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SUMS OF DIRECT CHANNEL REGGE roLE CONTRIBUTIONS 

* Al'ID CROSSING SYMMETRY 

by 

N. N. Khuri+ 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

and 

Rockefeller University, New York, N. Y. 

August 12, 1968 

ABSTRACT 

Starting with a sequence of parallel rising trajectories in the 

s-channel, we give examples of residue functions for which the Regge-Mandel-

stam pole contributions can be explicitly summed. The sum has Regge 

behavior in the s-channel as well as the t-channel, and satisfies fixed 

t-dispersion relations and finite energy sum rules. The residue functions 

we start with do satisfy the usual analyticity properties and threshold 

properties, have the Mandelstam symmetry factor, and the expected exponen-

tial behavior for large lsi.' These results are achieved without 

fixing either the slope or the intercept of the leading trajectory and 

without specifying 1m a in detail in the low and intermediate energy 

region. We use these examples to clarify some of the problems related 

to the use of finite energy sum rules both as phenomenological relations 

and as dynamical equations. The way a finite but large number of s-channel 

resonances can be summed up to give Regge behavior in s is explicitly 

demonstrated. We also indicate how the observation of Schmid on the 

t Permanent Address: Rockefeller University, New York, N. Y. 10021 
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relation of the p':'exchange contribution 'in pion-nucleon charge excha,p.ge 

scattering to direct channel resonances can be understood in terms of 

a direct cfl.B.nnel Reggc-l.landclstam analysis. Finally, we point out a 

general method for generating more examples of other residue functions 

with the de sired prOI,erties. I ... 
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I. INTRODUCTION 

Finite energy sum rulesl give a potentially useful relation 

between Regge residues in the crossed channel and the parameters of 

low and intermediate energy resonances in the direct channel. In a 

crossing symmetric problem the resonances also lie on Regge trajectories, 

and in that case the finite energy sum rules, in the resonance approxi-

mation, give a set of integral equations for the residue functions. 

Mandelstam2 proposed to use such a set of integral equations as the 

starting point of a dynamical bootstrap based on rising trajectories. 

There are several problems that arise in the use of finite 

energy sum rules both as kinematic restrictions on the relation between 

couplings in different channels, or as dynamical equations. It has 

been suggested that as dynamical equations they have no solution unless 

we have an infinite number of trajectories that arbitrarily approach 

each other as s ~ 00. 3 Another problem that comes up is the question 

of double counting. Namely, can a Regge term which behaves like 

sa(t) for large s be actually built up by summing Regge resonances 

in the s-channel? Or are the resonances and the Regge term independent 

to the extent that one could write the amplitude as a sum of s 
a(t) 

plus resonance terms in some domain? With rising trajectories the 

answer to this question has not been clear. Schmid4 has made a very 

interesting observation in this connection. He considered the pion­

nucleon charge exchange amplitude which for s larger than 2(BeV)2 

is approximated by p-exchange. He made a partial wave projection of 

the simple p-exchange term in the s-channel and plotted tbe resulting 
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partial wave amplitudes in an Argand diagram. The plots described 

circles and Schmid identified the tops of these circles with resonances 

in the (np) channel. In a plot of £ versus resonance energy, • 

Schmid obtained straight lines which approximated the known 

trajectories. 
\.I 

In this paper we construct explicit examples which clarify 

some of the questions mentioned above. We start by showing how one 

can directly sum an infinite number of Regge terms in the s-channel 

in such a way as to get a function that behaves like s 
cx(t) 

for 

large s. The set of trajectories we sum over are parallel and they 

have finite spacing even as s ~ 00. We perform this sum under the 

restriction that first our residue functions satisfy the usual 

analyticity, reality, threshold properties, and vanish at the 

Mandelstam symmetry points. Furthermore, we insist that the sum have 

the correct analyticity properties in s so that the functions we 

get automatically satisfy finite energy sum rules and dispersion 

relations in s. 

In a crossing symmetric case we find that we can get the same 

leading trajectory in the sand t channels without any restriction 

on the slope of the rising trajectory. Furthermore, we find a finite 

region in t in which the residue function of one channel is numerically 

equal to the value that one would have obtained if he had used the 

expression for the residue of the direct channel. Since, our sums 

satisfy finite energy sum rules, then in that region of t in which 
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we have approximate crossing symmetry in ~,we achieve a solution 

of the finite energy sum rule dynamical equations. 

The method in which we carry out the summation is fairly 

general. It is easy to see how many more examples can be constructed 

in addition to the ones we study in detail. This leads one to the 

conclusion that, far from having no solutions, the finite energy sum 

rules considered as dynamical equations have many solutions and are 

not a very restrictive starting point for a dynamical calculation. 

