
UC Santa Barbara
Volume 3 (2022)

Title
A Survey and Compilation of Natural Language Processing Model Compression Techniques

Permalink
https://escholarship.org/uc/item/06k43102

Authors
Murillo, Jorge
Su, Lawrence

Publication Date
2023-04-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/06k43102
https://escholarship.org
http://www.cdlib.org/

University of California, Santa Barbara Undergraduate Research and Creative Activities Journal

A Survey and Compilation of Natural
Language Processing Model Compression
Techniques

Jorge Murillo and Lawrence Su

Mathematics for College of Creative Studies, University of California, Santa Barbara

Abstract
Recent advances in Deep Neural Networks (DNN’s) over the last decade have allowed modern neural

networks to be reliably deployed ”on the edge” in countless applications ranging from computer vision

to natural language processing. Existing hardware is capable of running complex models with low

latency, but a problem occurs when applications are scaled to require cheaper hardware with shallower

memory resources or minimal latency. The goal of model compression is to take pre-trained, deep

neural networks and reduce their size to allow them to be readily deployed in areas requiring ”on-

device” inference such as self-driving vehicles and A.I. assistants. This paper covers recent advances in

the field of model compression that allowed us to create a 100x smaller model in terms of memory

storage while maintaining relatively stable accuracy.

Murillo and Su

URCAJ 2

1. Introduction
To motivate the need for model compression, consider self-driving cars. Self-driving cars have complex

models taking large input vectors from hundreds of sensors detecting and analyzing moving objects,

potential obstacles, and other vehicles, as well as being able to navigate the roads. Large deep neural

networks are capable of performing these tasks but must be able to be computed in real time using the

vehicle’s processing power. It would not suffice to use the cloud to perform these inferences, since a

vehicle could lose connection to the cloud depending on the terrain or region and cause an accident.

Making these models smaller would allow for hardware to perform inference more quickly, and reduce

space and energy requirements. With these benefits in mind, fields outside of vision techniques have

demonstrated benefits from compressing neural network structures, such as the NLP domain. Consider

GPT-3, OpenAI’s newest revolutionary NLP model. This is an A.I. program that can write poetry and

perform interactive storytelling. Given its revolutionary performance, the size of the model is huge,

containing over 175 billion parameters. Consuming 5 million USD of compute resources, such large

models are difficult to practically deploy. In order to combat its difficulty in deployment, we can explore

model compression techniques

There are currently four main known ways of compressing neural networks. The first method is to train

a smaller model using the primary larger model. This is known as Knowledge Distillation (KD). The

second method, Quantization, involves reducing the number of bits representing each weight or

activation outputs for each model. The third method is known as Pruning, and involves removing

unnecessary weights or neurons in the model by converting the weights to zero or deleting a neuron.

The final method is known as Low-rank approximation and is used to learn the ranks of each layer. The

primary techniques covered in this paper are knowledge distillation and quantization for Feed Forward

Neural Networks and Recurrent Neural Networks on Google’s Go-Emotions dataset. For some context,

the Go-Emotions dataset consists of 58,000 Reddit comments with 27 class labels, which we reduce to 7

class labels using Paul Ekman’s grouping of emotions: anger, disgust, fear, joy, sadness, and surprise, and

adding a final ”neutral” emotion whenever none of these emotions are expressed. In the following

sections, I introduce some explanations when necessary.

Murillo and Su

URCAJ 3

2. A Simple Neural Network

 Figure 1: A neuron. Photo Credit to Yan Laschev.

If you are familiar with a neural network structure, then you can skip this section.

Compressing a neural network requires modifying its structure. In this section we give a brief overview

of a simple neural network. A neural network consists of a set of neurons that are connected through

multiple layers. The goal of a neural network is to learn the mapping of input data to output data using a

given training dataset. Let’s consider the simplest neural network structure, a perceptron, which is

shown above. For simplicity, suppose we are trying to predict a reddit comment as having a neutral

emotion as either 0 (False) or 1 (True) based off our input data. There are two broad steps in training a

neural network, and in our case a perceptron: the forward-pass and backwards pass.

