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Purpose: Three-dimensional, time-resolved blood flow measurement (4D-flow) is 
a powerful research and clinical tool, but improved resolution and scan times are 
needed. Therefore, this study aims to (1) present a postprocessing framework for 
optimization-driven simulation-based flow imaging, called 4D-flow High-resolution 
Imaging with a priori Knowledge Incorporating the Navier-Stokes equations and the 
discontinuous Galerkin method (4D-flow HIKING), (2) investigate the framework in 
synthetic tests, (3) perform phantom validation using laser particle imaging veloci-
metry, and (4) demonstrate the use of the framework in vivo.
Methods: An optimizing computational fluid dynamics solver including adjoint-
based optimization was developed to fit computational fluid dynamics solutions to 
4D-flow data. Synthetic tests were performed in 2D, and phantom validation was 
performed with pulsatile flow. Reference velocity data were acquired using particle 
imaging velocimetry, and 4D-flow data were acquired at 1.5 T. In vivo testing was 
performed on intracranial arteries in a healthy volunteer at 7 T, with 2D flow as the 
reference.
Results: Synthetic tests showed low error (0.4%-0.7%). Phantom validation showed 
improved agreement with laser particle imaging velocimetry compared with input 
4D-flow in the horizontal (mean −0.05 vs −1.11 cm/s, P < .001; SD 1.86 vs 4.26 
cm/s, P < .001) and vertical directions (mean 0.05 vs −0.04 cm/s, P = .29; SD 1.36 
vs 3.95 cm/s, P < .001). In vivo data show a reduction in flow rate error from 14% 
to 3.5%.
Conclusions: Phantom and in vivo results from 4D-flow HIKING show promise for 
future applications with higher resolution, shorter scan times, and accurate quantifi-
cation of physiological parameters.
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1  |   INTRODUCTION

Three-dimensional, time-resolved, three-directional MR flow 
imaging (4D-flow) is a powerful method for investigation of 
cardiovascular physiology1,2 and pathophysiology.3-8 Current 
4D-flow acquisition schemes provide comprehensive infor-
mation on hemodynamics, but the tradeoff between image 
quality and scan time still limits widespread use in patient 
studies and the clinic.

Recent advances in compressed sensing9 has enabled 
4D-flow with reduced scan times and improved image qual-
ity10-13 by introducing a priori information (ie, knowledge 
that the image is sparse in some transformed domain). Recent 
studies have explored using the Navier-Stokes equations 
as a source of a priori information for blood flow imaging 
by merging 4D-flow and computational fluid dynamics 
(CFD).14-23 The Navier-Stokes equations give a complete 
physical description of fluid flow and provides powerful a 
priori information, which may be used to increase resolution 
or reduce scan times.

Current methods for matching CFD to 4D-flow typically 
consist of three parts: an accurate CFD simulation with free 
parameters to optimize, a metric to measure the difference be-
tween CFD and 4D-flow, and an efficient strategy to update 
the parameters to minimize the difference metric. Most studies 
to date use CFD simulations with low order of accuracy, such 
as particle methods, finite differences, or low-order finite- 
element methods.14-15,21-24 Furthermore, the difference metric 
is usually not designed to model the 4D-flow measurement 
process.14-16,20-23 Finally, efficient optimization can be limited 
by a lack of efficient computation of the gradient of the differ-
ence metric.20,22 Funke et al16 used an adjoint CFD solver to 
compute gradients for efficient optimization. However, they 
used a low-order CFD method and a difference metric that 
does not take the 4D-flow measurement process into account.

We have developed a new optimization-driven simulation- 
based framework for efficient matching of high-order accu-
rate CFD to 4D-flow data, called the 4D-flow High-resolution 
Imaging with a priori Knowledge Incorporating the Navier-
Stokes equations and the discontinuous Galerkin method 
(4D-flow HIKING). This framework uses a high-order CFD 
solver, a difference metric modeling the 4D-flow measure-
ment process, and an efficient optimization strategy based on 
gradient computations through the adjoint CFD equations. 
The HIKING framework therefore uses the velocity field 
from acquired 4D-flow images in a segmented anatomic 
structure as input to an iterative CFD optimization, with the 
aim to improve temporal and spatial resolution with higher 

accuracy and precision. This can be applied to 4D-flow data 
from any sequence and scanner, as it takes place after MRI 
reconstruction.

Therefore, this study aims to (1) present the 4D-flow 
HIKING framework, (2) investigate the performance of the 
framework in synthetic test cases, (3) validate the framework 
using laser particle imaging velocimetry (PIV) in a phantom 
setup, and (4) demonstrate the use of the framework in vivo.

2  |   METHODS

2.1  |  Overview

The 4D-flow HIKING framework aims to create a detailed 
blood-flow computational fluid dynamics (CFD) simulation 
that matches the patient’s blood flow. The simulation con-
tains free parameters that prescribe the time-dependent flow 
at the boundaries. In earlier CFD approaches, information for 
this is typically taken from 2D through-plane flow scans,25,26 
which means that real-world information enters the simula-
tion model only at the inflow boundaries. Outflow conditions 
are typically specified by a flow split between vessels27,28 
or a Windkessel model.29 This potentially leads to a loss of 
simulation fidelity away from the inflow boundaries.

To improve the simulation, 4D-flow HIKING includes data 
from a full volumetric 4D-flow scan to optimally and automati-
cally determine boundary conditions. This is done by minimiz-
ing the difference between the CFD simulation and the 4D-flow 
data, as shown in Figure 1. Because the simulation data are de-
fined on a high-resolution mesh and the 4D-flow data are ac-
quired on a low-resolution grid, the comparison cannot be made 
directly. Therefore, the CFD data are subjected to a measure-
ment model that is designed to imitate the spatial and temporal 
averaging in the 4D-flow measurement.