Without a serious inclusion of unitarity and other conditions such a 

dynamical scheme has little information in it. 

Although we sum over an infinite number of Regge trajectories, 

below any finite energy s, we have only a finite number of resonances. 

In fact, the resonances broaden out and disappear in our model beyond 

a certain energy, s > if-. The examples we have provide a very cx 

instructive ansatz to study the use of the narrow resonance approxima-

tion in the finite energy sum rules. We also explicitly show how in a 

certain high energy region both resonances and Regge behavior can 

coexist with each other. Namely, the same function can be written in 

two equivalent ways, either as a sum of N resonances where N is 

proportional to s, or as a Breit-Wigner term times a factor 

( )cx(t) 
sN . 

In SectionII it is shown how one can sum an infinite number 

of Mandelstam-Regge terms to get the desired properties mentioned 

above. In Section III we discuss crossing-symmetry for the residues 

and the trajectories of both channels. We show how this gives us a 
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bootstrap scheme essentially equivalent to that of the finite energy 

sum rule. A solution of this bootstrap is given for a certain range 

of t values. We use our example in Sections IV·. to study the 

resonance approximation used in the application of the finite energy 

sum rules. We also show how both Regge behavior and resonance 

behavior can coexist at some large energies. We close this section 

by making a few remarks about imposing unitarity bounds in our model. 

In Section V we discuss the problem of including signature 

factors in both each terms of the summation and in the result of the 

summation. The results of Schmid on charge exchange scattering are 

also discussed, and it is shown explicitly how the p-exchange term 

can be built up of s-channeland u-channel resonances. Finally, in 

Section VI the general nature of the summation procedure used in this 

paper is discussed and it is shown how more examples could be made up. 

• 

u 
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II. SUMMING DIRECT CHANNEL REGGE CONTRIBUTIONS 

In t~is section we sum a sequence of direct channel Regge pole 

contributions to construct a class of functions, F(s,t), with the follow-

ing properties: Each fUnction has Regge asymptotic behavior in both s 

and t. Each function is analytic in the cut s-plane and satisfies a 

dispersion relation for fixed t. Since the functions are built up by 

summing s-channel Regge pole terms, they have s-channel resonances at 

low and intermediate energies. The functions satisfy finite energy sum 

rules and give us an ideal tool for studying some of the problems related 

to the sum rules mentioned in the introduction. 

We start by considering an infinite set of parallel Regge trajectories, 

a (s), given by 
n 

a (s) n n 0,1,2, • •• • (1 ) 

We take the leading trajectory, aO(s), to be essentially a linear tra­

jectory satisfying the following dispersion relation. 5 

with 

and 

as + b + ~ f 
4 

1m a(s:' ) 
s'(s'-s) 

1m a(s') !?: 0, 

a > 0. 

ds' , (2 ) 

(4) 

These last two conditions insure that ao(s) is a Herglotz function; 

b is real. We shall later need to impose the condition that for large 
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s, 1m o:(s) /'V (log s) as s ~ 00. However, we can do this without 

changing the approximate relation O:O(s) ~ as + b at low energies by 

choosing 1m 0:0 small at low energies. The asymptotic behavior of o:(s) 

will of course remain linear as Isl~ 00, 

2 o( tn s). (5 ) 

Explicit examples of 1m 0:
0 

will be given later. 

The residue functions, ~ (s), will be chosen so that they satisfy 
n 

the correct analyticity and threshold properties. They will also turn 

out to automatically have the Mandelstam symmetry factor. 

The first problem we face is what to use for a Regge pole contri-

bution. Clearly, we cannot start with a sum of the form 

~ ~n(s) P (-z)[20: +l][sin ~o: ]-1. For large enough 
0: n n 

n, 
1 

Re O:n < - 2" ' 
n n 
and the contributions of these trajectories will behave 

-0: -1 
like 

(z) n for large z. There are several ways to write a Regge contri-
0: 

n z bution in such a way that it will have the asymptotic behavior 

regardless of whether 1 
Re O:n < - 2" or The most natural 

and most convenient for our present purpose is the way proposed by 

6 Mandelstam. In the Mandelstam-Regge representation a pole contribution 

is proportional to Q-o: _l(-z), where Qv is a Legendre function of 
n 

the second kind. 

