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Physiologic MRI for assessment of response to therapy and
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Aside from bidimensional measurements from conventional contrast-enhanced MRI, there are no validated or FDA-qualified im-
aging biomarkers for high-grade gliomas. However, advanced functional MRI techniques, including perfusion- and diffusion-
weighted MRI, have demonstrated much potential for determining prognosis, predicting therapeutic response, and assessing
early treatment response. They may also prove useful for differentiating pseudoprogression from true progression after temozo-
lomide chemoradiation and pseudoresponse from true response after anti-angiogenic therapy. This review will highlight recent
developments using these techniques and emphasize the need for technical standardization and validation in prospective studies
in order for these methods to become incorporated into standard-of-care imaging for brain tumor patients.
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Pseudoprogression (PsP) and pseudoresponse remain substan-
tial impediments to accurate response assessment of high-
grade gliomas (HGGs). Advanced MRI may elucidate aspects
of tumor physiology that augment structural information
from conventional MRI when interpreting complex enhance-
ment and fluid attenuated inversion recovery (FLAIR) signal
changes in treated gliomas. Such physiologic techniques in-
clude diffusion and perfusion MRI, which have gained consider-
able experimental support as methods for improving diagnostic
accuracy. Securing the potential gains in accuracy achieved
with these techniques requires additional standardization and
validation in prospective trials, with the overarching goal
being the betterment of outcomes in HGG patients through im-
proved clinical decision making. This review focuses on the lat-
est advances in diffusion and perfusion MRI and provides an
assessment of the evidence supporting the role of advanced
MRI in improving the evaluation of HGGs.

Basic Principles of Perfusion and Diffusion MRI

Perfusion MRI

Brain perfusion can be assessed with MRI using dynamic sus-
ceptibility contrast (DSC), dynamic contrast-enhanced (DCE),

and arterial spin labeling techniques. Because contrast-
enhanced MRI is standard-of-care for assessing brain tumors,
perfusion-weighted imaging (PWI) techniques using a
gadolinium-based contrast agent (GBCA), particularly DSC-MRI
and to a lesser extent DCE-MRI, are the most prevalent MRI-
based methods for measuring brain tumor perfusion.1 – 3 An
overview of DSC- and DCE-MRI techniques is provided in Table 1.

DSC-MRI rapidly acquires gradient echo or spin echo planar
images during first-pass transit through the brain of an exoge-
nous, paramagnetic GBCA that transiently decreases signal in-
tensity. Voxel-wise changes in contrast agent concentration are
determined from signal-time curves and processed using tracer
kinetic modeling and indicator dilution theory to estimate cere-
bral blood volume (CBV), cerebral blood flow (CBF), and mean
transit time. Relative CBV (rCBV) is the most common DSC-MRI
metric for evaluating brain tumors.

DSC-MRI is based on the assumption that a GBCA remains
intravascular, a condition frequently violated in brain tumors.
Various methods to minimize the error introduced by contrast
extravasation have been developed, although no standardiza-
tion of technique has yet been achieved.4 A few options will be
briefly discussed. One simple method is to focus analysis on
nonenhancing portions of the tumor; however, this technique
is obviously prone to bias and exclusion of the most malignant
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contrast-enhancing portions of the brain tumor.1 Other tech-
niques include the use of gamma-variate fitting of the
relaxivity-time curves to eliminate recirculation effects, and
the use of low flip angles (ie, 35–60 degrees) or longer repeti-
tion times and echo times to reduce T1 contamination. Howev-
er, one may encounter a lower signal-to-noise ratio of the CBV
maps using these methods.5,6 We recommend a technique
which combines a preload of a GBCA along with model-based
postprocessing leakage correction.4,6 A preload refers to admin-
istration of a GBCA prior to the subsequent dose of a GBCA for
the dynamic imaging in DSC-MRI. This, along with model-based
postprocessing leakage correction, can decrease both T1 and
T2* effects that can result in inaccurate rCBV values seen in
enhancing lesions like brain tumors.