In detail, the 4D-flow HIKING framework uses the 
4D-flow velocity data vMR and a forward model M (described 
in detail in the following subsection) that takes the spatial and 
temporal smoothing of the MRI measurement into account, 
to recover the high-resolution CFD data v�

CFD
. The CFD solu-

tion is uniquely determined by the geometry and a parameter 
vector µ, which defines flow at inlets and outlets. Recovery 
of the high-resolution CFD data v�

CFD
 is then formulated as 

the following optimization problem (Figure 1G):

(1)
min
�

I(�)

I (�) =
‖‖
‖

vMR − Mv
�

CFD

‖‖
‖

2

2
.

K E Y W O R D S

4D-flow MRI, blood flow, computational fluid dynamics, simulation-based imaging
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The obtained CFD solution is optimal in the sense that it 
is the closest CFD approximation to the 4D-flow data, while 
also considering the 4D-flow measurement process in the 
forward model M. This formulation does not include tunable 
parameters to weigh constraints and data, which simplifies 
the optimization.

A flowchart of the algorithm to minimize Equation 1 is 
given in Figure 2. The process is governed by the Interior 
Point OPTimizer software.30 The optimizer (Figure 2A) is 
initialized with an estimate of the parameter vector µ, and 

then starts the forward CFD solver (Figure 2B) to compute 
a CFD solution v�

CFD
. The CFD solution is combined with 

the 4D-flow data (Figure 2C) to compute the value of the 
objective function I(�). The adjoint CFD solver is then used 
to compute the gradient dI(�)∕d� (Figure 2B). The gradient 
information is used to update µ in the direction of the steepest 
descent of the objective function, thereby improving the fit of 
the CFD to the 4D-flow data. This process is repeated until 
convergence is attained.

2.2  |  Construction of the forward model M

The forward model M projects the CFD solution to the 
geometry of the MRI data, while also considering spa-
tial and temporal smoothing in 4D-flow. As previously 
shown,18 spatial smoothing can be modeled by the Cartesian 
MRI point spread function. The temporal smoothing was 
modeled as a smoothed averaging in time, with the window  
width equal to the temporal resolution of the 4D-flow  
scan.

In detail, let the Cartesian physical coordinates (x, y, z) be 
defined by the top-left pixel in the first slice of the 4D-flow 
data set, and its readout, phase-encoding, and slice-encoding 
directions. The MRI data are indexed using voxel numbers  
I = 1 … Nx, j = 1 … Ny, and k = 1 … Nz, and the timeframe 
number n = 1 … Nt. Each voxel has a center coordinate (xijk, 
yijk, zijk) with the voxel size (Δx, Δy, Δz), and the temporal 
resolution of the MRI data is Δt.

2.2.1  |  Temporal smoothing

Temporal averaging for each time step was modeled using 
a smoothed “box” function χ centered at position t0 with the 
width w and smoothing parameter σ (Supporting Information 
Figure S1A), as follows:

The factor α is used to normalize the area under the curve 
to 1. The temporal smoothing function wn

t
 for each 4D-flow 

time step n is then defined as

The parameter Δt was equal to the temporal resolution of 
the 4D-flow data. The smoothed shape of the box function 
was used to avoid discontinuities and improve numerical ac-
curacy of integrals. The parameter σt was set to 4 ms.

(2)

�(t; t0, w, �) = �

[
1

1 + e−(t− (t0 −w∕2))∕�
−

1

1 + e−(t− (t0 +w∕2))∕�

]

.

(3)wn
t
= �(t; tn,Δt, �t).

F I G U R E  1   Framework for optimization-based matching of the 
computational fluid dynamics (CFD) simulation to 4D-flow data. The 
goal of the present framework is to create a CFD simulation (B) that 
reflects the flow in the scanned patient (A) as closely as possible by 
selecting the parameters µ in an optimal way. To this end, a flow MRI 
scan is performed (C), resulting in 4D-flow data vMR (E). The limited 
resolution of the scan results in a temporal and spatial smoothing of 
the flow information (C). To compare the CFD simulation and the 
4D-flow data, the CFD simulation velocities v�

CFD
 are subjected to an 

imitation of the smoothing inherent in the MRI measurement process 
(D), encoded in the measurement operator M. This results in the 
simulated 4D-flow data Mv

�

CFD
 (F), which can be directly compared 

with the 4D-flow data vMR (G)

(A) Patient

(F) Simulated 4D

FHAngio

RL AP

Parameters 

(E) 4D flow: 

FHMag

RL AP

(B) CFD model of

(G) Minimize difference:

flow:

patient:

(C) Flow MRI scan (D) Model of
flow MRI scan (M)

Leads to temporal and
spatial smoothing M models temporal 

and spatial smoothing
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2.2.2  |  Spatial smoothing

For Cartesian 4D-flow,18 the spatial smoothing W
ijk
xyz 

for each voxel (i, j, k) is given in terms of the function 
sinc (x)= sin (�x) ∕ (�x), truncated by the smooth-box func-
tion χ as follows (Supporting Information Figure S1B):

The truncation smoothing parameter σxyz was set to  
σxyz = 0.1 × min(Δx, Δy, Δz) (Supporting Information  
Figure S1B,C).

With these definitions, the model M for the voxel (i, j, k) 
at the time step n was computed by multiplying the CFD ve-
locity field v�

CFD
 by the smoothing functions wn

t
 and Wijk

xyz and 
integrating as follows:

The outer integral (T) was taken over the whole time in-
terval of the 4D-flow data, and the inner integral (Ω) over the 
whole FOV. The integral was computed for each MRI voxel 
and for every time step.

