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Human cytomegalovirus (HCMV) is the leading viral cause of birth defects, including microcephaly,
neurological deficits, hearing impairment, and vision loss. We previously reported that epithelial cells in
amniotic membranes of placentas from newborns with intrauterine growth restriction and underlying
congenital HCMV infection contain viral proteins in cytoplasmic vesicles. Herein, we immunostained
amniotic membranes from 51 placentas from symptomatic and asymptomatic congenital infection with
HCMV DNA in amniotic fluid and/or newborn saliva, intrauterine growth restriction, preterm deliveries,
and controls. We consistently observed HCMV proteins in amniotic epithelial cells (AmEpCs) from
infected placentas, sometimes with aberrant morphology. Primary AmEpCs isolated from mid-gestation
placentas infected with pathogenic VR1814 proliferated and released infectious progeny for weeks,
producing higher virus titers than late-gestation cells that varied by donor. In contrast to intact virion
assembly compartments in differentiated retinal pigment epithelial cells, infected AmEpCs made
dispersed multivesicular bodies. Primary AmEpCs and explants of amniochorionic membranes from mid-
gestation placentas formed foci of infection, and interferon-b production was prolonged. Infected
AmEpCs up-regulated anti-apoptotic proteins survivin and Bcl-xL by mechanisms dependent and in-
dependent of the activated STAT3. Amniotic membranes naturally expressed both survivin and Bcl-xL,
indicating that fetal membranes could foster persistent viral infection. Our results suggest strength-
ening innate immune responses and reducing viral functions could suppress HCMV infection in the fetal
compartment. (Am J Pathol 2016, 186: 2970e2986; http://dx.doi.org/10.1016/j.ajpath.2016.07.016)
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National Institute of Child Health and Human Development grant
R21HD061890 (T.T.), the University of California, San Francisco Cali-
fornia Preterm Birth Initiative grant (T.T.), and a Deutsche For-
schungsgemeinschaft postdoctoral fellowship DFG ZY110/1 (M.Z.).
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Human cytomegalovirus (HCMV) is the most common in-
fectious cause of permanent birth defects. It is estimated that
each year approximately 40,000 infants are born with
congenital HCMV infection, 400 will succumb in childhood
and 8000 will have permanent disabilities, which include
microcephaly, severe neurological deficiencies, and hearing
and vision loss.1,2 More birth defects result from congenital
HCMV infection than from other, better known conditions,
including Down syndrome, fetal alcohol syndrome, and
neural tube defects.3,4 Placental pathology occurs predomi-
nantly in primary maternal infection with virus transmission
and includes avascular villi, knotting of the syncytio-
trophoblast surface, and edema that reduces the exchange
between maternal and fetal circulation, resulting in a hyp-
oxic environment.5,6 Hyperimmune globulin treatment en-
ables compensatory development of syncytiotrophoblast
covering the villus surface perfused by maternal blood.5e7

Structural defects in the developing placenta can lead to
stigative Pathology. Published by Elsevier Inc
intrauterine growth restriction (IUGR) with or without
transmission.6 Despite the importance of congenital infec-
tion as a cause of fetal morbidity, our understanding of the
cellular and molecular changes in the placenta and fetal
membranes is rudimentary.
HCMV spreads from foci of infected cytotrophoblasts in

chorionic villi to fetal blood vessels in the villus core.8

Primary maternal infection in the first and second
trimester carries a 30% to 38% rate of transmission and the
greatest risk of disease,9,10 whereas babies infected in the
third trimester (72%) are usually asymptomatic,9 but
. All rights reserved.
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Persistent HCMV Infection in the Amnion
progressive hearing loss can occur.11,12 Diagnosis of virus
transmission entails detection of HCMV DNA; however,
high viral load in amniotic fluid does not correlate with poor
outcome.13e17

In contrast to the vascular chorionic membrane,18 the
amniotic membrane is an avascular structure lined with
epithelial cells bathed in amniotic fluid that surrounds the
fetus.19 As the first line of defense against pathogens that
invade the fetal compartment, amniotic epithelial cells
(AmEpCs) function as a biological barrier that has antimi-
crobial and antiviral properties, as well as stem cell prop-
erties.20e22 The amniotic epithelium secretes soluble factors
and cytokines that modulate innate and adaptive immune
responses.23,24 IL-6 and IL-8 have been found in high
concentrations in amniotic fluid at term, and the expression
of these inflammatory cytokines is increased in the presence
of IL-1b, tumor necrosis factor-a, and bacterial lipopoly-
saccharide.25 Elevated IL-6 in amniotic fluid is a risk factor
for spontaneous early delivery (<32 weeks) and late preterm
delivery (>32 weeks), but some patients with intra-amniotic
inflammation deliver at term.26 Analysis of amniotic fluid
from cases of congenital HCMV infection showed elevated
levels of inflammatory cytokines and chemokines, sug-
gesting inflammatory responses could contribute to
pathology.27

We recently reported that epithelial cells in amniotic
membranes from pregnancies complicated by congenital
HCMV infection and IUGR contain viral proteins in large
cytoplasmic vesicles.6 Herein, we examined 51 placentas
from deliveries that included congenital infection diagnosed
by the detection of viral DNA in amniotic fluid and/or
newborn saliva, idiopathic preterm deliveries, IUGR, and
gestational age-matched controls. In accord with the detec-
tion of viral DNA, we consistently observed HCMV pro-
teins in AmEpCs. Studies of primary AmEpCs isolated from
mid-gestation placentas infected with pathogenic VR1814
showed that infected cells proliferated and released progeny
for weeks and that higher titers were produced in these cells
than in late-gestation cells and varied by donor. In contrast
to a virion assembly compartment made in differentiated
retinal pigment epithelial cells, infected AmEpCs made
dispersed multivesicular bodies. Infected AmEpCs pro-
duced interferon (IFN)-b over a prolonged period and the
anti-apoptotic proteins survivin and Bcl-xL via mechanisms
dependent and independent, respectively, of the activated
STAT3. Amniotic membranes naturally expressed both
survivin and Bcl-xL, indicating an environment that could
foster persistent viral infection. Our results suggest that
strengthening innate immune responses and reducing viral
functions could suppress HCMV infection in the fetal
compartment. Furthermore, as we recently reported that
AmEpCs are highly infectable by Zika virus,28 another viral
cause of serious neurological defects in developing fetuses,
our results may point to a common mechanism of vertical
viral transmission and pathogenesis in pregnancy that could
be therapeutically targeted by common strategies.
The American Journal of Pathology - ajp.amjpathol.org
Materials and Methods

