ outline in the 

flowchart below as a Reduce→Fix→Solve strategy.  Using this approach, we lay the 

groundwork for a novel DIR technique, whose hands-off nature could transform the way we 

approach image registration in our care of cancer patients, in such applications as treatment 

planning and adaptive radiation treatment, which intrinsically depends on fast, accurate DIR.   

 

 

 

 

 

Reduce

•Reduce the 
complexity 
of the 
deformable 
registration 
problem

Fix

•Fix the 
imperfect  
inputs of 
the 
registration

Solve

•Solve the 
problem of 
large 
motion in 
head and 
neck 
registration
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CHAPTER 2: Multimodality Image Registration in the Head-and-Neck 

using a Deep Learning Derived Synthetic CT as a Bridge 

 

Introduction  

 

Image registration is often used in medicine for diagnostic and therapeutic purposes1. The 

registration can take place between a single image modality, or different modalities (multimodal 

registration), which aggregates complementary data from different sources into a spatially 

unified context2.  A common multimodal registration problem is magnetic resonance (MR) and 

computed tomography (CT) registration2. MR imaging has superior soft tissue contrast while 

computed tomography (CT) has better bone contrast and spatial integrity3.  Specifically, CT is 

the foundation of modern radiotherapy by providing anatomical information as well as the 

electron density for treatment planning and dose calculation4. In image guided radiation therapy, 

CT or cone beam CT is instrumental to guide patient set-up. Because of their complementary 

strengths, MR-CT registration is often needed for accurate tumor and organ-at-risk (OAR) 

delineation, targeting and sparing5–9.   

 

Relevant to the current study, head-and-neck radiotherapy benefits from the superior soft tissue 

contrast provided by the MR images. Studies have demonstrated that MR images in addition to 

CT improve delineation of head-and-neck target volumes, and reduce interobserver variation10–

14.  Consensus guidelines recommend that MRI be used for primary tumors of the nasopharynx, 

oral cavity, and oropharynx to contour head-and-neck normal tissues15.  However, these 

guidelines also acknowledge the challenges associated with MR-CT registration.  While MR-CT 
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registration is a common practice in head-and-neck radiotherapy, the process and results are not 

satisfactory due to the different imaging mechanisms and contrast, as well as the unavoidable 

patient non-rigid motion between scans, such as neck flexion2. Deformable registration using 

commercial algorithms can produce difficult-to-validate distortion and is regarded as unreliable 

in clinical practice. Instead, rigid registration is performed as a trade-off to avoid the uncertain 

deformation16. Subsequently, delineation based on rigid MR-CT registration is limited to a small 

volume of interest, without using other information about OARs and lymph nodes from the MR 

images due to the increasing misalignment with the distance from the volume of interest.  

 

Efforts have been made to address some of the technical issues in multi-modality image 

registration17,18.  For example, instead of directly matching the image voxel values, mutual 

information is used to determine the image similarity based on joint entropy17. However, mutual 

information based on an image histogram cannot resolve tissue types with similar image 

intensities, such as the bones and air cavities in MR and various soft tissues in CT2.  The problem 

is further complicated by the common presence of MR shading and susceptibility artifacts19.  

Some have endeavored to overcome this difference by translating one image into the other, or a 

third domain.  For example, Heinrich et al. used a new image descriptor describing similarities 

between adjacent patches as features for registration2.  Researchers have previously used an 

atlas-based synthetic CT to replace the MR in MR-CT registration in the brain20,21; however, the 

brain experiences considerably less deformation than the head and neck, and thus a domain-

translating deformable registration has yet to be proven in this challenging location.  Recently, 

Cao et al. proposed using a patchwise random forest to translate MR and CT into the others’ 

domains for improved pelvic registration22.  We propose to build on these existing domain-
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translating registration techniques by incorporating recent advances in deep learning imaging 

synthesis. 

 

Specifically,  Generative Adversarial Networks (GAN)23 are capable of  converting images of 

one modality into another24–26.  For example Wolterink et al. used the CycleGAN 

implementation27 to convert brain MR images into synthetic CT images26.  In the current study, 

GANs’ capability to create synthetic images with the geometry of one image modality and the 

contrast of the other is used to improve multimodality registration in the head-and-neck.  A GAN 

trained to generate head and neck images learns to estimate realistic anatomy in its image 

synthesis, and can leverage image features to determine low-confidence regions such as bone air 

interfaces, which are otherwise invisible in standard T1 weighted MR images.  The head and 

neck is a particularly challenging site in this regard, as there are many bone and air regions in 

close proximity that can move several centimeters with neck flexion.  Deep learning patient-

specific image synthesis takes the field beyond atlas-based approaches which try to fit a patient 

to a standard anatomical layout.  By extending modality-translating registration techniques with 

patient specific deep learning image synthesis, we provide a valuable new technique and prove 

its performance in the challenging head and neck region. 

  

Methods and Materials 

 

Data 

 

In order to train a network capable of generating synthetic CT’s and subsequently test 

registration accuracy, 25 head-and-neck patients were selected, each with a paired MR and CT 
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volume acquired on the same day with the same immobilization mask and headrest.   The 

original dataset before processing had 126 to 336 512×512 axial slices with voxel sizes of 

1×1×3(or 1.5) mm3, and 288 334×300 axial slices with 1.5×1.5×1.5mm3 voxel sizes for CT and 

MR images, respectively.  The MR images were acquired on an MR guided radiotherapy system 

with a 0.35T B0 using a balanced steady state free-precession sequence.  Due to the same 

rigorous immobilization being used for CT and MR acquisition, deformation between the two 

image sets was small, providing a unique opportunity for comparison and validation. In this 

study, we will refer to this MR-aligned CT as CTaligned.  A five-fold cross validation technique 

was employed for machine learning purposes.  20 patients were used for training the synthetic 

CT generating network, and 5 were left out to test replacing an MR image with a synthetic CT 

during MR-CT registration.  This split was rotated through the data, allowing us to include all 

patients in our analysis. 

 

In addition to the paired images, each test patient also had a diagnostic CT from another time 

point ranging from 4 days prior to almost 3 years after. One patient did not have a usable 

separate CT volume, leaving us with 24 patients total for registration testing. The goal was to 

have patient positions substantially different from the paired images to challenge the registration.  

For the remainder of this paper, we will refer to these images as CTnon-aligned.  

 

Data Processing 

 

All CTaligned datasets were first automatically rigidly registered in Elastix28,29 to their 

corresponding MR image using mutual information as the similarity metric.  To better show the 
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posture during network training, volumes were resliced into 2D sagittal slices.  All images were 

resampled to slices of size 256×256, and each voxel was 1.76×1.76×1.5 mm3.  The images were 

quantized to 256 greyscale values.  For CT, this was accomplished by renormalizing and 

quantizing the image into 256 levels between intensity values -600 and 1400, and between 0 and 

600 for MR.  In all, this gave 8,350 CT and 8,350 MR sagittal slices to be used for training and 

testing. 

 

Deep Learning Networks 

 

In a conventional GAN, two networks are used; a generator network attempts to generate 

realistic images, while a discriminator network attempts to distinguish between real images and 

those created by the generator.  When successful training is complete, the generator is able to 

create an image that appears to come from the domain of the training set.  This study used an 

adversarial network utilizing cycle-consistency (CycleGAN)27 with two GAN’s: one attempted 

to generate a realistic synthetic CT (CTsynth) slice given a real MR slice, and the other attempted 

to generate a realistic synthetic MR slice given a real CT slice.  The generators were then 

switched and applied to the synthetic outputs, so that the synthetic MR was translated back into a 

CT slice, and vice versa.  Ideally, the original CT or MR slice should be recovered, and hence 

this network architecture has cycle consistency.  The loss function for CycleGAN therefore has 

an adversarial loss term for generating realistic CT images, an adversarial loss term for 

generating realistic MR images, and a cycle consistency loss term to prevent the network from 

assigning any random realistic-looking image from the other domain. 

Overall, the full loss function can be written as: 
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𝐿(𝐺𝐶𝑇→𝑀𝑅 , 𝐺𝑀𝑅→𝐶𝑇 , 𝐷𝐶𝑇 , 𝐷𝑀𝑅) = 𝐿𝐺𝐴𝑁(𝐺𝐶𝑇→𝑀𝑅 , 𝐷𝑀𝑅 , 𝐶𝑇, 𝑀𝑅) +

 𝐿𝐺𝐴𝑁(𝐺𝑀𝑅→𝐶𝑇 , 𝐷𝐶𝑇 , 𝑀𝑅, 𝐶𝑇) +  𝜆𝐿𝑐𝑦𝑐(𝐺𝐶𝑇→𝑀𝑅 , 𝐺𝑀𝑅→𝐶𝑇′), (1) 

 

where λ (set to 10 in this work) is a relative weighting coefficient, and G and D are the generator 

and discriminator networks with subscripts describing the direction of image translation and 

discrimination domain, respectively.  The adversarial loss is given by: 

 

𝐿𝐺𝐴𝑁(𝐺𝐶𝑇→𝑀𝑅 , 𝐷𝑀𝑅 , 𝐼𝐶𝑇 , 𝐼𝑀𝑅) = 𝐸𝑀𝑅~𝑝𝑑𝑎𝑡𝑎(𝑀𝑅)
[𝑙𝑜𝑔𝐷𝑀𝑅(𝐼𝑀𝑅)] +  𝐸𝐶𝑇~𝑝𝑑𝑎𝑡𝑎(𝐶𝑇)

[𝑙𝑜𝑔(1 −

 𝐷𝑀𝑅(𝐺𝐶𝑇→𝑀𝑅(𝐼𝐶𝑇))]    (2) 

 

where the discriminator gives an output between 0 (image determined to be fake) and 1 (image 

determined to be real).  In the minmax optimization problem, the generator attempts to create a 

realistic image by minimizing the second term towards a large negative value while the 

discriminator is trained to maximize the objective by correctly differentiating real images from 

fake.  A similar loss is used for 𝐿𝐺𝐴𝑁(𝐺𝑀𝑅→𝐶𝑇 , 𝐷𝐶𝑇 , 𝑀𝑅, 𝐶𝑇).  The cycle consistency loss using 

L1 norm is then given as: 

 

𝐿𝑐𝑦𝑐(𝐺𝐶𝑇→𝑀𝑅 , 𝐺𝑀𝑅→𝐶𝑇′) =  𝐸𝐶𝑇~𝑝𝑑𝑎𝑡𝑎(𝐶𝑇) [‖𝐺𝑀𝑅→𝐶𝑇′(𝐺𝐶𝑇→𝑀𝑅′(𝐼𝐶𝑇)) − 𝐼𝐶𝑇‖
1

] +

 𝐸𝑀𝑅~𝑝𝑑𝑎𝑡𝑎(𝑀𝑅)[‖𝐺𝐶𝑇→𝑀𝑅′(𝐺𝑀𝑅→𝐶𝑇′(𝐼𝑀𝑅)) − 𝐼𝑀𝑅‖
1

]  (3). 
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The generator networks follow the Resnet architecture described in Johnson et al30.  The 

discriminator uses a patch-based network described in31.  Because it is patch-based, this allows 

greater flexibility for different sized images, as well as forces the discriminator to focus on 

smaller-scale details.  The network hyperparameters used in our study are the same as those in 

the pytorch-CycleGAN-and-pix2pix repository1.  