2.3  |  Computational fluid dynamics 
implementation

Blood flow was modeled using the compressible Navier-Stokes 
equations with the isentropic assumption (constant entropy; 
flow is internally adiabatic and reversible), which provably 
approaches the incompressible Navier-Stokes equations in the 
low-velocity limit.31 In our simulations, flows were nearly in-
compressible (less than 1% density variation); therefore, the 
isentropic assumption accurately models incompressible flow 
without explicitly dealing with the incompressibility constraint, 
which would add significant analytical and computational com-
plexity in the method. Details on the mathematical formulation 
and discretization are presented in the Supporting Information.

The method was implemented in the in-house 3DG soft-
ware,32 a high-order multiphysics solver based on an efficient 
parallel implementation of the Discontinuous Galerkin (DG) 
method that allows for unstructured meshes of tetrahedral 
and hexahedral elements, implements a range of high-order 
implicit time-integrators, and uses automated symbolic dif-
ferentiation to evaluate Jacobians and sensitivities.

To evaluate the objective function in Equation 1, the in-
tegral in Equation 5 is computed in a solver-consistent man-
ner.33 Specifically, the basis functions and quadrature rule 
used in the DG method were used to compute the spatial in-
tegral. The temporal integral was converted into an ordinary 
differential equation and integrated with the same diagonally 
implicit Runge-Kutta (DIRK) scheme  used in the forward 
solver, which ensures that the truncation error of the objec-
tive function and governing equations match exactly.

(4)

Wijk
xyz

= sinc

(
x − xijk

Δx

)

sinc

(
y − yijk

Δy

)

sinc

(
z − zijk

Δz

)

× �
(
x; xijk, 4Δx, �xyz

)
�
(
y; yijk, 4Δy, �xyz

)

×�
(
z; zijk, 4Δz, �xyz

)
.

(5)[Mv
�

CFD
]ijkn = ∫

T

∫
Ω

v
�

CFD
wn

t
Wijk

xyz
dx dy dz dt.

F I G U R E  2   Optimization method. The optimizer (A) controls the fitting process by determining a parameter vector μ and starting the CFD 
solver (B). The primal CFD solver then computes the flow solution v�

CFD
. The value of the objective function I(�) is computed using the 4D-flow 

data (C). The adjoint solver is used to compute the gradient dI(�)∕d�, which enables efficient optimization

(C) 4D flow data

(A) Optimizer:

FHAngio

RL AP

(B) CFD solver with
     adjoint support

Compute

Adjoint solver:
compute                   

Primal solver:
compute           
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The gradient of the objective function was computed 
using a previously described adjoint method.33 The adjoint 
equations of the fully discrete CFD method are solved (lin-
earized equations solved backward in time), and the adjoint 
variables are used to compute the gradient dI(�)∕d� of the 
objective function I(�). Therefore, the cost to evaluate the 
objective gradient is approximately that of one standard (pri-
mal, nonlinear) CFD simulation and one adjoint linearized 
solution. In practice, the computational cost of the linearized 
solution may be somewhat larger than the primal simulation 
due to practical considerations such as file input and output 
(I/O) and evaluating partial derivatives. The adjoint method 
and solver-consistent approximation of the objective func-
tion were implemented in C++ within the in-house 3DG 
framework.33

The optimization problem (Equation 1) was solved using 
Interior Point OPTimizer.30 The solver uses a limited- 
memory quasi-Newton approximation of the objective 
function Hessian to compute a search direction to update 
the parameter vector μ. A line search is used to determine 
step sizes, to sufficiently reduce the objective function. 
Therefore, each adjoint solution (gradient evaluation) was 
followed by multiple primal solutions to determine an 
appropriate step size. Interior Point OPTimizer uses the 
Karush-Kuhn-Tucker conditions to end the optimization; 
however, it turns out to be more useful for the present ap-
plication to stop when the relative change ε in μ is smaller 
than a threshold (taken here as 𝜀<0.01) for three consecu-
tive iterations. For the in vivo experiment, a relative reduc-
tion of the objective function I(�) of less than 0.01 for two 
consecutive iterations was used.

Synthetic test cases were run using 16 threads on a com-
putation server with 256 GB of memory and 20 cores (dual 
Intel Xeon E5-2680). Flow phantom simulations were run on 
the Edison system at the National Energy Research Scientific 
Computation Center using 10 nodes, with two 12-core Intel 
“Ivy Bridge” processors (2.4 GHz) and 64 GB memory per 
node, for a total of 240 cores. The in vivo computations were 
performed using 24 cores on a 36-core server (dual Intel 
Xeon Gold 6154) with 384 GB memory.

Flow visualizations were generated using ParaView 
5.7.0 (KitWare, Clifton Park, NY), EnSight 10.2 (ANSYS, 
Canonsburg, PA), and MATLAB R2019a (MathWorks, 
Natick, MA).

2.4  |  Synthetic test cases

To investigate the performance of the method in a controlled 
setting with a known reference solution (synthetic test cases), 
a 2D synthetic numerical flow was constructed. A rectan-
gular domain (Figure 3A) with dimensions 180 × 175 mm2  
was defined, with a rectangular inlet of dimensions  

37.5 × 25 mm2. The mesh used rectangular elements of 
order P = 3 with resolution h = 6.25 mm. A time window of  
2.0 seconds was used with 80 time steps.

The inflow boundary condition was defined by polyno-
mial interpolation on three nodes over the inlet (Supporting 
Information Figure S2A), with parameters µ1, µ2, and µ3. The 
temporal parametrization was a Gaussian with center µ4 and 
SD µ5 (Supporting Information Figure S2B).