We define a function, F(s,t), by the following series, 

00 

F(s,t) =- \ 
~ 

~ (s)[20: (s)+l] Q () l(-z) n n -0: s-
n 

cos no:: (8) 
n 

(6) 

At this point we recall one property of the Mandelstam-Regge form which 

• 
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is crucial to our discussion. Namely, although we sum in (6) over an 

infinite number of Regge poles, below any finite energy s, we have 

only a finite number of resonances. For suppose Re aO(sN) = N, N 

an integer, and 1m a(sN) is small. Then only the first (N+l) terms 

in (6) give a resonance. The terms with n ~ N + 1 have no resonance 

poles. Using the identity, for the first N+l terms, 

Q-a -1 (z) Fa (z) Qa (z) 
n n n = --~--

~ cos ~ sin ~ ~ cos ~a ' n n n 

we see that at s ~ sN we have (N+l) resonances with angular momentum 

N, N-l, ••• , O. 

The series we have to sum is of the form, 

00 

F (s, t) = ~ y (s) Q 1 ( +z ) • n n-a -o n= 

We have collected all the extraneous factors in 

y (s) = 
n 

[2a (s) + 1] t3 (s) 
n n 

i~ao(s) 
e 

y , and:set 
n 

(8 ) 

To perform the sum in (7) it turns out to be convenient to use the following 

integral representation of the Q functions, 7 

Q (z) 
v " (f)"f 

o 
Re z > 1, Re v > -1. (10 ) 

We carry out our summation in the ~egion t < 0 and s < 4 where we 

can always find a domain such that 

z 

and 

2t 
1 + -4 > 1, s-

(11) 
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Later we shall analytically continue the final answer in s to all 

values of s in the cut plane. 

From (11) it follows that Re(n - cxO(s) - 1) > - ~ for 

n = 0,1,2, •••• Hence we can use the representation (10) and get 

F{s, t) 0 (~1 JOO e -yz y-!i H{s, y) dy. 

o 
The function H(s,y) is given by the series, 

(12 ) 

(13 ) 

This series is a special case of a Neumann series of Bessel functions. 

The simplest example of such a series is the expansion of an exponential 

in terms of Bessel functions, 
(J() 

yv e~ 0 2
v
p{v) :io: (v+n) Cnv{~) Iv+n{Y) , 

where CnV('Tl) G b 1· 1 . 'j are egen auer po ynom~a s ~n 

and choose y (s) as 
n 

We set 

1 1 

Yn(s) = [2-
CXo

-"2 r(-ao-~) (n-a
O

- ~) c
n

-CXo-"2(ll)] 

(14 ) 

1 
V = -cxO - "2 

f(s) • (15 ) 

The two functions f(s) and l1(s) will be specified below. This last 

e~uation however determines the dependence of the residues ~ (s) on 
. n 

n. With (15) we obtain 

(16) 

After substituting this result in (12) and carrying out the integration 

we get, 

'Tl(s))cxo(s) (J;(2":"')·~· F ( s, t) = f ( s) r ( -a
O 

) ( z - 'I 

to 

• 
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We note that the gamma function will have all the resonance poles on the 

second sheet in the s-plane. It is also relevant to remark that the 

result we have in (17) looks like a Regge type contribution of a simple 

Regge type pole coming from expanding an ~mplitude A(s,z) in power 

series of (z-11), Le., A =~av<s) (z_11)v. If aves) has a pole at 

v = aO(s) the contribution of that single pole in the v-plane to the 

Watson-Sommerfeld formula would be similar to (17). 

At this stage we introduce the following transformation defining 

a new function A(S), 

11(s) :. 1 + 2 2c 
rA(s)(s-4) - rs:4) , 

where r an& c are real constants and r > O. Written in terms of 

A(S), F(s,t) is given by 

ao (s ) -a
O 

it ! a
O F(s,t) = (-1) [~(S-4)A(S)J r(-ao)(~) f(s) [1 - r(t+c)A(S)J • 

(19) 

Both f(s) and A(S) are still to be specified. To simplify (19) we 

write, 

f(s) 
r aO (s-4 )A(S) J 
2 

(20) 

~, 

Finally we get, 

ao(s) 
F(s,t) = g(s) r(-ao(s)) [1 - r(t+c)A(S)J • (21) 

We want now to impose sufficient conditions on A(S) and g(s) to insure 

that F(s,t) will be analytic in the cut s-plane and will for large s 

have Regge asymptotic behavior. For large t the Regge behavior is 
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obvious in (21). 