Human Placentas and Blood and Saliva Samples

Placentas
The University of California’s Committee on Human Research
and Institutional Review Board approved this study. Protocols
involved deliveries at term at University of California, San
Francisco Mission Bay Hospital (San Francisco, CA; 36 pla-
centas received from 35 donors). Biopsy specimens (one cen-
tral and two to four peripheral) and amniotic membranes were
fixed in 10% formalin (24 to 48 hours), embedded in paraffin,
and sectioned for immunohistochemical and histological
analysis.6 Placental biopsy specimens from three diagnosed
cases of congenital infection were obtained from the CMV
Registry and one from the standing collection of the Depart-
ment of Pathology at the University of California, San Fran-
cisco. Biopsy specimens from Cedars Sinai Medical Center
(Los Angeles, CA) (11 total) were published previously.6 Pri-
mary AmEpCs were isolated from amniotic membranes of
placentas after elective terminations at University of California,
San Francisco hospitals and are described separately below.

Blood and Newborn Saliva Samples
Along with placentas, maternal and cord blood samples (14
donor samples analyzed) (Table 1) and newborn saliva
(n Z 6) (Table 1) were collected at delivery when possible.
Blood was collected in purple-top tubes containing EDTA
and centrifuged to obtain plasma for analysis. Saliva sam-
ples were taken from newborns in the delivery room by a
physician or nurse using sterile cotton-tipped swabs. Swabs
were immediately placed in virus transport medium. After
incubation in the collection solution overnight at 4�C, the
solution was removed from the tubes and stored at �80�C.
Cell Culture, Explants, and Infection

AmEpCs were isolated from mid-gestation (17 to 23.6 weeks;
n Z 17) and late gestation (29.3 to 39.3 weeks; n Z 4) pla-
centas and cultured according to published methods29 with the
following modifications: isolated AmEpCs were cultured on
fibronectin-coated plates in Dulbecco’s modified Eagle’s
medium/F12 supplemented with 20 ng/mL epidermal growth
factor (R&D Systems, Minneapolis, MN), 10% fetal bovine
serum, 1% nonessential amino acids, 55 mmol/L 2-
mercaptoethanol (Gibco, Thermo Fisher Scientific, Waltham,
MA), antibiotics, and antimycotics (University of California,
San Francisco Cell Culture Facility). AmEpCs positive for
cytokeratin 19 and negative for HCMV proteins by immuno-
stainingwere used for experiments. PrimaryAmEpCs (passage
0 to 2) were infected with VR1814, a pathogenic clinical
strain30 at a multiplicity of infection of 3. In some experiments,
TB40/E-derived parental virus (vBAC4-luc), D131A mutant
(vBAC4-luc/UL131Astop)31 (gift fromDr. BarberAdler,Max
von Pettenkofer-Institute for Virology, Munich, Germany),
and CMV Registry 169, an attenuated laboratory strain
2971
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Table 1 Placentas and Blood Samples Used in This Study

Group Panel* Placenta GA (weeks)
HCMV
avidityy

Amniotic
membrane
infected Comments

Control A SF92 41 ND � Normal delivery, newborn saliva
HCMV DNA negative

B SF94 41 NT � Normal delivery, newborn saliva
HCMV DNA negative

C SF95A 37 77.7 � Twins (monochorionic diamniotic)
Preterm delivery D SF2B 33 46.8 � Twins (dichorionic diamniotic),

IUGR (twin B), preeclampsia
E SF22 26 NT � IUGR, preeclampsia

Asymptomatic
congenital HCMV
infection

F SF88 39 NT þ HCMV DNA detected in saliva (nested PCR),
occasional epithelial cells in amniotic
membrane infected, neonate asymptomatic

G SF90A 38 57.3 þ Twins (dichorionic diamniotic), HCMV DNA
in saliva (nested PCR twin A), occasional
epithelial cells in amniotic membrane
infected, neonate asymptomatic at delivery

H SF108 40 65.5z þ HCMV DNA in saliva, neonate asymptomatic
at delivery

I SF111 40 77.0z þ HCMV DNA in saliva, neonate asymptomatic
at delivery

Congenital HCMV
infection

J AD37 39 60.0 þ Primary maternal infection, HCMV DNA in
amniotic fluid, HIG infusion at 16 and
24 weeks’ gestation, neonate asymptomatic
at delivery

K AD22 39 67.0 þ Primary maternal infection, HCMV DNA in
amniotic fluid, microcephaly, echogenic bowel

L SFP7 37 NT þ Twins (dichorionic diamniotic), chorioamnionitis,
pathology specimen, stillbirth at 37 weeks’
gestation, trisomy 13

Congenital HCMV
infection with
preterm delivery

M AD42 34 64.6 þ Primary maternal infection HCMV DNA in
amniotic fluid, IUGR

N SF13 30 59.5 þ HCMV proteins in epithelial cells in amniotic
membrane with morphological changes

O SF113 34 58.4 þ HCMV proteins in epithelial cells in amniotic membrane
P SF21 32 51.2 þ HCMV proteins in epithelial cells in amniotic membrane
Q, R SF9A, SF9B 31 73.5 þ Twins (dichorionic diamniotic); IUGR (twin B),

occasional epithelial cells in amniotic
membrane infected

*Letters correlate with the panel letters in Figure 1.
yMaternal blood plasma at delivery.
zCord blood plasma.
AD, CMV Registry; GA, gestational age; HCMV, human cytomegalovirus; HIG, hyperimmune globulin; IUGR, intrauterine growth restriction; ND, not detected;

NT, not tested; SF, University of California, San Francisco Mission Bay Hospital; SFP, Department of Pathology at the University of California, San Francisco;
þ, present; �, absent.