Step 1: Forward Pass

A forward pass involves passing the input data through the neuron, applying a non-linear activation

function, and returning a class label. A perceptron consists of N real-valued inputs, one neuron, and one

output. We define our weights inputs from our training

dataset, and a bias . Then a neuron is defined as

We apply a non-linear activation function f(z) onto z. Since oftentimes data is non-linear, applying this

non-linear transformation allows a neural network to find non-linear relationships between random

variables. It is able to better predict non-linear processes compared to models that apply linear

transformations onto the data, such as linear regression. In the case of a perceptron, our non-linear

activation function is a sigmoid function, i.e.

Murillo and Su

URCAJ 4

One useful property of is the property to return a binary output. This allows us to interpret as

a binary probability of our output being either 0 or 1. Usually we round to get predicted class label

0 or 1. In addition, is a differentiable function with derivative , which makes

it useful for the backwards pass.

Step 2: Backwards Pass

In this step, we optimize the neural network to predict comments in a training dataset (which are given

a vector representation) with high accuracy. To do this, we need to use a loss function to determine how

far our model’s predicted labels are from the true-labels, and then use gradient descent (or some other

optimization method) to update the weights w and bias b to minimize the loss function, and lead to

higher accuracy. In the case of classification we use a cross-entropy function as our loss function.

Suppose we are given a reddit comment and want to determine if it’s expressing a neutral emotion or

not. We want to compute the loss function and be able to update our model to better predict the label

for this (and upcoming) comments. We can assign a probability function P(x) where the assigned

neutral-label for our reddit comment has a probability 1.0 of occurring (since it’s already been assigned),

and probability 0.0 for the other label. Cross entropy is a function that can be used for calculating the

difference between two probability distributions. Let be the class distributions for our neutral

label, and is our approximation for , which is

The cross entropy computed using this value is defined as

where log is the natural log. So in our case, our loss function is

Once we have computed the loss function, we compute the error-gradient and update each weight bias

accordingly using chain rule. For example, if we want to update each weight , we first want to

compute , by computing

Since points to the direction where the loss function has the steepest ascent with respect to , we

update to go opposite of it. Then,

Murillo and Su

URCAJ 5

where is a hyper-parameter chosen by the programmer. Note that each pass through the training data

set is called an epoch. Usually we train the model for multiple epochs, and then check the accuracy of

our model on a separate validation dataset.

In general, the process of training a Feed Forward Neural Network (FFNN) involves some input data

(which we denote as vector , neurons in the hidden layers , and then an output

, where the dimensions are dependent on both the data and the programmer. Each

neuron are dependent on both the data and the programmer. Each neuron in layer takes in

any input from the prior layer and applies a non-linear activation function to interpret the data non-

linearly. The forward and backwards pass steps are similar to that of the perceptron.

3. Base Feed Forward Neural Network Architecture
We construct our base FFNN architecture as follows

Input (300-d vector)

Layer 1 (256-ReLU)

Layer 2 (128-ReLU)

Layer 3 (128-ReLU)

Output (8-Sigmoid)

This architecture was chosen through using grid search, where the notation is ”n-activation”, n the

number of neurons, activation the activation function. We train the model for 20 epochs on the training

dataset, based on seeing convergence of the models scores at around 20 epochs for that dataset.

4. Metrics: F1 Score, Precision, Recall
In our dataset, we have 7 emotions that we seek to classify: fear (F), anger (A), joy (J), sadness (S),

disgust(D), and surprise (R) and neutral (N), and a comment can have multiple labels at once. We count

the emotions expressed for each comment and see the following distribution. There are 58,000

comments, each reviewed by around 3-5 people, to reduce the chances of a comment being mislabeled.