The following conditions turn out to be sufficient; The function 

~(s) should have the representation, 

00 

A(S) =! J 
4 

cr(s') 
sr:s ds' , cr(s') ~ o. (22 ) 

In other words we choose A(S) to be an analytic function in the cut 

s-plane, and furthermore the positivity ofd{s' )_. guarantees that .. ~(s) 

is a Herglotz function.' The weight function cr (s ') is otherwise 

arbitrary except for its asymptotic behavior which we take such that 

~(s) > 
I s I ~oo 

log (4-s) 
(4-s ) 

+ o( 1
2

) • (23 ) 
s 

The two properties (22) and (23) are all we need for ~(s). From (22) 

we see that the bracket in (21) cannot vanish for any complex s and real 

t and therefore we have no complex branch points in s. Moreover, for 

values of t such that 

t 1 
< :r?.(4) , (24) 

the bracket in (21) will not vanish in the region -~ < s < 4. In this 

region ~(s) is real, positive, and decreases monotonically as s 

approaches - 00. Except for g(s) which is still to be specified, F(s,t) 

then is analytic in the cut s-plane with a right-hand cut only, for all 

real t satisfying the ine~uality (24). 

For fixed real s and for _00 < s < 4, F(s,t) is analytic 

in the cut t plane with a cut starting at t = [rA(s)]-l - c. If 

\{e take [rA(4) rl>c, then this branch point always occurs on the 

positive t-axis. For large values of (-s) this branch point moves out 

• 

1I 
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farther and farther on the positive t-axis. This unphysical nature of 

the analyticity in t of our sums is a demonstration of the fact pointed 

out by Mandelstam in Ref. 6. Namely, that one cannot completely ignore 

the background term in the Mandelstam-Regge representation even if the 

background integral is pushed back to a line Re t ~ - 00 • 

As for g (s), we "defirie it by a,ri ex~ression,; , 

Which, . exactly cancels the asymptotic behavior of r ( -a
O 

(s ) ) in 

any direction in the s-plane for which I arg (..;q) I .< 1(. We write 

g(s) = (25 ) 

We choose the phase of (ao) such that arg(-ao ) = 0 for s < 0 

and arg(-aO)~ -:rr as s~ +,~ above the cut and arg(-ao ) ~ +:rr 

below the cut. 

To simplify the discussion we limit ourselves at this stage to 

the case where there are no bound states or ghosts and take ao(4) < O. 

In that case ao(s) does not have any zeros on the physical sheet in 

the s-plane. This makes g(s) analytic in the cut s-plane with the 

cut running from s = 4 to s = 00. The branch point of log(-ao ) 

when a - 0 o - is on the second sheet of the s-plane. 

It is easy to verif'y now that with (23) and (25) the asymptotic 

behavior of F(s,t) is given by 

2 
F(s, t) = A (4 _ s )(art + arc) [1 + 0 ~t~ ~] , (26) 

€ < args < 2:rr - €. 

The product r(-ao(s)) g(s) approaches the constant A by construction 

and the Regge behavior of the bracket term in (21) follows from (23). 
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The asymptotic behavior along the cut needs more careful handling. However, 

if 1m a(s) grows as s --;> + 00 above the cut then we have the same 

answer as in (26). One only has to rewrite [g(s) r(-aO)] as 

g(s) 1( 

As s --;.. + 00, sin1(aO~ ~ exp[-i1(aO(s)], since the other exponential 

in the sine function is damped by a factor exp[-1(Imao (s)]. If Ima o 
1 grows asymptotically like(logs) then g(s) r(-ao)~ A(l + 0(8)). There-

fore with this condition on Ima, (26) holds in all directjons of the 

physical sheet of. the s-plane. 

The function F(s,t) has all the desired properties we are looking 

for. We are left with the task of checking whether the form we have picked 

for the residue functions also satisfies all the analyticity and threshold 

properties. On substituting (15) ihto (9) we obtain 
-a - 1 

C 0 2'(11 (s)) 
n . 

1 
1(2 

"2 

Here g is given by (25), and l1(s) is related to ;>..(s) by (18). The 

Gegenbauer polynomial is a polynomial of degree n in 1 1 
(2" - ~). As 

(s - 4) --..;> 0, c v (11 (s))"" (s - 4 rn and it is easy to check that near 
n 

threshold 

, 

which is the correct threshold behavior. 

(28) that the reduced residue functions 

(29) 

Furthermore, it is clear from 
ao(s) 

~n(s) / [(s-4)/2] are 

real analytic functions in s with only a right-hand cut. The factor 

• 
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r(ao(s) +~) gives zeros in ~ (s) at negative half integer values of 
n 

ao(s) as required by the Mandelstam symmetry. 

As expected the residue functions have exponential behavior for 

large s, however, the behavior is different from that suggested by 

8 
Teplitz and Jones. The leading trajectory has a residue function 

1 
'J!2 

"2 (30 ) 

For large positive s this grows like A exp[as log logs]. We shall 

see later that this does not lead to a contradiction with unitarity as 

long as 1m ao(s) starts to grow for large s. We also show in Sec. III 

how our example can be slightly modified so that the elastic widths of 

the resonances decrease with s. 