Tabata et al
passaged in human foreskin fibroblasts, were used. For prep-
aration of amniochorionic explants (nZ 3), membranes were
dissected fromplacentas at 14 to18weeks’gestation andplated
onMillicell-CM inserts (0.4-mmpore size;Millipore, Billerica,
MA) coated with Matrigel (BD Biosciences, San Jose, CA) in
culture medium without epidermal growth factor, with the
apical surface of the amniotic membrane upward and chorion
downward. Thus, trophoblasts from the chorion invaded the
Matrigel and anchored the composite membrane, simulating
the in vivo context. After 12 to 18 hours, explants were infected
(3 � 106 plaque-forming units per explant) with VR1814.
2972
Explants weremaintained for 7 days after infection andfixed in
4% paraformaldehyde (Wako Chemicals USA, Richmond,
VA) for histological analysis. ARPE-19 cells were grown in
Dulbecco’s modified Eagle’s medium (Gibco) supplemented
with 10% fetal bovine serum and infected with VR1814 at a
multiplicity of infection of 0.1.

Serological and Other Reagents

The following antibodies were purchased: rabbit polyclonal
antibodies to Oct4, Hand1, Ki-67, and STAT1, goat
ajp.amjpathol.org - The American Journal of Pathology
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Persistent HCMV Infection in the Amnion
polyclonal anti-GATA3 and mouse monoclonal antibodies
(MAbs) to phospho-STAT1 (Y701) and CD63 (Abcam,
Cambridge, UK); rabbit MAbs to survivin, STAT3,
phospho-STAT3 (Y705), phospho-interferon regulatory
factor (IRF) 7 (S471/472), and phospho-IRF3 (S396) (Cell
Signaling Technology, Danvers, MA); rabbit polyclonal
antibodies to cytokeratin 19, SOX2, and Bcl-xL (Pro-
teintech, Chicago, IL); rabbit polyclonal antieIRF-7 and a
mouse MAb to anti-Bcl-2 (Santa Cruz Biotechnology,
Dallas, TX); a mouse MAb to stage-specific embryonic
antigen-4 and an anti-HCMV MAb blend (MAB8121,
cocktail of clones 8B1.2, IG5.2, and 2D4.2), which reacts
with immediate early (IE), early, and late antigen prepara-
tions (Merck Millipore, Billerica, MA); and an anti-actin
mouse MAb (Sigma-Aldrich, St. Louis, MO). The
following MAbs to HCMV infected cell proteins, generated
by the Pereira laboratory,32,33 were also used: CH112-2 to
glycoprotein B (UL55); CH19 to pp28 (UL99); CH160 to
IE nuclear proteins (IE1 and IE2, UL122 and UL123) for
immunoblotting; CH443 to IE1 (UL123) for immunofluo-
rescence staining; and CH12 to pp65 (UL83). Guinea pig
anti-HCMV gB was a gift from Chiron Corp. (Emeryville,
CA). The STAT3 inhibitors S31-201, WP1006, and STA21
were purchased from Santa Cruz Biotechnology.

Immunohistochemical Staining

Serial sections (5 mm thick) were either stained with hema-
toxylin and eosin or immunostained.6 Three to six biopsy
specimens and at least three sections containing representative
amniochorionic membranes were examined for HCMV pro-
teins. Antigen retrieval was performed for each protein as
described below, followed by blocking with 1.2% normal
serum from the same species as the secondary antibody.
Sections were incubated with primary antibody for 2 to 3 hours
at room temperature or overnight at 4�C, washed, and pro-
cessed for color development using Vectastain avidin-biotin
complex horseradish peroxidase kit (mouse or rabbit; Vector
Laboratories, Burlingame, CA), according to the manufac-
turer’s instructions, followed by color development with a
diaminobenzidine substrate kit (Abcam). Slides were coun-
terstained with hematoxylin (Sigma-Aldrich), dehydrated, and
mounted using Vectamount AQ (Vector Laboratories). Anti-
bodies used for immunohistochemistry were as follows:
mouseMAb anti-HCMVblend, rabbitMAb anti-survivin, and
rabbit polyclonal antieBcl-xL. Isotype control for survivin
immunostaining was rabbit MAb to cleaved caspase 3 (Cell
Signaling Technology) and for Bcl-xL was rabbit polyclonal
antibody to LYVE1 (Abcam). Antigen retrieval was per-
formed for each antibody as follows: HCMV infected cell
proteins, sections were incubated with 0.4% pepsin (Sigma-
Aldrich) in 0.01 N HCl (30 minutes, 37�C); survivin and
control slides were heat treated in 10 mmol/L sodium citrate,
pH 6.0, in a 2100 Retriever pressure cooker (Diatome, Elec-
tron Microscopy Sciences, Hatfield, PA) using its automated
pressurized heat cycle (approximately 15 minutes) and cooled
The American Journal of Pathology - ajp.amjpathol.org
for 2 hours; Bcl-xL and control slides were heat treated in 10
mmol/L Tris (pH 9.0), 1 mmol/L EDTA. Images were taken
on a Nikon TS100 invertedmicroscope equippedwith a Nikon
DS-F12 camera controlled by Nikon NIS-Elements software
version F4.00.00 (Nikon Instruments, Inc., Melville, NY).

Immunofluorescence Staining

Cells grown on coverslips were fixed with 4% para-
formaldehyde and permeabilized with 0.1% Triton X-100 or
ice-cold methanol. Nonspecific antibody binding to the viral
Fc receptor was blocked using normal human serum.34 For
double immunostaining, cells were simultaneously incu-
bated with primary antibodies from different species and
secondary antibodies labeled with fluorescein isothiocyanate
or rhodamine red-X. Nuclei were stained with DAPI (Vector
Laboratories). Alternatively, the coverslips were incubated
with primary antibodies against cellular proteins overnight,
followed by incubation with secondary antibodies, then
stained with antibodies to HCMV proteins. Images were
obtained using a Nikon Eclipse 50i microscope equipped
with a SPOT 7.4 Slider camera (Diagnostic Instruments,
Sterling, MI) controlled by SPOT 2.0 Advanced software.