Murillo and Su

URCAJ 6

Figure 2: Emotion Distribution

As we can see, we have data imbalance. A few class labels are highly underrepresented (E.g. Disgust).

Therefore, when training a model, viewing accuracy as a metric might be misleading, as the model may

learn to not predict disgust or fear at all, and still attain a high accuracy over predicting all the labels. As

such, we need to use metrics that can account for this imbalance. A good metric is the proportion of

correct predictions over all predictions of a particular emotion. This is known as Precision, which is

computed as

where (True Positives) is the number of labels predicted to be True that were, (False Positives)

are the number of labels predicted to be true that weren't false.

Another metric that we might want to consider is a metric that allows us to see the proportion of true

positives among all true examples of a particular emotion, known as Recall.

If we want to balance the two, we use the F1-score, which is a type of harmonic mean, that promotes

Precision and Recall being having similar scores/values. This is usually the preferred metric since it

captures information about both precision and recall.

5. Binary Cross Entropy Loss
Traditional classification oftentimes performs multi-class classification, in which we predict a particular

input has 1 of n classes. To do this, a real-value (oftentimes called a logit) is formed from applying

linear combinations to activations for the prior label considering each in our class To predict

the probability of a particular class , we compute the soft-max probability, which is defined as

Then, the loss function is usually a cross-entropy loss function, where the cross entropy loss computed is

defined as

Murillo and Su

URCAJ 7

However, a sentence oftentimes evokes multiple emotions, so we cannot assume every input has

exactly 1 of n-classes. Therefore our problem becomes a multi-label classification problem, where we

assume the probability of each class occurring is independent of the others. We need to have a loss

function that computes the loss for each 1 of n class label predictions.

To do this, we define

and use the Binary Cross Entropy loss function, which is defined as

This is equivalent to computing the average cross entropy for each particular label as a binary

classification problem.

6. Word Embeddings
Word embeddings are vector representations of words and sentences. Similar words have similar

representation and can be compared using cosine-similarity, you can restrict the dimension of the

embedding space (which in our case is 300 dimensions), and capture the context of the word by how

they’ve been trained. In particular we use the publicly available GloVe (Global Vectors for Word

Representation), which uses global word-word co-occurrence statistics to construct a vector-

representation of words [11]. To construct a vector-representation of sentences, we can take the

average of the word vectors in every sentence. If any words are missing from our mapping, we ignore

them . This method tends to capture the general meaning behind every sentence relatively well, but has

the limitation that sentences such as “The cat bit the dog” have the same sentence representation as

“The dog bit the cat”. We end up using both word-vector representations and sentence-vector

representations for our dataset.

 7. Quantization
The most widespread method of model compression is quantization, the method of using reduced float

point integers from the original model to represent its neurons. Neurons can be defined as

where is the weight vector, is the activation of neurons from the prior layer, and b is the bias. We

change the notation to be

When we quantize a network, we are using a function to modify the network and use a reduced

precision integer representation for the weights and/or activation. We consider how we can construct

this representation for both the weights and activations for bits.

Idea 1. Defining a quantization function for weights .

Suppose we are trying to quantize weights in a given layer. One of the simplest functions used to

Murillo and Su

URCAJ 8

quantize a network is known as uniform quantization. The quantization function is defined as

Here is a bounded range that our weights are clipped into, and

is an integer zero point number that can be used to center our quantized weight distribution around

zero [13].

Note that a clipping function with min and max is defined as

If we assume the weights are symmetrically distributed around zero, for computational efficiency we

can let

Then our quantization function becomes

Which results in mapping each weight to integers in the interval and allows

us to store the weights efficiently as . If we define then

 If we want to compute we can dequantize by performing

the quantization functions operations in reverse, i.e.

and compute This is the same method implemented by TensorFlow.