A reference solution was computed using the forward 
CFD solver, with a ground-truth parameter vector µ* = 
(26.25 cm/s, 35 cm/s, 26.25 cm/s, 0.5 s, 0.2 s). Kinematic 
viscosity was set to ν = 3.1·10−6 m2/s. The Reynolds num-
ber based on the inflow dimensions (25 mm), and peak 
inflow velocity (35 cm/s) was Re ≈ 2900. Three numeric 
MRI data sets were constructed with reduced resolution 
and Gaussian noise added to the velocity (Table 1): (1) 
4D-flow with spatial and temporal resolution following 
a recent consensus statement34 and previously published 
noise levels,35 (2) reduced spatial and temporal resolution 
(5 mm and 100 ms, respectively), and (3) higher noise lev-
els. The 4D-flow HIKING framework was then used to 
optimize the flow field by optimizing Equation 1 with re-
spect to the parameter vector µ = (µ1, µ2, µ3,  µ4, µ5). The 
initial guess for the parameter vector was µ0 = (17.5 cm/s,  
17.5 cm/s, 17.5 cm/s, 0 s, 1 s). The final flow estimation 
error was computed as the RMS (averaged L2 norm) of the 
difference between the optimized velocity field and the ini-
tial reference, with the mean taken over space and time.

2.5  |  Physical flow phantom validation

The flow phantom is shown in Figure 4 (previously described 
in detail36). In the main tank, a nozzle with diameter =  
25 mm is used to shape the pulsatile inflow from a custom-
built pump into a vortex ring, a 3D and pulsatile yet stable, 
well-defined, and reproducible flow field.37,38 Vortex rings 
appear naturally in the left ventricle of the human heart and 
are physiologically relevant in diastolic dysfunction and 
heart failure,2,39 and are therefore appropriate as a test case 
for the phantom validation.

Figure 4E,F shows the computational mesh used, contain-
ing 50 465 tetrahedra (“50k mesh”). The maximum element 
size in the part of the mesh with significant flow was 6 mm. 
High-order curved elements (P = 3, 4th-order accurate) were 
used to accurately represent the circular shape of the inflow 
nozzle (Figure 4F). A refined mesh (246 996 tetrahedra, “250k 
mesh”) was used to generate a high-resolution flow field with 
the final optimized parameter set for visualization purposes 
(typical element size = 2.8 mm). Geometry and meshing was 
performed using the software Gmsh 3.0.340 with the con-
structive solid geometry module in the OpenCASCADE mod-
ule (Open Cascade, Guyancourt, France).
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Phantom 4D-flow data were acquired on a 1.5T Philips 
Achieva scanner (Philips Healthcare, Best, The Netherlands). 
Spatial resolution was 3 × 3 × 3 mm3 and temporal resolu-
tion 50.4 ms. Sequence parameters are given in Table 1. To 
demonstrate the potential of 4D-flow HIKING to compute 
high-resolution flow from low-resolution data, the acquired 

4D-flow data were downsampled by a factor of 2 in space and 
time. The resulting input data to the framework had 6 × 6 ×  
6 mm3 voxels and a temporal resolution of 100 ms.

To provide a reference flow field, PIV was performed 
using a LaVision (Göttingen, Germany) system as previously 
described.36 The system consisted of a 10-Hz dual-pulse 

F I G U R E  3   Synthetic testing of the 4D-flow HIKING framework. A, Computational mesh, with quadrilateral elements of order P = 3 and 
side length h = 6.25 mm. Boundaries are color-coded as green for inflow (left), red for outflow (right), and black for walls (top and bottom). B, 
Reference CFD solution. For details on the prescribed inflow function vx(y, t), see Supporting Information Figure S2. C, Optimized flow from 
numerically constructed MRI flow data with spatial and temporal resolution according to a recent 4D-flow consensus statement34 and previously 
published noise figures.35 The upper part shows the downsampled velocity field used as input to the 4D-flow HIKING algorithm, and the lower part 
the vorticity of the optimized flow field. D, Optimization from reduced temporal and spatial resolution. E, Optimization from data with increased 
noise. The solutions in (C)-(E) show high similarity to the reference solution in (B), indicating a small error

(D) Low resolution
Input flow data
100 ms, 5 mm

Noise: 3%
 

(E) High noise
Input flow data
50 ms, 3 mm
Noise: 10%

 

(C) Standard 4D flow
Input flow data
50 ms, 3 mm

Noise: 3%
 

Velocity (cm/s)

403020100

(A) Mesh for 2D synthetic tests

25
37.5

180

75

75

Cells:
6.25 mm

[mm]

(B) Reference CFD solution Vorticity
(1/s)

-45

45

0

22.5

-22.5

Outflow

Inflow
x

y

Vorticity (1/s)

4522.50-22.5-45

Inflow condition:

T A B L E  1   Parameters of simulated MRI data sets for synthetic 2D experiments

Case FOV (mm2) Voxel size (mm) Matrix size
Temporal 
resolution (ms) Noise SD (cm/s)

Noise SD (% of 
peak velocity)

1: Standard 4D-flow 180 × 120 3 60 × 40 50 1.2 3%

2: Low resolution 180 × 120 5 36 × 24 100 1.2 3%

3: High noise 180 × 120 3 60 × 40 50 4 10%

Note: SD, standard deviation of Gaussian noise.
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532-nm Nd:YAG laser and a FlowMaster 3S camera with 
1280 × 1024 pixel resolution. The imaging FOV was 114 × 
92 mm, with pixel spacing of 0.09 mm. The laser and camera 
were operated in double-frame mode with 1.5 ms between 
the frames. Velocity data were computed by cross-correlating  
32 × 32-pixel patches of the two frames, including a 50% 
overlap. The resulting spatial resolution of the PIV velocity 
data was 1.45 × 1.45 mm. A temporal resolution of 10 ms 
was achieved by acquiring separate time frames from differ-
ent cycles of the pump.