 

Registration 

 

We first used the trained CycleGAN to generate a synthetic CT given a head and neck MR 

image.  We then registered CTnon-aligned to the synthetic MR-derived CTsynth, which reduced the 

multimodal registration problem to a mono-modal one.  Conversely, we registered the MR to 

CTnon-aligned by first registering the CTsynth to CTnon-aligned, then applying the resulting deformation 

vector field (DVF) to the original MR.  For comparison, direct registrations between MR and CT 

were also performed.  CTnon-aligned was additionally registered to CTaligned to characterize the 

behavior of a typical mono-modality (CT vs CT) registration. This paper will denote deformable 

registration with an arrow (→) pointing from source to target.  Figure 1 gives an overview of the 

registrations performed in this study. 

 

 
1 https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix 

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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Figure 1 The deformable registrations performed in this study.  Registrations were performed in both CT-to-MR and 

MR-to-CT directions to test for inverse consistency, as well as both directly (multi-modal) and with a synthetic CT bridge 

(synthetic mono-modal).  The DVF from CTsynth→ CTnon-aligned was applied to the MR to generate a deformed MR image.  

The non-aligned CT was also registered to the aligned CT (and vice versa) to see an approximate best-case synthetic 

mono-modal registration. 

The multi-resolution registration using B-splines and mutual information was performed using 

Elastix28,29 with six Gaussian blurring levels, repeated. These levels allow for a hierarchical 

approach to the registration, starting at a coarse resolution with large-scale deformations, and 

gradually progressing towards a finer resolution for fine-detailed deformations.  The B-spline 

grid spacings for each resolution level were 128, 64, 32, 8, and 4 mm, sequentially.  The 

Synth. Bridge

MR to CT 
Direction DIR

CT to MR 
Direction DIR
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Gaussian sigmas were 8, 4, 2, 1, 0.5, and 0.5 voxels isotropically.  The registration was 

optimized using gradient descent32.  The gradient descent gain factor, ak, was set to: 𝑎𝑘 =

 
𝑎

(50+𝑘+1)0.6 , where k is the iteration number, and a is set for each resolution level to be: 50000, 

10000, 2000, 500, 100, 100.  Large values of a in the coarse resolutions allow the registration to 

capture large deformations, which were necessary when registering to CTnon-aligned.  The 

maximum number of iterations at each resolution level was: 500, 500, 500, 500, 100, and 100.   

 

Analysis 

 

To evaluate the registration, the following tests were performed. The spinal cord was manually 

contoured on the original MR, CTaligned, and CTnon-aligned image volumes for all patients.   The 

cord is an appealing anatomical landmark structure, as it is present throughout the head-and-neck 

region, reflective of the neck flex, and conspicuous in both modalities.  The resulting cord 

contours from the deformable registration were compared to their respective target volumes’ 

contours using 95% Hausdorff Distance33, measured in mm.   

 

The Euclidean distance between a set of 11 landmarks (Dens of C2, center of the vertebral 

bodies of C2-C7, center of left and right eyes, the mental protuberance of the mandible, and the 

tip of the nose) was evaluated between deformed and target images.  We performed a 2-way 

repeated measures anova with a post hoc Tukey’s multiple comparison to test the null hypothesis 

that all registrations had the same mean error, and identify the significantly different registrations 

if the null hypothesis was rejected.  The two factors in the anova analysis were registration 

direction and landmark. 
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Additionally, the quality of the registration itself was evaluated by calculating the Jacobian 

determinant from each resulting transformation.  This was calculated using the Insight Toolkit’s 

implementation, and is given as the scalar determinant of the derivative of the deformation 

vector field at each point (det (
𝑑𝑇

𝑑𝑥
) , 𝑤ℎ𝑒𝑟𝑒 𝑇 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚).  A reasonable registration in 

the head and neck anatomical region should have most voxels experiencing small shrinking and 

expansion with the average Jacobian determinant close to 1. 

 

The quality of the registration is also reflected in its inverse consistency, which was evaluated by 

comparing the composition of transformation pairs in the opposite direction on a standard CT 

image to reduce input from the background, then calculating the mean square error (MSE) 

between that image and the initial image.  The MSE was calculated using the Insight Toolkit’s 

implementation, and is the sum of squared differences between intensity values between the 

images.  A lower MSE indicates better inverse consistency.  We elected to use this method since 

we did not expect true inverse consistency in the DVF due to the occasional appearance and 

disappearance of tissue with different patient positioning (e.g. arms up versus arms down).  This 

is a known challenge in head and neck image registration.  However, we can compare directional 

bias between direct and our proposed registration techniques.  Therefore we emphasize that 

while a 0 MSE would indicate a perfect recovery of the original image, our inverse consistency 

study was a relative comparison. 

 

Results 

 

Synthetic CT 
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Figure 2I is a typical synthetic CT achieved in this work.  The CTsynth image preserves bulk 

anatomy, distinguishes bones and sinuses, but is missing certain anatomical details of a real CT 

(e.g. accurate description of individual vertebrae).   

 

Registration Accuracy: Qualitative Evaluation 

 

Figure 2 A-E illustrate an example of  a CTnon-aligned (green) registered to an MRI (red) using a 

synthetic CT.  The 3D surface rendering in Figure 2C shows a large initial discrepancy in the 

head pose.  Figure 2D shows how the CTnon-aligned pose was deformed (purple) to match the MRI 

when the CT is directly registered to the MRI (red).  Fig 2E shows how closely the registered 

CTnon-aligned’s pose (blue) matches the target MRI (red) when using a synthetic CT bridge. The 

head tilt matches better when using a synthetic CT, as can be seen by the improved match in the 

nose.  

 

Figures 2 J-N show the interior anatomy of registration results in sagittal slices. Looking at the 

gridlines, Figure 2K shows that the CTnon-aligned matches the MR’s pose when CTsynth is used as 

the target.  CTnon-aligned registered to MR matched the pose but produced slight unrealistic tissue 

deformation, as in the stretched sinuses indicated by the red arrow in Figure 2J.  Comparing 

Figure 2N and Figure 2M, the CTsynth registered to CTnon-aligned shows even better improvement 

over direct registration.  This is evident in the MR to CTnon-aligned registration’s  relatively greater 

stretching in the skull and brain anatomy indicated by the red arrow in Figure 2M, and also the 

better positioning of the orbit.  While the registrations including CTsynth matched overall pose, 
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there is a residual discrepancy due to different mouth opening with or without a bite block.  Also, 

the registration accuracy is similar for CTsynth registered to CTnon-aligned and CTnon-aligned registered 

to CTsynth, while there is a noticeable decline in quality for MR registered to CTnon-aligned relative 

to CTnon-aligned registered to MR, showing improved inverse consistency using a synthetic CT 

bridge.   

 

Figure 2 An example patient shows the various registrations studied in this paper.  First row: registration of non-aligned 

CT (green) to an MR image (red). Box D shows the directly registered non-aligned CT (purple);  Box E shows registration 

of the corersponding synthetic CT to the nonaligned CT. Second row:  sagittal view.  Boxes F-I are the non-deformed 
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volumes.  The third row shows the results for various registrations.  Note that the images used in the registration were 

downsampled to match the 256x256 resolution output from the neural network.  All slices shown were in the same 

location. Arrows denote unanatomical deformation in direct multimodel registration.  

 

Registration Accuracy: Spinal Cord Contour Comparisons 

 

The spinal cord contour comparison results are shown in Figure 3. In Figure 3A-B, the initial 

95% Hausdorff distance of the MR and CTnon-aligned rigid alignment is on the horizontal axis, and 

the vertical axis shows their 95% Hausdorff distance33 after registration, to reflect the quality of 

registration and its dependency on the original level of rigid misalignment.  The fitted lines are a 

result of Deming linear regression, where a lower slope means the registration is more robust to 

initial misalignment.  The dotted reference line indicates equal rigid and deformable cord error.  

For small initial misalignment in the bottom left, the deformable results using CTsynth and MR are 

similar to the rigid results.  With larger initial misalignments, there is an increasing divergence in 

the results with and without CTsynth.  In the presence of large initial misalignment, compared with 

the direct registration, our proposed method results in a larger improvement.  Using a Deming 

linear regression and comparing estimated slopes, we found that the error using our method is 

lower than that of the direct registration in both the MR to CT direction (p=0.0002) and the CT 

to MR direction (p=0.08).  Unsurprisingly, replacing the MRI with the aligned CT results in the 

lowest contour misalignment but the difference with our proposed method is not statistically 

significant (p=0.34 and p=0.65, respectively).   

The slopes of the fitted lines and their 95% confidence intervals are plotted in Figure 3C.  The 

direct registrations show a clear increase in sensitivity to initial misalignment.  The wide 

confidence intervals on the non-aligned CT registered to the synthetic CT reveal the larger 
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spread when using our method in the CT to MR direction.  In fact, all of the CT to MR direction 

registrations show increased sensitivity relative to their opposite-direction pairs.  The 

registrations between MR and the aligned CT represent the residual sensitivity to initial 

misalignment inherent to our registration algorithm, as the MR and aligned CT should already 

have overlapping cord contours.   

 

Figure 3 The spinal cord 95% Hausdorff distance for the deformations is plotted in the top two figures as a function of the 

initial rigid alignment Hausdorff distance.  Thus, the error in cord alignment can be evaluated in terms of how misaligned 

the images were initially.  The diagonal line shows where the deformable image registration’s cord error would equal the 
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initial rigid alignement’s cord error.  The top figure is divided in the CT-to-MR direction on the left and the MR-to-CT 

direction on the right.  The bottom figure shows the slopes of the best fit lines with their 95% confidence intervals. 

 

Registration Accuracy: Landmark Analysis 

 

Figure 4 summarizes the landmark analysis.  The plot is ordered from the lowest average 

landmark error to the highest.  The vertebrae landmarks tended to be lower than those on the 

head. This is caused by the distances of landmarks to the head rotating motion axis, as a small 

head tilt could lead to large distances in the eyes, nose, and mandible.  The registrations between 

the aligned CT and MR are consistent across all landmarks, as these images were already closely 

aligned.  Interestingly, when the MR was replaced with the aligned CT in the non-aligned CT 

registrations, the landmark error also stays relatively consistent.  This aligned CT and MR 

registration error defines the performance upper bound of the proposed method if we were able 

to generate perfect synthetic CTs.   