Idea 2 : Defining a quantization for the activations : :

Sigmoid and Relu functions are some of the most commonly used activation functions in a DNN,

where the sigmoid function is defined as and the relu function is defined as

We can see for both activation functions, for any , the resulting activation will be greater

than zero, hence the activation’s distribution will not be symmetrically distributed around the origin. So

defining will result in information loss as we constrict activations to the interval

Murillo and Su

URCAJ 9

 forcing us to use asymmetric quantization.

If we let , the uniform quantization function can be defined as

and the resulting outputs for will be mapped to integers in the interval

.

Suppose is our quantized vector representation of , and we want to approximate

We can dequantize the activation by using

to then compute

Idea 3: Combining both methods.

However, usually if we're quantizing the activations, we are also quantizing the weights, meaning we are

computing We can then write as

We can store offline and just apply it after every matrix multiplication step for this layer. This

implies that once we've quantized, we can perform integer multiplication [6]. (which is more efficient

for hardware to compute than floating point multiplication), and then re-scale the final output to a floating

point number.

Now that we’ve discussed the above functions, we can discuss their implementations. There are three

quantization methods : Dynamic Quantization, Post-Training Static Quantization, and Quantization Aware

Training [3] .

Dynamic quantization is simply when we quantize every weight . If we want to quantize and for

each layer without retraining the model, this is called Post-Training Static Quantization. This usually

requires some calibration data that passes through the network in order to understand the distributions

of the activations. In Post Training Static Quantization, we are quantizing and not necessarily

optimizing to best fit the data.

If we want to quantize optimally into ,the method we use is called Quantization Aware Training

Murillo and Su

URCAJ 10

(QAT).

In QAT, we tend to simulate quantized weights, quantized activations (which will be stored in fp-32) in the

forward pass, and then perform backpropagation on the values for the full precision model. After training

for a few epochs, we reduce the model to quantized weights, and activations to the desired bit format.

Figure 3: QAT, taken from [3]

In order to update the original models weights, using the simulated model’s outputs, we have to

compute

But applying the Int() function in the quantization function Q(x) (which converts a number from floating

point to an integer), causes Q(x) having a derivative of 0 almost everywhere, meaning has a derivative

of zero almost everywhere. To overcome this, we can use the straight through estimator (ST E) , which

defines

For us to then use

STE has been shown to empirically work, and has foundations from being an unbiased estimator of

stochastic-binary neurons [1].

Murillo and Su

URCAJ 11

8. Clustering Quantization Aware Training (CQAT)

Figure 4: CQAT implementation on the weights, figure taken from [5].

One idea to compress the model further is to take the model and cluster its weights w1, w2, ..., wn in a

given layer into k-groups, and then map each weight to their centroid c1, c2, ..., cn, or the center of each

approximate group [5]. We do this so as to minimize the within-cluster sum of squares (W CCS):

Each ci is initialized with equal distance between the minimum and maximum weights in a layer, as this

initialization has been shown to be highly effective (linear initialization). Afterwards, We perform QAT in

similar steps, except we preserve the weight clusters.To store the weights, we store their integer index

as well as their centroid, and then apply a lookup table for matrix multiplication. To update the weights,

we compute the loss for each centroid, and then update the centroids (and therefore the associated

weights for each centroid). We compute

where is the indicator function of whether or not index of weight is equal to . Note that the

activations are quantized in the standard manner. This method is immediately available on TensorFlow,

and we implement it using a feed forward neural network with the following specifications, comparing

each clustered model with the number of clusters.

Murillo and Su

URCAJ 12

Num. Clusters F1 Precision Recall

16 0.4753 0.5913 0.3965

32 0.477 0.5853 0.401

64* 0.486 0.583 0.417

128 0.486 0.581 0.418

Base 0.463 0.630 0.366

8.1 Comparing CQAT vs base FFNN vs QAT

Model F1 Precision Recall Model size

CQAT FFNN, k = 64 0.486 0.583 0.41 91kb

Uniform QAT 0.478 0.613 0.391 49 kb

Base FFNN 0.463 0.630 0.366 589 kb

We can see that CQAT outperforms the base RNN-Model in terms of the f1 score, while still being

smaller than the student model, and has more predictive power than the QAT model. Although this

behavior is not usually the case, it might be the case that by simplifying the model, we make it more

robust against noise, since parallels in the human brain have suggests that the human brain stores

information in a quantized form, with a rational being that discrete signal representations can be more

robust to low-level noise, as well allowing for higher efficiency under limited resources [3] . One con of