The 4D-flow HIKING framework was applied with the 
downsampled 4D-flow velocity images as the input data. A 
cropped slice (20 × 13 voxels) in the symmetry plane of the 
nozzle was extracted from the full 4D-flow volume to accel-
erate the computation. All three flow directions and all time-
frames of the downsampled 4D-flow data were used. The 
inflow in the circular nozzle was described as a plug flow 
(constant over the nozzle inlet) with a generalized Gaussian 
profile over time, resulting in four free parameters that were 
optimized: the peak velocity of the flow (µ1), the position 
of the Gaussian (µ2), the width of the Gaussian (µ3), and the 
shape parameter β (µ4, Supporting Information Figure S2B). 

The parameters were initialized to match the through-plane 
flow in the phantom nozzle: µ0 = 32.7 cm/s, 0.22 s, 0.125 s,  
3.47. Kinematic viscosity was set to ν = 1.0·10−6 m2/s, con-
sistent with water at approximately 20°C. Mesh indepen-
dence was investigated by running the simulation on both the 
50k mesh and 250k mesh.

2.6  |  In vivo proof of concept

One healthy subject was scanned using a 7T MRI sys-
tem (Philips Achieva 7T, Philips Healthcare, Best, The 
Netherlands) at the National 7T Facility in Lund, Sweden. The 
study was approved by the local ethical review board in Lund, 
Sweden. A 4D-flow scan was performed in a transversal- 
oblique orientation to cover the distal left internal carotid artery  
and proximal middle cerebral artery. A time-resolved gradient-
echo angiographic image was acquired as a high-resolution  
anatomical reference, to be used for segmentation and mesh-
ing. Furthermore, a reference 2D flow measurement was  
acquired in the first segment (M1) of the left middle cerebral 
artery (Figure 1B). Sequence parameters are given in Table 2.

F I G U R E  4   Flow phantom. A, A 2D schematic drawing of the flow phantom,36 with a 25-mm nozzle. When driven with a pulsatile flow, 
vortex rings are generated downstream from the nozzle. B, Four-dimensional flow velocity data. C, Reference flow measurement using laser 
particle image velocimetry (PIV). D, An MR scan of the phantom geometry. E, A cut through the tetrahedral volume mesh. Varying color 
shades were assigned to each element for visualization purposes. F, Details of the 3D mesh, with second-order curved tetrahedra for accurate 
representation of the curved surfaces. For clarity, the mesh displayed here has a lower spatial resolution than the computational mesh used
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The left internal carotid artery, middle cerebral artery, 
anterior cerebral artery, and three major branches were 
segmented from the angiographic image stack using ITK-
SNAP.41 The segmentation was then imported into ICEM 
CFD v19.2 (ANSYS, Canonsburg, PA) to generate tetra-
hedral meshes (Figure 5A-C). Mesh independence was 

investigated by running simulations on two grids: one with  
11 645 elements and 150 time steps (11k mesh), and one with 
18 856 elements and 300 time steps (18k mesh). Voxels lo-
cated within the CFD mesh were used for the optimization. 
Voxels with a 3D velocity higher than 1 m/s were excluded to 
limit the influence of outliers on the optimization.

T A B L E  2   Summary of MRI sequence parameters for phantom and in vivo scans

Parameter

Flow phantom In vivo

4D-flow 4D-flow 2D flow Angio

Scanner, field strength Philips Achieva 1.5 T Philips Achieva, 7 T

Voxel size (mm) 3 × 3 × 3 0.7 × 0.7 × 0.7 0.5 × 0.5 × 3 0.5 × 0.5 × 0.5

Matrix size read × phase × slice 64 × 60 × 40 256 × 256 × 29 440 × 438 × 1 360 × 360 × 41

FOV (mm) read × phase × slice 192 × 180 × 120 180 × 180 × 20 220 × 220 × 1 180 × 180 × 20

Slice orientation Transverse Transverse oblique Sagittal oblique Transverse oblique

Phase-encode direction RL RL RL RL

SENSE (in-plane) 2 3 2 3

SENSE (slice direction) - - - -

Bandwidth per pixel (Hz) 308 404 316 405

TE/TR/flip (ms/ms/°) 3.7/6.3/7 2.9/6.8/20 3.7/7.6/7 3.0/6.8/20

VENC (cm/s) 100 150 150 -

Cardiac synchronization Synchronized to pump, retrospective PPU, retrospective PPU, retrospective PPU, retrospective

Temporal segmentation factor 2 3 3 22

Temporal resolution (ms) 50.4 163 45 150

Scan time (minutes:seconds) 15:30 10:07 0:56 2:48

Abbreviations: PPU, peripheral pulse unit; VENC, velocity-encoding parameter.