DCE-MRI is based on the T1 relaxivity properties of a GBCA.
Whereas conventional contrast-enhanced MRI provides a qual-
itative, static depiction of brain tumor contrast enhancement,
DCE-MRI quantifies various dynamic features of blood–brain
barrier contrast agent leakage. Commonly, a 2-compartment
(plasma and extravascular-extracellular spaces) pharmacoki-
netic model is used (Fig. 1).7 After baseline T1 maps are obtained,
T1-weighted DCE-MRI images are acquired before, during, and
after a GBCA administration. A vascular input function is deter-
mined, and pharmacokinetic modeling yields the extravascular-
extracellular (ve) and plasma (vp) space volume fractions, transfer
constant (Ktrans), and rate constant (kep¼ Ktrans/ve).7 Ktrans,
thought to reflect microvascular permeability but also represen-
tative of blood flow and vessel surface area,7 is the most com-
mon metric in brain tumor studies. The initial area under the
contrast agent concentration curve (IAUC) is a model-free pa-
rameter reflecting CBF, CBV, microvascular permeability, and ve

that is less physiologically specific than Ktrans.7

Diffusion MRI

Diffusion-weighted imaging (DWI) is sensitive to random mi-
croscopic (Brownian) motion of water molecules that results
in signal loss and consequent hyperintensity in areas of restrict-
ed diffusion. The apparent diffusion coefficient (ADC) reflects
the magnitude of water motion, with restricted diffusion having
lower ADC values. DWI-based techniques can provide insight
into the microscopic tissue environment, including intra- and

extracellular space volumes. Increased extracellular water
(as in vasogenic edema) increases ADC, whereas cytotoxic
edema (from hypoxia or other causes of cell swelling) decreas-
es ADC. More importantly for tumor imaging, ADC is inversely
correlated with cell density,8 probably due to reduced water
mobility from dense cellular packing.

Functional diffusion maps (fDMs) are an extension of DWI in
which coregistered scans from multiple time points are com-
pared on a voxel-wise basis to temporally track stereospecific
changes in ADC.9 This permits visualization and quantification
of regional variations of response within tumor and peritumoral
regions, which is potentially significant in heterogeneous HGGs.
Functional DMs require precise registration of images from

Table 1. Overview of DSC- and DCE-MRI

DSC-MRI DCE-MRI

Alternative names Bolus-tracking MRI Tl-weighted perfusion imaging, permeability imaging
Image weighting T2/T2* T1
Image acquisition Rapid measurement of T2/T2*-weighted signal change

before, during, and after bolus GBCA injection
Rapid measurement of T1-weighted signal change

before, during, and after bolus GBCA injection
Common metrics in brain

tumor imaging
rCBV Ktrans, vp, ve

Assumptions Assumes GBCA remains within intravascular space;
violation of this causes leakage effects, which is
common in tumors and confounds rCBV
measurements

Utilizes complex pharmacokinetic models to estimate
microvascular permeability between intravascular
space and EES

Abbreviations: EES, extravascular-extracellular space; Ktrans, transfer constant; vp, plasma space volume fraction; ve, EES volume fraction.

Fig. 1. Two-compartmental DCE-MRI pharmacokinetic model. A GBCA
(circles) leaks across the vascular endothelium into the extravascular-
extracellular space (EES) but does not enter into cells. Ktrans represents
the transfer constant between blood plasma and the EES, vp is the
plasma space volume fraction, ve is the EES volume fraction, and kep

is the rate constant (Ktrans/ve).
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multiple time points, presenting a technical challenge. Ongoing
work seeks to overcome this difficulty and improve the accura-
cy of fDM-based biomarkers by using innovative methods that
quantify and reduce registration errors.10

Major Applications of Perfusion and Diffusion MRI to the
Management of Brain Tumor Patients

PWI and DWI can augment conventional MRI in the initial-
evaluation and posttreatment monitoring of brain tumors.
Although there are many potential neuro-oncologic applica-
tions of these techniques, most fall within 4 distinct categories:
(i) improving accuracy in prognosis and predicting efficacy of a
specific therapy prior to treatment initiation; (ii) assessing effi-
cacy of therapy before standard response indicators (eg, chan-
ge in size of enhancing tumor) are affected; (iii) distinguishing
true response from pseudoresponse and increasing sensitivity
and specificity for nonenhancing tumor; and (iv) distinguishing
true progression from PsP.