In closing we point out that many other examples can be generated 

from (21) by differentiation with respect to the parameter r. The function 

F is a function of s,t and the parameters rand c. For example we 

can define 

( -1) 
r a A.(s) 

From (21) this gives 

d 
dr [F(s, t; r, c)]. 

The asymptotic behavior is now given by 

(31) 
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The residue functions corresponding to F(l) are calculated by 

differentiating (28) with respect to r. Given any polynomial in t, 

pet), we can, by taking a linear combination of different F(n)(S,t; r,c) 

for different values of c, construct a function A(s,t) which has the 

asymptotic behavior 

The functions F(n)(S,t; r,c) are defined by 

(n) ( .) ( -1 
F s, t; r, c = raM s ) 

d n dr) F(s,t; c,r). 



, 
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III. CROSSING SYMMETRIC TRAJECrrORIES AND RESIDUES AND 

ALMOST EXACT SOLUTIONS TO THE F. E. S. R. 

The function F(s, t) given in (21) has Regge asymptotic 

behavior in both the s and the t-channels. In a crossing symmetric 

problem one would require that at least the leading s-channel and 

t-channel trajectories are the same. In our simple example this can 

be achieved by setting, 

r 1, 

and 

ac b. 

With this choice the asymptotic behavior of F is 

( ) ~ A(_s)at+b . F s, t 

As long as 1m aO(s) is small for low and intermediate values of s, 

we effectively have the same leading trajectory in both channels, 

The more difficult problem is to have the same residues in 

both channels. We want to compare the form of the residue of the 

t-channel Regge pole that we can infer from (37) with the form of the 

s-channel residue function. From (37) and the Regge asymptotic 

formula we get 

A sin n aO(t) rrl + aO(t)] 

n [2 aO(t) + lJ r[i + aO(t)J 
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This result is obtained by comparing (37) with the usual Regge asymptotic 

formula. Note that so far we are ignoring signature factors and working 

with a pure two channel problem. In the recent literature the gamma 

functions in (38) are usually absorbed into the definition of ~O. We 

prefer to exhibit them. Our ~nis the actual residue of the partial 

wave amplitude at .e = 0: (s). 
n 

The fact that the usual factor 

-1 
[sin n o:(t)] does not appear on the right-hand side of (37) makes 

~O(t) proportional to sin n O:O(t). However, since we are mainly 

interested in the region t < 0 this does not lead to serious problems. 

The function F(s, t) does not have t-channel resonances. 

To have the residues in both channels have the same mathematical 

form would require ~O(t) to be given by (30), 

~O(t) ]

0:
0 

(t) 

get) [(t ~ 4) ~(t) 1 
1 

Cn )2 
2 

An exact crossing symmetric bootstrap condition would require (38) 

(30' ) 

and (30') to be equal. Equating (30') and (38) we get the bootstrap 

condition 

A 
0: (t) 

get) [~(t)J 0 

It is immediately apparent that (39) cannot be satisfied for all t. 

For large t, r[-O:O(t)] get) ~A, but ~(t) ~log -tj-t. However, we 

can always seek numerical and approximate solutions of (39) for some 

, 



-17-

finite range of t. Only the asymptotic behavior of ~(t) has been 

specified so far and we can fix its value in a finite t domain to 

approximately satisfy (39). 

To give an example of a solution of (39) let us concentrate on 

the region t < O. More specifically let us look at the region in t 

for which aO(t) ~ -1, i.e. 

-t t < -1 - b o < . a (40) 

where to « ~ and ~ is the mass value at 

to 10g(4 t)/-t. In the domain given in (40) 

~(t) becomes asymptotic 

recalls the remarkable fact that rex) is extremely well approximated 

by the first two terms in the Stirling expansion, 

(41) 

The accuracy of this approximation is less than 1'0 even at x = 1. 

Substituting (41) in (39) and using the definition of g, (25) we get 

-ex (t) 
1~(t)J 0 -1 - b 

-to < t < a 

This gives the approximate numerical solution for ~(t), 

~(t) -t < t < -1 - b 
o a 

(42) 

One can arrange for the validity of (~3) to a very good accuracy without 

affecting the asymptotic behavior of ~(t) for It I >~. The 
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expression on the right-hand side of (43) is positive and decreases 

monotonically as (-t) increases. 

For t < 0, F(s, t) satisfies a finite energy sum rule. As 

long as t lies in the domain given in (40) we have also a "solution" 

to the finite energy sum rule, when it is considered as a dynamical 

equation for ~(t). The accuracy of this solution depends on how 

closely we match ~(t) to the right-hand side of (43). 