F I G U R E  5   In vivo CFD setup. A, 
Anatomical reference images (cardiac-
gated gradient echo, 0.5-mm voxels) used 
to construct the computational mesh. B,C, 
The generated mesh with the inlet in red and 
the five outlets in green. B, The location of 
the reference flow measurement as a black 
dashed line (first segment of middle cerebral 
artery, M1). D, Each inlet and outlet was 
parameterized over time with parabolic 
velocity curves in six equally spaced 
intervals, for a total of 12 parameters per 
inlet or outlet. In total, the model contained 
72 parameters to be optimized. ACA, 
anterior cerebral artery; AChA, anterior 
choroidal artery; ATA, anterior temporal 
artery; MCA, middle cerebral artery; 
PCOM, posterior communicating artery 
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The mesh contained six boundaries with flow: one inlet 
(internal carotid artery) and five outlets (Figure 5B,C). For 
each flow boundary, the flow was spatially constant (plug 
flow), and the temporal parametrization consisted of six el-
ements with a parabolic curve shape in each element, giving 
12 parameters per boundary (Figure 5D) (ie, 72 parameters 
to be optimized in total). Velocity at vessel walls was set to 
zero (no-slip condition). Parameters were initialized from the 
4D-flow data at the midpoint of each boundary. Kinematic 
viscosity was set to ν = 3.5·10−6 m2/s. Convergence was as-
sumed when the objective function I (�) decreased less than 
1% in three consecutive iterations.

2.7  |  Statistical methods

Agreement was quantified using linear regression, R2 val-
ues, and modified Bland-Altman analysis with the laser PIV 
data on the x-axis. Bias between laser PIV data and 4D-flow 
HIKING optimized flow is presented as mean ± SD for all 
analyzed voxels. For the phantom validation, differences in 
mean and SD of the error with respect to the PIV reference 
were tested using an unpaired t-test (for mean error) and an 
F-test (for differences in error SD). Mesh independence was 
analyzed by comparing point-wise velocities using Bland-
Altman plots. For statistical tests, P-values less than 0.05 
were considered statistically significant.

3  |   RESULTS

3.1  |  Synthetic test cases

Figure 3D-F shows 4D-flow HIKING optimizations for 
all three 2D synthetic test cases. Qualitatively, the opti-
mized flow fields are similar to the reference CFD solution. 
Quantitative accuracy was high, with errors of 0.22, 0.14, and 
0.24 cm/s, respectively (corresponding to 0.6%, 0.4%, and 
0.7% of the peak inflow velocity). The optimization of test 
case 1 required 81 minutes of wall-clock computation time 
(22 core hours). Case 2 required 64 minutes (17 core hours), 
and case 3 used 76 minutes total (20 core hours).

3.2  |  Phantom validation

Figures 6 and 7 show phantom results, with better agree-
ment with laser PIV for 4D-flow HIKING compared with 
the downsampled 4D-flow data used as input to the frame-
work, both in the horizontal (mean difference −0.05 vs − 
1.11 cm/s, P < .001; SD 1.86 vs 4.26 cm/s, P < .001) and 
vertical directions (mean 0.05 vs −0.04 cm/s, P = .29; SD 
1.36 vs 3.95 cm/s, P < .001). Additionally, 4D-flow HIKING 

results showed better agreement with laser PIV than the 
original non-downsampled 4D-flow data in the horizontal 
(mean −0.05 vs −0.36 cm/s, P < .001; SD 1.86 vs 2.25 cm/s,  
P < .001) and vertical directions (mean 0.05 vs 0.02 cm/s,  
P = .56; SD 1.36 vs 2.06 cm/s, P < .001).

Figure 7B,C shows convergence of the phantom valida-
tion parameters. The optimization converged after 7 hours 
and 19 minutes of wall-clock time (1756 core hours). The 
final parameter vector was µ* = 37.3 cm/s, 239 ms, 110 ms, 
3.46. Results on the 50k and 250k meshes showed strong 
agreement. The error was 0.02 ± 0.93 cm/s and −0.04 ±  
0.57 cm/s in the horizontal and vertical directions, respec-
tively (Supporting Information Figures S3 and S4).

3.3  |  In vivo proof of concept

Figure 8 shows in vivo results. The initial parameters show 
an underestimation of flow rate compared with the reference 
2D flow (error −14%, Figure 8B). After 4D-flow HIKING 
optimization, the flow curves show better agreement (flow 
rate error 3.5%, Figure 8C). Computation time was 5 hours 
and 45 minutes of wall-clock time (138 core hours).

Strong agreement was found between simulations on the 
two meshes (Supporting Information Figures S5 and S6), 
with low errors in all three flow directions (right–left: 0.02 ±  
2.19 cm/s, anterior–posterior: 0.07 ± 1.05 cm/s, feet–head: 
0.13 ± 1.26 cm/s).

4  |   DISCUSSION

This paper describes a new framework for optimization-
driven simulation-based matching of high-resolution CFD 
flow data to 4D-flow by incorporating the Navier-Stokes 
equations as a priori information, called 4D-flow HIKING. 
Synthetic test cases show the feasibility of the proposed for-
mulation to recover high-resolution flow from noisy data 
with low resolution. Phantom validation using PIV shows 
excellent accuracy. Furthermore, data from a healthy volun-
teer show that the method is feasible in vivo.

4.1  |  Relation to previous studies

Previous studies42,43 have used flow MRI data to inform 
CFD simulations. However, the flow  MRI data typically 
enters only as boundary conditions at the inlets, which means 
that the full potential of 4D-flow is not used. Additionally,  
because only the inflow boundary conditions are constrained, 
accuracy of the computed flow further downstream in the 
flow is not enforced. In contrast, our framework enables the 
use of a full volumetric 4D-flow velocity scan to optimize 
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both inflow and outflow conditions to fit the CFD flow field 
in the whole region of interest. In this way, CFD modeling 
assumptions are automatically and optimally guided by the 
full 4D-flow data set, thereby leading to more realistic CFD 
data.