CQAT and other non-uniform quantization methods is that they require a Lookup Table (LUT) in order to

implement consistent, where we reference each weight index to it’s dequantized value, in order to

perform multiplication with each weight and activation, then sum them all up. Compare that to QAT

methods, where we can multiply each integer quantized weight and quantized activations together in a

neuron, sum them all up, then multiply the two sums by a scalar. Note that we were not able to

compare memory speedups or reductions in memory usage from quantization using Pytorch or

Tensorflow, so we only compare storage size. If we wanted to see these gains, we would have used edge

devices, which we did not buy.

Murillo and Su

URCAJ 13

9 Additive Powers of Two (APOT) Quantization.

9.1 Formula

Most weights distributions in a neural network are normally distributed, with a mean centered near zero

[8]. Now, uniform quantization distributes quantized values that when de-quantized, are spread uniformly

across an interval. While efficient, this method means less common weights are roughly the same distance

from their quantized counterparts as weights that are more common. To remedy that, non-uniform

quantization methods have been explored that assign more quantization values near the mean, and hence

closer approximation to the dequantized values on average, than other methods.

In particular, we explored additive powers of two (APOT)[8], which is defined as

where λ is a scaling factor to ensure the maximal sum is of length 1, k is the base bin-width, and

 ,

where b is the number of bits. We compute computing all possible

of which there are

total possible numbers, which are the desired number of bits. The definition of n restricts k to be a

factor of b, yet allows it to be a hyper-parameter that can be tuned to vary the degree of precision.

For post training quantization and quantization aware training, in the case of Sigmoid and Relu functions

used to activate neurons, their outputs are non-negative so we can use standard additive powers of

two. For the weights however (which are negative), We would first detach the sign, quantize the weights

using , then re-attach the sign to get a b total bit representation of the weights. You can

assign an integer representation of the number of bits by sorting the powers of two from smallest to

largest, then you take the index of the particular sum of powers of two which weight is closest to.

9.2 Approximating using APOT .

In order to use powers of two, we need to re-scale our weights, activation outputs to be within the interval

. Let’s consider weights w in the interval [a, b]. (Note that in my project we applied this method when

we moved on to explore compression methods on RNN’s and not FFNN’s). We want to apply APOT

quantization, using function q with parameters k, b. We may also need to clip weights to be within a

desired interval . Then we map the weights into the interval in order to use APOT

quantization. This is equivalent to dividing the weights by alpha, then clipping the weights into the interval

Murillo and Su

URCAJ 14

 . So to implement APOT quantization, we perform the following steps:

Step 1: divide by ,and store the absolute value of

Step 2: clip to be in the interval

Now has been mapped to the interval .

Step 3: apply APOT quantization onto w2.

Here we map w to a sum of powers of two.

where maps to the nearest sum of powers of two. Now has been mapped

to the interval . If we wanted to store the weights for later use efficiently, we would store the

index of the power of two that has been mapped to, multiplied by the sign of .

Step 4: Get the quantized approximation of w.

We do this multiplying by :

We are now mapping into the interval .

9.3 Optimizing α:

Rather than letting for our weights in a layer, we may want to optimize our clipping

value [10] (Note that we did not implement this method in the final model due to some difficulties in

implementing it, but cover it for the sake of completeness, since it's something the authors did in the

paper). In order to do so, we will need to compute We only need to compute since chain rule

tells us that

Note that

where

by using STE, and

Murillo and Su

URCAJ 15

Since

Therefore

Where we used the fact that

10. Knowledge Distillation (KD)
The core idea of this method is to take a large model, and then use information about the model’s

outputs/layers to train a smaller model.