The direct registration shows the second largest variation in performance after the rigid 

alignment with respect to landmark type.  Figure 5 shows the landmark error by registration type 

and the statistically significant groupings from the anova post-hoc Tukey test.  There are four 

groups in order of increasing average error,  

Group 1: deformable registrations between the CTaligned and MR, and the CTaligned and CTnon-

aligned;  

Group 2: the registrations of our proposed method between CTnon-aligned and the Synthetic CT;  

Group 3: the direct CTnon-aligned and MR registrations;  

Group 4: the rigid alignment between CTnon-aligned and CTaligned.   
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The outliers in the different registration groups were either nose or mandible landmarks.  Figure 

5B tabulates the average and standard deviation of the landmarks per registration type.  There is 

an average reduction of 3.8mm in average landmark error (from 9.8mm to 6.0mm) by replacing 

the MR in the MR registered to CTnon-aligned registration with a synthetic CT.   

If the synthetic CT were replaced with a CTaligned, the error decreases further by 2.2mm (from 

6.0mm to 3.8mm).  The trend is similar in the CT to MR direction.  The average landmark error 

is reduced by 3.4 mm (from 10.0mm to 6.6mm) when replacing MR with a synthetic CT in the 

CTnon-aligned registered to  MR registration.  The error is further reduced by 2.7mm (from 6.6mm 

to 3.9mm) with registration to a CTaligned.  The error reduction from direct registration to 

synthetic CT bridged registration is not only significant (2way ANOVA with Tukey’s multiple 

comparisons test, p<0.001) but also greater than half the potential improvement with registration 

to CTaligned, which is typically unavailable. 
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Figure 4 The patient-average Euclidean landmark error for the various registrations investigated in this study.  The bars 

are ordered by the average error across all landmarks.  From this figure, we can see that for the large CTnon-aligned 

registrations our proposed method has an overall lower landmark error than the direct registration method.  The rigid 

alignment between CTaligned and CTnon-aligned is denoted by CTaligned vs. CTnon-aligned. 
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Figure 5 Combining all landmarks together to better visualize the post hoc results by registration type.  The vertical bars 

to the left of the boxplots indicate registrations which were not significantly different.    The rigid alignment between 

CTaligned and CTnon-aligned is denoted by CTaligned vs. CTnon-aligned.  Below is a table to more easily display the decrease in 

average landmark error with the proposed method.  The bottom rows in each section show the average error if CTaligned is 

used as a surrogate for the MR.  This represents a “best-case” scenario. 

 

Registration Accuracy: Jacobian Determinant 

 

The Jacobian determinant was calculated for each transformation.  The mean across each 

resulting 3D matrix was found.  Figure 6 shows the descriptive statistics averaged across all 24 

test patients, for each registration investigated.  All of the registrations have mean Jacobian 

determinants around 1.0.  This shows that the majority of the deformed images did not 

experience large expansion or shrinking, consistent with the head-and-neck anatomy.   
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Figure 6 Patient-averaged descriptive statistics of Jacobian determinants across different deformable registration types.  

Error bars show the range. 

 

Inverse Consistency 

 

 

Figure 7 Transformation pairs in the opposite direction (e.g. non-aligned CT→MR and MR → non-aligned CT) were 

composed together and a single baseline CT was transformed under this composition.  Given perfect inverse consistency, 

the original image should be recovered.  The mean square error (MSE) was calculated between the original and 

transformed CT for the direct and synthetic CT bridged registrations, and in both directions.  The boxplot bars show 5-

95% range.  A paired T-test was performed to evaluate significant difference. 
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There is an improved inverse consistency when using the synthetic CT bridge in both the CT to 

MR direction (MSE of 193.9 to 165.1, p=0.04) and the MR to CT direction (MSE of 197 to 168, 

p=0.04).  Statistical comparisons were made using a paired T-test.  

 

Discussion 

 

Multi-modal deformable registration is an important technique yet a challenging problem due to 

its ill-conditioned nature. It is made more difficult by different material-to-imaging-value 

mapping and large deformations. Both compounding problems are seen in head-and-neck MR- 

and CT-scanned cancer patients and have hampered the utility of multimodal imaging for their 

radiotherapy. In the current study, we showed that the difficulty can be effectively mitigated 

using deep-learning generated synthetic images, with which the multimodel registration problem 

is reduced to a monomodal one. For large deformation, this novel registration pipeline is able to 

significantly improve the deformable registration results versus direct registration. The anatomy 

is more accurately morphed to the target images as shown in the quantitative results of spinal 

cord contours and the landmark tests. An additional benefit of this method is that the pipeline can 

be fully automated. 

 

Current clinical practice often uses rigid registration to align CT and MR images in the head-

and-neck, which is clearly suboptimal given the discrepancy in patient posture as shown in 

Figure 2. We show a method that offers significant improvement over the current standard of 

care.  In addition, we show that our method is more robust than traditional, direct deformable 

image registration (DIR)  methods.  A significant challenge in this work was ensuring accurate 

deformation even in the presence of large head motion.  Through careful parameter tuning, a 
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balance was able to be struck which was both accurate and robust.  It was noted during this 

tuning process that the direct multimodal registration results were more sensitive to choice of 

parameters and initial conditions relative to our CTsynth method.  Future work will endeavor to 

discover better ways to automatically choose these parameters for both head-and-neck, as well as 

other anatomical sites. 

It was also observed that some of the artifacts in the MR would disappear during the process of 

generating synthetic CT’s.  Artifact reduction in MR using deep learning has been previously 

studied34,35 therefore, while not the focus of this study, we are unsurprised at this result.  It is 

well known that the variability in MRI intensity values can make image registration more 

challenging, and numerical techniques exist to mitigate these issues36. A possible added benefit 

of our technique may be an implicit correction in MRI intensity variations during the process of 

generating a synthetic CT, thus further aiding the registration.  Our study was not designed to 

pursue this question, but would be an interesting future pursuit. 

 

This study’s analysis process closely follows the recommendations for DIR quality assurance put 

forward by the AAPM Task Group 1321.  They recommend evaluating registrations with 

landmark error, contour error, the Jacobian determinant, and inverse consistency.  Our proposed 

method demonstrates superior landmark error and cord contour conformation, while also 

showing reasonable Jacobian determinant values and improved inverse consistency.  These 

results make us confident that a CTsynth based deformable registration in the head-and-neck is a 

valuable tool, even in the setting of large neck flexion.  We saw average landmark improvements 

of 3-4mm for our method, which is more than half of the 6mm improvement seen in registrations 

between the MR and aligned CT.  The aligned CT acts as a surrogate for a more realistic 
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synthetic CT since its anatomy closely matches the MR’s.  The improvements are on the same 

order of margins (~3mm) used in head-and-neck radiotherapy, thus they are considered clinically 

relevant.  Note that the utilized registration algorithm does not explicitly penalize a registration 

for violating inverse consistency, thus the non-zero MSE. The result indicates that the 

registration is biased with the choice of the target image, which is also seen in the directionality-

dependent differences in registration.  In fact, most registration algorithms used are asymmetric17 

and this is an ongoing avenue of research. 

  

There are a few limitations in the current study. First, although the data is unique to offer rigidly 

aligned CT/MR for validation, the patient number is relatively small, which has limited the 

power of statistical analysis. It may also have limited the quality of generated synthetic images. 

We performed five-fold cross validation to allow all cases to contribute to the performance 

analysis. Second, the MR images are from a low field scanner for MR-guided radiation therapy 

that provides inferior quality to the diagnostic images for head-and-neck registration. It is 

possible that the quality of the synthetic images can be improved based on diagnostic and 

multiparametric MR images.  Improvements to the CTsynth generation could lead to further 

accuracy, as seen in the CTaligned registrations. Additionally, it is important to note that the MR 

and CT images were acquired with different resolutions, although they were resampled to be the 

same.  Changing this additional variable could lead to different registration accuracies. 

 

In our work, we used PET attenuation correction CT’s as the source of our large misalignement 

CT’s.  In this way, the positioning would be very different from the immbolized planning CT.  

Previous work37 examined the difficulty of registering a PET attenuation correction CT with a 
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treatment planning CT.  They found large variability in alignment of the spinal cord (5.3mm) and 

mandible (5.4mm) post DIR, which were still superior to rigid registration (10.6mm and 5.5mm, 

for spinal cord and mandible, respectively).  Our direct registration from the PET CT (CTnon-

aligned) to the planning CT (CTaligned) resulted in an average landmark error of 4.5mm for the 

mandible and 4.7mm for the spinal cord, while the CTsynth bridge method had a  7.4 mm 

mandible error and 6.6mm error for the cord.  These values are consistent with what was shown 

in the referenced study.  While we only have one landmark and one contour in common with this 

study, it shows that even in the setting of CT-CT registration, large deformations in the head-

and-neck can be difficult to register.  In synergy with using a CTsynth bridge, improvements in 

mono-modality registration would also lead to better multimodal registration in the head-and-

neck.  Currently, research using neural networks offers some exciting new avenues in this regard, 

including completely learning-based unsupervised DVF generation38–41.  However, the 

performance of these methods depends on the availability and quality of training sets, which are 

particularly challenging for multimodel registration.  The proposed synthetic image bridge can 

work well with new deformable registration techniques optimized for single modality 

registration. 

 

Conclusion 

 

Multi-modality deformable registration is challenging, especially in regions of large deformation.  

CT and MR are important, complementary modalities in the treatment of head-and-neck cancer.  

By first transforming the MR into a CTsynth and running a synthetic mono-modal registration, we 

showed that we were able to produce improved registration results in the form of lower landmark 

error and more accurate contour warping.  Furthermore, we showed that our DIR method 
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improves inverse consistency and has realistic Jacobian determinant values.  Continued efforts to 

improve CTsynth generation could advance this technique further.  
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CHAPTER 3: Extending Cropped Medical Images With Neural 

Networks for Deformable Registration Among Images with Differing 

Scan Extents 

 

Introduction 

 

Deformable image registration (DIR) is a topic of intense research and clinical interests in 

radiation therapy.  DIR establishes correspondence between medical images for imaging 

information synthesis, dose accumulation and adaptive treatment planning. For these 

applications, DIR is frequently performed on image pairs that exhibit non-rigid motion. On the 

other hand, the usefulness of DIR can be limited by low accuracy and robustness.  The process of 

matching one image to another can introduce erroneous or unrealistic tissue deformation1, 

requiring practice of caution when DIR is involved in clinical decision for interventions. In cases 

where the DIR accuracy is unsatisfactory or the accuracy cannot be verified, rigid registration is 

used instead as a compromise2–4.   

Besides differences in multimodal image intensity and large deformation, a common factor 

contributing to the DIR difficulty is the mismatch in the image scan extents or the field-of-view. 

Because the boundary conditions are not explicitly available, unrealistic deformation is often 

introduced in DIR. The unrealistic stretch or compression of tissues is most severe near the edges 

of an image but can propagate through the entire image volume with smoothness constraints in 

the DIR DVF. The scan extent mismatch is common in retrospective analysis, where images 

were acquired with varying scanning protocols, as well as in multimodal registration problems.  

In image guided radiotherapy, cone beam CT (CBCT) images are used to help with patient set up 
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but CBCTs have a substantially more limited coverage in both the axial and longitudinal 

dimensions compared with the planning CT. Imaging volume mismatch is also common in MR 

to CT registration. MR provides superior soft tissue visualization that is helpful for tumor and 

normal tissue delineation, but the MR imaging volume is often smaller than the planning CT. 