Rispoli et al18 previously demonstrated high-resolu-
tion flow optimization in the carotid bifurcation using an 
MRI signal model and the SIMPLER44 CFD solver on a 
Cartesian grid. In contrast, our work uses a fully unstruc-
tured grid, potentially enabling local refinement in regions 
of interest (eg, near walls). Furthermore, they use a weight-
ing approach between the 4D-flow data and CFD solver, 
which leads to solutions that approximately fulfill the dis-
cretized Navier-Stokes equations. In this way, the relative 
influence of the MRI data or the CFD solver can be ad-
justed. However, adding such a weight factor to produce 
approximate CFD solutions is not feasible in our framework 

due to analytical and computational reasons. Instead, our 
framework searches for the exact CFD solution with the 
boundary conditions that give the best agreement with the 
existing 4D-flow data.

Funke et al16 applied a method similar to 4D-flow 
HIKING to the human aorta, including adjoint-based gra-
dient computation. However, they did not use a forward 
model of the MRI measurement process, opting instead 
to linearly interpolate the 4D-flow data onto the compu-
tational mesh nodes. Furthermore, they used a low-order 
CFD solver, which limits numerical efficiency. Guerra 
et al17 approached the CFD data-matching problem using 
optimal control theory, which after discretization led to a 
series of quadratic optimization problems, in which ap-
proximate gradients are computed in each step. In contrast, 
4D-flow HIKING computes exact gradients of the CFD 
solution.

F I G U R E  6   Phantom validation results. A, Laser PIV reference data. B, Acquired 4D-flow data (3-mm spatial resolution, 50-ms temporal 
resolution). C, Downsampled 4D-flow data used as input to the 4D-flow HIKING framework. D, Visualization of the final output of the 4D-flow 
HIKING optimization (isosurface at 37 cm/s in red). E, Agreement between the downsampled 4D-flow data used as input to the 4D-flow HIKING 
framework and laser PIV. F, Agreement for 4D-flow HIKING optimization and laser PIV, with significantly better performance compared with (E)

(E) 4D flow (downsampled) vs laser PIV (F) 4D flow HIKING vs laser PIV

(A) Laser PIV
reference

(B) 4D flow (C) 4D flow
downsampled

(D) 4D flow HIKING
reconstruction
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Goenezen et al20 used velocity data from optical coher-
ence tomography to perform CFD optimization of blood flow 
in chick embryo hearts. They used a heuristic algorithm to 
compute the inlet pressure level that resulted in a best-fit ve-
locity field to the Doppler data. A similar strategy was used 
by Mohd Adib et al22 by adjusting the pressure levels of out-
lets until a good fit to the 4D-flow data was found. The main 

limitation with this approach was that the number of param-
eter combinations to test grows quickly with the number of 
parameters. In contrast, the adjoint-based formulation used 
here can efficiently find the optimal solution using gradient 
descent, even for many parameters as shown in our in vivo 
proof of concept.

Furthermore, several groups used a CFD solver to com-
pute a library of flow fields for a given geometry, which are 
then combined in a filtering process to create the optimized 
flow.19,21,23 This constitutes a different approach compared 
with purely optimization-based methods such as 4D-flow 
HIKING. Bakhshinejad et al21 showed good performance 
in denoising simulated 4D-flow data in synthetic tests, and 
Gaidzik et al23 showed good accuracy in a physical phantom 
setup with PIV as the reference standard. Further studies are 
needed to elucidate the relative strengths and weaknesses of 
these filtering methods compared with 4D-flow HIKING.

4.2  |  Performance and accuracy

The synthetic test cases were designed to investigate the abil-
ity of the 4D-flow HIKING framework to recover a known 
flow field from MRI-like data. Good agreement with the 
ground truth was found in all three cases. This suggests that 
4D-flow HIKING can not only be used to increase spatial 
and temporal resolution in a given 4D-flow data set, but also 
to accelerate scans by acquiring images at lower spatial and 
temporal resolutions, or by using acceleration techniques that 
result in a higher noise level.

The laser PIV phantom validation showed good agree-
ment for the optimized CFD data, indicating that the forward 
model with spatial and temporal smoothing used in the opti-
mization is appropriate for Cartesian 4D flow. Future stud-
ies may further investigate an improved forward model for 
additional performance and accuracy. Interestingly, the op-
timized 4D-flow HIKING data, which used only the downs-
ampled 4D-flow data as input, had a better agreement with 
the laser PIV than the original high-resolution 4D-flow data. 
This highlights the potential of simulation-based imaging to 
both accelerate existing 4D-flow acquisitions and to improve 
accuracy.

For in vivo data, 4D-flow HIKING optimization improved 
agreement between the CFD model and the 2D-flow reference 
data. This shows the potential of 4D-flow HIKING to improve 
in vivo imaging, even in a setting with multiple inlets and out-
lets in arbitrary geometries, and many parameters to optimize. 
Because our method merges 4D flow and CFD, which are 
methods with separate error sources, limitations and assump-
tions, more comprehensive validation studies are needed to in-
vestigate the performance of the framework in vivo.

Previous studies have shown that in vivo blood-flow simu-
lations can be sensitive to in-plane (secondary) flow, helicity, 

F I G U R E  7   Accuracy improvement using 4D-flow HIKING  
in phantom data (A) and plots of parameter convergence (B,C).  
A, Improvement in accuracy of the 4D-flow HIKING optimization 
compared with the 4D-flow data. B,C, The change in optimization 
parameters over the 12 iterations. ***P < .001 for mean bias;  
†††P < .001 for SD of bias
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and spatial variations in the inflow boundary conditions.45-48 
As our present framework uses 1-dimensional “plug” flow at 
the boundaries, adding these features may improve accuracy 
in future in vivo applications. Using our adjoint-based opti-
mization framework, these features of the inflow profile can 
be automatically optimized to fit the available 4D-flow data. 
The fitting process can further benefit from accurate initial-
ization using optimized mappings from 4D-flow data to the 
CFD mesh, which conserves the flow rate and velocity field 
characteristics.49