Determining Prognosis and Predicting Efficacy of Therapy
Prior to Treatment

Several studies have demonstrated the prognostic value
of rCBV in HGGs, finding that increased rCBV is associated
with poorer outcomes. For instance, maximum rCBV within
treatment-naive tumor correlates with OS,11,12 and gliomas
with mean rCBV . 1.75 progress earlier than those with lower
rCBV.13 Similarly, high pretreatment baseline Ktrans is associated
with worse progression-free survival (PFS) and overall survival
(OS).14 A study combining DCE-MRI and DSC-MRI evaluations
in the same newly diagnosed case of glioblastoma multiforme
(GBM) found that both Ktrans and rCBV correlated with OS.15 In-
terestingly, Ktrans and rCBV are typically not well correlated with
each other,16 suggesting that these perfusion metrics reflect
different aspects of GBM biology.

In addition to use as a prognostic marker, PWI may also pre-
dict treatment response. A recent retrospective study of
DCE-MRI in recurrent GBM found that baseline Ktrans prior to
bevacizumab treatment predicted PFS and OS.17 Conversely,
there was no relationship between pretreatment Ktrans and out-
come measures in a control cohort that did not receive bevaci-
zumab therapy. This indicates that Ktrans is a predictive, rather
than prognostic, marker in this setting.

Similar to PWI, diffusion-based metrics also have both prog-
nostic and predictive merit. For instance, in patients with HGGs
treated with chemoradiation, low pretreatment mean tumor
ADC is associated with shorter survival, potentially reflecting
more cellular or aggressive tumor.18,19 ADC histogram analysis
improves upon mean diffusion metrics in characterizing the dis-
tribution of ADC values within areas of enhancement. Median
values of the lower curve (ADCL, thought to represent the
tumor-rich rather than edematous/necrotic portion of the le-
sion) of double Gaussian fits of the histogram data predicted
PFS and OS in bevacizumab-treated recurrent GBM. Specifically,
higher ADCL derived from pretreatment scans correlated with
better outcomes following bevacizumab treatment, both in a
single institution study20 and in a multicenter trial.21 ADCL

was not predictive of outcome following non–anti-angiogenic
treatments, and thus ADCL, similar to Ktrans, may represent a

predictive marker specific to bevacizumab or anti-angiogenic
therapy. Similar results have been obtained for GBM treated
with combined bevacizumab and sorafenib,22 as well as using
median ADC values in enhancing tumor,23 further supporting
the potential of DWI metrics to serve as predictive biomarkers.

The timing of bevacizumab treatment may impact the appli-
cability of DWI biomarkers. For instance, unlike in the recurrent
setting, higher ADCL may not predict prolonged PFS or OS in
newly diagnosed GBM patients treated with bevacizumab-
containing regimens given with radiation therapy24 and may
even be associated with shorter PFS.25 Recurrent and
treatment-naı̈ve GBM are genetically distinct. For example, re-
current GBM is often hypermutated and more likely to be of
the mesenchymal phenotype.26 – 28 Potentially these differenc-
es impact imaging biomarkers, rendering them dependent on
the type and timing of treatment, as well as the time point in
the patient’s treatment course at which they are acquired.

Assessing Early Response to Therapy

Cytotoxic therapy. Relative CBV appears to be an early re-
sponse marker for GBM treated with cytotoxic methods and
may add value to assessment of disease status based on ana-
tomic MRI.29,30 For instance, .5% increase in rCBV 1 month
after temozolomide chemoradiation correlates with poor OS,
whereas changes in enhancing tumor volume do not.31 Analo-
gous to fDMs for DWI, parametric response maps (PRMs) of
voxel-wise perfusion changes stratify survival in HGGs treated
with temozolomide chemoradiation.9,32 – 34 Specifically, rCBV
and rCBF PRMs from DSC-MRI 1 –3 weeks after treatment
were found to correlate with OS, while changes in mean rCBV
or rCBF based on standard enhancing tumor region-of-interest
(ROI) analysis did not.35 Comparison of (i) percentage change
of whole tumor rCBV, (ii) physiologic segmentation into low,
medium, and high rCBV, and (iii) PRM applied to serial rCBV
measurements at baseline and after 1 and 3 weeks of chemo-
radiation in GBM found that only PRMs predicted 1-year
survival.36