MR images acquired on oblique orientations further complicate the imaging volume mismatch 

issues. We previously demonstrated that the challenges in registering MR to CT due to 

differences in imaging intensities can be mitigated via synthetic image bridge5 but the issues due 

to mismatched imaging volumes persist. According to TG-132, differences in scan extent are a 

major source of deformable registration error6.   

 

Research to mitigate the adverse impact due to imaging volume mismatch has been reported.  A 

straightforward approach to reduce the registration error due to mismatched imaging extent is to 

manually crop the larger imaging volume to match the scan length of the shorter image7,8.  

Manually cropping the images not only reduces the workflow efficiency, but also introduces 

error because the image matching lines are not explicitly available to the operator. The error can 

be substantial when large patient pitch correction or deformation is involved. Periaswamy and 

Farid used an expectation maximization algorithm to simultaneously segment the more complete 

image volumes and register partial images9. The method effectively contained the registration 

error due to image artifacts but its ability to handle both large deformation and mismatched scan 

volume was not demonstrated.  To address differing scan lengths in CBCT and planning CT 

registration, researchers and then relied on the DVF smoothness constraint to outside the 

effective field of view4,10.  The method was shown to reduce the DIR error, but the registration 

accuracy was still limited by the lack of contextual information due to missing volumes.    
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Aside from their specific algorithms, the existing methods share the strategy of using the 

intersection of the two images as the starting point of DIR. By doing so, the imaging information 

in the more complete image is discarded despite its potential value for the overall registration 

accuracy. In this study, we take a fundamentally different approach. Instead of cropping the 

images, we propose to fill the missing portion of the anatomy using neural networks.  The 

registration can then proceed using the artificially extended image.  We design the study to 

answer two questions: (1) Do registrations with artificially extended images perform as well as 

registration pairs with equal extent (2) How does the quality of the registration with artificially 

extended images vary as a function of the initial amount of missing tissue? 

 

 

Materials and Methods 

 

Dataset 

 

Head and Neck CT images were acquired from The Cancer Imaging Archive (TCIA) dataset11.  

We had a total of 409 training, 53 validation, and 53 testing images.  Scan extent went from the 

top of skull to approximately the carina.  Scanning beds and immobilization equipment were 

masked out of the images.  For input into the network, all images were rigidly registered to a 

template image and downsized to 128x128x128 with 4mm isotropic voxels.  Image intensity 

value were clipped to a range of [-1024, 3000], then normalized to [-1, +1].  For analysis, 

volumes were automatically segmented using a neural network approach12,13.  This resulted in 16 

contours per patient.   
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Network 

 

For this work, we used a Generative Adversarial Network (GAN) approach to extend the 

cropped volume14.  We term the network CropGAN.  A GAN consists of a generator to create 

synthesized data, and a discriminator to judge if data is synthesized or real.  The input to our 

generator was a cropped volume, and the output was a volume with the missing portion replaced 

with synthesized data.  The cropped region was randomly created each iteration of training, 

where the angle was randomly varied between 0 and 45 degrees in the superior-inferior direction, 

and between -5 and 5 degrees in the other 2 dimensions; and the amount of cropping was varied 

on both the superior and inferior edges from 120 to 210mm.  We chose to vary the cut angle of 

the crop to simulate two common scenarios in DIR. First, as a preprocessing step, rigid 

registration is performed prior to DIR. Correction of the patient pitch and yaw will lead to 

oblique cutting planes relative to the target image. The second scenario is registration of the MR 

acquired in oblique orientations.  In CropGAN, the generator was a 3D U-net with skip 

connections15.  At the bottom of the U-net, we used 4 dilated convolutions to increase the amount 

of contextual information for prediction16.  All of the convolutions in the U-net used instance 

normalization with elu activation and were gated so the network could adaptively learn feature 

selection, as was done by Yu et al17.  The discriminator had 3 inputs: the cropped image, either 

the original full image (uncropped) or synthesized output from the generator (synthetically 

uncropped), and the mask used to crop the image.  The cropped and uncropped (either full or 

synthetic) inputs were first concatenated together.  The Discriminator was dual branching, with 

one branch operating on the entire concatenated image, while the other branch applied the mask 
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for cropping to only use the data from within the mask to focus on the fidelity of the synthesized 

portion.  The discriminator used spectral normalization, which has been shown to add stability to 

discriminator training18.  The output of the discriminator was a concatenation of the two 

branches.   Figure 1 shows details of the networks.   
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Figure 1 Architecture of Generator (top) and Discriminator (bottom). 

For the loss function we followed the formulation of Hui et al19, which uses several deep feature-

based losses.  We passed the generated and target uncropped image through a previously trained 

VGG network20.  This network was trained to classify CT and MR imaging sites from patches 

and had learned activations pertinent to these modalities’ features21.  An example showing the 

first 5 activation layers for the generator output and ground truth target is given in Figure 2. 
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Figure 2 visualizes the activations in the first 5 layers of the VGG network for a predicted and uncropped ground truth 

image.  These activations are used as features, which are compared using equations 1, 3, and 5 to produce a similarity 

metric, driving the predicted image to resemble the target. 

 

 

We compared the activations between the generated and target images in two ways.  First, we 

compared the activations from the first 5 convolutional VGG layers [Equation 1].  
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Where Ψ𝐼
𝑙

∗
 is the activation map of the 𝑙𝑡ℎ layer, for image volume 𝐼∗ (gt = ground truth, 

output=output from generator).  𝑁Ψ𝐼𝑔𝑡
𝑙  is the number of elements in the ground truth image’s 𝑙𝑡ℎ 

layer.  𝑤𝑙 weights each addend as a function of the channel size of the 𝑙𝑡ℎ layer of the ground 

truth image [Equation 2].  𝐶
Ψ𝐼

𝑙
𝑔𝑡

𝑙  in Equation 2 is the channel size of Ψ𝐼
𝑙
𝑔𝑡

. 

Equation 2 

𝑤𝑙 =  
1𝑒6

𝐶
Ψ𝐼

𝑙
𝑔𝑡

𝑙  

 

Second, to focus on more challenging areas of the image, we compared the error map weighted 

activations from the first two VGG layers. [Equation 3] 

 

Equation 3 

𝑙𝑜𝑠𝑠𝑣𝑔𝑔_𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 =  ∑ 𝑤𝑙
‖𝑀𝑔𝑢𝑖𝑑𝑎𝑛𝑐𝑒

𝑙  ⊙ (Ψ𝐼𝑔𝑡

𝑙 −  Ψ𝐼𝑜𝑢𝑡𝑝𝑢𝑡

𝑙 )‖
1

𝑁Ψ𝐼𝑔𝑡
𝑙

2

𝑙=1

 

 

Where 𝑀𝑔𝑢𝑖𝑑𝑎𝑛𝑐𝑒
𝑙  is the error map associated with layer 𝑙 and is used to give more weight to the 

VGG layer differences which are more challenging to match.   For each layer, 𝑀𝑔𝑢𝑖𝑑𝑎𝑛𝑐𝑒
𝑙  is given 

by 𝑀𝑔𝑢𝑖𝑑𝑎𝑛𝑐𝑒
𝑙+1 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑜𝑜𝑙𝑖𝑛𝑔 (𝑀𝑔𝑢𝑖𝑑𝑎𝑛𝑐𝑒

𝑙 ).  𝑀𝑔𝑢𝑖𝑑𝑎𝑛𝑐𝑒
1  is equal to 𝑀𝑔𝑢𝑖𝑑𝑎𝑛𝑐𝑒,𝑝 which is the 

error map value at position p [Equation 4]. 𝑀𝑔𝑢𝑖𝑑𝑎𝑛𝑐𝑒,𝑝 is derived from the generated image and 

its corresponding ground truth.  Average-pooled guidance maps give a spatial correspondence 

between the differences seen in the images, and the differences seen at deeper layers. 
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Equation 4 

𝑀𝑔𝑢𝑖𝑑𝑎𝑛𝑐𝑒,𝑝 =  
𝑀𝑒𝑟𝑟𝑜𝑟,𝑝 − min(𝑀𝑒𝑟𝑟𝑜𝑟)

max(𝑀𝑒𝑟𝑟𝑜𝑟) − min(𝑀𝑒𝑟𝑟𝑜𝑟)
 

 

where,  𝑀𝑒𝑟𝑟𝑜𝑟 = (𝐼𝑜𝑢𝑡 −  𝐼𝑔𝑡)
2
 

 

 

Mean absolute error was used to assess the fidelity between the generated and target uncropped 

images.  This is given as 𝐿𝑓𝑖𝑑𝑒𝑙𝑖𝑡𝑦.  For the adversarial loss, we used a Wasserstein Hinge loss22.   

In addition to the adversarial loss, the discriminator also used a deep feature-based loss. The 

activation layers of the cropped-area discriminator branch were used to compare the generator 

output and ground truth [Equation 5]. 

 

Equation 5 

𝐿𝑜𝑠𝑠𝑑𝑖𝑠𝑐_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 =  ∑ 𝑤𝑙
‖𝐷𝑙(𝐼𝑔𝑡) − 𝐷𝑙(𝐼𝑜𝑢𝑡𝑝𝑢𝑡)‖

1

𝑁𝐷𝑙(𝐼𝑔𝑡)

6

𝑙=1

 

 

The total loss function is thus: 

Equation 6 

𝑇𝑜𝑡𝑎𝑙 𝑙𝑜𝑠𝑠 = 𝐿𝑎𝑑𝑣𝑒𝑟𝑎𝑟𝑖𝑎𝑙 + 𝜆1𝐿𝑓𝑖𝑑𝑒𝑙𝑖𝑡𝑦 + 𝜆2𝐿𝑣𝑔𝑔 + 𝜆3𝐿𝑣𝑔𝑔_𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 + 𝜆4𝐿𝑑𝑖𝑠𝑐_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 

 

We searched for a stable training result by iteratively varying the weights (λ*) using the 

validation set. This led to empirically selected weights of 20, 10, 10, and 5, respectively.  Further 
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tuning may possibly lead to improved results.  Our generator and discriminators used an 

RMSprop optimizer with a learning rate of 0.00005.  We used a batch size of 2 and trained for 

2000 epochs. 

The output from the network was a 128x128x128 image with 4mm3 voxels.  The synthesized 

portion was resized to 512x512x512 (1mm3 voxels) to match the size of the original image.  The 

final synthetically extended image only had synthesized voxels in the cropped region.  The non-

cropped portion was copied to the final image. 

 

Registration 

 

We tested how well deformable registration with the synthetic cropped images compared to 

uncropped (ground truth) registration and cropped registration.  To do this, we deformably 

registered the moving images (cropped, uncropped, and synthetic uncropped) to the same target 

images (cropped, uncropped, and synthetic uncropped) in all unique combinations. It is worth 

noting that for fair comparison the synthetic image volumes are only used to assist DIR. When 

the moving image was synthetically extended, we applied the resulting deformation vector field 

to the cropped image such that the final result only included actual scanned data. 

