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Abstract  
Recent advances in Deep Neural Networks (DNN’s) over the last decade have allowed modern neural 

networks to be reliably deployed ”on the edge” in countless applications ranging from computer vision 

to natural language processing. Existing hardware is capable of running complex models with low 

latency, but a problem occurs when applications are scaled to require cheaper hardware with shallower 

memory resources or minimal latency. The goal of model compression is to take pre-trained, deep 

neural networks and reduce their size to allow them to be readily deployed in areas requiring ”on-

device” inference such as self-driving vehicles and A.I. assistants. This paper covers recent advances in 

the field of model compression that allowed us to create a 100x smaller model in terms of memory 

storage while maintaining relatively stable accuracy.  
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1.  Introduction  
To motivate the need for model compression, consider self-driving cars. Self-driving cars have complex 

models taking large input vectors from hundreds of sensors detecting and analyzing moving objects, 

potential obstacles, and other vehicles, as well as being able to navigate the roads. Large deep neural 

networks are capable of performing these tasks but must be able to be computed in real time using the 

vehicle’s processing power. It would not suffice to use the cloud to perform these inferences, since a 

vehicle could lose connection to the cloud depending on the terrain or region and cause an accident. 

Making these models smaller would allow for hardware to perform inference more quickly, and reduce 

space and energy requirements. With these benefits in mind, fields outside of vision techniques have 

demonstrated benefits from compressing neural network structures, such as the NLP domain. Consider 

GPT-3, OpenAI’s newest revolutionary NLP model. This is an A.I. program that can write poetry and 

perform interactive storytelling. Given its revolutionary performance, the size of the model is huge, 

containing over 175 billion parameters. Consuming 5 million USD of compute resources, such large 

models are difficult to practically deploy. In order to combat its difficulty in deployment, we can explore 

model compression techniques  

There are currently four main known ways of compressing neural networks. The first method is to train 

a smaller model using the primary larger model. This is known as Knowledge Distillation (KD). The 

second method, Quantization, involves reducing the number of bits representing each weight or 

activation outputs for each model. The third method is known as Pruning, and involves removing 

unnecessary weights or neurons in the model by converting the weights to zero or deleting a neuron. 

The final method is known as Low-rank approximation and is used to learn the ranks of each layer. The 

primary techniques covered in this paper are knowledge distillation and quantization for Feed Forward 

Neural Networks and Recurrent Neural Networks on Google’s Go-Emotions dataset. For some context, 

the Go-Emotions dataset consists of 58,000 Reddit comments with 27 class labels, which we reduce to 7 

class labels using Paul Ekman’s grouping of emotions: anger, disgust, fear, joy, sadness, and surprise, and 

adding a final ”neutral” emotion whenever none of these emotions are expressed. In the following 

sections, I introduce some explanations when necessary.  
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2. A Simple Neural Network  

 

 Figure 1: A neuron. Photo Credit to Yan Laschev. 

If you are familiar with a neural network structure, then you can skip this section.  

Compressing a neural network requires modifying its structure. In this section we give a brief overview 

of a simple neural network. A neural network consists of a set of neurons that are connected through 

multiple layers. The goal of a neural network is to learn the mapping of input data to output data using a 

given training dataset. Let’s consider the simplest neural network structure, a perceptron, which is 

shown above. For simplicity, suppose we are trying to predict a reddit comment as having a neutral 

emotion as either 0 (False) or 1 (True) based off our input data. There are two broad steps in training a 

neural network, and in our case a perceptron: the forward-pass and backwards pass.  

Step 1: Forward Pass  

A forward pass involves passing the input data through the neuron, applying a non-linear activation 

function, and returning a class label. A perceptron consists of N real-valued inputs, one neuron, and one 

output. We define our weights  inputs from our training 

dataset, and a bias . Then a neuron is defined as  

 

We apply a non-linear activation function f(z) onto z. Since oftentimes data is non-linear, applying this 

non-linear transformation allows a neural network to find non-linear relationships between random 

variables. It is able to better predict non-linear processes compared to models that apply linear 

transformations onto the data, such as linear regression. In the case of a perceptron, our non-linear 

activation function is a sigmoid function, i.e.  
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One useful property of  is the property to return a binary output. This allows us to interpret  as 

a binary probability of our output being either 0 or 1. Usually we round   to get predicted class label 

0 or 1. In addition,  is a differentiable function with derivative , which makes 

it useful for the backwards pass.  