The approximate relation (43) still does not completely 

determine ~(t) for values of t > 4. Furthermore, the slope a, 

and the intercept b, of the leading trajectory are still not fixed 

as is the value of 1m 0:
0 

(s) a t low energies; Even though we have 

only imposed crossing at negative -values of t, we must conclude that 

the finite energy sum rules are not very restrictive as a starting 

point for a dynamical scheme. Without a serious introduction of 

uni tarity it is possible to write many functions which contain most 

of the crossing information in the finite energy sum rules. 

For t > 4, we can, of course, try to match both sides of (39) 

numerically. However, the physical meaning of such a matching would 

be obscure since the function F(s, t) does not have any t-channel 

resonances. 

, 
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IV. THE RESONANCE APffiOXIMATION TO THE FINITE 

ENERGY SUM RULES 

In this section we discuss some of the features of the class of 

examples constructed in Sec. II which clarify some of the problems related 

to the use of finite energy sum rules. At the end of the section we 

indicate how at least the simplest unitarity bounds are not violated by 

our examples. 

For large enough, ~, the function F(s,t) we have constructed 

satisfies the sum rule 

t 1m F(s', t) ds' ~ A sin""'O(t) 

4 

(44) 

We are considering only the region t < 0 and treating for simplicity 

the case aO(o) < O. 

There are two ~uestions related to the application of a sum rule 

like (44). First, what determines what we mean by "large enough 

Second, what happens when we replace 1m F on the left-hand side by a 

se~uence of resonance contributions. 

It is clear from the construction of our examples that we have 

two asymptotic regions intrinsic in the construction. One is the asymp-

totic region for lmaO(s) and the other is the asymptotic region for A.(s). 

~2 In other words there could be two independent scale factors 

which determine the asymptotic region for 1m aO and A.(s) 

We have large s~uared masses, M2 
a and ~2 such that 

M2 

1m aO(s) "'" log s + 0(+) s>M2 , a 
4 

A.( s ) "'" 
lo~ 4-s + o(~) > ~2 • -s , s 

s2 

M2 
a 

and 

respectively. 

(45 ) 
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For example we could think of a concrete ansatz for ImaO(s), to facili-

tate the discussion, and write 

€ [ . S-4)p] 
P tn _1 + (Ma 2 ' (46) 

As long as (s-4) < M 2 1m ao(s) 
a ' 

is small, and we have a set of narrow 

resonances whenever Re a(sN) = N and For 
2 

(s-4) >M , a 

1m ao(s) begins to grow like log s. The resonances become much broader 

than the spacing between them and effectively disappear. Thus the region 

s < M 2is the resonance region, while 
a 

s > M 2 is the no resonance re­
a 

gion. For large p in our ansatz the transitkn between these two regions 

occurs quite sharply and the end of the resonance region will be a well 

defined energy. HQwever, it is more likely that in the real world one 

moves more gradually from one regime to the other. 

Regge behavior begins where s is larger than both M 2 
a 

The sum rule (44) is exactly satisfied as long as 2 
sM > Ma 

and 

and 

In actual practice, however, one approximates the left-hand 

side of the sum rule by resonance contributions and usually the background 

is ignored. If M. 2 » M 2 
-f-.. a ' even though both are large, then the resonance 

approximation is very bad. For if we take 
2 

sM~ Ma then (44) is not 

valid because Regge behavior has not set in yet. On the other hand if 

222 
we set sM ~ ~ then in the region, Ma < s <~, we have no resonances 

and setting the integrand equal to zero in that region would be a disastrous 

approximation. 

The other possibility, M2>M. 2 
a ~ -f-.. ' is more interesting and does 

not lead to difficulties in the resonance approximation. In that case 

one must choose s ~ M 2 in (44). 
M a For values of s in the interval 

\.. 

, 
( 

1 
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~ 2 < s < M0;2 we have mixed resonance behavior and Regge behavior. For 

example, suppose Re O;O(sN) = N, where N is a' large integer, and 

M.. 2 < sN < M0;2. Th f . t _~ . en or s ~ sN we ~an wr~ e, 

F(s,t) 
g(SN) 

= rCl+N) 

g(sN) 

~ ar(l+N) 

, 

where EN = 1m O;O(sN) and is assumed to be small. The last bracket in 

(47) can be written in two ways. Either we can expand it in terms of 

N+l Legendre polynomials PN(z), PN_l(z), ••• , po(z); and recover the 

original resonances we started with. Or since sN is large enough for 

A(sN) to assume its asymptotic value we get 

(413 ) 

where N ~ aS
N 

+ b. At this stage we see how this class of functions 

provide an explicit counterexample to some of the assertions of Ref. 3. 9 

There is no difficulty in using the narrow resonance approximation in (44) 

as long as 2 
s ~ M • M 0; 

In summary we can say that for the resonance approximation to 

the finite energy sum rules to be valid it is necessary that first one 

knows at what energy Regge behavior sets in and that this energy be 

roughly the same as that at which resonance behavior begins to disappear. 