Based on the hypothesis that cell membrane destruction
following cell death yields enhanced water movement and in-
creased ADC that precede tumor shrinkage, fDM-based DWI
has also been investigated as an early response marker follow-
ing cytotoxic therapy. For example, brain tumors containing a
significant proportion of voxels with increased ADC between
baseline and 3 weeks post-chemoradiation have better re-
sponse at 10-week MRI than tumors without a shift toward in-
creased ADC,9 and fDMs 10 weeks post-chemoradiation
initiation predict 1-year survival in HGGs.32,37 Functional DMs
between baseline and post-temozolomide chemoradiation in
GBM have also shown that large volumes of tumor with de-
creasing ADC portend shorter PFS and OS.38,39 Similarly, the vol-
ume of GBM with decreased ADC on fDMs 2 days after boron
neutron capture therapy, an alternative to standard radiation
treatment, correlates with MRI-defined response at 10
weeks.40 These results are supported by data from preclinical
models using both cytotoxic chemotherapy41 and radiothera-
py,42 demonstrating that tumors with increasing ADC on fDMs
have increased cytotoxicity and better outcomes. Thus, there is
emerging evidence that fDMs can augment standard MRI as an
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early response marker following irradiation alone or in combi-
nation with cytotoxic chemotherapy.

Anti-angiogenic therapy. Theoretically, the microvascular sen-
sitivity of PWI should have utility for assessing response to anti-
angiogenic therapy. However, a retrospective study of
bevacizumab-treated recurrent GBM found only marginally sig-
nificant association of change in rCBV between baseline and
first follow-up and time to progression.43 Similarly, early post-
treatment changes in Ktrans and rCBV were not predictive of OS
in recurrent HGGs treated with both bevacizumab and temozo-
lomide.44 However, more promising results were recently ob-
tained using leakage correction and a method for
standardizing rCBV measurements across MR scanners and
field strengths to predict response to bevacizumab in recurrent
HGGs.45 Standardized rCBV measured 60 days before and 20–
60 days after bevacizumab therapy was predictive of PFS and
OS, while FLAIR hyperintense and contrast-enhancing volumes
were not. Additionally, using a population-based rCBV atlas to
minimize bias resulting from rCBV variability, pre- and post-
bevacizumab hypervascular rCBV volumes in recurrent GBM
were predictive of PFS and OS, whereas traditional PWI mea-
sures including mean and maximum rCBV were not.46 And re-
cent results from American College of Radiology Imaging
Network (ACRIN) 6677/Radiation Therapy Oncology Group
(RTOG) 0625, a multicenter, randomized, phase II trial of bev-
acizumab with irinotecan or temozolomide in GBM, demon-
strated that increasing rCBV between baseline and 2 or 16
weeks post-bevacizumab initiation portends worse OS.47

Therefore, there is emerging evidence that DSC-MRI can help
prognosticate OS and PFS shortly after treatment initiation
with bevacizumab.

As with cytotoxic therapy, fDMs and ADC histogram analysis
have provided early response markers for anti-angiogenic
therapy.10,48 – 50 For instance, fDMs derived from pretreatment
and 6-week post-bevacizumab initiation scans stratified PFS
and OS in a cohort of recurrent GBM using ROIs defined within
contrast-enhancing or abnormal FLAIR regions.10 Nonlinear
registration of ADC maps for fDM generation improved the
prognostic value, and relatively high sensitivity (64%) and spe-
cificity (73%) for 6-month PFS using ROIs defined by abnormal
FLAIR hyperintensity were realized. In addition to nonlinear
registration, graded fDMs, in which change in ADC is segmented
into discrete bins, also better predicted OS than standard fDM
approaches.49 Furthermore, in a study of pre- and post-
bevacizumab-treated recurrent GBM, baseline ADC parameters
within nonenhancing FLAIR hyperintensity and subsequent
changes in ADC within enhancing tumor between pre- and
posttherapy scans stratified OS and PFS.48

As mentioned, the timing of anti-angiogenic therapy
impacts DWI-based biomarkers. For instance, traditional
and graded fDM metrics appear less predictive of outcomes
when applied to patients receiving up-front as opposed to
adjuvant bevacizumab.24 Changes in ADC from mid- to post-
radiotherapy appear to outperform changes from pre- to mid-
radiotherapy or pre- to post-radiotherapy.51 These results are
particularly notable given that mid-radiotherapy scans are typ-
ically not acquired in standard patient treatment regimens,
even though they may contain useful prognostic information.