Step 2: Backwards Pass  

In this step, we optimize the neural network to predict comments in a training dataset (which are given 

a vector representation) with high accuracy. To do this, we need to use a loss function to determine how 

far our model’s predicted labels are from the true-labels, and then use gradient descent (or some other 

optimization method) to update the weights w and bias b to minimize the loss function, and lead to 

higher accuracy. In the case of classification we use a cross-entropy function as our loss function.  

Suppose we are given a reddit comment and want to determine if it’s expressing a neutral emotion or 

not. We want to compute the loss function and be able to update our model to better predict the label 

for this (and upcoming) comments. We can assign a probability function P(x) where the assigned 

neutral-label for our reddit comment has a probability 1.0 of occurring (since it’s already been assigned), 

and probability 0.0 for the other label. Cross entropy is a function that can be used for calculating the 

difference between two probability distributions. Let  be the class distributions  for our neutral 

label, and  is our approximation for , which is  

The cross entropy computed using this value   is defined as 

 

where log is the natural log. So in our case, our loss function is   

 

Once we have computed the loss function, we compute the error-gradient and update each weight bias 

accordingly using chain rule. For example, if we want to update each weight , we first want to 

compute , by computing   

 

Since  points to the direction where the loss function has the steepest ascent with respect to , we 

update  to go opposite of  it. Then,  
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where  is a hyper-parameter chosen by the programmer. Note that each pass through the training data 

set is called an epoch. Usually we train the model for multiple epochs, and then check the accuracy of 

our model on a separate validation dataset. 

In general, the process of training a Feed Forward Neural Network (FFNN) involves some input data 

(which we denote as vector , neurons in the hidden layers  , and then an output 

, where the dimensions  are dependent on both the data and the programmer. Each 

neuron  are dependent on both the data and the programmer. Each neuron  in layer  takes in 

any input from the prior layer and applies a non-linear activation function to interpret the data non-

linearly. The forward and backwards pass steps are similar to that of the perceptron. 

 

3. Base Feed Forward Neural Network Architecture  
We construct our base FFNN architecture as follows  

Input  (300-d vector) 

Layer 1  (256-ReLU) 

Layer 2  (128-ReLU) 

Layer 3  (128-ReLU) 

Output  (8-Sigmoid) 

         

This architecture was chosen through using grid search, where the notation is ”n-activation”, n the 

number of neurons, activation the activation function. We train the model for 20 epochs on the training 

dataset, based on seeing convergence of the models scores at around 20 epochs for that dataset.  

4. Metrics: F1 Score, Precision, Recall  
In our dataset, we have 7 emotions that we seek to classify: fear (F), anger (A), joy (J), sadness (S), 

disgust(D), and surprise (R) and neutral (N), and a comment can have multiple labels at once. We count 

the emotions expressed for each comment and see the following distribution. There are 58,000 

comments, each reviewed by around 3-5 people, to reduce the chances of a comment being mislabeled.  
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Figure 2: Emotion Distribution 

As we can see, we have data imbalance. A few class labels are highly underrepresented (E.g. Disgust). 

Therefore, when training a model, viewing accuracy as a metric might be misleading, as the model may 

learn to not predict disgust or fear at all, and still attain a high accuracy over predicting all the labels. As 

such, we need to use metrics that can account for this imbalance. A good metric is the proportion of 

correct predictions over all predictions of a particular emotion. This is known as Precision, which is 

computed as  

 

where  (True Positives) is the number of labels predicted to be True that were,  (False Positives) 

are the number of labels predicted to be true that weren't false.  

Another metric that we might want to consider is a metric that allows us to see the proportion of true 

positives among all true examples of a particular emotion, known as Recall. 

 

If we want to balance the two, we use the F1-score, which is a type of harmonic mean, that promotes 

Precision and Recall being having similar scores/values. This is usually the preferred metric since it 

captures information about both precision and recall.  