Immunoblot Analysis

Cells were lysed in radioimmunoprecipitation assay buffer
containing a protease inhibitor cocktail (Thermo Fisher Sci-
entific) and clarified by centrifugation. Proteins were separated
by SDS-PAGE, transferred to Hybond membranes (GE
Healthcare Life Sciences, Pittsburgh, PA), and blocked for 2
hours in phosphate-buffered saline containing 5% skim milk
and 0.05% Tween-20. After incubation with primary antibody
for 16 hours at 4�C, then with peroxidase-conjugated sec-
ondary antibody for 1 hour, blots were developed with West-
ernBright ECL or Quantum horseradish peroxidase substrate
(Advansta, Menlo Park, CA).

Virus Titration

Infectious progeny in conditioned media from infected
AmEpCs were quantified in human foreskin fibroblasts
and AmEpCs (23.5 weeks’ gestation) with a rapid
immunofluorescence-based infectivity assay.35 Quantifica-
tion of virus titers from 17 to 32 weeks’ gestation AmEpCs
was done in parallel.

Virus Neutralization Assays

HCMV neutralizing assays were performed as
described.36,37 Viral titers were adjusted to give a total of
600 to 800 IE1-positive cells/well in 24-well plates. Human
MAbs to the pentamer component UL130/131A (TLR310,
1F11) and gB (TRL345), hyperimmune globulin (Cytotect),
and negative control MAb Synagis were gifts from Trellis
Bioscience (Menlo Park, CA).
2973
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ELISA

Levels of IL-6, IFN-a, and IFN-b in conditioned media
were measured using a commercial sandwich enzyme-
linked immunosorbent assay [ELISA; Quantikine IL-6
immunoassay (R&D Systems), VeriKine-Human IFN-a
ELISA kit and VeriKine-HS Human IFN-b serum ELISA
kit (PBL Assay Science, Piscataway Township, NJ)], ac-
cording to the manufacturer’s instructions.

IgG Avidity Assays

Anti-HCMV IgG avidity was measured using the Serion
ELISA Classic CMV Avidity Reagent and the Serion
ELISA Classic CMV IgG kit (Institut Virion/Serion GmbH,
Würzburg, Germany), according to the manufacturer’s
instructions.

PCR for HCMV DNA

PCR analysis for HCMV DNA in saliva and amniotic fluid
samples was performed as follows. Each reaction contained
17.9 mL RNase-free water, 2.5 mL Coraload PCR buffer
(Qiagen, Germantown, MD), 0.5 mL dNTP mix (2.5 mmol/
L each), 0.125 mL HotStarTaq Plus DNA polymerase
(Qiagen), 0.75 mL each of 10 mmol/L forward and 10 mmol/
L reverse primers (forward Z 50-GGTCACTAGTGACG-
CTTGTATGATGA-30; reverse Z 50-GATAGTCGCGGG-
TACAGGGGACTCT-30), and 2.5 mL saliva collection fluid
or amniotic fluid, undiluted. PCR was performed in a Bio-
Rad T100 Thermal Cycler using the following temperature
regimen: i) 95�C, 5 minutes; ii) 35 cycles of 94�C for 45
seconds, 56�C for 45 seconds, and 72�C for 60 seconds; and
iii) 72�C for 10 minutes. A second, nested PCR was
performed using the same conditions with 1 mL from the
first reaction, 25 amplification cycles, and internal
primers (forward Z 50-AAGTGAGTTCTGTCGGGTGCT-
30; reverse Z 50-GTGACACCAGAGAATCAGAGGA-30).
Positive control HCMV IE1 DNA plasmid was included at
1 and 10 ng per reaction. Water was used as a negative
control. PCR products were analyzed by agarose gel
electrophoresis.

Results

HCMV Proteins Detected in Amniotic Membranes of
Placentas from Primary and Recurrent Congenital
Infection

We recently reported the detection of HCMV proteins in
cytoplasmic vesicles in epithelial cells of amniotic mem-
branes from pregnancies complicated by IUGR and under-
lying congenital infection.6 Figure 1 shows amniotic
membranes in placentas immunostained for HCMV proteins
from cases of congenital infection, diagnosed during
pregnancy by detection of HCMV DNA in amniotic fluid at
2974
mid-gestation or in newborn saliva at delivery, idiopathic
preterm deliveries, and gestation-matched controls. Thirty-
three placentas from 32 deliveries were studied for the
presence of HCMV proteins in amniotic epithelium, and
detailed analysis of 18 of these placentas with matching
blood and saliva samples, where available, is summarized in
Table 1. Cases were organized into five groups according to
the presence or absence of HCMV proteins in amniotic
membranes and whether delivery was preterm or symp-
tomatic infection. Figure 1 includes the following: controls
(Figure 1, AeC) and preterm deliveries negative for viral
proteins (Figure 1, D and E); asymptomatic infection with
HCMV proteins in amniotic membranes (Figure 1, FeI);
congenital infection (Figure 1, JeL); and congenital infec-
tion with preterm delivery (Figure 1, MeR) and IUGR
(Figure 1, M and R). In symptomatic infection, epithelial
cells in amniotic membranes were irregular, cell-cell junc-
tions were lost, and cell fusion and blebbing occurred
(Figure 1, K, M, N, and Q). Asymptomatic deliveries
included primary maternal infection with hyperimmune
globulin treatment at 16 and 24 weeks’ gestation (Figure 1J).
Because avidity increases during pregnancy, we could not

determine whether primary or recurrent maternal infection
had occurred.38e40 Controls were seronegative or seroposi-
tive with high IgG avidity (Table 1), one preterm delivery had
moderate avidity, and three asymptomatic deliveries had high
avidity IgG, especially in cord sera (Table 1), as previously
reported.36 In cases of congenital infection diagnosed during
pregnancy by detection of HCMV DNA in amniotic fluid,
avidity values were high (Table 1). Others diagnosed at de-
livery had moderately high avidities (Table 1). Finally, a twin
delivery with high avidity and focal infection in the amniotic
membrane suggested recurrence (Table 1).
To determine whether infected amniotic membranes

correlated with virus transmission, samples of saliva were
tested for HCMV DNA by PCR to diagnose congenital
infection, a method reportedly as sensitive and specific as
urine cultures.41e43 Six saliva samples were tested,
including two from controls (Figure 1, A and B) and four
from babies with viral proteins in amniotic membranes
(Figure 1, FeI). In addition, the presence of HCMV DNA in
amniotic fluid was confirmed in samples previously tested
by clinical laboratories (Table 1). These results showed that
HCMV proteins are present in the amniotic epithelium in
diagnosed cases of congenital infection (Figure 1 and
Table 1) and deliveries with HCMV DNA in saliva
(Figure 1 and Table 1).

