
UC Irvine
ICS Technical Reports

Title
Persistence, offline algorithms, and space compaction

Permalink
https://escholarship.org/uc/item/06j0t9pq

Author
Eppstein, David

Publication Date
1991-06-03
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/06j0t9pq
https://escholarship.org
http://www.cdlib.org/


Notice: Tllis Material 
may be protected 
by Copyright Law 
(Title 17 U.S.C.) 

Persistence, Offiine Algorithms, 
~ 

and Space Compactio11 

David Eppstein 
-=- y 

Department of Information and Computer Science 
University of California, Irvine, CA 92717 

Tech. Report 91-54 

, June 3, 1991 

Abstract 

We consider dynamic data structures in which updates rebuild a static 
solution. Space bounds for persistent versions of these structures can 
often be reduced by using an offiine persistent data structure in place 
of the static solution. We apply this technique to decomposable search 
problems, to dynamic linear programming, and to maintaining the 
minimum spanning tree in a dynarnic graph. Our algorithms admit 
trade-offs of update time vs. query time, and of time vs. space. 

z_ 

fó?? 
C3 
no11f~5f 



1 Introduction 

We examine the relation between space bounds in static, oflline, online, and 
persistent algorithms. In particular we are interested in online algorithms 
that reconstruct a static solution after each update. Such an algorithm 
can be made persistent at a large cost in space. Our main result is that a 
persistent algorithm can instead be based on an oflline solution, resulting in 
greatly improved space complexity with little loss in time. 

We consider data structures which handle operations of two kinds, up­
dates and queries. In an update, an element is inserted to or deleted from a 
set V, maintained by the data structure. In a query, we compute the value 
of sorne function f(x, V), where x is information specified by the query. 
A static problem allows no updates. In an online problem, updates and 
queries are mixed. In an ojfiine problem, the sequence of updates is known 
in advance; updates are mixed with queries as in the online problem. We 
could imagine a more restrictive oflline problem, in which queries as well as 
updates are known in advance, but we do not use such problems here. 

1.1 Persistence 

A persistent data structure is one in which updates are performed non­
destructively, creating a new version of the data structure without destroying 
the old version. Queries specify a version of interest, and the appropriate 
function is computed on the information corresponding to that version, even 
if further updates have taken place after that version was created. 

Persistence has been used for sorne time (2, 6, 22], and was formalized 
and classified by Driscoll et al. [8]. In partial persistence, old versions of the 
data structure can be queried, but only the latest version can be updated. 
The set of versions forms a sequence, with each update increasing the se­
quence length by one. In full persistence, old versions can be both queried 
and updated. This results in a tree-like history of versions. In confiuent per­
sistence, introduced by Driscoll, Sleator, and Tarjan (9], updates combine 
versions, resulting in a DAG-like history. We concentrate on ful! persistence. 

Research in persistence has focused on automatic techniques for making 
non-persistent data structures persistent (3, 4, 8]. This is important both be­
cause of the application of persistence to high-level language design (8], and 
because in this way new data structures can be made persistent with little 
effort. However, these techniques can be inéf!icient, especially in the space 
they use. When a non-persistent algorithm changes a memory location, the 

1 



persistent algorithm must remember both old and new values, so space is 
bounded by the number of memory changes rather than the non-persistent 
space bounds. In particular, consider a problem in which updates are much 
less frequent than queries; it may be appropriate for a non-persistent so­
lution to rebuild the data structure from scratch after each update. The 
persistent version of this algorithm would maintain each version' of the data 
structure separately, and use exorbitant amounts of space. 

We describe a new approach to this problem. Instead of basing our per­
sistent algorithm on the static problem, we base it on an offline partially 
persistent algorithm. This offline problem can typically be solved in simi­
lar time bounds to the static problem, but can store many versions of the 
problem in a single data structure, reducing the total space ·complexity. 

1.2 New Results 

Assume we can solve an offline search problem in preprocessing time P(n), 
query time Q(n), and space S(n). Then we solve the online persistent prob­
lem in update time P(n), query time Q(n), and space per update O(S(n)/n). 
The precise result allows the number of updates to differ from the set size. 