5. Binary Cross Entropy Loss  
Traditional classification oftentimes performs multi-class classification, in which we predict a particular 

input has 1 of n classes. To do this, a real-value  (oftentimes called a logit) is formed from applying 

linear combinations to activations for the prior label considering each  in our class   To predict 

the probability of a particular class , we compute the soft-max probability, which is defined as 

 

Then, the loss function is usually a cross-entropy loss function, where the cross entropy loss computed is 

defined as 
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However, a sentence oftentimes evokes multiple emotions, so we cannot  assume every input has 

exactly 1  of n-classes. Therefore our problem becomes a multi-label classification problem, where we 

assume the probability of each class occurring is independent of the others. We need to have a loss 

function that computes the loss for each 1 of n class label predictions. 

To do this, we define  

 

and use the Binary Cross Entropy  loss function, which is defined as  

 

This is equivalent to computing the average cross entropy for each particular label as a binary 

classification problem. 

6. Word Embeddings  
Word embeddings are vector representations of words and sentences. Similar words have similar 

representation and can be compared using cosine-similarity, you can restrict the dimension of the 

embedding space (which in our case is 300 dimensions), and capture the context of the word by how 

they’ve been trained. In particular we use the publicly available GloVe (Global Vectors for Word 

Representation), which uses global word-word co-occurrence statistics to construct a vector-

representation of words [11]. To construct a vector-representation of sentences, we can take the 

average of the word vectors in every sentence. If any words are missing from our mapping, we ignore 

them . This method tends to capture the general meaning behind every sentence relatively well, but has 

the limitation that sentences such as “The cat bit the dog” have the same sentence representation as 

“The dog bit the cat”. We end up using both word-vector representations and sentence-vector 

representations for our dataset.  

 7. Quantization  
The most widespread method of model compression is quantization, the method of using reduced float 

point integers from the original model to represent its neurons. Neurons can be defined as  

 

where  is the weight vector,  is the activation of neurons from the prior layer, and b is the bias. We 

change the notation to be  

When we  quantize a network, we are using a function  to modify the network and use a reduced 

precision integer representation for the weights and/or activation. We consider how we can construct 

this representation for both the weights and activations for  bits. 

Idea 1. Defining a quantization function  for weights .  

Suppose we are trying to quantize weights in a given layer. One of the simplest functions used to 
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quantize a network is known as uniform quantization. The quantization function is defined as 

  

Here   is a bounded range that our weights  are clipped into, and 

    

is an integer zero point number that can be used to center our quantized weight distribution around 

zero  [13].  

Note that a clipping function with min  and max  is defined as 

 

If we assume the weights  are symmetrically distributed around zero, for computational efficiency we 

can let 

     

Then our quantization function becomes 

 

Which results in     mapping each weight  to integers in the interval  and allows 

us to store the weights  efficiently as .  If we define   then 

 If we want to compute   we can dequantize  by performing 

the quantization functions operations in reverse, i.e. 

  

and compute  This is the same method  implemented by TensorFlow.

Idea 2 :  Defining a quantization for the activations  :  : 

Sigmoid and Relu functions are some of the most commonly used activation  functions in a DNN, 

where the sigmoid function is defined as  and the relu function is defined as  

     

We can see for both activation functions, for any , the resulting activation  will be greater 

than zero, hence the activation’s distribution will not be symmetrically distributed around the origin. So 

defining  will result in information loss as we constrict activations to the interval  
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  forcing us  to use  asymmetric quantization. 

If we let , the uniform quantization function can be defined as  

    

and the resulting outputs for  will be mapped to integers in the interval  

. 

Suppose   is  our quantized vector representation of , and we want to approximate 

  

We can dequantize the activation by using 

  

to then compute 

 

Idea 3: Combining both methods.  

However, usually if we're quantizing the activations, we are also quantizing the weights, meaning we are 

computing  We can then write  as 

  

  

  

We can store  offline and just apply it after every matrix multiplication step for this layer. This 

implies that once we've quantized,  we can perform integer multiplication [6]. (which is more efficient 

for hardware to compute than floating point multiplication), and then re-scale the final output to a floating 

point number.  