 

 

Without losing generality, we performed registrations using an open source B-spline method 

(Elastix23,24).  We used a multi-resolution deformable registration scheme and mutual 

information as the cost function, as in a previous publication5.  This method was selected due to 

its competitive performance in registering head and neck images25, open-source nature to 
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facilitate comparison, and flexible registration parameter settings; however, the CropGAN 

images are expected to work with other registration algorithms. 

 

 

Analysis 

 

We tested our hypothesis that synthetically extending cropped images would lead to the same 

registration quality as a registration performed with the full, ground truth images by evaluating 

the similarity between deformed and target contours.  To avoid being skewed by the organ size, 

instead of the Dice index, the similarity was calculated using the 95% Hausdorff distance surface 

matching metric26,27.  We analyzed our results using a one-way ANOVA amongst registration 

pairs, as well as a linear regression between the pre- and post- registration contour similarity.  All 

analyses were performed using GraphPad Prism. 

 

We tested our secondary hypothesis that the registration quality using synthetically extended 

images would be the same as using full images independent of the initial cropping amount (range 

of approximately the superior apex of the skull to the inferior nose: 120 to 210 mm superior 

cropping) by cropping the same image by variable amounts, synthesizing the missing portion 

using CropGAN, then performing the same registration tests.  For this experiment the angle of 

cropping was kept a constant 23 degrees in the superior-inferior direction.  This angle was 

selected to be the middle of the angle ranges used during training.  The other two cropping 

planes had angles of zero.  The results were averaged over 3 patients and analyzed using linear 

regression. 
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Results 

 

Execution 

 

Training the CropGAN network took 6 days on one Nvidia Quadro RTX 8000 GPU.  Once 

completely trained, inference took 0.04 seconds to synthesize the missing part of the cropped 

image. 
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Figure 3 Example registration of one of the 53 test patients.  Columns are for a given target image; Rows are for a given 

moving image.  The intersection shows the deformable registration result. Our method (top row of central grid) has 

applied the deformation vector field to the original cropped image, so only real data is included in the final registration 

result. Cropped-to-predicted, and predicted-to-cropped are not shown, since if one cropped image could be predicted, the 

other could feasibly be predicted as well. 
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Figure 4 Example registration of one of the 53 test patients.  Columns are for a given target image; Rows are for a given 

moving image.  The intersection shows the deformable registration result applied to the moving image’s contours. 

 

Registration Comparisons 
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We performed 364 deformable image registrations to compare all 7 combinations of source and 

target volumes across the 52 test images (one of the 53 test images was held back as the target 

image), with random amounts of induced cropping from 120 to 210mm.  An example showing 

one such set of registrations is given in Figure 3 and Figure 4.  The columns are for a given 

target image (synthesized, cropped, or full) and the rows are for a given source image 

(synthesized, cropped, or full).  The intersection of a row and column show the registration result 

(Figure 4 shows the respective deformed contours overlaid on the target).  From the provided 

example, it is clear that deformable registration between images with different scan extent leads 

to unrealistic distortion.  Compared with the worst case when the moving image is cropped and 

the target image is full, registering a full volume to the cropped volume results in less distortion, 

though it is still worse than registering between two uncropped images. Registering with the 

synthesized images in all three cases leads to close performance to the registration of uncropped 

images as shown in the deformed contours of Figure 4. 
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Figure 5 The average 95% Hausdorff Distance between deformed and target contours for each registration pair, 

averaged across all 16 contours, and all 53 test patients.  The best-case registration is “Full2Full” (leftmost bar), while 

registrations using our method are shown in the next 3 bars.  These 4 leftmost bars are not significantly different 

(represented by being the same color blue).  Full2Crop and Crop2Crop were not significantly different, while Crop2Full 

was the highest of all.  While the difference between our method and rigid overlap did not reach significance, we did see a 

near halving of the error (20.6mm average error down to ~12mm error).  The error bars are the 95% confidence interval. 

 

In the quantitative analysis, the 95% Hausdorff distance averaged across all contours is displayed 

with 95% confidence intervals in Figure 5.  Using a one-way ANOVA with a post-hoc Tukey 

multiple comparison test, registration using CropGAN synthesized images in all three cases is 

not statistically different from the best-case full image registration (p>0.9), while it is 
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significantly different from registrations using a cropped image in either the source or target 

(p<0.0001).  While the average contour distance of registrations using synthesized images was 

approximately half that of a simple rigid alignment, this difference was not statistically 

significant.  We strengthened these conclusions by testing for equivalence between our proposed 

method and full image registration using a two-one-sided t-test.  We chose our equivalency delta 

to be the average error reported for the automatic contouring algorithm (3.39mm 95% Hausdorff 

distance13).  We concluded with 95% confidence that both synthesized-to-full and full-to-

synthesized registrations were equivalent to a full-to-full image registration within the error of 

contouring.  Registrations using synthesized images for both the source and target had 

confidence limits 1.6mm beyond this contouring error threshold.  Thus, while it may not be 

significantly different from full image registration, it is advantageous to have either the source or 

target image be full.  Interestingly, the full-to-cropped registration had confidence intervals 

20.7mm beyond the contour error. 
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Figure 6 shows the average registration error broken down by each contour used in this study. The error bars are 

standard deviation.  The horizontal axis has been split into to levels to improve readability.  

Figure 6 shows the 95% Hausdorff distance of individual contours.  The trends are consistent 

with the average distance analysis.  The esophagus showed the greatest error across registrations 

due to inconsistencies in the inferior range of this lower contrast contour. 
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Figure 7 demonstrates how the registration error varies as a function of initial rigidly aligned 95% Hausdorff distance.  

The intial overlap value is a measure of the difficulty of the registration.  The full-to-full registrations and the ones using 

our proposed CropGAN technique all have relatively flat lines, showing their robustness to the registration’s initial 

conditions. 

To analyze the dependence of our results on the degree of registration difficulty, we plotted the 

average 95% Hausdorff distance of the registrations as a function of the original degree of error 

(Figure 7).  A simple linear regression was used to obtain best fit lines.  The slope for the 

proposed method closely follows that of the best-case full image registration.  Specifically, the 

full-to-full image registration and full-to-synthesized slopes were not significantly different 

(p=0.29), with a shared slope of 0.27.  Synthesized-to-full and synthesized-to-synthesized 

registrations were also not significantly different (p=0.10) with a shared slope of 0.48; however, 
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they were significantly different from a full-to-full registration. Additionally, the relatively flat 

nature of these lines indicates that our proposed method performs well across a broad range of 

registration difficulty.  When both the source and target images are cropped, the more 

challenging registrations can have errors exceeding 10cm.  When only the source or target are 

cropped errors are in the 3-5cm range. This is consistent with the qualitative results shown in 

Figure 3. 

 

Dependence on Cropping Amount 
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Figure 8 shows the registration error as a function of missing tissue averaged across three patients.  The images below the 

plot help to visualize a given amount of cropping.  We see that for our method (purple and red lines) the amount of 

superior cropping does not have much of an effect before 18.7cm, where nearly all the superior half of the tissue is 

missing.  This demonstrates the robustness of our technique.  Our method is also superior to rigid alignment for all 

cropping amounts investigated.  When the moving image is left cropped (brown and black lines), the registration quality 

varies wildly. 

To analyze the effect the amount of cropping had on the registration result, we progressively 

increased the amount superiorly cropped in the moving image, while keeping the angle of 
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cropping constant (S-I plane=23˚, A-P=L-R=0˚).  These increasingly cropped images were 

passed through the trained CropGAN network to synthesize the missing regions.  The target 

images (full, cropped, and synthesized) were kept the same for this experiment.  The results 

averaged across three patients, along with a visualization of the cropping extent, are shown in 

Figure 8.  The lines for registrations where the moving image was full are flat, as these are not 

changing in this experiment; however, they offer useful reference lines.  Our proposed method 

performs as well as a full image registration until approximately 18.7cm of scan is missing from 

the superior edge.  The synthesized-to-full registration was closest to the full registration result 

(average difference of 1.5mm).  When both the moving and target images were synthesized, the 

average difference was 4.5mm from the full registration.  This is contrasted with the registrations 

including cropped images, which had an average difference of 22mm and higher. The 

registrations with cropped moving images show larger error, however there is a noticeable 

decrease around 170mm.  For cropped-to-cropped registration (black line), the error decreases 

until the cropped moving image extent matches the cropped target image’s extent.  As the 

moving image is cropped further, the extents again become mismatched, and the error increases.  

For the cropped-to-full registration (brown line), the error increases until the regularization of the 

registration algorithm prevents further stretching of the small moving image to the larger full 

image.  While the average error for cropped-to-full registration appears to decrease slightly in 

Figure 8, observing the registration results directly reveals extreme distortion for these larger 

crop amounts.   

For our proposed method, the synthesized-to-full and synthesized-to-synthesized registrations are 

independent of crop extent (slope was not significantly different from 0, p=0.2887 and 0.8556, 

respectively) until this extreme cut point of 18.7cm.  This point roughly corresponds to the 
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region of the nose, suggesting this to be an important landmark for synthesis.  This is in sharp 

contrast to the large, varying results with the original cropped registrations.  These results show 

that our method is robust across a wide range of scan extents. 

 

CropGAN Synthesis Visual Performance Variation 

 

While it not the intent to recover the accurate anatomy for individual patients, it is interesting to 

visually exam the potential for creating missing tissues.  Figure 9 shows two representative cases 

for good (top row) and poor (bottom row) synthesis of missing imaging volumes.  In the good 

case, the network synthesized realistic anatomies including sinuses, sternum, and heart.  In the 

poor case, the network failed to generate the patient nasal and skull base anatomies possibly due 

to the low number of training images and large variation of metal artifacts. In any case, the 

anatomies generated using CropGAN in its current form is not actual and cannot be used as such. 

For registration purposes, however, the quality of image synthesis achieved using CropGAN 

appears to provide adequate contextual information for DIR.  
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Figure 9 An example showing a good (top) and poor (bottom) predicted completion of a cropped image.  The first column 

shows the cropped image, the second column shows the uncropped ground truth, and the third column shows the 

predicted result from our network.  A difference image is shown in the right-most column (best seen in color).  The poor 

prediction occurs near an artefact in the mouth. 

 

 

Discussion 

 

We present here a novel solution to directly address adverse effects due to inadequate or 

mismatched scan extent in deformable registration.  DIR between images of insufficient extents 

is a major source of registration error. Existing approaches focus on cropping the larger or more 

complete images to better match the cropped images, which results in loss of information that 

could have benefited the registration. This is particularly problematic when both the moving and 

target images have inadequate scan extent for registration. We were able to artificially extend 

cropped images using a method which is fully 3D. The method is fully automated and able to 

handle a broad range of scan extent differences.  Once trained, our method fills the missing 
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volume in 0.04 seconds, making it an amenable addition to a clinical workflow.  To our 

knowledge, the current study is the first to synthesize the missing or cropped imaging volumes to 

improve the registration performance. It is worth emphasizing that the synthesized anatomy 

cannot represent the actual patient anatomy in the missing volumes.  It serves the purpose of 

assisting DIR of the actual imaging volume. Therefore, when the moving image is cropped, we 

apply the DVF from the synthesized moving image registration to the cropped image, thereby 

only including the real imaging data in the final result.   