Using this technique, we solve any persistent decomposable search prob­
lem. Suppose the static problem can be sol ved in preprocessing time P( n ), 
query time Q(n), and space S(n). Then m updates to a persistent data 
structure wi th at most n points in any one version can be performed in 
time O(P(k)) per update, time O((n/k)Q(k) logk) per query, and space 
O((m/k)S(k)logk). These bounds differ from the best non-persistent algo­
rithm by factors of O(log k) in the query and space bounds. 

We next apply our persistence technique to linear programming in three 
dimensions. The problem set consists of linear constraints; queries describe 
linear objective functions to be maximized while satisfying the constraints. 
The static problem can be sol ved in preprocessing time O( n log n ), query 
time O(logn), and space O(n) (10, 20]. We describe in a separate paper 
algorithms that trade off the update and query times for the fully dynamic 
problem, and that solve offline, semi-online, and insertion-only problems 
in polylogarithmic time per operation (13]. We use the offline algorithm, 
together with an algorithm for combining several static problems, to achieve 
a dynamic fully persistent algorithm with update time O(kloglogk), space 
O(logk) per update, and query time O((n/k)log2 klog(n/k)). 

Finally we consider maintaining the minimum spanning tree (MST) in a 
dynamically changing graph. As usually stated, this problem has no queries, 

2 



only updates, and our persistence techniques do not apply. But we can allow 
queries that test, if a certain update were to occur, what change to the tree 
would follow, without going to the expense of making that change. The 
persistent version of this problem is used to find the k best spanning trees 
of a graph (11, 15, 17, 19]. The problem can be solved by known dynamic 
MST algorithms, or by sensitivity analysis (23, 24]. The latter approach, 
if made persistent, uses almost linear time per update, constant time per 
query, and O(n) space per update. We salve the problem in linear time per 
update, and polylogarithmic query time and update space. 

2 Reduction to Offiine Problem 

Fix a problem in which updates consist of insertions and deletions from 
a set. Consider ofRine problems in which n elements exist in the set, and 
m ::; n updates occur. Suppose we know an algorithm that answers partially 
persistent queries in time Q(n), takes time P1(n)+P2(m) to build, and takes 
space S1(n) + S2(m). Assume that P1::; P2 and S1 ::; S2, that P; and S; are 
monotonic, and that they satisfy the smoothness property 

2F(n)::; F(2n)::; e· F(n) · 

for sorne constant c. We use such an ofRine algorithm to solve the online 
fully persistent problem. 

Lemma l. Let m = m( n) ::; n/2. Given an offline algorithm with time 
and space bounds as above, we can hand/e the online ful/y persistent problem 
in time Q(n) per query, time P1 (n)+ P2(m) per update, and space O((S1( n)+ 
S2(m))/m) per update. 

Proof: We use an Euler tour of the tree formed by the history of persistent 
versions; this is a traversal in which each tree nade (version) is visited twice, 
once befare and once after all of its children (25]. The first visit corresponds 
to the operation creating that version, and the second to the reverse update 
(insert instead of delete and vice versa). We partition the tour into paths 
of length between m(n)/2 and m(n), where nis the maximum size of any 
version in the path. For each path, we maintain an ofRine data structure 
for the corresponding sequence of updates. Each update extends the path 
containing the updated version. If the path would become too long, we split 
it in two. We rebuild the data structure for the path or paths using the 
previous data structure's space. O 

3 



" , 

' . 

3 Decomposable Search Problems 

We consider problems in which the updates maintain a set V, and queries 
can be represented as functions f(x, V). Such a problem is called decom­
posable if there is sorne constant time binary operation Ell such that, for any 
partitionofV into two disjoint sets V= AUB, f(x, V)= f(x,A)Ellf(x,B). 
Decomposable search problems have many applications in computational ge­
ometry, dynamic programming, and other areas. Research on decomposable 
search problems has concentrated on transforming solutions of the static 
problem (in which V does not change) into data structures for the dynamic 
problem; this line of inquiry was initiated by Bentley and Saxe [1], who 
defined decomposable problems and described severa! such methods. 