Distinguishing Response from Pseudoresponse and
Detection of Nonenhancing Tumor

Anti-angiogenic therapy “normalizes” the blood–brain barrier,
diminishing transvascular gadolinium leakage and contrast en-
hancement. This can result in “pseudoresponse,” which reflects
decreased contrast enhancement independent of antitumor
effect and likely accounts for the high response rate and pro-
longed PFS without improved OS in bevacizumab-treated GBM
(Fig. 2).52 Similar shortcomings of conventional imaging have
been demonstrated in other studies,53,54 posing a limitation
for early response assessment and leading to inclusion of
FLAIR-based nonenhancing tumor in modified response as-
sessment criteria.55

Identification of nonenhancing tumor, however, remains
challenging. Bevacizumab treatment can result in a marked
decrease in vasogenic edema, and although increasing FLAIR
hyperintensity following bevacizumab treatment often repre-
sents nonenhancing tumor, other common entities such as per-
sistent vasogenic edema and gliosis can mimic or mask
nonenhancing tumor, degrading specificity (Fig. 3). The role of
contrast enhancement and FLAIR in predicting OS has been con-
troversial. This is exemplified in recent results from ACRIN
6677,56 where, not surprisingly, patients with progressive en-
hancement after 2 or 4 anti-angiogenic therapy cycles had sig-
nificantly shorter OS than nonprogressors. However, there was
no survival benefit for patients with improved versus stable en-
hancement, likely due to pseudoresponse. Furthermore, there
was no survival prognostication with FLAIR, suggesting that con-
ventional imaging fails to stratify OS for anti-angiogenic therapy.

DSC-MRI may help identify pseudoresponse and predict rela-
tive treatment success shortly after initiation of anti-angiogenic
therapy. The ACRIN 6677 trial demonstrated significant OS dif-
ferences for patients with increased versus decreased rCBV with-
in enhancing tumor at 2 or 16 weeks posttreatment initiation
compared with baseline.47 Furthermore, DSC-MRI successfully

Fig. 2. Pseudoresponse. Contrast-enhanced axial T1-weighted MRIs
of a recurrent GBM tumor before (A) and after (B) bevacizumab
therapy demonstrate a marked decrease in the amount of contrast
enhancement 6 days following initiation of anti-angiogenic therapy.
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substratified the nonprogressors on conventional T1-weighted
postcontrast MRI. Whereas there was no survival difference be-
tween T1 responders and patients with stable disease, OS was
significantly longer for patients with decreased rather than in-
creased rCBV at 2 weeks compared with baseline, suggesting
that DSC-MRI can identify likely relative treatment successes.57

Early posttreatment standardized rCBV also predicted OS and
PFS in a similar single-institution study of 36 recurrent HGGs im-
aged with DSC-MRI 20–60 days after bevacizumab.45

Results such as these may motivate an interpretation para-
digm for recurrent GBM shortly after bevacizumab whereby pa-
tients with progressive contrast enhancement are deemed
treatment failures, but instead of using responsive enhance-
ment status for further substratification, change in rCBV
would be used to further distinguish relative treatment suc-
cesses from failures. Larger prospective trials are warranted.

PWI may also improve identification of nonenhancing tumor
by diminishing the nonspecificity of FLAIR signal changes.
Multiparametric DCE-MRI and DSC-MRI methods applied to

nonenhancing regions indicate that decreased rCBV and rCBF
and absence of increased Ktrans in bevacizumab-treated GBM
distinguish vasogenic edema from infiltrative tumor and corre-
late with PFS.58,59 Principal component analysis of temporal
DSC-MRI data in GBM identify peritumoral regions likely to be
infiltrated with tumor and correlate with OS.60 And increasing
rCBV in nonenhancing peritumoral and transcallosal regions
has been shown to associate with poor OS (Fig. 4).61 A multivar-
iate model including KPS, age at diagnosis, and rCBV of nonen-
hancing regions found rCBV to be more prognostic than other
imaging, genomic, or clinical features.

DWI has also been applied to GBM receiving with anti-
angiogenic therapy, based on the theory that lower ADC re-
flects higher cellularity and is more likely to be seen in tumor
infiltration than vasogenic edema. The volume of FLAIR hyper-
intensity with abnormally low ADC that increases over time has
been postulated to correspond with tumor infiltration,62 and
there is histopathological evidence to support this.63 ADC histo-
gram analysis of FLAIR hyperintense regions indicate that the

Fig. 3. Possible nonenhancing tumor vs gliosis or edema. Axial T2-weighted images following surgical resection and chemoradiation (white
arrows) of a left frontal anaplastic astrocytoma (A) with follow-up imaging performed 1 year (B) and 1-1/2 years (C) later demonstrate a slight
increase in the amount of T2 hyperintensity along the lateral margin of the resection site (darker arrow in C), which may represent gliosis or edema.
However, nonenhancing recurrent tumor cannot be excluded.