Persistent HCMV Infection in Primary AmEpCs in Vitro

The presence of viral proteins in confirmed cases of
symptomatic congenital HCMV infection suggested
virus replication in these cells in utero. To determine
whether HCMV infects AmEpCs, primary cells isolated
from mid-gestation and late gestation placentas were
infected with VR1814. Immunostaining of control
ajp.amjpathol.org - The American Journal of Pathology
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Figure 1 Immunohistochemical staining for
human cytomegalovirus (HCMV)-infected cell pro-
teins in amniotic membranes from placentas at
delivery (additional information available in
Table 1). Sample designations and sources are
described in Materials and Methods. AeC: Unin-
fected controls. D and E: Uninfected amniotic
membranes from preterm deliveries with intra-
uterine growth restriction (IUGR). FeI: Infected
amniotic membranes from asymptomatic term
deliveries and detection of HCMV DNA in newborn
saliva. JeL: Infected amniotic membranes from
diagnosed primary maternal HCMV infection. J and
K: HCMV DNA in amniotic fluid. L: Congenital
infection and stillbirth. MeR: HCMV-infected am-
niotic membranes from preterm deliveries. M:
Diagnosed primary maternal infection with HCMV
DNA in amniotic fluid. Scale bar Z 50 mm. HIG,
hyperimmune globulin.

Persistent HCMV Infection in the Amnion
AmEpCs, which have the properties of fetal stem
cells,22,29,44 revealed expression of the pluripotency
proteins Oct4 and SOX2, the embryonic stem celle
specific surface antigen stage-specific embryonic anti-
gen-4,45 and the transcription factors GATA-3 and
Hand-1, regulators of cell differentiation44 (Figure 2A).
Late in infection, when gB and pp28 were expressed,
Oct4, SOX2, stage-specific embryonic antigen-4,
GATA3, and Hand1 were down-regulated (Figure 2A).
The American Journal of Pathology - ajp.amjpathol.org
In some cells, GATA3 and Hand1 relocated to
perinuclear vesicles and partially overlapped viral protein
pp28.

Next, the levels of VR1814 infection in mid-gestation and
late gestation AmEpCs were quantified in several assays and
comparedwithARPE-19, highly differentiated retinal pigment
epithelial cells used in studies of lytic HCMV infection.46e52

Immunoblot analysis confirmed that infected AmEpCs from
mid-gestation (17 weeks) and late gestation (39 weeks)
2975
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Persistent HCMV Infection in the Amnion
placentas expressed representative proteins from all kinetic
classes: immediate early IE1 and IE2, early gB, and late pp28
(Figure 2B). IE2 expression was considerably lower than IE1
expression in AmEpCs at 3 days after infection. Moreover,
expression of gB and pp28 was delayed in late gestation
AmEpCs. All of the viral proteins were detected equally in
ARPE-19 cells at 3 and 9 days after infection.

Primary AmEpCs from mid-gestation (17 to 22.5 weeks,
n Z 8) and late gestation (29 to 39.3 weeks, n Z 3) pla-
centas from various donors were infected with VR1814, and
the cells expressing IE1 were counted at 2 and 10 days.
Although levels of infection varied among donors, 50% to
90% of mid-gestation AmEpCs expressed IE1 protein
(Figure 2C), and only 5% to 20% of late gestation AmEpCs
were infected (Figure 2C). Interestingly, the number of
infected cells did not increase from 2 to 10 days after
infection (Figure 2C) nor did the sizes of infected foci
(Figure 2D). Similarly, virus progeny released from
AmEpCs slightly increased at early time points after infec-
tion (6 and 15 days after infection) and plateaued at late time
points (37 and 52 days after infection). IE1 and Ki-67 were
co-expressed in small foci of infected AmEpCs as late as 40
days after infection (Figure 2E), suggesting that HCMV-
infected cells continued to survive and proliferate for
weeks and released low levels of progeny (8.6 � 103 plaque-
forming units/mL at 52 days after infection) (Figure 2D).

Notably, many of the infected AmEpCs failed to form a
compact perinuclear viral assembly compartment (VAC)
(Figure 3, AeC), a site of virion maturation53e55 typically
formed in infected ARPE-19 cells (Figure 3, AeC). In
infected AmEpCs, pp65, the most abundant virion tegument
protein, remained in the nuclei at late time points
(Figure 3B). The VAC incorporates endosomal markers
corresponding to multivesicular bodies (MVBs) and is a key
site for virus assembly and egress,53,54 and maturation de-
fects occur when biogenesis is disrupted.56 In infected
AmEpCs, CD63, a marker of MVBs, accumulated in vesi-
cles with gB, identifying these smaller vesicles as MVBs
(Figure 3, C and D), and in the VAC of infected ARPE-19
cells (Figure 3C). MVBs formed in AmEpCs infected
in vitro (Figure 3D) had a morphology similar to those in
amniotic membranes infected in utero (Figure 1, GeI, K,
M, and N).