If in the real world resonances broaden out and disappear long before 

Regge behavior sets in then the resonance approximation is obviously 

useless. 
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We close this section by making a few remarks about unitarity. 

For 
2 

and 1\, F(s, t) satisfies the unitarity bounds for t < 0, 

provided the constant A is not large. For 
2 

s < M , 
0: 

we can also choose 

A such that at least near each resonance we do not violate unitarity. 

The constant A can always be chosen so that for all 

f3n (sN) (20:n (sN)+l) 

EN 
< 1 , (49) 

wrere Re O:O(sN) = N, and 1m O:O(sN) = EN· 

One feature of our functions f3 (s) is rather unphysical. In n 

the region 1\2 < s <M2 
0: ' 

f3 (s) grows like exp[s tn tn s]. This means n 

that the elastic widths of our resonances grow with energy in this region. 

To correct this deficiency without changing any of the essential features 

of the model we can replace the constant A in (25) by a function A(s) 

which tends to a constant as I s I ~ 00 and decreases for 

example take 

O:O(s) 

_ I (-lOg [M0:2 - (S-4)]) 
A(s) - A . A.(s). h(s) 

2 
s < M • For 

0: 

We take h(s) to be a Herglotz function defined by a representation 

similar to (22) but with asymptotic behavior h(s) ~ s, as I s I ~ 00. 

For large I s I , I s I »M 2 
ex ' 

the function A(s) approaches a constant. 

The function F will now have two new branch points at 

nothing else is changed. With a proper choice of h(s), the elastic 

widths will decrease in the region 1\2< s < M0:2. For s» M 2 
0: 

but 

Pn(S) will still grow lH:e exp[a s tn tn sJ as s ~ +00, but in this 

.. 
( 
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region the resonance picture is no longer applicable. 

, 



-24- UCRL-18397 

v. SIGNATURE AND THE CHARGE EXCHANGE AMPLITUDE 

So far we have been working with a purely two channel set of 

examples and ignor.IDg signatumfactors. There are two ~uestions regarding 

signature to consider. The first is to include signature factors in the 

terms of the original series (6). The second is to get signature factors 

out on the right-hand side in (26). 

As to the first problem we take the set a (s) to have alternating 
n 

10 
signature in analogy to the daughter se~uence. We set the signature 

factor T for each a to be 
n n 

The leading trajectory we have taken to be even, but obviously a similar 

summation could be done with an odd trajectory. Instead of the series 

(6), we have 

A(s,t) 

co 

1\ 
2 / 

h=o 

~ (s) (2a (s)+l) 
n n 

cos1tO: (s) 
n 

This reduces to a series, 

A(s,t) 

(_l)n Q-a -l(Z)] 
n 

(52 ) 

The Y n'! s here are the same as in (9). We carry out the summation in 

the same way and get 

A(s,t) G(s) 

\<There 

r[-ao(s)] 

aO 1 
r(- 2 - 2'") 

, 
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-ao (s) 
G(s) = 2A exp[ 2 (1 - log 2)] 

ao 1 ' 
exp [(2" - 2') log ( -ao (s ) )] • 

(55 ) 

The function f is now different than in (20) and is given by 

'" 
12 ~ ao(s) ao(s) ao 3 

f(s) = (~)G(s)(;(-) (-1) [~ (s-4)/..(s)] exp[+i~o] r(2" + 2) • 

(56) 

The residues are given by (15) and (9) with f as in (56). The new r-

fun~tion in (56) makes the residue functions have poles when aO(s) = -(2j+l), 

j = 0,1,2,···. However, these are values for which the signature factor 

[l+exp(-i~aO)] vanishes and no poles appear in A(s,t). The Mandelstam 

symmetry factor still remains in ~ (s) 
n 

as before, and the threshold 

behavior is unchanged. However, one feature is now different. The factor 

exp[+i ~ ao] a in (56) gives an extra phase factor in ~n(s). The ratio 

An(_;)aOjf.S2-4) n' ;s now real for s < 4 . t d f t d ~ ~,~ ~ns ea 0 he re uced residue, 

Ani (S2-4)a
n

• ~, In view of the remarks in Sec. VI, it should be possible 

to construct other examples where this unphysical phase is not present. 