Fix a decomposable search problem of interest. Suppose that, given a 
set with n points, we can build in time P( n) a data structure of size S( n) 
that can answer queries in time Q(n). The dynamic problem (with both 
insertions and deletions) can be answered in the same space and query time 
bounds, but with an update time of P(n), simply by rebuilding the static 
data structure after each update. This technique uses O(S(n)) space. By 
maintaining the sets in blocks of k points, and rebuilding a single block 
after each update, the problem can be solved with time bounds O(P(k)) 
per update and O(nQ(k)/k) per query [1]. The space is O(nS(k)/k), which 
could be a significant reduction from O(S(n)) if the static structure uses 
superlinear space. . 

Bentley and Saxe described another technique, for insertions only. We 
maintain a collection of static problems with sizes distinct powers of two. 
Each query combines O(logn) problems, in time O(Q(n)logn). Each up­
date creates a new problem of size one, and then while two problems have 
the same size merges them to form a larger problem. Each point is in 
at most one problem of each size, and so the amortized insertion time is 
O(P( n) log n ). It is not dif!icult to modify this algorithm to be fully persis­
tent. For completeness we briefiy describe this modification. 

The dif!iculty with making this algorithm persistent is that an operation 
involving the merger of two large static problems may be repeated, at each 
repetition incurring a large cost. We instead amortize the cost of each merge 
against operations occuring after it in the history tree. Each operation will 
be charged for at most one merge at each problem size, so such repetitions 
can not occur. 

We again maintain problems of size equal to powers of two, with now 
at most two problems having the same size. When a third problem of that 

4 



size is introduced, we merge the previous two into a larger problem. The 
merge is done at the point in the history tree at which the second problem 
was created; proportionally many insertions must have taken place between 
that point and the update causing the merge. Any repetition of the update 
that caused the merge will see the merge as having already happened, and 
not cause it to happen aga.in. As in [21], computation of merged static data 
structures may be performed incrementally, to make the update times worst 
case rather than amortized. 

We examine persistent algorithms for dynamic insertions and deletions. 
These algorithms could recompute the appropriate static problem as in the 
non-persistent algorithm, and ma.inta.in ali old solutions to static problems. 
However this results in a space penalty: the space for the P( n) update time 
algorithm is O(S(n)) in the non-persistent case, but becomes O(nS(n)) 
when we make the algorithm persistent. Following lemma 1, we use an 
of!line algorithm to reduce this space complexity. 

Lemma 2. An offline partially persistent decomposable .search problem, 
with m updates and n non-updated points, can be solved in preprocessing 
(update) time O(P(n)+P( m) logm), space O(S(n)+S(m) logm), and query 
time O(Q(n)logm), where there are m updates and n points in any version 
of the problem. 

Proof: The algorithm is similar to that of Bentley and Saxe [1] and Dobkin 
and Suri [7]. 

We compute one static problem for the non-updated points; this takes 
time P(n) and space S(n). We ma.inta.in a segment tree of the lifetimes 
of each updated point. This is a complete balanced binary tree with m 
leaves, corresponding to update events, ordered by the times of the events. 
Each point is stored at O(log m) tree nades, which together cover all leaves 
corresponding to the times at which that point exists. We construct a static 
data structure for the points stored at each node. 

Each query combines the results of the static data structure and O(log m) 
nades on the path from the root of the segment tree to the leaf corresponding 
to the query version. Any point existing at the query time will be conta.ined 
in exactly one of the queried data structures, so each query is answered 
correctly. O 

Theorem l. We can perform a fully persistent sequence of insertions, 
deletions, and queries in a decomposable search problem, in update time 

5 



" ' 

O(P(n)), query time O(Q(n)logn), and space O((S(n)logn)/n) per up­
date. 