Quantification of progeny virus in human foreskin
fibroblasts showed that moderate titers were released from
Figure 2 A: Isolated amniotic epithelial cells (AmEpCs) were mock infected
Immunostaining of stem cell markers (green) and viral proteins (red) in control (
DAPI (blue). Colocalization of green and blue signals (turquoise) and red and gre
gestation (17 weeks) and late gestation (39 weeks) AmEpCs and ARPE-19 cells at
viral proteins and actin (loading control). CH160 was used to detect immediate ea
and counterstained with DAPI were calculated at 2 and 10 dpi. At least 10 imag
using a Nikon Eclipse 50i microscope equipped with a SPOT 7.4 Slider camera contr
Graph shows IE-positive cell numbers. D: Phase microscopy of HCMV-infected AmEp
virions in human foreskin fibroblasts. Foci of infected cells indicated by green do
uninfected control and VR1814-infected AmEpCs. Nuclei were stained with DAPI. D
Original magnifications: �200 (A and E); �100 (D). PFU, plaque-forming unit.
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mid-gestation AmEpCs and 10-fold lower titers from late
gestation cells (Figure 3E). Progeny retained tropism for
epithelial cells, although infection failed to spread efficiently
in AmEpCs, and titers were lower than in human foreskin
fibroblasts (Figure 3F). Together, the results suggest that
HCMV persistently infects AmEpCs.

To determine whether the virion entry requirements
for HCMV infection of ARPE-19 cells pertained to primary
AmEpCs, we tested whether virion entry depends on
a functional pentamer complex gH/gL/pUL128-
pUL131A.40,50,57e59 Neutralization of VR1814 infection
by human MAbs to UL130/131A (TRL310) and gB
(TRL345) was assayed and compared with neutralization by
hyperimmune globulin and a negative control MAb
(Figure 3G). The MAb to UL130/131A had a 100-fold
higher neutralizing titer than the gB-specific MAb and
1000-fold greater activity than hyperimmune globulin,
whereas the negative control MAb lacked neutralizing ac-
tivity. The results confirmed that the pentamer complex and
gB both contribute to AmEpC infection.
HCMV-Infected AmEpCs Induce IFN-b Expression

The finding that AmEpCs formed small foci of infection
suggested that virus spread might be limited by an IFN
response. IRF7 is one of the major players in virus-induced
IFN production that is central to innate immunity.60

Interestingly, IRF3 is rapidly degraded in virus-infected
cells,61 whereas IRF7 expression is critical for the late
induction phase and not the early phase.62 HCMV infec-
tion triggers a strong innate immune response that includes
transcription of the IFN-b gene via activation of IRF3
without viral gene expression,63 blocked by the newly
synthesized IE2.64 Next, we examined nuclear trans-
location and phosphorylation of IRF3 and IRF7. Immu-
nostaining showed weak IRF7 accumulation in the nuclei
of VR1814-infected AmEpCs at 4 days after infection and
a strong nuclear pattern at 12 days (Figure 4A). Likewise,
TB40E-infected AmEpCs showed nuclear staining at 12
days, in contrast to mutant TB40ED131A that fails to
infect ARPE-19 cells,65 suggesting virion entry was
required (Figure 4A). Immunoblot analysis confirmed that
the activated form phospho-IRF7 was present at 3 days
after infection and increased by 12 days (Figure 4B), but
(control) or infected with VR1814 and fixed at 7 days postinfection (dpi).
top panels) and infected cells (bottom panels). Nuclei were stained with
en signals (yellow). B: Immunoblotting of viral proteins. Lysates from mid-
indicated time points were immunoblotted with monoclonal antibodies to
rly (IE) 1 and IE2. C: Numbers of IE1-positive cells stained with CH443 (IE1)
es (magnification �200) from randomly selected areas were photographed
olled by SPOT 2.0 Advanced software (Diagnostic Instruments, Sterling, MI).
Cs at the indicated times after infection. Numbers indicate titers of progeny
tted lines. E: Immunostaining for Ki-67 (green) and IE1 (CH443) (red) in
ata are given as means � SEM (C). Scale bars: 50 mm (A and E); 100 mm (D).
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Persistent HCMV Infection in the Amnion
IRF3 was not activated during the same period (data not
shown).

Consistent with IRF7 activation, virion penetration, and
downstream induction of interferon response genes, TB40E-
infected AmEpCs produced IFN-b, but cells infected with
TB40/ED131A, which fails to enter epithelial cells, did not
(Figure 4C). In addition, IFN-a was not detected in infected
AmEpCs (data not shown). ELISA values for IFN-b in
The American Journal of Pathology - ajp.amjpathol.org
conditioned media from VR1814-infected AmEpCs from
mid-gestation placentas are shown (n Z 3) (Figure 4D).
After a robust induction at 2 days after infection, IFN-b
levels decreased and low levels were detected at later time
points monitored (<10 pg/mL). Infected AmEpCs from
mid-gestation (23.5 and 23.6 weeks) made higher levels of
IFN-b than those from late gestation (29.3 weeks), and the
levels varied by donor.
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Persistent HCMV Infection in the Amnion
To assess whether IFN-b was made in intact tissues,
explants of amniochorionic membranes from mid-gestation
placentas were plated on Matrigel, with chorionic mem-
brane facing downward and the amniotic epithelium surface
facing upward (ie, toward the fetus in utero). After
The American Journal of Pathology - ajp.amjpathol.org
attachment, the explants were infected with VR1814.
Representative immunostaining showed that CK19-positive
infected AmEpCs expressed IE1 (Figure 4E). Infected foci
formed at 7 days, indicating viral replication, but the spread
of infection was restricted in the tissue environment
2981
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(Figure 4, FeJ). In addition, IFN-b robustly increased in
uninfected AmEpCs, but expression was reduced in IE1-
positive infected cells (Figure 4, F and HeJ). Together,
the results suggested that HCMV infection elicits an innate
immune response in the epithelium of amniotic membranes
and that induction of IFN-b limits virus spread to neigh-
boring cells in the tissue environment of intact amniotic
membranes.

Infected AmEpCs Activate STAT3-Dependent and
STAT3-Independent Survival Pathways

IL-6 stimulation induces rapid phosphorylation of STAT3
(pSTAT3), which controls several apoptotic pathway genes,
including Bcl family members, such as Bcl-2 and Bcl-xL,
and the inhibitors of apoptosis family genes, such as sur-
vivin. To determine whether HCMV infection activates IL-
6eSTAT3 signaling in proliferating, persistently infected
AmEpCs, IL-6 production was measured and found to in-
crease at day 2 compared to uninfected cells (Figure 5A). In
contrast, the effect on tumor necrosis factor-a varied
depending on the donor and was inconsistent (data not
shown).