Fig. 4. DSC-MRI and nonenhancing tumor. Contrast-enhanced axial T1-weighted MRI (A) and color rCBV map (B) from DSC-MRI demonstrate a
nonenhancing region (yellow oval, A) along the anterior aspect of an enhancing right-sided GBM with increased rCBV (white arrow, B), consistent
with nonenhancing tumor.
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development of enhancing lesions is associated with a shift to-
ward lower ADC values,64 which can precede the appearance of
contrast-enhancing tumor by an average of 3 months.65 Thus
ADC-based metrics appear to have potential as early indicators
of tumor progression, even during bevacizumab-associated
suppression of tumor angiogenesis, contrast enhancement,
and vasogenic edema.66

One caveat to the application of DWI for identifying nonen-
hancing tumor is that lower ADC values do not always correlate
with increasing tumor infiltration. Rather, very low and persis-
tent diffusion restriction can be associated with nonviable tis-
sue demonstrating atypical necrosis.67 – 70 These lesions tend
to be periventricular, slowly change over many months, and
are associated with better, rather than poorer, survival
(Fig. 5). Persistent restricted diffusion has also been reported
for bevacizumab-treated metastases.71 More broadly, this
type of necrosis-associated restricted diffusion may be thought
of as a type of treatment toxicity.72 It is also important to note
that bevacizumab can induce stroke-like lesions as early as 4–8
weeks after start of therapy.69 Thus the interpretation of low
ADC lesions in bevacizumab-treated gliomas must be made
with caution.

Distinguishing Progression from Pseudoprogression

Pseudoprogression (PsP) represents transient increased con-
trast enhancement mimicking tumor progression and compli-
cates response criteria for radiological progression (Fig. 6).
Differentiation from progressive disease (PD) is important
for avoiding premature trial failures and selecting timely

alternative therapies. Its mechanism is incompletely under-
stood73 but involves increased vascular permeability with
edema and contrast enhancement that are difficult to distin-
guish from PD with conventional MRI.74 PWI and DWI have
been proposed as useful adjunct imaging modalities for iden-
tifying PsP.

Although mean rCBV from DSC-MRI has consistently been
shown to distinguish tumor and radiation necrosis in the setting
of late-delayed progressive enhancement following radiation
therapy,75 – 77 its utility for distinguishing PsP from PD in the set-
ting of early-delayed progressive enhancement following
temozolomide chemoradiation is more uncertain. There are
several possible times for interpreting new or progressive en-
hancement for chemoradiation-treated gliomas, including
early posttreatment to predict future response and at initial
progressive enhancement to distinguish PsP and PD.

For early posttreatment evaluation, change in rCBV between
baseline and follow-up 1 month after completion of temozolo-
mide chemoradiation stratified OS in a study of 36 GBM tumors,
whereas bidimensional enhancement measurements did not.
In those patients with progressive enhancement at 1 month,
increased mean lesion rCBV corresponded with PD, and
decreased mean lesion rCBV with PsP, with favorable receiver
operating characteristic curve analysis (Fig. 7).31 However, an-
other study of 27 HGGs 3 weeks after chemoradiation using
parametric response maps paradoxically found the converse
to be true, with reduced rCBV in lesions destined for PD.78

Thus the relationship between outcomes and changes in rCBV
requires further investigation to clarify these potential
discrepancies.