Figure 5: A KD process where the student and teacher model co-teach one another.

One of the most common methods of knowledge distillation is known as Response Based Knowledge

Distillation, where the goal is to mimic the last layer (i.e. logits/predictions) of the neural network model

[4]. KL-Divergence is a commonly used function that’s applied onto the loss function to measure and

minimize the difference in distribution.

10.1 A standard response based knowledge distillation:

Step 1: Perform a forward pass on both the student and teacher model

Murillo and Su

URCAJ 16

Step 2: Compute loss comparing the difference in teachers predictions to the students predictions: We

can use KL divergence, where KL-Divergence between two distributions A, B is defined as

KL-divergence measures the relative divergence in distributions between A,B, unlike cross entropy,

which compares the total divergence in distribution. pA(vi), pb(vi) can be defined as the final sigmoid

activations [9], reflecting the probability of each emotion for a given reddit comment. In standard

classification, we are given hard-class labels of the form 0, 1. However, in response-based knowledge

distillation, the smaller model will try to mimic the teacher's probability outputs for each emotion. and

since the student model is given more information by the teacher model when it sees the probabilities

versus hard-class predictions, we can train smaller models to converge towards an optimal solution

more efficiently using a larger teacher model, than simply viewing the hard class labels. Furthermore,

we can allow the student model to learn to both mimic the teacher and learning the task by combining

KL-Divergence with BCE, meaning the loss of the student model becomes

Step 3: Perform back propagation on the student distribution.

11. Recurrent Neural Networks (RNN)

One limitation that Feed Forward Neural Networks have is their inability to record sequential information.

In order to predict emotions using a Feed Forward Neural Network, we needed to extract each word

vector from a comment, then construct a sentence vector by averaging these vectors as an input. Our

model may have better predictive power if we gave the model the word-vectors from a sentence in their

sequential order. We then could capture the sentence semantics, and the order of a word to reduce

ambiguity. We can do this by using a Recurrent Neural Network (RNN), and in particular, a Gated

Recurrent Unit RNN (GRU RNN).

RNN’s in general take in a variable sequence of data, say

and for each t, compute a hidden state (ht) that captures information from xt, xt−1, ...x1, by using non-

linear transformations. This allows for the model to have some ”memory” about prior xt, and use that to

predict

11.1 GRU-RNN

GRU-RNNs resemble short-term and long term memory. To accomplish this task, GRU RNNs have a

reset gate, and an update gate. GRU-RNNs use the following four variables (Note that for t = 0, h0 = 0.):

Murillo and Su

URCAJ 17

Ws, Us are matrices for s in {x, r, h}, ⊙ represents the hadamard product, and σ,tanh are implemented

element wise on their vector inputs. rt is known as the reset gate. Interpreted as the component

responsible for the model’s short term memory, it is a non-linear function used to determine how much

of ht−1 to consider in the new candidate state . zt is known as the update gate, where it constructs the

new hidden state ht by computing proportions of which to consider the prior hidden state ht−1 and the

new candidate hidden state . We can interpret this step as storing information or memory as long

term. We would compute each ht and return hn as an input for the remaining layers in our RNN.

11.2 Base RNN Model Architecture

We construct a large RNN model with a high F1 score. We choose the following architecture (found

through grid search).

Input Sequence of 300-d vectors

Layer 1 (256-GRU)

Layer 2 (256-GRU)

Layer 3 (128-Linear)

Output (8-Sigmoid)

Indeed, this model has a far higher F1 score than FFNN:

Model F1 Precision Recall

Base RNN

0.566

0.574 0.559

Base FFNN

0.463

0.630 0.366

Note: We chose to use a GRU model over the more popular LSTM model because it converges more

quickly. We train it for 10 epochs, seeing convergence at around 10 epochs.