Next, we determined whether HCMV-infected
AmEpCs activate STAT3 signaling. For these experi-
ments, pSTAT3 levels were assessed by immunoblotting
and compared with levels in ARPE-19 cells. In kinetic
studies, pSTAT3 was detected at 1 day and increased by
15 days after infection (Figure 5B). Both survivin and
Bcl-xL were strongly up-regulated, whereas Bcl-2 was
lower than the detection limit at all time points
(Figure 5B). During longer intervals, pSTAT3, survivin,
and Bcl-xL were detected as late as 24 days after infection
(Figure 5B). In contrast, pSTAT3, survivin, and Bcl-xL
were briefly detected in ARPE-19 cells at 1 day after
infection, but not later (Figure 5B). When infected
AmEpCs were immunostained for survivin and Bcl-xL,
we observed that survivin was induced at 2 days after
infection, expressed at 15 and 30 days, and weakly
expressed in bystander cells (Figure 5C). Likewise, Bcl-
xL was induced at 2 days and expressed throughout the
30-day observation period, mainly in infected AmEpCs
(Figure 5D). Trace amounts of survivin and Bcl-xL were
seen in infected ARPE-19 cells at 2 days after infection
but not at later time points (data not shown).

To further examine the dependence of HCMV-infected
AmEpCs on pSTAT3 for survival, STAT3 activity was
blocked with inhibitors. These drugs included S31-201, an
inhibitor of phosphorylation and dimerization,66 WP1066,
an inhibitor of JAK2 tyrosine kinase,67 and STA21, an in-
hibitor of STAT3 dimerization and DNA binding.68

Treatment with STAT3 inhibitors blocked survivin induc-
tion in infected AmEpCs, but not in vehicle dimethyl
sulfoxideetreated cells (Figure 5E). There was no effect of
STAT3 inhibitors on survivin expression in control cells. In
contrast, Bcl-xL induction in infected cells was not blocked
2982
by STAT3 inhibitors (Figure 5E), indicating that Bcl-xL up-
regulation is not STAT3 dependent. Together, the results
showed that HCMV-infected AmEpCs up-regulate the anti-
apoptotic proteins survivin and Bcl-xL in vitro through
STAT3-dependent and STAT3-independent pathways,
respectively, promoting cell proliferation and prolonged
survival.
Further analysis of infected AmEpCs from mid-gestation

(17.2 and 20.5 weeks) and late gestation (39.1 weeks)
confirmed that expression of the anti-apoptotic proteins
varied by donor. Figure 5F shows three examples of eight
cell preparations (including two in Figure 5B). Expression
levels of Bcl-xL varied in different cell preparations. Inter-
estingly, when Bcl-xL was expressed at low levels (20.5
weeks’ gestation), AmEpCs had low infectivity (Figure 2B).
However, AmEpCs from this donor expressed Bcl-2 and
trace amounts of survivin. Bcl-2 was expressed in AmEpCs
from two other donors but was lower than detection levels
after infection. Together, these results indicate that expres-
sion of anti-apoptotic proteins could modulate persistent
HCMV infection and that expression varies by donor and
gestational age.

Survivin and Bcl-xL Expressed in Amniotic Membranes
of Congenitally Infected Placentas

Having found that primary AmEpCs isolated from pla-
centas infected with VR1814 in vitro up-regulate survivin
and Bcl-xL, sections of amniotic membranes from pla-
centas (Figure 1 and Table 1) were immunostained to
determine whether the cell survival proteins were up-
regulated in the tissue environment in utero. Amniotic
membranes from control placentas, preterm deliveries,
and congenital infection, with and without preterm de-
livery, were immunostained for survivin and Bcl-xL.
Representative sections from staining of 34 membranes
for survivin and 17 membranes for Bcl-xL are shown
(Figure 6). Like AmEpCs infected in vitro, survivin
stained in a nuclear pattern (Figure 6, I, K, M, O, and Q)
and Bcl-xL stained in a punctate cytoplasmic pattern
(Figure 6, J, L, N, P, and R) in amniotic membranes
infected in utero. Unexpectedly, parallel analysis of
control amniotic membranes revealed that survivin
(Figure 6, C, E, and G) and Bcl-xL (Figure 6, D, F, and H)
were both expressed in the amniotic epithelium. In
contrast, control antibodies, polyclonal rabbit antisera,
and isotype control rabbit MAb failed to immunostain
amniotic membranes (Figure 6, A and B). Additional
analysis of amniotic membranes from cases of IUGR with
underlying congenital HCMV infection, previously re-
ported,6 further confirmed that amniotic membranes
containing viral proteins also express the anti-apoptotic
proteins survivin and Bcl-xL (data not shown).
Together, the results suggest that congenital HCMV
infection and virus transmission could result in infection
of the amniotic epithelium and that the intrinsic longevity
ajp.amjpathol.org - The American Journal of Pathology
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of these progenitor/stem cells could contribute to a state
of persistent infection.
Discussion