Now that we’ve discussed the above functions, we can discuss their implementations. There are three 

quantization methods : Dynamic Quantization, Post-Training Static Quantization, and Quantization Aware 

Training [3] .  

Dynamic quantization is simply when we quantize every weight  . If we want to quantize  and  for 

each layer  without retraining the model, this is called Post-Training Static Quantization. This usually 

requires some calibration data that passes through the network in order to understand the distributions 

of the activations. In Post Training Static Quantization, we are quantizing  and not necessarily 

optimizing  to best fit the data. 

If we want to quantize  optimally into ,the method we use is called Quantization Aware Training 
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(QAT). 

In QAT, we tend to simulate quantized weights, quantized activations (which will be stored in fp-32) in the 

forward pass, and then perform backpropagation on the values for the full precision model. After training 

for a few epochs, we reduce the model to quantized weights, and activations to the desired bit format. 

 

Figure 3: QAT, taken from [3]  

In order to update the original models weights, using the simulated model’s outputs, we have to 

compute   

But applying the Int() function in the quantization function Q(x) (which converts a number from floating 

point to an integer), causes Q(x) having a derivative of 0 almost everywhere, meaning  has a derivative 

of zero almost everywhere. To overcome this, we can use the straight through estimator (ST E) , which 

defines  

 

For us to then use 

 

STE has been shown to empirically work, and has foundations from being an unbiased estimator of 

stochastic-binary neurons [1].  
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8. Clustering Quantization Aware Training (CQAT)  

 

Figure 4: CQAT implementation on the weights, figure taken from [5].  

One idea to compress the model further is to take the model and cluster its weights w1, w2, ..., wn in a 

given layer into k-groups, and then map each weight to their centroid c1, c2, ..., cn, or the center of each 

approximate group [5]. We do this so as to minimize the within-cluster sum of squares (W CCS):  

Each ci  is initialized with equal distance between the minimum and maximum weights in a layer, as this 

initialization has been shown to be highly effective (linear initialization). Afterwards, We perform QAT in 

similar steps, except we preserve the weight clusters.To store the weights, we store their integer index 

as well as their centroid, and then apply a lookup table for matrix multiplication. To update the weights, 

we compute the loss for each centroid, and then update the centroids (and therefore the associated 

weights for each centroid). We compute  

where  is the indicator function of whether or not index  of weight  is equal to . Note that the 

activations are quantized in the standard manner. This method is immediately available on TensorFlow, 

and we implement it using a feed forward neural network with the following specifications, comparing 

each clustered model with the number of clusters.  
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Num. Clusters  F1  Precision  Recall 

16  0.4753  0.5913  0.3965 

32  0.477  0.5853  0.401 

64*  0.486  0.583  0.417 

128  0.486  0.581  0.418 

Base  0.463  0.630  0.366 

 

8.1 Comparing CQAT vs base FFNN vs QAT  

 

Model  F1  Precision  Recall  Model size 

CQAT FFNN, k = 64  0.486  0.583  0.41  91kb 

Uniform QAT  0.478  0.613  0.391  49 kb 

Base FFNN  0.463  0.630  0.366  589 kb 

 

We can see that CQAT outperforms the base RNN-Model in terms of the f1 score, while still being 

smaller than the student model, and has more predictive power than the QAT model. Although this 

behavior is not usually the case, it might be the case that by simplifying the model, we make it more 

robust against noise, since parallels in the human brain have suggests that the human brain stores 

information in a quantized form, with a rational being that discrete signal representations can be more 

robust to low-level noise, as well allowing for higher efficiency under limited resources [3] . One con of 

CQAT and other non-uniform quantization methods is that they require a Lookup Table (LUT) in order to 

implement consistent, where we reference each weight index to it’s dequantized value, in order to 

perform multiplication with each weight and activation, then sum them all up. Compare that to QAT 

methods, where we can multiply each integer quantized weight and quantized activations together in a 

neuron, sum them all up, then multiply the two sums by a scalar. Note that we were not able to 

compare memory speedups or reductions in memory usage from quantization using Pytorch or 

Tensorflow, so we only compare storage size. If we wanted to see these gains, we would have used edge 

devices, which we did not buy.  
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9 Additive Powers of Two (APOT) Quantization.  