 

 

The task to synthesize missing image slices itself is also novel. Neural networks have been used 

to inpaint a missing patch inside a 2D medical image slice28–30, which is a considerably less 

challenging problem that is analogous to interpolation with known boundary conditions around 

the missing patch.  In contrast, synthesizing data in a cropped image is analogous to 

extrapolation with undefined boundary conditions.  A study looking at network-based image 

extension in 2D landscape photos was able to successfully extend natural 2D images, however 

they caution that their results did not apply well to photos of human faces.22  Our proposed 

CropGAN uses generative adversarial networks (GAN) to synthesize missing data, a technique 

that has been well tested in network-based inpainting tasks17,31.  Specifically, we based our 

method on the winner of the AIM 2020 Challenge on Extreme Inpainting19,32, which used deep 

features in the generator, discriminator, and a VGG net as terms in the loss function.  That study 

showed impressive results filling in holes of 2D color photos, yet has not yet been pursued for 

image extension nor for 3D medical images.   
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Our proposed method of using a neural network to synthetically extend 3D cropped images 

improves deformable registration between images of differing scan extents.  It creates a bespoke 

synthesis in the cropped region that takes cues from each image’s anatomy.  In most cases, it 

synthesizes realistic anatomies even far beyond the line of cropping.  CropGAN creates details 

such as sinuses, lungs, orbits, and heart that continue smoothly from the available anatomical 

information.  These large details help anchor the registration algorithm while it optimizes the 

correspondence within the real portions of the image.  This advantage was seen even with 

extreme differences in scan extent (e.g., a cranium to carina scan and a scan only including the 

neck).   

 

It has been observed that deforming a full image to a cropped image is more robust than the 

reverse. Therefore, implementing inverse consistency33 in DIR could conceivably improve the 

registration of the former case. However, as shown in the study, CropGAN synthesized images 

still significantly outperforms the case of full-to-crop registration.  

 

We noticed that the synthesized images were poorer when metal imaging artefacts were near the 

cropping boundary.  This may be due to a lack of accurate anatomical cues near the boundary 

which the network can use to make its prediction.  Interestingly, once further away from the 

artefact, the network can still create realistic anatomies, and the registration result is not 

significantly different from cases without such artifacts, as well as to the result using full images.  

Therefore, while the study was not designed to quantify the effects of artefacts, current results 

suggest our technique is robust to this effect.  
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We chose to use a b-spline based registration algorithm for our study, but this technique is 

generalizable for other algorithms. Our preliminary results suggest that CropGAN similarly 

improves demons based registration. Preprocessing with CropGAN could also aid in other 

medical imaging neural network tasks, since it can help to standardize the data.   

 

One limitation of this technique is that it requires training data for each region one wishes to 

extend.  We focused this study on CT images in the head and neck since this region can include 

large non-rigid motion.  For other anatomical sites or imaging modalities, one would need a large 

dataset with similar scan extents to provide supervised training between an induced cropped 

image and its full image ground truth.  For example, cone beam CT deformable registration may 

benefit from our method due to its limited field of view relative to the simulation CT target.  

However, the network would need to be trained and verified on this different modality.  

Improvement may also be seen by better selecting the trained VGG net used for deriving the 

deep features in the loss function.  The network we used was trained for the unrelated task of 

classifying small 3D patches of CT and MR images by their scan site.  The features learned from 

this network may not be optimal for our task, which used full image volumes.  While having a 

VGG net trained on full images may lead to a better result, recent research has suggested that 

using deep features to assess image similarity can be surprisingly effective even when the 

network was trained for an unrelated task34.  An additional limitation is the inherent uncertainty 

in the contours used for this study’s analyses.  We used a previously developed in-house 

segmentation network to increase reproducibility13.  While this network demonstrated impressive 

dice scores, there is still an inherent amount of uncertainty.  Despite the abovementioned 

limitations, we have provided a foundation upon which other studies can extend our work.  The 
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code which was used for this manuscript can be found at 

https://github.com/emckenzi123/CropGAN . 

 

Conclusion 

 

Differences and inadequacy in scan extent is a difficult problem in medical image deformable 

registration.  We proposed a solution using a neural network to synthesize the missing portions 

of the scan.  These syntheses were able to successfully create realistic anatomy for the missing 

volume with details such as sinuses, orbits, skull, lungs, and heart.  It was also robust to the 

amount of cropping in the inferior and superior directions.  After filling the cropped volumes 

using CropGAN synthesis, the two images can then be deformably registered as though they had 

the same full scan length.  Using 95% Hausdorff distance on a selection of head and neck 

contours, we found that our registration workflow was able to match contours equally well to a 

registration with complete scans.  CropGAN performance for DIR as a function of cropped tissue 

is robust up to until 20cm of the superior end of the head was missing.  By using CropGAN as a 

preprocessing step to deformable registration, we have provided an intuitive solution to the 

challenge of registration with different scan extents. 
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CHAPTER 4: Predictive Head and Neck Registration Using Self-

Attention with Positional Encoding 

 

Introduction 

 

Deformable image registration (DIR) is an unsolved problem in medical imaging.  Despite its 

importance in diagnoses and treatment, there are still many opportunities for improvement, 

especially in the presence of large motion.  The image processing capabilities of neural networks 

have shown great promise for medical imaging registration1–9.  Most of these network-based 

approaches use learned convolution filters, which is an inherently local approach.  This means 

that any distant information must pass through several layers of the network10.  In the application 

of DIR, this can limit the long-range propagation of information in determining the appropriate 

deformation.  To overcome this challenge, we propose the use of self-attention networks.  Self-

attention determines the response at a point in the image as a learned weighted sum of all the 

points in the image11.  For example, cues in the cervical spine position could inform the network 

about deformation at a point in the shoulders.  A self-attention network coordinates information 

from the entire image to determine its prediction.  This study leverages the strengths of self-

attention networks to predict fully 3D deformations of medical images. 

Image registration is of particular importance in the medical field of radiation oncology.  Spatial 

correspondences between images need to be established to track disease progression, combine 

complimentary imaging modalities to better visualize anatomical structures, and to setup patients 

in reproducible positions12.  Additionally, due to the fractionated nature of radiation oncology 

treatments, the patient’s anatomy may change over the course of treatment, necessitating an 
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adaptive approach.  Adaptive radiation therapy uses deformable registration to propagate 

contours and accumulate dose across a potentially changing anatomy.  All these medical 

applications require a high degree of accuracy to safely guide the patient’s treatment.  Consensus 

guidelines state that registered contours should agree within 2-3 mm13.  However, recent 

investigations have shown that our current commercial DIR algorithms fall short of this goal, 

especially in the presence of large deformation14. 

Another application of DIR is the alignment of images from different patients, or inter-patient 

registration.  This is used in important applications such as combining data to study patterns of 

recurrence and metastases, where one needs to register many patients to a common template15–17.  

An additional application of inter-patient registration is atlas-based segmentation18,19.  The 

contours from an atlas must be deformed to the target patient’s anatomy to be correctly mapped.  

Both intra-patient (registration of images from the same patient) and inter-patient registration 

play important roles in the treatment and study of radiation therapy. 

Current clinical DIR uses iterative techniques, requiring several optimization steps before an 

acceptable solution is obtained20.  The full optimization can take minutes.  Additionally, these 

traditional methods rely on hand crafted metrics and regularizations to drive the optimization.  

Machine learning research has shown impressive results in image processing tasks21,22.  These 

capabilities have recently been applied to image registration9.  A moving and target image are 

input into a network, and the network is trained to predict a deformation vector field (DVF) to 

deform the moving image to match the target4.  To the best of our knowledge, all current neural 

network medical DIR approaches use convolutional neural networks (CNN’s) in their 

backbone23.  This is the most popular neural network architecture for image processing.  It relies 

on non-linearly combining learned abstract filters to represent complex functions.  This is a 
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powerful technique, but an inherently local one.  Attention networks were originally developed 

for natural language processing10, but recent advances in image segmentation have shown that 

self-attention networks model long range dependencies in images well11.  This improves 

segmentation because the network can look for context throughout the image to determine the 

boundaries, shapes, and occlusions of an object.  Recently, a model was developed which use 

attention to augment CNN-based DIR24.  The input was first passed through several convolution 

layers, then passed through a self-attention stage before continuing as a fully convolutional 

network.  As of writing, the only purely self-attention-based DIR model uses the moving image 

as input to an encoder and the target image to a decoder, in a fashion similar to transformer 

language translation models25.  This pioneering work was only able to predict on small 2D 

MNIST images due to the computational complexity of self-attention.  We propose leveraging 

computationally efficient axial attention to build the first fully self-attentional DIR for 3D 

images. We predict that strength of long-distance data connections will prove advantageous in 

DIR. 

Unlike CNN’s, attention networks do not learn a static filter.  Instead, they aggregate information 

from the entire input and produce weights that dynamically change with the input.  These 

weights are determined from learned keys, queries, and values.  More specifically, given an input 

image 𝑥 ∈  ℝℎ×𝑤×𝑑𝑖𝑛, with height h, width w, and din channels, the output yo at position o is 

computed by: 

𝑦𝑜 =  ∑ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑝(𝑞𝑜
𝑇𝑘𝑝)𝑣𝑝

𝑝∈𝑁

 

Where the queries 𝑞𝑜 = 𝑊𝑄𝑥𝑜, keys 𝑘𝑜 = 𝑊𝐾𝑥𝑜, and values 𝑣𝑝 = 𝑊𝑉𝑥𝑜 are functions of 

learnable weights applied to the input, and N is the entire image lattice.  This formulation, while 

powerful is computationally expensive.  It can become prohibitively so with larger images, 
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especially 3D image volumes (𝒪(ℎ2𝑤2𝑑2)).  This has forced previous research with large 

images to apply self-attention only on down sampled feature maps or smaller images24.  All 

previous applications of attention to medical DIR have used it only as an augmentation to a CNN 

backbone at deeper layers24.  A recent study overcame the issue of computation cost by 

introducing axial attention26.  Axial attention breaks down an image into its 1D components (e.g., 

rows and columns) and computes the attention along each.  By sequentially computing and 

combining 1D components, a given point in the output can be sparsely connected to the entire 

input.  This reduces the complexity to 𝒪(ℎ𝑤𝑑𝑚) for 3D images with a feature map span m.  

Wang et al took axial attention and added relative position sensitive attention11.  This allows for 

the keys, queries, and values to learn context-dependent relative position encoding to further 

guide the attention.  In our present work, we build upon this position sensitive axial self-attention 

model and extend it from a 2D segmentation model to a 3D model which can predict 

deformation vector fields given a pair of images.  By leveraging self-attention’s ability to model 

long-range dependencies, we demonstrate a DIR network that densely incorporates cues from the 

entire 3D volume. 