Proof: We apply lemma 1 to the offline algorithm of lemma 2, by breaking 
up the Euler tour of the history tree into segments of m = O(n/logn) 
changes, and maintaining an offline data structure for each segment. o 

If S(n) = !1(n1+'), we can !et m = 0(n) and reduce the space bound to 
O(S(n)/n). Without assumption, we cau reduce the update time to O(k) 
for fu]] persistence with insertions and deletions, at the expense of increasing 
the query time by a factor of O(n/k). Here k is au arbitrary parameter; but 
for simplicity of exposition we start with the case that k is fixed. 

Theorem 2. We can perform fully persistent insertions and deletions in 
time O(P(k)) per update, time O((n/k)Q(k)logk) per query, and space 
O((S(k) logk)/k) per update. 

Proof: We partition the inserted points into sets, ali but one of which 
contain k points. The remaining set, which we cal! the small set, can have 
fewer members. We use the algorithm of the previous section separately for 
each such set. To perform an insertion, we insert the point into the small 
set, if one exists, or create a new small set otherwise. To perform a deletion 
from a set that is not small, we also move a point from the small set by 
deleting it and re-inserting it, so that at most one set remains small. If 
there is no small set the set undergoing deletion becomes small. When we 
delete the last point from the small set we remove the set as well. O 

Now allow k to be a function of n. The algorithm above depends on ali 
sets having the same size. If that desired size changes, we do not have time 
to make ali sets have the new size. Instead, during each update, along with 
the operations performed above, we move 0(1) points between the small 
set and the sets with size furthest away from k. With sorne smoothness 
assumptions, k cannot change rapidly, so ali set sizes will remain close to k. 
Therefore we achieve the same bounds as in the theorem above. A rigorous 
analysis of this algorithm will be given in the foil paper. 

4 Linear Programming in Three Dimensions 

We next apply our persistence technique to linear programming in three 
dimensions. Here the problem set consists of linear constraints, and queries 

6 



describe linear objective functions to be maximized by a point satisfying 
the constraints. We can also handle certain nonlinear problems including 
finding the minimum circle containing a dynamic planar point set. 

Th.e static problem can be solved in query time Q(n) = O(logn), using 
a linear size data structure built in time O(nlogn) [10, 20]. We describe 
in a separate paper a method for solving queries in the intersection of k 
static problems, in expected time O(klogklogn + v'klogklog3 n) [13]. We 
can therefore treat this problem as decomposable: the answers to k queries 
can not be combined, but the data structures supporting the queries can be 
combined, with O(logk) overhead. We can trade offbetween the update and 
query times for the fully dynamic problem, and sol ve of!line, semi-online, and 
insertion-only problems in polylogarithmic time per operatfon, analogously 
to decomposable searching problems (13]. 

Theorem 3. We can solve persistent dynamic three-dimensional linear 
programming with update time O(kloglogk), update space O(logk), and 
expected query time O((n/k)log2 klog(n/k)), for any 1 :S k :S n/log3 n. 

Proof: We divide the constraints into sets of size k, and within each 
set use a segment tree as in lemma 2. We will choose paths of length m = 
0( k/ log k ), so we also will ha ve unchanged constraints for each path. We di­
vide these static constraints in to O (log k) disjoint subsets of size O( k / log k ). 
Each update modifies 0(1) sets, by rebuilding the segment tree and 0(1) 
subsets of static constraints. This takes time O(k + mlogmloglogm) = 
O(kloglogk) [13] and uses space O(k). Each time a path splits, we copy 
the static subsets and create 0(1) new subsets, in time O(k). 

Each query combines O((n/k)logk) static problems, containing O(k) 
constraints each. The restriction on k lets us avoid the O ( v'k log k log3 n) 
term in the time for combining the problems. O 

5 Dynamic Minimum Spanning Trees 

We consider maintaining the minimum spanning tree (MST) in a dynamic 
edge-weighted graph. Each time an MST edge is deleted or has its weight 
increased, i t may be removed from the MST and replaced by a different 
edge; each time an edge is inserted or has its weight decreased, it may be 
added to the MST, replacing an edge already there. We allow queries that 
report the effects of an update without actually performing it. 