9.1 Formula  

Most weights distributions in a neural network are normally distributed, with a mean centered near zero 

[8]. Now, uniform quantization distributes quantized values that when de-quantized, are spread uniformly 

across an interval. While efficient, this method means less common weights are roughly the same distance 

from their quantized counterparts as weights that are more common. To remedy that, non-uniform 

quantization methods have been explored that assign more quantization values near the mean, and hence 

closer approximation to the dequantized values on average, than other methods.  

In particular, we explored additive powers of two (APOT )[8], which is defined as  

where λ is a scaling factor to ensure the maximal sum is of length 1, k is the base bin-width, and 

 , 

where b is the number of bits. We compute computing all possible 

  

of which there are

 

total possible numbers, which are the desired number of bits. The definition of n restricts k to be a 

factor of b, yet allows it to be a hyper-parameter that can be tuned to vary the degree of precision. 

For post training quantization and quantization aware training, in the case of Sigmoid and Relu functions 

used to activate neurons, their outputs are non-negative so we can use standard additive powers of 

two. For the weights however (which are negative), We would first detach the sign, quantize the weights 

using , then re-attach the sign to get a b total bit representation of the weights. You can 

assign an integer representation of the number of bits by sorting the powers of two from smallest to 

largest, then you take the index of the particular sum of powers of two which weight is closest to. 

 

9.2 Approximating  using APOT . 

In order to use powers of two, we need to re-scale our weights, activation outputs to be within the interval 

. Let’s consider weights w in the interval [a, b]. (Note that in my project we applied this method when 

we moved on to explore compression methods on RNN’s and not FFNN’s). We want to apply APOT 

quantization, using function q with parameters k, b. We may also need to clip weights to be within a 

desired interval .  Then we map the weights into the interval  in order to use APOT 

quantization. This is equivalent to dividing the weights by alpha, then clipping the weights into the interval 
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 . So to implement APOT quantization, we perform the following steps: 

Step 1: divide  by ,and store the absolute value of 

Step 2: clip  to be in the interval   

 

Now  has been mapped to the interval . 

Step 3: apply APOT quantization onto w2.  

Here we map w to a sum of powers of two.  

 

where  maps  to the nearest sum of powers of two. Now  has been mapped 

to the interval . If we wanted to store the weights for later use efficiently, we would store the 

index of the power of two that  has been mapped to, multiplied by the sign of .  

Step 4: Get the quantized approximation of w. 

We do this multiplying   by :  

 

We are now mapping  into the interval . 

9.3 Optimizing α:  

Rather than letting  for our weights  in a  layer, we may want to  optimize our clipping 

value  [10] (Note that we did not implement this method in the final model due to some difficulties in 

implementing it, but cover it for the sake of completeness, since it's something the authors did in the 

paper). In order to do  so, we will need to compute   We only need to compute  since chain rule 

tells us that  

 

Note that  

 

where 

 

by using STE, and  
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Since 

  

Therefore 

 

 

Where we used the fact that  

10. Knowledge Distillation (KD)  
The core idea of this method is to take a large model, and then use information about the model’s 

outputs/layers to train a smaller model.  

 

Figure 5: A KD process where the student and teacher model co-teach one another.  

One of the most common methods of knowledge distillation is known as Response Based Knowledge 

Distillation, where the goal is to mimic the last layer (i.e. logits/predictions) of the neural network model 

[4]. KL-Divergence is a commonly used function that’s applied onto the loss function to measure and 

minimize the difference in distribution.  

10.1 A standard response based knowledge distillation:  

Step 1: Perform a forward pass on both the student and teacher model  
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Step 2: Compute loss comparing the difference in teachers predictions to the students predictions: We 

can use KL divergence, where KL-Divergence between two distributions A, B is defined as  

KL-divergence measures the relative divergence in distributions between A,B, unlike cross entropy, 

which compares the total divergence in distribution. pA(vi), pb(vi) can be defined as the final sigmoid 

activations [9], reflecting the probability of each emotion for a given reddit comment. In standard 

classification, we are given hard-class labels of the form 0, 1. However, in response-based knowledge 

distillation, the smaller model will try to mimic the teacher's probability outputs for each emotion. and 

since the student model is given more information by the teacher model when it sees the probabilities 

versus hard-class predictions, we can train smaller models to converge towards an optimal solution 

more efficiently using a larger teacher model, than simply viewing the hard class labels. Furthermore, 

we can allow the student model to learn to both mimic the teacher and learning the task by combining 

KL-Divergence with BCE, meaning the loss of the student model becomes 

 

Step 3: Perform back propagation on the student distribution.  