Long range dependencies can be especially important in the context of large motion.  The setting 

of DIR in the head and neck is an example where large motion exists (e.g. neck flexion), and 

could benefit from our self-attention approach.  We train a network to deformably register both 

inter- and intra- patient pairs of head and neck CT’s as a proof of concept for a fully attentional 

DIR model, and compare our results to both CNN-based DIR models, as well as the more 

traditional B-spline registration approach. 

Methods 

 

Dataset 
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Head and Neck CT images were acquired from The Cancer Imaging Archive (TCIA) dataset27.  

We had a total of 409 training, 53 validation, and 44 inter-patent testing images.  Additionally, 

14 intra-patient testing images were collected from our institution.  These consisted of 7 CT 

scans for radiotherapy simulation and 7 patient-matched CT scans for PET attenuation 

correction.  Scan extent went from the top of skull to approximately the carina.  Scanning beds 

and immobilization equipment were masked out of the images.  For input into the network, all 

images were rigidly registered to a template image and downsized to 128x128x128 with 4mm 

isotropic voxels.  Image intensity value were clipped to a range of [-1024, 3000], then 

normalized to [-1, +1].  For segmentation matching in the loss function, volumes were 

automatically segmented using a neural network approach28,29.  This resulted in 17 contours per 

patient.   

Network Design 

 

The network was constructed to take in a pair of 3D images (source and target) and output a 

predicted DVF, along with the deformed source volume.  Each input volume underwent two 

layers of convolution prior to concatenation and max pooling, resulting in a tensor with 64 

features and a size of 32x32x32 voxels.  The overall architecture was U-shaped, with an 

encoding and decoding side.  The sides of the U were connected via skip connections with 

concatenation and convolutions of kernel size 1.  The number of features going down the 

encoder branch were 256, 512, 1024, 2048 for each level respectively.  The decoder branch 

reversed these feature numbers.  Each level of the U-net was constructed using a self-attention 

block with positional encoding.  Each self-attention block was constructed using a residual 

approach, where the block was divided into an attention branch and an identity branch which 

were added together and followed by a non-linearity.  Each attention branch consisted of a 1x1x1 
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kernel down-sampling 3D convolution, axial attention sequentially calculated in the sagittal, 

coronal, and axial anatomical planes, then an up-sampling 1x1x1 kernel 3D convolution.   

The axial attention was accomplished by reshaping the input into a 1D tensor along the selected 

dimension.  For example, for a given tensor with shape [batch size, features, height, width, 

depth], the 1D transformed axial depth tensor would have a shape [batch size x height x width, 

features, depth].  The analogous operations were performed for the height and width.  This 

enables us to factorize the 3D space into sequential operations along the height, width, and depth 

of the imaging volume.  This computationally efficient approach allows us to have a global 

receptive field for attention. 

After transformation to 1D, learnable weights are multiplied by the input, and yield learned keys, 

queries, values, and positional encoding.  The keys, queries, values, and position encoding are 

thus linear projections of the input.  To compute the attention block output at a given location, 

that output location’s query tensor is multiplied by the key tensors for every point in the input.  

This product gives a high value when a query is more parallel with a given key, which signals 

that the input at the key’s location is important to the output location, and thus should be “paid 

attention to.”  Additionally, importance of an input point is further weighted by its learned 

positional encoding.  That is to say, not only does the value at a given point determine its 

importance, but also its relative position.  Position encoding is learned for each of the keys, 

queries, and values.  Therefore, not only is the relative positional importance of the different 

input points learned, but the input point’s key can additionally indicate important locations.  

With a large receptive field, the output at a given output location can be unaware of the region 

from which an input’s value tensor came.  Therefore, the value is also given a learned positional 

encoding.  Formally: 
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𝑦𝑜 =  ∑ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑝(𝑞𝑜
𝑇𝑘𝑝 + 𝑞𝑜

𝑇𝑟𝑝−𝑜
𝑞

+ 𝑘𝑝
𝑇𝑟𝑝−𝑜

𝑘 )(𝑣𝑝 +  𝑟𝑝−𝑜
𝑣 )

𝑝∈𝒩1𝑥𝑚(𝑜)

 

where m is the span of the entire input at that layer, and 𝑟𝑝−𝑜
𝑞

 , 𝑟𝑝−𝑜
𝑘 , and 𝑟𝑝−𝑜

𝑣  are the relative 

learned positional encodings for the queries, keys, and values, respectively.  Note that the 

subscript is 𝑝 − 𝑜 for the positional encodings, indicating that these positions are relative 

relationships between the input and output locations.  The final result is a map of attention that 

looks to the entire input for guidance, incorporating information about all of the input values and 

their positions. For each attention block we linearly project the input into keys, queries, values, 

and positional encoding 8 times and compute the attention in parallel along each projection.  This 

multi-head attention10 formulism allows our network to jointly attend to multiple representations 

of the inputs and learn to perform different tasks.  The above formulation was first proposed by 

Wang et al11, and we have adapted it for 3D inputs and outputs in DIR. 

After proceeding through the U-net, the output is up-sampled back to size 128x128x128, with 

128 features.  A convolution with kernel size 1 reduces the channels to 3 to yield a final 

deformation vector field, where a vector of length 3 is defined at every 3D point.  This DVF can 

then be applied to the input moving volume to give a final deformed image to match the target.  

We use the spatial transformer from Balakrishnan et al4 to efficiently and differentiably deform 

images. 

Our network, named Amorwarp, is shown in Figure 1.  After convolutions we used instance 

normalization and a leaky relu activation.  We used an optimizer with stochastic gradient 

descent, 10 warm-up epochs30, and an intial learning rate of 0.0257 with cosine learning rate 

schedule. 
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Figure 1 Network Design of Proposed Model (Amorwarp). The moving and target image each undergo two layers of 

convolutional encoding prior to concatenation and input into the U-net.  The U-net is built on a self-attention backbone, with each 

attention block consisting of a residual design and axial attention applied sequentially in the sagittal, coronal, and axial planes.  

The U-net possesses skip-connections, and the final DVF prediction is obtained through an upsampling with trilinear 

interpolation and a final 1x1x1 convolution to transform the features into a 3-term vector (x,y,z).  In this figure, the number of 

features is numbered inside the boxes, while the scale relative to the input size is shown outside each box. 

Our loss function consisted of a mean square error fidelity term between the deformed and target 

image, a bending energy term on the DVF to promote smooth deformations, an average dice loss 

term between the deformed and target contours to encourage anatomical alignment, and a deep 

feature VGG loss term to improve detail matching between deformed and target images.  The 

deep feature loss term was constructed to weight more dissimilar portions of the image more31,32. 

Analysis 

The novelty of our proposed method lies in its self-attention backbone.  Therefore, to evaluate 

our network’s performance, we trained a convolution-based U-net to accept the same moving 

and target image pairs and predict a DVF4. This network is labeled “Voxelmorph” in our results.  

Since our network was trained using a Dice loss for contour matching, we also trained a U-net 
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with the same Dice loss for comparison.  This network is labeled “Voxelmorph (Dice)” in our 

results.  We additionally used an established non-neural network approach based on B-splines for 

comparison33,34.  These B-spline based results are labeled “Elastix”.  The registrations were 

compared using 95% Hausdorff distance on a set of 17 pre-calculated automatic head and neck 

contours.  The overall mean contour match was compared across methods, as well as a function 

of pre-registration contour match, which was used as a surrogate for registration difficulty.  

These analyses were computed for both inter-patient and intra-patient registrations.  In addition 

to contours, we also manually selected landmarks for the intra-patient dataset.  For each 

registration method, the target registration error (TRE) was calculated between the deformed and 

target landmarks. Qualitatively, we also investigated deformed moving image visualizations as 

well as deformation vector field visualizations. 

Results 

 
The network was trained using a Nvidia Quadro RTX 8000.  The moving and target images were 

randomly sampled from the 409-volume training dataset for a total of 167,281 possible pairs.  

409 samples were run per epoch, for a total of 280 epochs.  Once trained, inference took 0.6 

seconds per registration.  During evaluation, the network was tested on 22 pairs of inter-patient 

registrations, and an additional 7 pairs of intra-patient registration.   

Qualitatively, the learned model was able to predict DVF’s that led to well-matched deformed 

moving images (see Figure 2).  Difficult deformations, such as closing and opening the mouth 

were achieved without gross distortion of the surrounding anatomy.  Upon inspection of the 

DVF, we see that the network was able to learn discontinuities around the motion of connected 

components, demonstrating the model’s ability to learn to associate disparate parts of the image.   
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For comparison to an iteration-based traditional registration approach, we also registered the test 

set using Elastix.  An example deformation using the same volumes is shown in Figure 3.  Of 

note, the algorithm struggled with the mouth.  This is due to the inherent regularization in B-

spline registrations, which ensures smoothness across the DVF.  This smoothness is readily seen 

in the DVF overlay of Figure 3.  For a comparison with another neural network approach, Figure 

4 shows the same registration pair but with a convolutional neural network model2.  This 

approach also shows a smoother DVF, yet the deformed image matches the target much better 

than with Elastix.  While the deformed image using a CNN approach is very similar to our 

proposed approach, we notice lingering issues with the buccal cavity, as well as the fact that the 

CNN network compressed tissue superiorly to match the inferior image’s edge.  
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Figure 2 Example Deformation using AmorWarp.  The top row is the moving image, the second row is the target image.  The 

third row shows the predicted DVF overlaid on the moving image.  The fourth row shows the resulting deformation. 
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Figure 3 Example Deformation using Elastix.  The moving and target image are the same as in Figure 2.  Here the B-spline 

approach struggles with the open and closed mouth.  The DVF (third row) is notably smoother than in a network-based approach. 
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Figure 4 Example Deformation using Voxelmorph.  The moving and target image are the same as in Figure 2.  This CNN 

based registration shows a smoother DVF (third row), yet there is close agreement between deformed (fourth row) and target 

(second row) images.  Relative to our approach, the mouth displays some residual mismatch, and the inferior portion of the image 

has been compressed up into the body. 
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Intra-patient registrations are visualized similarly in Figure 5, Figure 6, and Figure 7, for our 

proposed method, Voxelmorph, and Elastix, respectively.  Qualitatively, the Elastix registration 

appears to have maintained many of the features of the pre-registered source image instead of 

deforming to the target.  Our method and Voxelmorph show similar registration results, however 

our method again ejects cropped voxels out of the image, while Voxelmorph attempts to squish 

the inferior voxels superiorly to match the scan edge.   
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Figure 5 Example Intra-patient Deformation using AmorWarp.  The top row is the moving image, the second row is the 

target image.  The third row shows the predicted DVF overlaid on the moving image.  The fourth row shows the resulting 

deformation. 
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Figure 6 Example Intra-patient Deformation using Voxelmorph.  The moving and target image are the same as in Figure 5.  

This CNN based registration again shows a smoother DVF (third row), yet there is close agreement between deformed (fourth 

row) and target (second row) images.  Relative to our approach, the nose displays unnatural distortion, and the inferior portion of 

the image has again been compressed up into the body. 
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Figure 7 Example Intra-patient Deformation using Elastix.  The moving and target image are the same as in Figure 5.  Here 

the B-spline approach gives a final image (fourth row) that is more similar to the pre-moved image than the target.  The DVF 

(third row) is again notably smoother than in a network-based approach. 