The next question to consider is how to get signature factors in 

the resulting sum. We propose to discuss this in the context of the 

problem studied in Ref. 4, namely charge exchange scattering. We consider 

charge exchange scattering of pions on some spin zero, 1 
I = 2' target. 

The standard t-channel Regge analys'is" for the charge exchange amplitude 

gives us the contribution of the p-trajectory for large s, 

c 
s 

This is essentially the same expression as that used by Schmid in Ref. 4. 
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For pion-nucleon charge exchange it fits the data pretty well. In the 

region of t in which the fit is made the factor [reaCt)) sin~a(t)J-l 

can be closely approximated by a polynomial in t, 

MCEX(s,t) ~ C pet) 
s 

The charge exchange amplitude can be written as 

+ + 
where M(~-) is the amplitude for ~- scattering on the target. If 

we write M(~+) as a function of sand t, M(s,t), then M(~-) is 

given by the same function of u and t, M(u,t). Clearly then if 

we approximate M(~+) by a sum of s-channel Regge contributions, A(s,t); 

M(~-) is given by a sum of u-channel Regge contributions, A(u,t), 

CEX ... r::-
M (s, t) ~ V 2 [A (s, t) - A ( u, t ) J, (60) 

where A is defined by a series like (52). An I 1 t-channel amplitude 

must have odd s ~ u symmetry. 

As we pointed out in (34) it is possible to construct A(s,t) 

such that asymptotically 

A(s,t) ~ C pet) (_s)at+b-l (61) 

Thus we obtain the same answer as in (59) by summing s-channel and u-channel 

Regge contributions and taking their difference. 

A possible way to understand the results of Ref. 4 is as 

follows. One starts by carrying out a Regge-Mandelstam analysis for 

+ -
~ p and rr p scattering in the direct s-channel. One writes a 

, 



• 

Regge-Mandelstam formula for each of these amplitudes and pushes the 

background integral to a line Re t ~_oo. On taking the difference between 

the two amplitudes, the difference of the backgrounds, though not negligible 

for all sand t, is probably negligible in the region considered by 

Schmid. The sum over the Regge-Mandelstam pole contributions could 

then give for large s an expression almost identical to that obtained 

from p-exchange. 

In the present examples there does not seem to be any reason 

for the slopes of the p-trajectory and direct channel ~N trajectories 

to be the same. If they are it must be for some deeper physical reason 

unrelated to the mechanism we are discussing here. 



-28-

VI. REMARKS ABOUT THE :METHOD OF SUMMATION 

One might raise two questions about the summation performed in 

Sec. II. First, one might question whether the particle spectrum is 

rich enough to accomodate an infinite set of almost parallel trajectories 

an(s) ~ aO(s) - n. At present there is no good answer to this ~uestion. 

However, one can say that such a rich spectrum cannot be ruled out by 

the present experimental data. In this connection one should mention 

the recent work of Gell-Mann and Zweig based on the ~uark model, which 

11 
proposes such a spectrum. On the theoretical side, there is also a 

recent conjecture by Toller which suggests that the daughter se~uence 

is parallel to the parent trajectory.12 

The second objection one can raise to the examples constructed 

in this paper is the fact that they seem to depend on choosing a specific 

n dependence for the residues, $n(s), namely having $n proportional 

to a Gegenbauer polynomial. If this was the only choice that would give 

Regge behavior, then our example could only be of mathematical interest 

as a counterexample say to the statements in Ref. 3, but of little positive 

physical significance. This is by far not the case. 

The advantage of using the representation (10) is that by expressing 

~ in terms of modified Bessel functions, 

our summation to a standard series. 

I 1 we converted 
+~ v 2 

The series (13) is a Neumann series. Any function h(y) which 

has a power series expansion, 

h(y) Y
j 

a. 
J 

can ~lL,o be Iv"l'itteu as a series of Bessel ftmctions of the form 

(62 ) 

.... 
\ 
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The new coefficients b are related to a. by. 
n J 

b = 2v+n (v+n) 
n 

s: ~ 
- 2 

L 
t=O 

-2t 
2 

r(v+n-t) 
t! 

a • 
n-2t 

Thus one can construct more examples by choosing an H(y,s) 
1 

(64) 

= h(y,s)y 

such that the Laplace transform, (12), of H(y,s)y-Z is a function 

F(s,t) which has Regge behavior for large s. The residue functions 

of this new example will be determined by the coefficients a. (s) 
J 

of 

1 -ao-z 

the power series expansion of hey,s) through (64). If the£ new residue 

functions do not have any unphysical properties then we have another 

useful example. 
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