Furthermore, Bozzi et al used Monte Carlo methods to 
evaluate the sensitivity of aortic CFD to boundary condi-
tions. They found that boundary condition uncertainties 
can be amplified in the CFD solution and influence both 
velocity and wall shear stress data.50 These effects can be 
further investigated using accelerated uncertainty quantifi-
cation methods.51

4.3  |  Future use of the 4D-flow 
HIKING framework

Optimization-driven, simulation-based flow imaging, 
using 4D-flow HIKING, generally has several potential 
applications: (1) to increase spatial and temporal resolu-
tion, in which the Navier-Stokes equations are used to 
compute blood flow at a higher resolution than possible 
to acquire with 4D flow; (2) to accelerate scans, in which 
a low-resolution 4D-flow data set is acquired in a fast scan 
and simulation-based imaging can then be used to recover 
an intermediate-resolution flow; and (3) to compute quan-
titative parameters not apparent in the 4D-flow data set  

(eg, wall shear stress in the aorta, carotid arteries, intracra-
nial arteries) to predict aneurysm formation and rupture52 and 
stenotic pressure loss, such as in coarctation of the aorta.53

4.4  |  Limitations

This study does not include adaptations of the mesh near 
walls to capture sharp velocity gradients in the boundary lay-
ers. Such mesh modifications may improve accuracy. In vivo 
blood flow was approximated as Newtonian, which has pre-
viously been shown to be appropriate.54 Furthermore, vessel 
walls were assumed to be rigid, and making them compliant 
may improve simulation fidelity.

Although the adjoint-based gradient computations enable 
efficient optimization, 4D-flow HIKING is currently lim-
ited by long computation times (several hours for our in vivo 
proof of concept). This may be alleviated by an optimized 
implementation of the adjoint CFD, or using reduced-or-
der models that provably converge to the full optimization 
problem.51

5  |   CONCLUSIONS

The presented framework for optimization-driven,  
simulation-based flow imaging, called 4D-flow HIKING, 
shows good performance in both synthetic test cases and 
phantom validation using laser PIV. In vivo results show 
promise for future applications with higher resolution, 
shorter scan times, and accurate quantification of physi-
ological parameters.

F I G U R E  8   Results of in vivo 
experiment. A, A 3D streamline 
visualization of the standard 4D-flow 
data. B, A 3D streamline visualization of 
the optimized 4D-flow HIKING solution. 
The dashed white line shows the 2D-flow 
measurement plane in the M1 segment of 
the left middle cerebral artery (MCA). C,  
A flow measurement in the M1 section of 
the MCA from the initialization of the CFD, 
with boundary conditions taken from the 
4D-flow data. The flow is underestimated 
by 14% compared with 2D flow. D, The M1 
flow curve from the optimized CFD. The 
flow curve shows improved agreement with 
the reference 2D flow, and the error has 
been reduced to 3.5%
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FIGURE S1 Smoothing functions used in the observation 
operator M. A, The temporal smoothing function consisted 
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of a box-like function with smoothed edges. The width was 
set to the temporal resolution of the 4D-flow MRI data.  
B, Spatial smoothing function: continuous line, sinc function; 
dashed line, smoothed truncation. C, Spatial smoothing func-
tion, final truncated form
FIGURE S2 Prescribed inflow velocity for the synthetic 
tests. A, The spatial parametrization of the inflow velocity 
as a polynomial with five control points, of which two at the 
edges were fixed to zero, and the three center points were set 
to µ1 = µ3 = 26.25 cm/s and µ2 = 35 cm/s. (B) The temporal 
parametrization, with parameters β = 2, µ4 = 0.5 seconds, and 
µ5 = 0.2 seconds
FIGURE S3 Mesh independence for the vortex tank phan-
tom validation experiment, visual results. For quantitative re-
sults, see Supporting Information Figure S4. The top row of 
(A)-(C) shows the x-component of the velocity. A, Velocity 
in the x-direction (horizontal) for the 50k element mesh. B, 
Velocity in the x-direction for the 250k element mesh. C, The 
difference between the two solutions. The y-component of 
the velocity (vertical) is shown in (D)-(F). Overall, there was 
a small difference. Visualizations were performed using in-
house codes written in MATLAB
FIGURE S4 Mesh independence for the vortex tank phan-
tom validation experiment, quantitative results. For visual 
results, see Supporting Information Figure S3. A, Agreement 
of the horizontal velocity between the 50k and 250k element 
meshes. B, Agreement of the vertical velocity between the 
50k and 250k element meshes. A strong correlation was 

found. C,D, The corresponding Bland-Altman plots. Overall, 
a strong agreement was found
FIGURE S5 Mesh independence for the in vivo proof of con-
cept, visual results. A, A 3D rendering of computations was 
performed on two different meshes: 11k elements (150 time-
steps; left) and 18k elements (300 timesteps; right). B, A slice 
through the 3D volume, with the right–left (RL), anterior– 
posterior (AP), and feet–head (FH) velocity components in the 
three rows. Columns show mesh 1, mesh 2, and the difference 
in velocity, respectively. Visually, solutions on the two different 
meshes show strong agreement. Flow visualizations were gen-
erated using ParaView 5.7.0 and MATLAB R2019a
FIGURE S6 Mesh independence for the in vivo proof of 
concept, quantitative results. A and B show agreement of the 
right-left (RL) velocity between the two computations (11k 
mesh, 150 timesteps and 18k mesh, 300 timesteps). C and 
D show the same plots for the anterior-posterior (AP) veloc-
ity. E and F show results for the feet-head (FH) direction. 
Overall, strong agreement was found.
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