7 



', 

This problem can be sol ved in O( yfiñ) per update [15] (here m denotes 
the number of edges ), and therefore the same time per query. For planar 
graphs the time can be reduced to O(logn) [14, 18]; the same is true for 
offiine updates [12] but the latter algodthm does not support online quedes. 

The persistent problem has been used in branch-and-bound algorithms 
for finding the k best spanning trees of a graph [11, 15, 17, 19]. The ap­
plication uses O(k) updates and O(kn) queries, so quedes should be faster 
than updates. The problem can be solved with persistent versions of the dy­
namic MST algorithms mentioned above, or by re-tracing paths through the 
history tree with non-persistent algorithms [15], but a better approach for 
the application is to calculate, after each update, the effects of all possible 
queries. This method is known as sensitivity analysis; it can be performed 
in almost linear time per update (23, 24], after which each query can be 
looked up in constant time. If made persistent, sensitivity analysis requires 
O(n) space per update to store the replacement edges for each MST edge. 
The non-MST replacements would seem to take O( m) space, but this can 
be reduced to O(n) using an algorithm based on lowest common ancestors. 

As before, we improve the space bounds by using an offiine data struc­
ture. We find each MST edge replacement by computing a set of O(logn) 
candidate replacement edges. We test whether each candidate is not already 
in the MST, and whether it correctly replaces the queded edge. We select 
the remaining candidate with the smallest weight; this will be the smallest 
weight replacement in the queried version of the graph. 

Our approach is similar to the update-only offiine algorithm in [12]. 
We start with a block of updates. By removing sorne edges in the graph, 
and contracting others, we reduce the graph graph to a size proportional 
to the number of updates. We split the updates into two subsequences, 
and continue recursively. At the bottom of the recursion, problems have 
constant size, and can be answered by brute force. As we reduce the graph, 
we retain information that lets us compute and test replacement candidates 
corresponding to each leve! of the reduction. 

Let the edges initially in graph G, or inserted into it by sorne update, 
be partioned into three sets, S, T, and U. U contains the edges involved 
in sorne update. T contains the MST of G - U. S contains the remaining 
edges. Cal! a vertex of the graph a bystander if it is adjacent to one of the 
edges in U. Cal! a vertex a link if it has degree two in T and it is not a 
bystander. The following facts are not diflicult to prove. 

l. No edge in S will ever be an MST edge. 

8 



2. If sorne MST edge in U is queried, it is replaced by an edge in TU U. 

3. If sorne MST edge e in T is queried, and its replacement is an edge in 
S, it will be the unique such edge in the MST of G - U - {e}. 

4. If e E T is not on any path in T between two bystanders, then e will 
always be an MST edge, and can only be replaced by an edge in S. 

5. Suppose e1 , e2 , •. ., ek form a path of edges in T, connected by link 
vertices, with e; having the largest weight in the path. Then for any 
j ol i, ej will always be an MST edge. Whenever e; is also an MST 
edge, the replacement for €j is either an edge in S or it is the same 
as the replacement for e¡. Whenever e¡ is not an MST edge, the 
replacement for ej is either an edge in S or it is e¡ itself. 

We compute the candidate replacement edges for fact (3) using sensitiv­
ity analysis. Facts (1-3) above show that, once this information has been 
collected, the edges in S play no further part in the computation, and we 
can safely remove them from the graph, leaving only sets T and U. 

We can then contract any edge satisfying fact ( 4), and any edge other 
than e; satisfying fact (5). Along with the candidate replacements from set 
S, we store for each contracted edge €j the corresponding heavy edge e;. 
Once the edges are contracted, the uncontracted edges of T form a tree in 
which each vertex that is not a bystander has degree at least three. The 
number of edges in this tree is proportional to the number of bystanders, 
and there are two bystanders adjacent to every updated edge; therefore we 
have reduced the problem on the original graph to a new problem in which 
the size of the graph is proportional to the number of updates. 

Let G' be the graph formed by throwing out the edges in S and con­
tracting certain edges in T, as described above. We split the sequence of 
updates in two, and reduce G' recursively for each subsequence. 