11. Recurrent Neural Networks (RNN)  

One limitation that Feed Forward Neural Networks have is their inability to record sequential information. 

In order to predict emotions using a Feed Forward Neural Network, we needed to extract each word 

vector from a comment, then construct a sentence vector by averaging these vectors as an input. Our 

model may have better predictive power if we gave the model the word-vectors from a sentence in their 

sequential order. We then could capture the sentence semantics, and the order of a word to reduce 

ambiguity. We can do this by using a Recurrent Neural Network (RNN), and in particular, a Gated 

Recurrent Unit RNN (GRU RNN).  

RNN’s in general take in a variable sequence of data, say  

 

and for each t, compute a hidden state (ht ) that captures information from xt, xt−1, ...x1, by using non-

linear transformations. This allows for the model to have some ”memory” about prior xt, and use that to 

predict 

 

11.1 GRU-RNN  

GRU-RNNs resemble  short-term and long term memory. To accomplish this task, GRU RNNs have a 

reset gate, and an update gate. GRU-RNNs use the following four variables (Note that for t = 0, h0 = 0.):  
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Ws, Us are matrices for s in {x, r, h}, ⊙ represents the hadamard product, and σ,tanh are implemented 

element wise on their vector inputs. rt  is known as the reset gate. Interpreted as the component 

responsible for the model’s short term memory, it is a non-linear function used to determine how much 

of ht−1  to consider in the new candidate state . zt is known as the update gate, where it constructs the 

new hidden state ht by computing proportions of which to consider the prior hidden state ht−1  and the 

new candidate hidden state . We can interpret this step as storing information or memory as long 

term. We would compute each ht and return hn as an input for the remaining layers in our RNN. 

11.2 Base RNN Model Architecture  

We construct a large RNN model with a high F1 score. We choose the following architecture (found 

through grid search).  

Input  Sequence of 300-d vectors 

Layer 1  (256-GRU) 

Layer 2  (256-GRU) 

Layer 3  (128-Linear) 

Output  (8-Sigmoid) 

 

 

Indeed, this model has a far higher F1 score than FFNN:  

Model  F1  Precision  Recall 

Base RNN      

0.566  

0.574  0.559 

Base FFNN      

0.463  

0.630  0.366 

 

Note: We chose to use a GRU model over the more popular LSTM model because it converges more 

quickly. We train it for 10 epochs, seeing convergence at around 10 epochs.  
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11.3 Limitations in quantizing the GRU-RNN.  

As we can see, Recurrent Neural Networks can take in variable length inputs, and apply activation 

functions for each input. This makes applying QAT relatively difficult, since to quantize the activations 

using APOT or symmetric uniform quantization , we would at minimum have to approximate  

 

for each t in our dataset, where the t is variable.  

In applications, computing these approximations may not be feasible for our t. For example, in our 

model and go emotions dataset, if we were to implement symmetric uniform QAT, we would need to 

compute αt, βt for each of the four variables , and we’d only be able to do so for up to t = 32, since the 

maximum length sentence in our dataset had 32 words. If we returned a sentence with word count 

larger than this one, we would not be able to accurately approximate αt, βt for activations in the 

remaining characters effectively by simply computing 

 

due to a small/non-existent sample size. So we limit ourselves to dynamic quantization, where we 

quantize Ws, Us. 

11.4 Applying Knowledge Distillation + APOT quantization onto the GRU-RNN.  

Applying KD onto the GRU-RNN requires us to only modify the student and teacher loss functions. 