We previously reported that HCMV proteins are present in
amniotic membranes of placentas from pregnancies compli-
cated by IUGRwith underlying congenital infection.6 Herein,
we examined a repository of placentas from diagnosed
congenital HCMV infection, IUGR, and preterm delivery to
determine whether detection of viral proteins in amniotic
membranes was associated with transmission and studied the
course of infection in primary AmEpCs isolated from pla-
centas from different donors and gestational ages. Analysis of
amniotic membranes from 33 placentas showed that HCMV
replicates in amniotic membranes of placentas from symp-
tomatic and asymptomatic congenital infection and preterm
deliveries confirmed by detection of viral DNA in amniotic
fluid at mid-gestation and/or saliva specimens from newborns.
Studies of primary AmEpCs isolated from 16 mid-gestation
and late gestation placentas show that pathogenic HCMV
strains replicate in AmEpCs and down-regulate proteins that
maintain progenitor cell properties. Infected AmEpCs prolif-
erated and formed small foci of infection that failed to spread
and survived for months with long-term maintenance of viral
genomes (data not shown). Low levels of progeny virions that
retained epithelial cell tropism were continuously released. In
explants of amniotic membranes infected ex vivo, IFN-b was
produced and could limit virus spread in the tissue environ-
ment. In infected AmEpCs, the anti-apoptotic proteins survi-
vin and Bcl-xL were up-regulated by STAT3-dependent and
STAT3-independent mechanisms, respectively. AmEpCs in
membranes of placentas with congenital HCMV infection
expressed survivin and Bcl-xL. Detection of these proteins in
amniotic membranes from control placentas suggested an
opportune environment for viral persistence. Our discovery
that HCMV establishes persistent infection in the amniotic
epithelium could explain why high levels of viral DNA in
amnioticfluiddonot predict poor outcomebut could reflect the
capacity for persistent infection in amniotic membranes
dependent on individual variation and gestational age. In this
context, we have also documented that AmEpCs are highly
permissive to infection by prototype Zika virus and recently
isolated Nicaraguan strains of Zika virus (2016) associated
with microcephaly,28 suggesting that, like HCMV, infection
of AmEpCs could play a major role in viral pathogenesis,
leading to fetal abnormalities and preterm birth. In this regard,
AmEpCs isolated from mid-gestation placentas produced
higher titers of infectious virus progeny than cells from late
gestation. In contrast to HCMV, however, Zika produced lytic
infection of these cells.

The course of HCMV infection in primary cells could
depend on the tissue of origin, stem cell properties, and
innate immune responses associated with persistent and lytic
infection in endothelial cells.21,22,44,69 Herein, we found
The American Journal of Pathology - ajp.amjpathol.org
marked differences in epithelial cells by comparing VR1814
infection of primary AmEpCs and ARPE-19 cells, highly
passaged differentiated cells70 used as a model for lytic
infection.46e52,71 Immediately evident was mislocalization
of pp65, gB, and pp28, impaired transport of these proteins
to MVBs, and failure to form a compact VAC that could
reduce virus titers in infected AmEpCs. An innate immune
response and prolonged IFN production that suppresses
infection is usually transient because of expression of
HCMV proteins that interfere with the response, which
include pp65 delivery to the nucleus by incoming virions72

and IE2 that functions as an IFN-b antagonist.64 We
observed that newly synthesized pp65 was retained in the
nucleus and that IE2 expression was delayed, suggesting
viral suppression of the innate immune response could be
partially impaired. Cellular miRNA could also participate in
events that lead to persistent infection, especially the miR-
200 family, enriched in epithelial tissues, that modifies
host innate immune responses to microbial pathogens.73

Overexpression of the miR-200 cluster decreases HCMV
titers in fibroblasts,74 and miR-200 levels were high in
latently infected CD34þ cells and in persistently infected
monocytes, but not in lytically infected macrophages.75 In
addition, miR-200 family members target HCMV UL122 30

untranslated region, inhibiting IE2 translation,75 and target
Sec23a, which is involved in endoplasmic reticulum-to-
Golgi vesicle transport and could modulate VAC forma-
tion.76 Interestingly, miR-200 was expressed in HCMV-
infected AmEpCs and increased late in persistent infection
(T.T., unpublished observation). Future studies will eluci-
date the contributions of miR-200 family to persistent
infection in AmEpCs.

Apoptosis is a host defense mechanism to dispose of
damaged cells; however, the herpesvirus family has the
ability to deregulate apoptotic pathways to complete their
life cycles. Activated STAT3 prolongs the survival of cells
infected with varicella zoster virus in skin xenografts77 and
promotes malignant transformation and proliferation of cells
by Epstein-Barr78e80 and Kaposi sarcoma virus.81 HCMV-
infected endothelial cells up-regulate survivin via IL-6, a
cytokine in the viral secretome,82 and infected primary
hepatocytes, limited in viral replication, activate IL-
6eJAKeSTAT3 signaling pathways that favor cell
proliferation and up-regulate survivin.83 We found that
HCMV-infected AmEpCs rapidly and persistently activate
STAT3 at Y705, inducing expression of anti-apoptotic
survivin and Bcl-xL by STAT3-dependent and STAT3-
independent pathways, respectively. Both Bcl-xL and
vMIA interact with GADD45a, enhancing cell death sup-
pression, and GADD45 family members promote Bcl-xL
and vMIA expression.84 Moreover, HCMV infection acti-
vates NF-kB signaling in fibroblasts and monocytes,85e88

and NF-kB regulates GADD45a and Bcl-xL. Both NF-kB
and IE proteins stimulate IL-6 production,83,89,90 and an
IL-6erelated pathway up-regulates GADD45b in herpes
simplex virus-1einfected corneal epithelial cells.91 HCMV
2983
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infection likely activates NF-kB and IL-6 that could up-
regulate GADD45a and amplify Bcl-xL expression in
AmEpCs. In contrast, ARPE-19 cells failed to activate
STAT3 or up-regulate the anti-apoptotic proteins survivin
and Bcl-xL, except at 1 day after infection. It was reported
that HCMV-infected fibroblasts rapidly accumulate
unphosphorylated STAT3 in the nucleus and disrupt
IL-6einduced STAT3 activation, events regulated by IE1
protein that diminish viral DNA synthesis and gene
expression.92 In contrast, results of our studies showed that
AmEpCs maintain STAT3 activation, which is linked to
persistent infection and cell survival.

In conclusion, our studies of placentas from congenital
infection and primary cells isolated from various donors and
placentas from mid-gestation and late gestation suggest that
persistent HCMV infection in fetal membranes could pro-
mote inflammation20,21 and contribute to preterm labor and
delivery.27 Understanding the basis for persistent infection
in AmEpCs could lead to therapeutic strategies to prevent
congenital disease and pregnancy complications by target-
ing viral functions that promote persistence and enhancing
host antiviral responses that suppress infection.
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