Fig. 5. Persistent diffusion restriction in recurrent GBM treated with bevacizumab. Contrast-enhanced axial T1-weighted image with fat saturation
(A) demonstrates a necrotic, heterogeneously enhancing recurrent GBM in the left temporoparietal region. Follow-up imaging (B–D) after starting
bevacizumab demonstrates marked decrease in contrast enhancement with development of prominent diffusion restriction (C, D: DWI and ADC
map images, respectively). Another follow-up examination 2 months later (E–G) again demonstrates decreased contrast enhancement and
persistent diffusion restriction.
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Results are also conflicting for evaluation of disease status
after initial progression of enhancement. Some studies have
demonstrated significantly different median rCBV after temozo-
lomide chemoradiation between PsP and PD using optimal
thresholds of 1.379 and 1.8.80 Another study found significant dif-
ference in mean rCBV, but only in GBM with unmethylated rather
than methylated O6-DNA methylguanine-methyltransferase.81

To overcome limitations associated with contrast leakage in
accurately determining rCBV, ferumoxytol, an intravascular iron-
based agent not susceptible to leakage effects, has been em-
ployed and compared with a GBCA. In a pilot study of 14 GBM
tumors at initial progressive post-chemoradiation enhancement,
there was much better separation of mean rCBV between PD and
PsP with ferumoxytol than with the GBCA.82,83 Conversely, a ret-
rospective study of HGGs treated with paclitaxel polyglumex, a

powerful radiation sensitizer with a high incidence of profound
PsP often coexistent with PD, found no significant difference in
mean rCBV at initial progressive enhancement between lesions
destined for PsP and PD.84

One possible explanation for these inconsistent results
based on rCBV from a single time point for distinguishing PsP
from PD is that coexistence of tumor and necrosis likely yields
a spectrum of chemoradiation-induced vascular morphologies
and potentially a wide range of vascular volumes.85 Therefore,
especially early in lesion evolution, mean rCBV may be inade-
quate for capturing the dominant tumor behavior. Conversely,
rCBV trends capturing temporal variation, or histograms identi-
fying spatial variation, may be more descriptive and predictive.
For instance, the paclitaxel study found that temporal changes
in rCBV predicted lesion destiny, with rCBV trending downward

Fig. 6. Pseudoprogression vs true progressive disease. Axial contrast-enhanced T1-weighted image 2 days after biopsy (A) of a right thalamic HGG
shows faint enhancement in the right thalamic region. Four weeks after temozolomide chemoradiation there is progressive enhancement (B)
concerning for PsP vs true PD. After an additional 4 weeks, there is further progressive contrast enhancement (C). Follow-up after 4 more
weeks (D) shows continued progressive contrast enhancement consistent with true PD rather than PsP.

Shiroishi et al.: Physiologic MRI for assessment of response to therapy

Neuro-Oncology 473



for PsP and upward for PD.84 Histogram analysis of rCBV
was used to study 79 GBM cases after progressive post-
chemoradiation enhancement, and changes in histogram
skewness and kurtosis predicted lesion destiny.86 Similarly,
fractional tumor volume using single-voxel rCBV thresholding
with a cutoff of 1.0 has been shown to depict histologic
tumor fraction in a study of 25 GBM tumors, and correlates
with OS better than mean rCBV after progressive enhance-
ment.87 Trends in combined rCBV and ADC histograms between
initial progressive enhancement and first subsequent follow-up
were also used to study 35 GBM cases with progressive en-
hancement, and an increased population of low change in
rCBV and high change in ADC on subtracted histograms predict-
ed PsP, with the converse true for PD.88 Emerging evidence
therefore suggests that because of the complex pathophysiol-
ogy of PsP and tendency for tumor and necrosis to coexist, rCBV
analysis schemes that capture temporal (trends) and spatial
(histogram) heterogeneity may have advantages over static
measures of mean rCBV for distinguishing PsP and PD.

It is worth noting that multiple factors may impact reported
literature results and threshold values of rCBV for distinguishing
PsP from PD. These include mix of tumor grades; differences in
chemoradiation; methods for confirming lesion destiny; vari-
able DSC-MRI methodology, including acquisition parameters,
preload and postprocessing leakage correction, and postpro-
cessing software; timing of DSC-MRI in relation to initiation of
chemoradiation; and data reduction strategies, including use
of mean or median versus histograms or longitudinal trends.
These sources for discrepancy emphasize the importance of
careful consideration of methodological differences when
adapting techniques from the literature, and the need for
more imaging standardization.