To find candidate replacements for an MST edge e, we test whether e 
is in sets S, T or U above. If it is in S it can not be in the MST, and 
we return the empty set. If it is in U, the candidates are found recursively 
in G' for the subsequence of updates containing the queried version. If the 
edge is in T, but is not contracted, the recursive candidates are joined by 
the replacement in S computed by sensitivity analysis. If it is contracted by 
fact ( 4), the candi date is simply the replacement from S. If it contracted by 
fact (5), the candidates are the replacement from S, the heavy edge e¡ on 
the same path, and the recursively computed replacement edges for e;. 

9 



. 
' 

We test a candidate replacement (u, v) for MST edge e by checking 
whether e is on the MST path from u to v. If e is not contracted, the result 
is computed recursively in the compressed graph G1

• If e is contracted by 
fact (4), the test can be answered with a data structure based on lowest 
common ancestors. If e is contracted by fact (5), let e; be the heavy edge 
on the contracted path; then depending on how u and v are placed relative 
to the path, e is between u and v either exactly when e; is between them 
or exactly when e; is not between them. So in constant time we can reduce 
the problem to one in GI, and testing each candidate takes time O(logn). 

Finally, we replace non-MST edges (u, v) by the heaviest edge on the 
MST path between u and v. We find O(logn) candidates; these need no 
testing and we simply choose the heaviest. If the edge is not contracted, it 
will be found recursively in G1

• If u and vare contracted to a common point, 
we can find the heaviest edge between them using lowest common ancestors. 
If the heaviest edge is contracted by fact ( 4), the candidate is the heaviest 
edge between u or v and the bystander into which it is contracted. If the 
heaviest edge is contracted by fact ( 5), u or v must be a link on a contracted 
path. Let e; be the uncontracted, heavy edge on the path. We select as a 
candidate the heaviest path edge e; in the opposite direction from e;. If e; 
is not between u and v, then e; will be between them, and e; will not be 
chosen because the true replacement will be heavier than it. 

Theorem 4. We can persistently maintain the MST of a dynamically 
changing graph, and answer edge replacement queries, in time O( m) per 
update, space O(logn) per update, time O(logn) per query of a non-MST 
edge, and time O(log2 n) per query of an MST edge. 

Proof: We divide the history tree into paths of 0( m/ log n) updates. We 
maintain a sorted list of the edge weights involved in the versions of each 
path; this takes O( m) space and update time per path, and aJlows us to 
compute MSTs and perform sensitivity anaJysis in linear time (16]. 

In each path, we recursively split the sequence of updates into subse­
quences, maintaining for each subsequence a compressed graph of propor­
tionaJ size, as described above. The first leve! of the recursion takes space 
O(m); the remaining O(logn) levels each take space O(m/logn). The total 
structure can be computed in time and space O(m). 

Each MST replacement query traces through this recursive decompo­
sition of update sequences and compressed graphs, in time O(log n ), and 
produces a list of O(logn) candidate replacements. Each candidate can be 
tested in time O(logn), so the total time per query is O(log2 n). D 

10 



6 Conclusions 

We have developed space-efficient persistent algorithms for decomposable 
search problems, for dynamic linear programming, and for minimum span­
ning trees in dynamic graphs. Our algorithms are based on a novel reduction 
from the online persistent problem to an offiine partially persistent version 
of the same problem. 

Sorne open problems remain. Perhaps the logarithmic factors that sep­
arate our algorithms from the best non-persistent algorithms can be elimi­
nated. Our algorithms for decomposable problems and linear programming 
allow tradeoffs between update and query time, while preserving low space 
complexity; can this be done for the MST problem? 

References 

[1] J.L. Bentley and J.B. Saxe. Decomposable searching problems I: static­
to-dynamic transformation. J. Algorithms 1 (1980) 301-358. 

[2] B. Chazelle. How to search in history. Inf. f3 Control 64 (1985) 77-99. 

[3] P.F. Dietz. Fully persistent arrays. lst Worksh. Algorithms and Data 
Structures, Springer-Verlag LNCS 382 (1989) 67-74. 