Murillo and Su

URCAJ 18

11.3 Limitations in quantizing the GRU-RNN.

As we can see, Recurrent Neural Networks can take in variable length inputs, and apply activation

functions for each input. This makes applying QAT relatively difficult, since to quantize the activations

using APOT or symmetric uniform quantization , we would at minimum have to approximate

for each t in our dataset, where the t is variable.

In applications, computing these approximations may not be feasible for our t. For example, in our

model and go emotions dataset, if we were to implement symmetric uniform QAT, we would need to

compute αt, βt for each of the four variables , and we’d only be able to do so for up to t = 32, since the

maximum length sentence in our dataset had 32 words. If we returned a sentence with word count

larger than this one, we would not be able to accurately approximate αt, βt for activations in the

remaining characters effectively by simply computing

due to a small/non-existent sample size. So we limit ourselves to dynamic quantization, where we

quantize Ws, Us.

11.4 Applying Knowledge Distillation + APOT quantization onto the GRU-RNN.

Applying KD onto the GRU-RNN requires us to only modify the student and teacher loss functions.

Inspired by the QAT-KD method [7], We do this in two steps

Step 1: In order to teach the student model, we use the loss function

where zT, zS are logits, and which we apply sigmoid functions to compute p(zT), p(zS). For the teacher to

better adapt to the student distribution, we use the loss function

until the teacher model saturates. We perform the forward pass and backwards pass accordingly for

both the student and teacher model for a few epochs.

Step 2: Now that the teacher model has saturated, we stop updating the loss function for the teacher,

and only update the student, meaning we are only computing

We perform forward pass and backwards pass for the student model for a few epochs until the models

converge. Step 3 Finally, we apply APOT quantization to make the model smaller.

11.5 Student Model Architecture

We choose for our student model neural network the following architecture.

Murillo and Su

URCAJ 19

Input Sequence of 300-d vectors

Layer 1 (8-GRU)

Layer 2 (8-Linear)

Output (8-Sigmoid)

This architecture allows us to show the benefits of knowledge distillation. We select another larger GRU-

RNN Model with a decent F1 score to highlight the power of knowledge distillation, knowledge

distillation + APOT . It’s architecture is below

Input Sequence of 300-d vectors

Layer 1 (128-GRU)

Layer 2 (128-GRU)

Layer 3 (128-Linear)

Output (8-Sigmoid)

We apply 5-bit APOT quantization on the weights, detaching the sign of every weight to apply 4 bit

quantization with k = 2, then reattaching the sign to have a 5-bit representation. We train the student

model, and a model with the same parameters for 30 epochs on training data (though the student

model starts seeing convergence in 10 or so epochs), then check their scores on a separate validation

set-data.

Murillo and Su

URCAJ 20

11.6 Model scores

Model F1 Precision Recall Model size

Teacher Model (Base RNN) 0.566 0.574 0.559 3.2 mb

Other GRU Model 0.54 0.63 0.469 1.2 mb

Student Model, KD + 5 bit APOT* 0.543 0.579 0.511 7 kb

Student Model, KD 0.551 0.583 0.522 32 kb

Model with Student param., no KD 0.474 0.703 0.357 32 kb

As we can see, for our particular dataset, using KD and APOT quantization, we were able to construct

models that can attain an F1 score just as high (if not higher) than a larger GRU models while being 37-

171x smaller than that model, and in our case, 100-450x smaller than the teacher model.

12. Conclusion, Next Steps

We can see that model compression methods can shrink the size of neural networks tremendously. In

particular, we took a look at how non-uniform quantization methods such as clustering, APOT

quantization worked, and explored their impact the scores of our model. In addition, we took a look at

how knowledge distillation can be used to train our model. The ability for a student model to preserve

much of the predictive power of it’s teacher model has a basis in the lottery ticket hypothesis [12].The

lottery ticket hypothesis states that ”A randomly-initialized, dense neural network contains a

subnetwork that is initialized such that—when trained in isolation—it can match the test accuracy of the

original network after training for at most the same number of iterations” [2]. We saw something similar

for f1-scores when training the student model and teacher model, in that they converge at around 10

epochs. In addition, [2] suggests that we need large, over parameterized neural network models in order

to find the optimal sub-architecture, since they are easier to train than smaller neural networks.