DWI has also been investigated for differentiating PD from PsP,
with the underlying assumption that PD will have higher cell den-
sity and lower corresponding ADC than PsP. ADC measured 2

months after completion of chemoradiation has shown promise
in identifying PsP,89 with high b-value acquisitions having poten-
tial benefit90 in combination with ADC histogram analysis. How-
ever, DWI alone may not have sufficient accuracy for clinical
decision making, and multimodal approaches including DWI
may be beneficial,91 with recent evidence92 that volume-
weighted voxel-based multiparametric clustering is more repro-
ducible and accurate than single-parameter measurements for
differentiating PsP from early PD in GBM. Several other groups
have reported similar results.93,94 The combination of MR spectro-
scopy, ADC, and rCBV has improved the discriminatory value of
ADC alone.95,96 Thus DWI may help improve the identification
of PsP when used in combination with other physiologic imaging
modalities; independently, its utility may be limited.

Another nascent application of PWI and DWI is the assess-
ment of response to immunotherapy, which by virtue of in-
duced inflammatory changes resulting in progressive contrast
enhancement independent of tumor infiltration presents simi-
lar challenges to PsP.97 These changes may actually portend a
better prognosis and reflect response to treatment, rather than
tumor progression. Importantly, the effectiveness of the im-
mune response may take several weeks to manifest in healthy
individuals, and potentially even longer in cancer patients with
immunosuppression. Thus the time course of response may be
patient specific and depend on the exact type of immunother-
apy used. Preliminary evidence suggests that rCBV and ADC
may have a role in assessing tumor burden in these patients.
For instance, in a pilot study of 8 GBM tumors treated with den-
dritic cell immune therapy, high maximum rCBV and low mini-
mum ADC were associated with tumor progression and were
helpful for distinguishing inflammatory change associated
with immune response from PD.98 However, further investiga-
tion is required to confirm these results and to determine
whether similar approaches to distinguish PsP from PD are
translatable to other forms of immunotherapy.

Fig. 7. Pseudoprogression and DSC-MRI. Contrast-enhanced axial T1-weighted MRI of a right-sided GBM shortly after temozolomide
chemoradiation (A) demonstrates increased contrast enhancement suspicious for PD vs PsP. Color rCBV map from DSC-MRI (B) demonstrates
low rCBV, consistent with PsP.
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Conclusion: General Recommendations, Standardization
of Imaging for Brain Tumor Trials, and Emerging Imaging
Methods

We have presented an overview of the principles of PWI and
DWI and their application to response assessment and progno-
sis in patients with HGGs. Analysis methods of these functional
techniques can vary, including: subjective/qualitative evalua-
tion of parametric maps, user-defined ROI values (using
mean, median, maximum, or minimum), histogram analysis,
and voxel-wise analysis (ie, PRMs and fDMs). It should be
noted that as universal quantitative imaging biomarker thresh-
olds have not been established for various brain tumor applica-
tions, subjective/qualitative analysis is often used in the routine
clinical setting. This is particularly true with rCBV maps, which
are probably the most helpful problem-solving tool at this
point, with good support in the literature.

While brain tumor imaging protocols vary widely across in-
stitutions, a few brief recommendations will be made with re-
gard to PWI and DWI. We recommend the addition of at least
DSC- and DWI-MRI to the standard contrast-enhanced MRI
brain tumor protocol. For DSC-MRI, we recommend the use of
a GBCA preload along with model-based postprocessing leak-
age correction for more accurate rCBV measurements. Longitu-
dinal evaluation of rCBV from DSC-MRI can be especially helpful
to identify active tumor.

However, it is clear that more technical standardization is re-
quired, particularly in the setting of multicenter brain tumor clin-
ical trials.99 For physiologic MRI techniques such as DWI and PWI,
efforts related to technical standardization, including optimal ac-
quisition parameters, postprocessing methods/software, deter-
mination of repeatability and reproducibility, and quality control
methods are ongoing. Much preliminary evidence indicates the
ability of advanced imaging, when judiciously applied, to improve
assessment of tumor burden and treatment response in patients
with recurrent glioblastoma. Solidifying evidence of clinical im-
pact on decision making and future inclusion of these techniques
in multicenter trials require sustained and focused efforts but
could significantly improve the process of translating effective
therapy from the laboratory to the clinic.

Lastly, emerging fields like imaging genomics may change
the way in which physiologic MRI is utilized for brain tumor pa-
tient care. Perfusion and diffusion MRI metrics may have under-
lying genomic correlates. Integration of the imaging and
genomic data may improve our understanding of tumor biol-
ogy as well as be the source of novel prognostic, predictive,
and early response imaging biomarkers in the near future.100
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