[4] P.F. Dietz and R. Raman. Persistence, amortization and randomization. 
2nd ACM-SIAM Symp. Discrete Algorithms (1991) 78-88. 

[5] D.P. Dobkin and D.G. Kirkpatrick. Fast detection of polyhedral in­
tersection. 9th Int. Colloq. Automata, Languages, and Programming, 
Springer-Verlag LNCS 140 (1982) 154-165. 

[6] D.P. Dobkin and J.I. Munro. Efficient uses of the past. J. Algorithms 6 
(1985) 455-465. 

[7] D.P. Dobkin and S. Suri. Dynamically computing the maxima of decom­
posable functions, with applications. 30th IEEE Symp. Found. Comput. 
Sci. (1989) 488-493. 

[8] J.R. Driscoll, N. Sarnak, D.D. Sleator, and R.E. Tarjan. Making data 
structures persistent. J. Comput. Sys. :jci. 38 (1989) 86-124. 

[9] J.R. Driscoll, D.D. Sleator, and R.E. Tarjan. Fully persistent lists with 
catenation. 2nd ACM-SIAM Symp. Discrete Algorithms (1991) 89-99. 

11 



,, 

[10] H. Edelsbrunner and H. Maurer. Finding extreme points in three di­
mensions and solving the post-of!ice problem in the plane. In/. Proc. 
Lett. 21 (1985) 39-47. 

[11] D. Eppstein. Finding the k best spanning trees. 2nd Scand. Worksh. 
Algorithm Theory, Springer-Verlag LNCS 447 (1990) 38-47. 

[12] D. Eppstein. Offline algorithms for dynamic minimum spanning tree 
problems. Manuscript, 1991. 

[13] D. Eppstein. Dynamic three-dimensional linear programming. 
Manuscript, 1991. 

[14] D. Eppstein, G.F. Italiano, R. Tamassia, R.E. Tarjan, J. Westbrook, 
and M. Yung. Maintenance of a mínimum spanning forest in a dynamic 
planar graph. lst ACM-SIAM Symp. Discrete Algorithms (1990) 1-11. 

[15] G.N. Frederickson. Data structures for on-line updating of mínimum 
spanning trees. SIAM J. Comput. 14 (1985) 781-798. 

[16] M.L. Fredman and D.E. Willard. Trans-dichotomous algorithms for 
mínimum spanning trees and shortest paths. 31st IEEE Symp. Found. 
Comput. Sci. (1990) 719-725. 

[17] H.N. Gabow. Two algorithms for generating weighted spanning trees in 
order. SIAM J. Comput. 6 (1977) 139-150. 

[18] H.N. Gabow and M. Stallman. Efficient algorithms for graphic matroid 
intersection and parity. 12th Int. Conf. Automata, Languages, and Pro­
gramming, Springer-Verlag LNCS 194 (1985) 210-220. 

[19] N. Katoh, T. Ibaraki, and H. Mine. An algorithm for finding k minimum 
spanning trees. SIAM J. Comput. 10 (1981) 247-255. 

[20] D. Kirkpatrick. Optimal search in planar subdivisions. SIAM J. Com­
put. 12 (1983) 28-35. 

[21] M.H. Overmars and J. van Leeuwen. Dynamization of decomposable 
searching problems yielding good worst case bounds. 5th GI Fachtagung 
Theoretische Informatik, Springer-Verlag LNCS 104 (1981) 224-233. 

[22] N. Sarnak and R.E. Tarjan. Planar point location using persistent 
search trees. C. ACM 29 (1986) 669-679. 

12 



" ! 

(23] R.E. Tarjan. Applications of path compression on balanced trees. J. 
ACM 26 (1979) 690-715. 

(24] R.E. Tarjan. Sensitivity analysis of mínimum spanning trees and short­
est path trees. Inf. Proc. Lett. 14 (1982) 30-33. 

(25] R.E. Tarjan and U. Vishkin. Finding biconnected components and com­
puting tree functions in logarithmic parallel time. 7th IEEE Symp. 
Found. Comput. Sci., New York (1984) 12-20. 

13 