In terms of next steps, it’s important to compare the benefits of APOT quantization with respect to

uniform quantization on an RNN, so it would be worth our time to construct a dynamically quantized

model using symmetric uniform quantization or some other quantization method. In addition, it would

be worth exploring later on if time permits, quantizing the activations for sequences of fixed length on a

GRU-RNN, and then using QAT-KD to quantize the student model. Furthermore, one limitation of APOT

quantization is that it needs for k to be a factor of its bits, meaning for smaller weight quantization

whose bits are assigned b = 4, 3, 2, 1, k is equal to either 1 or b−1. APOT quantization on our RNN will be

Murillo and Su

URCAJ 21

more optimized when optimizing α, where we can perhaps modify our approximation by using a

Generalized STE computed in [10].

To view the python notebook where we applied the APOT quantization and knowledge distillation onto

the GRU-RNN, click here. To view the python notebook where we applied the CQAT and other

quantization methods onto the FFNN, click here.

References

[1] Yoshua Bengio, Nicholas L´eonard, and Aaron Courville. “Estimating or propagating gradients through

stochastic neurons for conditional computation”. In: arXiv preprint arXiv:1308.3432 (2013).

[2] Jonathan Frankle and Michael Carbin. “The lottery ticket hypothesis: Finding sparse, trainable neural

networks”. In: arXiv preprint arXiv:1803.03635 (2018).

[3] Amir Gholami et al. “A survey of quantization methods for efficient neural network inference”. In:

arXiv preprint arXiv:2103.13630 (2021).

[4] Jianping Gou et al. “Knowledge distillation: A survey”. In: International Journal of Computer Vision

129.6 (2021), pp. 1789–1819.

[5] Song Han, Huizi Mao, and William J Dally. “Deep compression: Compressing deep neural networks

with pruning, trained quantization and huffman coding”. In: arXiv preprint arXiv:1510.00149 (2015).

[6] Benoit Jacob et al. “Quantization and training of neural networks for efficient integer-arithmetic-only

inference”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018, pp.

2704–2713.

[7] Jangho Kim et al. “Qkd: Quantization-aware knowledge distillation”. In: arXiv preprint

arXiv:1911.12491 (2019).

[8] Yuhang Li, Xin Dong, and Wei Wang. “Additive powers-of-two quantization: An efficient non-uniform

discretization for neural networks”. In: arXiv preprint arXiv:1909.13144 (2019).

[9] Yongcheng Liu et al. “Multi-label image classification via knowledge distillation from weakly-

supervised detection”. In: Proceedings of the 26th ACM international conference on Multimedia. 2018,

pp. 700–708.

[10] Zechun Liu et al. “Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via

Generalized Straight Through Estimation”. In: ArXiv abs/2111.14826 (2021).

[11] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. “GloVe: Global Vectors for Word

Representation”. In: EMNLP. 2014.

[12] Arman Rahbar et al. “On the unreasonable effectiveness of knowledge distillation: Analysis in the

kernel regime”. In: arXiv preprint arXiv:2003.13438 (2020).

https://colab.research.google.com/drive/1EvrDY6qWlCN8-ZT2Q_Ts-dl7YtKu__i9#scrollTo=FDRFK-IqC1EM
https://colab.research.google.com/drive/1vjmxu7mSgo0irTtn2U3wNvqk7stk0cFZ?usp=sharing

Murillo and Su

URCAJ 22

[13] Hao Wu et al. “Integer quantization for deep learning inference: Principles and empirical

evaluation”. In: arXiv preprint arXiv:2004.09602 (2020).