Inspired by the QAT-KD method [7], We do this in two steps  

Step 1: In order to teach the student model, we use the loss function  

 

where zT, zS are logits, and which we apply sigmoid functions to compute p(zT), p(zS). For the teacher to 

better adapt to the student distribution, we use the loss function  

 

until the teacher model saturates. We perform the forward pass and backwards pass accordingly for 

both the student and teacher model for a few epochs.  

Step 2: Now that the teacher model has saturated, we stop updating the loss function for the teacher, 

and only update the student, meaning we are only computing  

 

We perform forward pass and backwards pass for the student model for a few epochs until the models 

converge. Step 3 Finally, we apply APOT quantization to make the model smaller.  

11.5 Student Model Architecture  

We choose for our student model neural network the following architecture. 
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Input  Sequence of 300-d vectors 

Layer 1  (8-GRU) 

Layer 2  (8-Linear) 

Output  (8-Sigmoid) 

 

This architecture allows us to show the benefits of knowledge distillation. We select another larger GRU-

RNN Model with a decent F1 score to highlight the power of knowledge distillation, knowledge 

distillation + APOT . It’s architecture is below  

Input  Sequence of 300-d vectors 

Layer 1  (128-GRU) 

Layer 2  (128-GRU) 

Layer 3  (128-Linear) 

Output  (8-Sigmoid) 

We apply 5-bit APOT quantization on the weights, detaching the sign of every weight to apply 4 bit 

quantization with k = 2, then reattaching the sign to have a 5-bit representation. We train the student 

model, and a model with the same parameters for 30 epochs on training data (though the student 

model starts seeing convergence in 10 or so epochs ), then check their scores on a separate validation 

set-data.  
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11.6 Model scores  

Model  F1  Precision  Recall  Model size 

Teacher Model (Base RNN)  0.566  0.574  0.559  3.2 mb 

Other GRU Model  0.54  0.63  0.469  1.2 mb 

Student Model, KD + 5 bit APOT*  0.543  0.579  0.511  7 kb 

Student Model, KD  0.551  0.583  0.522  32 kb 

Model with Student param., no KD  0.474  0.703  0.357  32 kb 

 

As we can see, for our particular dataset, using KD and APOT quantization, we were able to construct 

models that can attain an F1 score just as high (if not higher) than a larger GRU models while being 37-

171x smaller than that model, and in our case, 100-450x smaller than the teacher model.  

12. Conclusion, Next Steps  

We can see that model compression methods can shrink the size of neural networks tremendously. In 

particular, we took a look at how non-uniform quantization methods such as clustering, APOT 

quantization worked, and explored their impact the scores of our model. In addition, we took a look at 

how knowledge distillation can be used to train our model. The ability for a student model to preserve 

much of the predictive power of it’s teacher model has a basis in the lottery ticket hypothesis [12].The 

lottery ticket hypothesis states that ”A randomly-initialized, dense neural network contains a 

subnetwork that is initialized such that—when trained in isolation—it can match the test accuracy of the 

original network after training for at most the same number of iterations” [2]. We saw something similar 

for f1-scores when training the student model and teacher model, in that they converge at around 10 

epochs. In addition, [2] suggests that we need large, over parameterized neural network models in order 

to find the optimal sub-architecture, since they are easier to train than smaller neural networks.  

In terms of next steps, it’s important to compare the benefits of APOT quantization with respect to 

uniform quantization on an RNN, so it would be worth our time to construct a dynamically quantized 

model using symmetric uniform quantization or some other quantization method. In addition, it would 

be worth exploring later on if time permits, quantizing the activations for sequences of fixed length on a 

GRU-RNN, and then using QAT-KD to quantize the student model. Furthermore, one limitation of APOT 

quantization is that it needs for k to be a factor of its bits, meaning for smaller weight quantization 

whose bits are assigned b = 4, 3, 2, 1, k is equal to either 1 or b−1. APOT quantization on our RNN will be 
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more optimized when optimizing α, where we can perhaps modify our approximation  by using a 

Generalized STE computed in [10].  

To view the python notebook where we applied the APOT quantization and knowledge distillation onto 

the GRU-RNN, click here. To view the python notebook where we applied the CQAT and other 

quantization methods onto the FFNN, click here.  
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