Figure 8 takes the same example registration displayed in figures 5, 6, and 7 and shows the final 

deformed locations of a selection of landmarks.  The top left of the figure shows the landmarks 
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placed on the source image.  The other panels show the landmarks deformed with different DIR 

algorithms and overlaid on the same target image.  One can readily see that the tip of the nose 

(blue circle) is correctly placed with our method (top right panel), and yet is incorrectly placed 

for the other methods. Also, a location within the cavity of the mouth (green circle) is correctly 

kept within the mouth with our method.  Voxelmorph pushed the buccal cavity point superiorly 

into the maxilla, while Elastix pushed it superiorly into the nasal sinuses.  The upper teeth 

(yellow circle) were close to the target location for our method, while Voxelmorph and Elastix 

pushed them into the nose.  Additionally, the inferior points (teal circle, yellow x) were correctly 

placed for our method and Elastix, yet Voxelmorph pushed them superiorly as it struggled to 

press the inferior tissue cranially to handle the shorter scan length. 



 90 

 
Figure 8 Intra-patient Landmark Registration Example.  The top left panel shows a selection of anatomical points on the 

source image.  The other panels show the target image with the same points deformed according to Amorwarp (top right), 

Voxelmorph (bottom left), and Elastix (bottom right).  The nose, teeth, and buccal cavity show large misplacement in 

Voxelmorph and Elastix, while our method shows close alignment. 

Quantitatively, we compared the results using automatically segmented contours.  The moving 

volumes’ contours were transformed using the same predicted DVF and nearest neighbor 

interpolation.  The 95% Hausdorff distance was computed between the moving and target 

contours both before and after registration.  The pre-registration results serve as a surrogate for 

difficulty of the registration. 
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Figure 9  Average Contour Matching Error for Inter-patient Registration.  All post-registration methods significantly 

improved contour matching.  Our proposed method (AmorWarp) was not significantly different from the other DIR methods. 

 
Figure 9 displays the overall average of the 17 contours and 22 inter-patient registration pairs.  A 

two-way ANOVA with Tukey multiple comparison analysis showed that while all DIR 

algorithms were significantly different from the pre-registration results, among the different DIR 

methods only Elastix and Voxelmorph were significantly different (p<0.0001).  We further 

analyzed the results using intra-patient registration pairs (Figure 10).  The algorithm with the 

most DVF regularization (Elastix) gave the lowest error.  This was followed by our proposed 
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model.  Intra-patient registrations require less radical deformations than between different 

patients, and the organ sizes should stay relatively the same.  This shows that our method was 

able to maintain consistency in organs when the patient moved to different positions.  When we 

look at contour error as a function of pre-registration error, this relationship becomes more 

salient (Figure 11).  Our method performs better relative to a CNN registration approach for 

large intra-patient deformations.  However, when comparing the slopes from a simple linear 

regression using a two-tailed t-test, we did not find a significant difference amongst all 

algorithms investigated (p=0.27).  Similarly, we analyzed the post-registration error as a function 

of pre-registration error for the inter-patient test registrations (Figure 12).  Here the trend of our 

method follows closely to the CNN approach, however the slopes amongst all methods were 

again not significantly different (p=0.30). 
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Figure 10 Average Contour Matching Error for Intra-patient Registration.  All post-registration methods significantly 

improved contour matching.  With intra-patient registration, more regularized deformation benefits the registration. 
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Figure 11 Intra-patient Contour Error as a Function of Registration Difficulty.  The 95% Hausdorff distance is averaged 

across all contours in this plot.  The pre-registration 95% Hausdorff distance serves as a surrogate for registration difficulty.  

Elastix performs the best at the highest registration difficulty, followed by our proposed method.   
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Figure 12 Inter-patient Contour Error as a Function of Registration Difficulty.  The pre-registration 95% Hausdorff distance 

serves as a surrogate for registration difficulty.  The neural network methods perform similarly at low difficulty.  At higher 

difficulty, AmorWarp and Voxelmorph show the lowest error, with Elastix and Voxelmorph trained with Dice showing the 

highest. 

 

Another interesting result is that Voxelmorph with added Dice loss performed worse than 

Voxelmorph trained without contour guidance.  In our experiments in developing AmorWarp, 

we found that the addition of contour guidance added only a modest quantitative improvement, 

yet visually, regions such as the mandible underwent less unrealistic distortion.   

In addition to contour metrics, we also analyzed the Target Registration Error (TRE) of a 

selection of well-visualized landmarks, notably the tip of the nose, center of top teeth, mental 

protuberance (chin), and epiglottis.  We discovered that our proposed model performs the best on 

average, though it was not significantly different from Voxelmorph (p=0.34).   
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Figure 13 Intra-patient Target Registration Error for a selection of landmarks.  Our proposed method (Amorwarp, Blue) 

demonstrates competitively lower error than the other methods in the nose and front upper teeth.  Our method shows similar 

results to Voxelmorph in the chin and epiglottis.  Elastix shows higher error than pre-registration TRE. 

 

 

Table 1 Average Intra-patient Target Registration Error averaged across landmarks 

Registration Mean Std. Deviation 

AmorWarp 3.4 1.6 

Voxelmorph 4.0 1.3 

Voxelmorph 

(Dice) 5.4 2.0 

Elastix 9.8 2.8 

Pre-Registration 7.7 1.6 

 

When plotting the TRE as a function of pre-registration TRE, our proposed method showed the 

lowest error, especially for more difficult registrations (Figure 14).  This matches what was 

observed qualitatively in Figure 8.  
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Figure 14 TRE as a Function of Registration Difficulty.  Our proposed method (AmorWarp) displays the strongest resilience 

to registration difficulty.   

Discussion 

 
Our novel 3D DIR model relies on a self-attention backbone to compute the DVF as a 

representation of the relationship between two inputs.  Self-attention in the form of transformers 

have already proven themselves capable in natural language processing to take an input text and 

output a summary or translation.  In our study the combined inputs are “translated” into a 

deformation vector field, where the DVF is simply another representation of the inputs.  This 

contrasts with the conventional perspective of translating the moving image into a target image.  

The major advantage of self-attention is its ability to model long range dependencies in the input.  

Since our input is the combination of moving and target images, understanding long range 

relationships within this amalgamation is crucial for appropriate deformation prediction.   
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Recent work shows that convolution can be dispensed with altogether in favor of a solely 

attentional approach10.  There are many advantages of attention over convolution.  In addition to 

the previously mentioned long-range dependency learning, attention also provides a unique way 

to aggregate information from the input.  Instead of learning a series of static filters, attention 

dynamically computes filters based on what it sees in the input.  This is due to its elegant system 

of keys and queries.  This system is extended to an additional spatial advantage.  Whereas 

convolution kernels spatially represent relationships through relative value placement in their 

kernels and layer down-sampling, attention with positional encoding learns dynamic 

representations of relative positional encoding across the entire input and output.  This allows for 

an enormous amount of flexibility for the network to learn spatial relationships.   

Our model harnesses these attention advantages for volumetric DIR.  While we modeled 

our architecture off the well-studied U-net as used in 4, we suspect that there is large room for 

improvement as other network architectures are explored.  On the encoder side of our U-net, 

attention queries come from the output of the previous encoding layer.  When going “up” the U-

net, queries come from an up-sampling of the previous decoder layer concatenated with the 

output of the resolution-matched encoder layer.  Recall that each position in the output can attend 

to all positions in the input layer, thus learning the full context of the abstract representation of 

the input at different sampling resolutions.  This allows an enormous amount of encoded 

information to inform each point in the output. 

Previous implementations of self-attention noted that pixel-level detail processing was 

inferior relative to CNN’s25,35.  During the development of our model, we also noticed this 

behavior.  To improve detail matching, we added a deep feature loss based on matching encoded 

pre-trained VGG layers between target and deformed image.  Addition of a deep layer loss 
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improved the mean square error between target and deformed image by 46% (0.003023 to 

0.001623 at convergence).  We suspect that introduction of a loss based on convolutional kernel 

features donates some of the advantages of a CNN to our attention network.   

We also experimented with a semi-supervised contour loss using the Dice metric.  The 

contours were not fed into the network but were used in the loss to guide training.  We trained 

our model with and without Dice loss and noticed a negligible difference in the mean square 

error, and indeed in the dice contour matching values themselves (0.45 vs 0.43, for training with 

and without dice loss, respectively).  However, upon qualitative inspection of the results, the 

network trained with dice led to more anatomically realistic results.  This suggests that a 

different contour matching loss may help to drive the network better than the familiar and 

convenient dice term. 

Our experiments suggest that our self-attention model produces results in line with 

previous DIR methodologies.  When registering two different subjects, a DIR algorithm had to 

predict large deformations in structures that normally would not change (e.g., the skull, overall 

habitus).  This necessity went beyond the regularization in B-spline based registration, and it was 

often unable to deform the moving image to the target.  The CNN approach was able to best 

handle these distortions from a contour matching perspective.  Our proposed method closely 

corresponds to the contour matching of the CNN approach.   

When deforming subjects to themselves at a different time point, the requirements of 

deformation slightly change.  Many aspects of the anatomy remain static, although large 

articulations can still be present.  This time, the more regularized B-spline algorithm best 

matched the investigated contours.  It can move large chunks of the image while maintaining 
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local anatomy’s relative positions.  Our proposed method closely matched the results of the B-

spline registration for these intra-patient results. 

Inter- and intra- patient registration serve different purposes.  For example, inter-patient 

registration can help create atlas-based contours or align images of different subjects for a 

research study.  This type of registration requires the freedom to make large deformations 

throughout the anatomy without excessive distortion.  However, for most medical applications, 

intra-patient registration is used to combine information for a single patient’s treatment.  This 

type of registration requires the ability to predict motion along anatomical constraints.  It can still 

contain large motion, but many aspects of the anatomy remain unchanged.  These two types of 

registration have somewhat conflicting goals, and it is challenging to find an algorithm that 

meets them all.  In this study, we observed that our proposed model was able to match the best 

performing algorithm in both scenarios.  It could well match anatomy that was both realistically 

and unrealistically distorted.  This behavior may be related to its ability to learn matching points 

at large distances in its input, which is a unique feature to attention-based networks.   

While our network exhibited strong results in inter- and intra- patient DIR, we recognize 

that this is an early implementation of a promising technique.  Many design choices of this 

network could be further optimized for better results.  Our proposed method was compared to 

more established techniques which have been extensively optimized.  We hope that with further 

research into attention-based DIR, the exciting advantages of this technique can lead to a new 

paradigm in medical 3D deformable image registration. 

 

Conclusion 
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 A novel self-attention based deformable image registration model was developed for 3D 

medical imaging.  We leveraged axial factorization to overcome the computational complexity of 

attention networks and allow us to apply them to fully 3D input.  This work opens the door for 

further applications of attention techniques in medical DIR.   
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